Unconstrained Pose-Invariant Face Recognition Using 3D Generic Elastic Models

Classical face recognition techniques have been successful at operating under well-controlled conditions; however, they have difficulty in robustly performing recognition in uncontrolled real-world scenarios where variations in pose, illumination, and expression are encountered. In this paper, we pr...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on pattern analysis and machine intelligence Vol. 33; no. 10; pp. 1952 - 1961
Main Authors Prabhu, U., Jingu Heo, Savvides, M.
Format Journal Article
LanguageEnglish
Published United States IEEE 01.10.2011
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Classical face recognition techniques have been successful at operating under well-controlled conditions; however, they have difficulty in robustly performing recognition in uncontrolled real-world scenarios where variations in pose, illumination, and expression are encountered. In this paper, we propose a new method for real-world unconstrained pose-invariant face recognition. We first construct a 3D model for each subject in our database using only a single 2D image by applying the 3D Generic Elastic Model (3D GEM) approach. These 3D models comprise an intermediate gallery database from which novel 2D pose views are synthesized for matching. Before matching, an initial estimate of the pose of the test query is obtained using a linear regression approach based on automatic facial landmark annotation. Each 3D model is subsequently rendered at different poses within a limited search space about the estimated pose, and the resulting images are matched against the test query. Finally, we compute the distances between the synthesized images and test query by using a simple normalized correlation matcher to show the effectiveness of our pose synthesis method to real-world data. We present convincing results on challenging data sets and video sequences demonstrating high recognition accuracy under controlled as well as unseen, uncontrolled real-world scenarios using a fast implementation.
AbstractList Classical face recognition techniques have been successful at operating under well-controlled conditions; however, they have difficulty in robustly performing recognition in uncontrolled real-world scenarios where variations in pose, illumination, and expression are encountered. In this paper, we propose a new method for real-world unconstrained pose-invariant face recognition. We first construct a 3D model for each subject in our database using only a single 2D image by applying the 3D Generic Elastic Model (3D GEM) approach. These 3D models comprise an intermediate gallery database from which novel 2D pose views are synthesized for matching. Before matching, an initial estimate of the pose of the test query is obtained using a linear regression approach based on automatic facial landmark annotation. Each 3D model is subsequently rendered at different poses within a limited search space about the estimated pose, and the resulting images are matched against the test query. Finally, we compute the distances between the synthesized images and test query by using a simple normalized correlation matcher to show the effectiveness of our pose synthesis method to real-world data. We present convincing results on challenging data sets and video sequences demonstrating high recognition accuracy under controlled as well as unseen, uncontrolled real-world scenarios using a fast implementation.
Classical face recognition techniques have been successful at operating under well-controlled conditions; however, they have difficulty in robustly performing recognition in uncontrolled real-world scenarios where variations in pose, illumination, and expression are encountered. In this paper, we propose a new method for real-world unconstrained pose-invariant face recognition. We first construct a 3D model for each subject in our database using only a single 2D image by applying the 3D Generic Elastic Model (3D GEM) approach. These 3D models comprise an intermediate gallery database from which novel 2D pose views are synthesized for matching. Before matching, an initial estimate of the pose of the test query is obtained using a linear regression approach based on automatic facial landmark annotation. Each 3D model is subsequently rendered at different poses within a limited search space about the estimated pose, and the resulting images are matched against the test query. Finally, we compute the distances between the synthesized images and test query by using a simple normalized correlation matcher to show the effectiveness of our pose synthesis method to real-world data. We present convincing results on challenging data sets and video sequences demonstrating high recognition accuracy under controlled as well as unseen, uncontrolled real-world scenarios using a fast implementation.Classical face recognition techniques have been successful at operating under well-controlled conditions; however, they have difficulty in robustly performing recognition in uncontrolled real-world scenarios where variations in pose, illumination, and expression are encountered. In this paper, we propose a new method for real-world unconstrained pose-invariant face recognition. We first construct a 3D model for each subject in our database using only a single 2D image by applying the 3D Generic Elastic Model (3D GEM) approach. These 3D models comprise an intermediate gallery database from which novel 2D pose views are synthesized for matching. Before matching, an initial estimate of the pose of the test query is obtained using a linear regression approach based on automatic facial landmark annotation. Each 3D model is subsequently rendered at different poses within a limited search space about the estimated pose, and the resulting images are matched against the test query. Finally, we compute the distances between the synthesized images and test query by using a simple normalized correlation matcher to show the effectiveness of our pose synthesis method to real-world data. We present convincing results on challenging data sets and video sequences demonstrating high recognition accuracy under controlled as well as unseen, uncontrolled real-world scenarios using a fast implementation.
Author Savvides, M.
Prabhu, U.
Jingu Heo
Author_xml – sequence: 1
  givenname: U.
  surname: Prabhu
  fullname: Prabhu, U.
  email: uprabhu@andrew.cmu.edu
  organization: Electr. & Comput. Eng. Dept., Carnegie Mellon Univ., Pittsburgh, PA, USA
– sequence: 2
  surname: Jingu Heo
  fullname: Jingu Heo
  email: jheo@andrew.cmu.edu
  organization: Electr. & Comput. Eng. Dept., Carnegie Mellon Univ., Pittsburgh, PA, USA
– sequence: 3
  givenname: M.
  surname: Savvides
  fullname: Savvides, M.
  email: marioss@andrew.cmu.edu
  organization: Electr. & Comput. Eng. Dept., Carnegie Mellon Univ., Pittsburgh, PA, USA
BackLink https://www.ncbi.nlm.nih.gov/pubmed/21670487$$D View this record in MEDLINE/PubMed
BookMark eNp1kUtLAzEUhYMoWh9bN4IMrtxMvXnMTLKU-ipYFLHrEDN3JDJNNJkK_ntTqy4EV2fznXsP5-ySTR88EnJIYUwpqLPH-_PZdMyA0jFlfIOMGK2hVEyxTTICWrNSSiZ3yG5KLwBUVMC3yU6GGhCyGZHZ3Nvg0xCN89gW9yFhOfXvJjrjh-LKWCwe0IZn7wYXfDFPzj8X_KK4Ro_R2eKyN2nIOgst9mmfbHWmT3jwrXtkfnX5OLkpb--up5Pz29IKkEOpBFKmnuqqlZ3sQFhuUbXQqLqWDAHR2Ea21IDorGKdaW2d8zZWCWUrC5zvkdP13dcY3paYBr1wyWLfG49hmTRtKK14VYHI6Mkf9CUso8_ptJRCct6IKkPH39DyaYGtfo1uYeKH_ukpA-M1YGNIKWL3i1DQqyH01xB6NYTOQ2SD-GOwbjCrDldV9__bjtY2h4i_PyqZI-Ssn1LIksM
CODEN ITPIDJ
CitedBy_id crossref_primary_10_1016_j_imavis_2015_01_007
crossref_primary_10_1109_TIFS_2014_2309851
crossref_primary_10_1016_j_patcog_2017_02_007
crossref_primary_10_1049_iet_cvi_2014_0084
crossref_primary_10_1016_j_patrec_2012_05_015
crossref_primary_10_1109_TPAMI_2017_2725279
crossref_primary_10_1109_TCYB_2013_2291196
crossref_primary_10_3233_IDA_194798
crossref_primary_10_1016_j_engappai_2022_104669
crossref_primary_10_1016_j_ins_2022_06_092
crossref_primary_10_1016_j_cviu_2012_08_001
crossref_primary_10_1109_TIFS_2014_2362299
crossref_primary_10_1007_s00521_017_3035_3
crossref_primary_10_1109_TPAMI_2015_2481396
crossref_primary_10_1109_LSP_2014_2364185
crossref_primary_10_1109_TPAMI_2018_2792452
crossref_primary_10_1109_TIFS_2014_2359548
crossref_primary_10_1109_TNNLS_2017_2648122
crossref_primary_10_1109_TIFS_2014_2361028
crossref_primary_10_1109_THMS_2016_2515602
crossref_primary_10_1016_j_patcog_2017_09_006
crossref_primary_10_1109_TCSVT_2017_2748379
crossref_primary_10_1109_TIP_2015_2390959
crossref_primary_10_1016_j_jvcir_2013_06_007
crossref_primary_10_1016_j_cviu_2016_04_012
crossref_primary_10_1109_TPAMI_2014_2313124
crossref_primary_10_1016_j_jvcir_2015_11_006
crossref_primary_10_1117_1_JEI_23_5_053013
crossref_primary_10_1016_j_patcog_2017_10_020
crossref_primary_10_1007_s10462_019_09742_3
crossref_primary_10_1186_s13673_018_0157_2
crossref_primary_10_1016_j_patcog_2017_03_029
crossref_primary_10_1049_iet_ipr_2014_0733
crossref_primary_10_1016_j_cviu_2015_03_005
crossref_primary_10_1016_j_patcog_2017_03_024
crossref_primary_10_1049_iet_ipr_2013_0003
crossref_primary_10_1016_j_jvcir_2018_03_013
crossref_primary_10_1109_TIFS_2015_2393553
crossref_primary_10_1109_TPAMI_2016_2554107
crossref_primary_10_1142_S0218001420560066
crossref_primary_10_1109_TPAMI_2017_2778152
crossref_primary_10_1016_j_patcog_2019_01_032
crossref_primary_10_1016_j_patcog_2019_107113
crossref_primary_10_1007_s11063_017_9649_8
crossref_primary_10_1587_transinf_2014EDP7352
crossref_primary_10_1049_iet_cvi_2019_0244
crossref_primary_10_1109_TIP_2013_2271115
crossref_primary_10_1145_2845089
crossref_primary_10_3390_app10248940
crossref_primary_10_1016_j_patcog_2017_04_013
crossref_primary_10_1109_TPAMI_2017_2695183
crossref_primary_10_1109_TIP_2015_2468173
crossref_primary_10_1016_j_patcog_2015_10_007
crossref_primary_10_1186_s13640_019_0406_y
crossref_primary_10_1007_s11633_018_1153_8
Cites_doi 10.1109/TSMCB.2007.904575
10.1007/3-540-47969-4_30
10.1145/954339.954342
10.1109/TPAMI.2003.1227983
10.1007/s11263-005-3962-9
10.1007/0-387-27257-7_8
10.1109/34.598235
10.1109/icics.2003.1292698
10.1109/AFGR.2008.4813399
10.1109/34.784284
10.1162/jocn.1991.3.1.71
10.1109/34.254061
10.1109/AFGR.2000.840648
10.1109/CVPR.2005.268
10.1109/TPAMI.2006.120
10.1109/CVPR.1994.323814
10.1023/B:VISI.0000029666.37597.d3
10.1007/s11263-007-0075-7
10.1006/cviu.1995.1004
10.1109/ICPR.1994.576366
10.1007/11564386_4
10.1109/34.927467
10.1109/TPAMI.2008.79
10.1109/BTAS.2009.5339057
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Oct 2011
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Oct 2011
DBID 97E
RIA
RIE
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
7X8
DOI 10.1109/TPAMI.2011.123
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
MEDLINE - Academic
DatabaseTitleList MEDLINE
MEDLINE - Academic
Technology Research Database

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
EISSN 2160-9292
1939-3539
EndPage 1961
ExternalDocumentID 2433293791
21670487
10_1109_TPAMI_2011_123
5887348
Genre orig-research
Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
-DZ
-~X
.DC
0R~
29I
4.4
53G
5GY
5VS
6IK
97E
9M8
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABFSI
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
ACNCT
ADRHT
AENEX
AETEA
AETIX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
E.L
EBS
EJD
F5P
FA8
HZ~
H~9
IBMZZ
ICLAB
IEDLZ
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
MS~
O9-
OCL
P2P
PQQKQ
RIA
RIE
RNI
RNS
RXW
RZB
TAE
TN5
UHB
VH1
XJT
~02
AAYOK
AAYXX
CITATION
RIG
CGR
CUY
CVF
ECM
EIF
NPM
PKN
RIC
Z5M
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
7X8
ID FETCH-LOGICAL-c408t-94e129b65d8f8f04c3ce9d0796682e0eeac78d1a04fc92fadc66707c949c5c033
IEDL.DBID RIE
ISSN 0162-8828
1939-3539
IngestDate Fri Jul 11 12:28:39 EDT 2025
Mon Jun 30 05:56:52 EDT 2025
Wed Feb 19 02:26:44 EST 2025
Tue Jul 01 05:16:33 EDT 2025
Thu Apr 24 23:07:33 EDT 2025
Tue Aug 26 17:18:00 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 10
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c408t-94e129b65d8f8f04c3ce9d0796682e0eeac78d1a04fc92fadc66707c949c5c033
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
PMID 21670487
PQID 884833745
PQPubID 85458
PageCount 10
ParticipantIDs pubmed_primary_21670487
crossref_citationtrail_10_1109_TPAMI_2011_123
ieee_primary_5887348
proquest_journals_884833745
crossref_primary_10_1109_TPAMI_2011_123
proquest_miscellaneous_1711535504
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2011-10-01
PublicationDateYYYYMMDD 2011-10-01
PublicationDate_xml – month: 10
  year: 2011
  text: 2011-10-01
  day: 01
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: New York
PublicationTitle IEEE transactions on pattern analysis and machine intelligence
PublicationTitleAbbrev TPAMI
PublicationTitleAlternate IEEE Trans Pattern Anal Mach Intell
PublicationYear 2011
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref12
ref15
ref14
ref11
ref10
ref2
ref1
ref17
Heo (ref8) 2009
ref16
ref19
ref18
Horn (ref5) 1970
ref24
ref23
ref26
ref25
ref20
ref22
ref21
ref7
ref9
ref4
ref3
ref6
References_xml – ident: ref2
  doi: 10.1109/TSMCB.2007.904575
– ident: ref1
  doi: 10.1007/3-540-47969-4_30
– ident: ref15
  doi: 10.1145/954339.954342
– ident: ref4
  doi: 10.1109/TPAMI.2003.1227983
– ident: ref7
  doi: 10.1007/s11263-005-3962-9
– ident: ref18
  doi: 10.1007/0-387-27257-7_8
– ident: ref20
  doi: 10.1109/34.598235
– ident: ref17
  doi: 10.1109/icics.2003.1292698
– year: 2009
  ident: ref8
  article-title: Generic Elastic Models for 2D Pose Synthesis and Face Recognition
– ident: ref24
  doi: 10.1109/AFGR.2008.4813399
– ident: ref6
  doi: 10.1109/34.784284
– ident: ref10
  doi: 10.1162/jocn.1991.3.1.71
– ident: ref19
  doi: 10.1109/34.254061
– ident: ref22
  doi: 10.1109/AFGR.2000.840648
– ident: ref14
  doi: 10.1109/CVPR.2005.268
– ident: ref21
  doi: 10.1109/TPAMI.2006.120
– ident: ref3
  doi: 10.1109/CVPR.1994.323814
– ident: ref13
  doi: 10.1023/B:VISI.0000029666.37597.d3
– ident: ref26
  doi: 10.1007/s11263-007-0075-7
– ident: ref11
  doi: 10.1006/cviu.1995.1004
– ident: ref25
  doi: 10.1109/ICPR.1994.576366
– ident: ref9
  doi: 10.1007/11564386_4
– ident: ref12
  doi: 10.1109/34.927467
– ident: ref16
  doi: 10.1109/TPAMI.2008.79
– volume-title: technical report
  year: 1970
  ident: ref5
  article-title: Shape from Shading: A Method for Obtaining the Shape of a Smooth Opaque Object from One View
– ident: ref23
  doi: 10.1109/BTAS.2009.5339057
SSID ssj0014503
Score 2.4211996
Snippet Classical face recognition techniques have been successful at operating under well-controlled conditions; however, they have difficulty in robustly performing...
SourceID proquest
pubmed
crossref
ieee
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1952
SubjectTerms 3D face modeling
Biometric Identification - methods
Computational modeling
Databases, Factual
Face
Face - anatomy & histology
Face recognition
generic elastic models
Humans
Imaging, Three-Dimensional - methods
Linear Models
Models, Theoretical
Pose-invariant face recognition
Posture
Principal component analysis
Shape
Solid modeling
Studies
Three dimensional displays
Title Unconstrained Pose-Invariant Face Recognition Using 3D Generic Elastic Models
URI https://ieeexplore.ieee.org/document/5887348
https://www.ncbi.nlm.nih.gov/pubmed/21670487
https://www.proquest.com/docview/884833745
https://www.proquest.com/docview/1711535504
Volume 33
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB61PcGBQstjKSAjIXHBW2fjxPaxgq5apEUV6kq9Rc54IiGqBLG7HPj1jJ2HAFGJW6Q4ceyZsb_JjL8BeOPRxfhfLTVv_1Jb1UhXZo0sXL3woQm1t_E08upTebHWH2-Kmz14N52FIaKUfEbzeJli-aHDXfxVdlqwReTa7sM-O279Wa0pYqCLVAWZEQxbOLsRA0Fjptzp9dXZ6rJn6-R1OtH_loY11_yxF6XiKnfjzLTfLA9hNX5pn2bydb7b1nP8-ReJ4_8O5SE8GICnOOs15RHsUXsEh2NRBzHY-BHc_42h8BhW6xYjgoyFJCiIq25D8rL9wQ42S0QsPZL4PKYgda1ICQgi_yASm_UXFOcMzrlDEUuu3W4ew3p5fv3-Qg4VGCRqZbfSaWI8UJdFsI1tlMYcyQVl2EeyC1LEq7axIfNKN-gWjQ9Y8swadNphgSrPn8BB27X0DISnvNQemzogxdRS7xpCF7yJTxqrZyBHWVQ40JPHwd1WyU1RrkpirKIYKxbjDN5O7b_1xBx3tjyO8z-1GqZ-BiejqKvBbjeVtdrmudHFDF5Pd9ngYhTFt9TtNlVmGEQzSlP8yU97DZlePSrW8393eQL3FmMKYfYCDrbfd_SSMc22fpWU-RcVJfEu
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB6VcgAOFFoeS3kYCYkL3jobJ7aPFXS1C01VoV2pN8vxQ0JUCWJ3OfDrGTsPAaISt0hx4tgzY3-TGX8D8MZYFeN_NeW4_VMuWaCqzAItVD0zLrjayHgaubooF2v-8aq42oN341kY731KPvPTeJli-a61u_ir7KRAi8i5vAW3cd8vsu601hgz4EWqg4wYBm0cHYmeojFj6mR1eVotO75OXKkTAXApUHfFH7tRKq9yM9JMO878AKrhW7tEk6_T3bae2p9_0Tj-72AewP0eepLTTlcewp5vDuFgKOtAeis_hHu_cRQeQbVubMSQsZSEd-Sy3Xi6bH6gi40yIXNjPfk8JCG1DUkpCCT_QBKf9RdLzhCeY4ckFl273jyC9fxs9X5B-xoM1HImt1Rxj4igLgsngwyM29x65ZhAL0nOPPO4bgvpMsN4sGoWjLMlzqywiitbWJbnj2G_aRv_FIjxecmNDbWzPiaXGhW8Vc6I-KSQfAJ0kIW2PUF5HNy1To4KUzqJUUcxahTjBN6O7b911Bw3tjyK8z-26qd-AseDqHVvuRstJZd5LngxgdfjXTS5GEcxjW93G50JhNGI0xh-8pNOQ8ZXD4r17N9dvoI7i1V1rs-XF5-O4e5sSCjMnsP-9vvOv0CEs61fJsX-BdBK9Hc
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Unconstrained+Pose-Invariant+Face+Recognition+Using+3D+Generic+Elastic+Models&rft.jtitle=IEEE+transactions+on+pattern+analysis+and+machine+intelligence&rft.au=Prabhu%2C+Utsav&rft.au=Heo%2C+Jingu&rft.au=Savvides%2C+Marios&rft.date=2011-10-01&rft.issn=1939-3539&rft.eissn=1939-3539&rft.volume=33&rft.issue=10&rft.spage=1952&rft_id=info:doi/10.1109%2FTPAMI.2011.123&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0162-8828&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0162-8828&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0162-8828&client=summon