Unconstrained Pose-Invariant Face Recognition Using 3D Generic Elastic Models
Classical face recognition techniques have been successful at operating under well-controlled conditions; however, they have difficulty in robustly performing recognition in uncontrolled real-world scenarios where variations in pose, illumination, and expression are encountered. In this paper, we pr...
Saved in:
Published in | IEEE transactions on pattern analysis and machine intelligence Vol. 33; no. 10; pp. 1952 - 1961 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
United States
IEEE
01.10.2011
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Classical face recognition techniques have been successful at operating under well-controlled conditions; however, they have difficulty in robustly performing recognition in uncontrolled real-world scenarios where variations in pose, illumination, and expression are encountered. In this paper, we propose a new method for real-world unconstrained pose-invariant face recognition. We first construct a 3D model for each subject in our database using only a single 2D image by applying the 3D Generic Elastic Model (3D GEM) approach. These 3D models comprise an intermediate gallery database from which novel 2D pose views are synthesized for matching. Before matching, an initial estimate of the pose of the test query is obtained using a linear regression approach based on automatic facial landmark annotation. Each 3D model is subsequently rendered at different poses within a limited search space about the estimated pose, and the resulting images are matched against the test query. Finally, we compute the distances between the synthesized images and test query by using a simple normalized correlation matcher to show the effectiveness of our pose synthesis method to real-world data. We present convincing results on challenging data sets and video sequences demonstrating high recognition accuracy under controlled as well as unseen, uncontrolled real-world scenarios using a fast implementation. |
---|---|
AbstractList | Classical face recognition techniques have been successful at operating under well-controlled conditions; however, they have difficulty in robustly performing recognition in uncontrolled real-world scenarios where variations in pose, illumination, and expression are encountered. In this paper, we propose a new method for real-world unconstrained pose-invariant face recognition. We first construct a 3D model for each subject in our database using only a single 2D image by applying the 3D Generic Elastic Model (3D GEM) approach. These 3D models comprise an intermediate gallery database from which novel 2D pose views are synthesized for matching. Before matching, an initial estimate of the pose of the test query is obtained using a linear regression approach based on automatic facial landmark annotation. Each 3D model is subsequently rendered at different poses within a limited search space about the estimated pose, and the resulting images are matched against the test query. Finally, we compute the distances between the synthesized images and test query by using a simple normalized correlation matcher to show the effectiveness of our pose synthesis method to real-world data. We present convincing results on challenging data sets and video sequences demonstrating high recognition accuracy under controlled as well as unseen, uncontrolled real-world scenarios using a fast implementation. Classical face recognition techniques have been successful at operating under well-controlled conditions; however, they have difficulty in robustly performing recognition in uncontrolled real-world scenarios where variations in pose, illumination, and expression are encountered. In this paper, we propose a new method for real-world unconstrained pose-invariant face recognition. We first construct a 3D model for each subject in our database using only a single 2D image by applying the 3D Generic Elastic Model (3D GEM) approach. These 3D models comprise an intermediate gallery database from which novel 2D pose views are synthesized for matching. Before matching, an initial estimate of the pose of the test query is obtained using a linear regression approach based on automatic facial landmark annotation. Each 3D model is subsequently rendered at different poses within a limited search space about the estimated pose, and the resulting images are matched against the test query. Finally, we compute the distances between the synthesized images and test query by using a simple normalized correlation matcher to show the effectiveness of our pose synthesis method to real-world data. We present convincing results on challenging data sets and video sequences demonstrating high recognition accuracy under controlled as well as unseen, uncontrolled real-world scenarios using a fast implementation.Classical face recognition techniques have been successful at operating under well-controlled conditions; however, they have difficulty in robustly performing recognition in uncontrolled real-world scenarios where variations in pose, illumination, and expression are encountered. In this paper, we propose a new method for real-world unconstrained pose-invariant face recognition. We first construct a 3D model for each subject in our database using only a single 2D image by applying the 3D Generic Elastic Model (3D GEM) approach. These 3D models comprise an intermediate gallery database from which novel 2D pose views are synthesized for matching. Before matching, an initial estimate of the pose of the test query is obtained using a linear regression approach based on automatic facial landmark annotation. Each 3D model is subsequently rendered at different poses within a limited search space about the estimated pose, and the resulting images are matched against the test query. Finally, we compute the distances between the synthesized images and test query by using a simple normalized correlation matcher to show the effectiveness of our pose synthesis method to real-world data. We present convincing results on challenging data sets and video sequences demonstrating high recognition accuracy under controlled as well as unseen, uncontrolled real-world scenarios using a fast implementation. |
Author | Savvides, M. Prabhu, U. Jingu Heo |
Author_xml | – sequence: 1 givenname: U. surname: Prabhu fullname: Prabhu, U. email: uprabhu@andrew.cmu.edu organization: Electr. & Comput. Eng. Dept., Carnegie Mellon Univ., Pittsburgh, PA, USA – sequence: 2 surname: Jingu Heo fullname: Jingu Heo email: jheo@andrew.cmu.edu organization: Electr. & Comput. Eng. Dept., Carnegie Mellon Univ., Pittsburgh, PA, USA – sequence: 3 givenname: M. surname: Savvides fullname: Savvides, M. email: marioss@andrew.cmu.edu organization: Electr. & Comput. Eng. Dept., Carnegie Mellon Univ., Pittsburgh, PA, USA |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/21670487$$D View this record in MEDLINE/PubMed |
BookMark | eNp1kUtLAzEUhYMoWh9bN4IMrtxMvXnMTLKU-ipYFLHrEDN3JDJNNJkK_ntTqy4EV2fznXsP5-ySTR88EnJIYUwpqLPH-_PZdMyA0jFlfIOMGK2hVEyxTTICWrNSSiZ3yG5KLwBUVMC3yU6GGhCyGZHZ3Nvg0xCN89gW9yFhOfXvJjrjh-LKWCwe0IZn7wYXfDFPzj8X_KK4Ro_R2eKyN2nIOgst9mmfbHWmT3jwrXtkfnX5OLkpb--up5Pz29IKkEOpBFKmnuqqlZ3sQFhuUbXQqLqWDAHR2Ea21IDorGKdaW2d8zZWCWUrC5zvkdP13dcY3paYBr1wyWLfG49hmTRtKK14VYHI6Mkf9CUso8_ptJRCct6IKkPH39DyaYGtfo1uYeKH_ukpA-M1YGNIKWL3i1DQqyH01xB6NYTOQ2SD-GOwbjCrDldV9__bjtY2h4i_PyqZI-Ssn1LIksM |
CODEN | ITPIDJ |
CitedBy_id | crossref_primary_10_1016_j_imavis_2015_01_007 crossref_primary_10_1109_TIFS_2014_2309851 crossref_primary_10_1016_j_patcog_2017_02_007 crossref_primary_10_1049_iet_cvi_2014_0084 crossref_primary_10_1016_j_patrec_2012_05_015 crossref_primary_10_1109_TPAMI_2017_2725279 crossref_primary_10_1109_TCYB_2013_2291196 crossref_primary_10_3233_IDA_194798 crossref_primary_10_1016_j_engappai_2022_104669 crossref_primary_10_1016_j_ins_2022_06_092 crossref_primary_10_1016_j_cviu_2012_08_001 crossref_primary_10_1109_TIFS_2014_2362299 crossref_primary_10_1007_s00521_017_3035_3 crossref_primary_10_1109_TPAMI_2015_2481396 crossref_primary_10_1109_LSP_2014_2364185 crossref_primary_10_1109_TPAMI_2018_2792452 crossref_primary_10_1109_TIFS_2014_2359548 crossref_primary_10_1109_TNNLS_2017_2648122 crossref_primary_10_1109_TIFS_2014_2361028 crossref_primary_10_1109_THMS_2016_2515602 crossref_primary_10_1016_j_patcog_2017_09_006 crossref_primary_10_1109_TCSVT_2017_2748379 crossref_primary_10_1109_TIP_2015_2390959 crossref_primary_10_1016_j_jvcir_2013_06_007 crossref_primary_10_1016_j_cviu_2016_04_012 crossref_primary_10_1109_TPAMI_2014_2313124 crossref_primary_10_1016_j_jvcir_2015_11_006 crossref_primary_10_1117_1_JEI_23_5_053013 crossref_primary_10_1016_j_patcog_2017_10_020 crossref_primary_10_1007_s10462_019_09742_3 crossref_primary_10_1186_s13673_018_0157_2 crossref_primary_10_1016_j_patcog_2017_03_029 crossref_primary_10_1049_iet_ipr_2014_0733 crossref_primary_10_1016_j_cviu_2015_03_005 crossref_primary_10_1016_j_patcog_2017_03_024 crossref_primary_10_1049_iet_ipr_2013_0003 crossref_primary_10_1016_j_jvcir_2018_03_013 crossref_primary_10_1109_TIFS_2015_2393553 crossref_primary_10_1109_TPAMI_2016_2554107 crossref_primary_10_1142_S0218001420560066 crossref_primary_10_1109_TPAMI_2017_2778152 crossref_primary_10_1016_j_patcog_2019_01_032 crossref_primary_10_1016_j_patcog_2019_107113 crossref_primary_10_1007_s11063_017_9649_8 crossref_primary_10_1587_transinf_2014EDP7352 crossref_primary_10_1049_iet_cvi_2019_0244 crossref_primary_10_1109_TIP_2013_2271115 crossref_primary_10_1145_2845089 crossref_primary_10_3390_app10248940 crossref_primary_10_1016_j_patcog_2017_04_013 crossref_primary_10_1109_TPAMI_2017_2695183 crossref_primary_10_1109_TIP_2015_2468173 crossref_primary_10_1016_j_patcog_2015_10_007 crossref_primary_10_1186_s13640_019_0406_y crossref_primary_10_1007_s11633_018_1153_8 |
Cites_doi | 10.1109/TSMCB.2007.904575 10.1007/3-540-47969-4_30 10.1145/954339.954342 10.1109/TPAMI.2003.1227983 10.1007/s11263-005-3962-9 10.1007/0-387-27257-7_8 10.1109/34.598235 10.1109/icics.2003.1292698 10.1109/AFGR.2008.4813399 10.1109/34.784284 10.1162/jocn.1991.3.1.71 10.1109/34.254061 10.1109/AFGR.2000.840648 10.1109/CVPR.2005.268 10.1109/TPAMI.2006.120 10.1109/CVPR.1994.323814 10.1023/B:VISI.0000029666.37597.d3 10.1007/s11263-007-0075-7 10.1006/cviu.1995.1004 10.1109/ICPR.1994.576366 10.1007/11564386_4 10.1109/34.927467 10.1109/TPAMI.2008.79 10.1109/BTAS.2009.5339057 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Oct 2011 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Oct 2011 |
DBID | 97E RIA RIE AAYXX CITATION CGR CUY CVF ECM EIF NPM 7SC 7SP 8FD JQ2 L7M L~C L~D 7X8 |
DOI | 10.1109/TPAMI.2011.123 |
DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Computer and Information Systems Abstracts Electronics & Communications Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional MEDLINE - Academic |
DatabaseTitleList | MEDLINE MEDLINE - Academic Technology Research Database |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Computer Science |
EISSN | 2160-9292 1939-3539 |
EndPage | 1961 |
ExternalDocumentID | 2433293791 21670487 10_1109_TPAMI_2011_123 5887348 |
Genre | orig-research Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | --- -DZ -~X .DC 0R~ 29I 4.4 53G 5GY 5VS 6IK 97E 9M8 AAJGR AARMG AASAJ AAWTH ABAZT ABFSI ABQJQ ABVLG ACGFO ACGFS ACIWK ACNCT ADRHT AENEX AETEA AETIX AGQYO AGSQL AHBIQ AI. AIBXA AKJIK AKQYR ALLEH ALMA_UNASSIGNED_HOLDINGS ASUFR ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 E.L EBS EJD F5P FA8 HZ~ H~9 IBMZZ ICLAB IEDLZ IFIPE IFJZH IPLJI JAVBF LAI M43 MS~ O9- OCL P2P PQQKQ RIA RIE RNI RNS RXW RZB TAE TN5 UHB VH1 XJT ~02 AAYOK AAYXX CITATION RIG CGR CUY CVF ECM EIF NPM PKN RIC Z5M 7SC 7SP 8FD JQ2 L7M L~C L~D 7X8 |
ID | FETCH-LOGICAL-c408t-94e129b65d8f8f04c3ce9d0796682e0eeac78d1a04fc92fadc66707c949c5c033 |
IEDL.DBID | RIE |
ISSN | 0162-8828 1939-3539 |
IngestDate | Fri Jul 11 12:28:39 EDT 2025 Mon Jun 30 05:56:52 EDT 2025 Wed Feb 19 02:26:44 EST 2025 Tue Jul 01 05:16:33 EDT 2025 Thu Apr 24 23:07:33 EDT 2025 Tue Aug 26 17:18:00 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 10 |
Language | English |
License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c408t-94e129b65d8f8f04c3ce9d0796682e0eeac78d1a04fc92fadc66707c949c5c033 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
PMID | 21670487 |
PQID | 884833745 |
PQPubID | 85458 |
PageCount | 10 |
ParticipantIDs | pubmed_primary_21670487 crossref_citationtrail_10_1109_TPAMI_2011_123 ieee_primary_5887348 proquest_journals_884833745 crossref_primary_10_1109_TPAMI_2011_123 proquest_miscellaneous_1711535504 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2011-10-01 |
PublicationDateYYYYMMDD | 2011-10-01 |
PublicationDate_xml | – month: 10 year: 2011 text: 2011-10-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: New York |
PublicationTitle | IEEE transactions on pattern analysis and machine intelligence |
PublicationTitleAbbrev | TPAMI |
PublicationTitleAlternate | IEEE Trans Pattern Anal Mach Intell |
PublicationYear | 2011 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref13 ref12 ref15 ref14 ref11 ref10 ref2 ref1 ref17 Heo (ref8) 2009 ref16 ref19 ref18 Horn (ref5) 1970 ref24 ref23 ref26 ref25 ref20 ref22 ref21 ref7 ref9 ref4 ref3 ref6 |
References_xml | – ident: ref2 doi: 10.1109/TSMCB.2007.904575 – ident: ref1 doi: 10.1007/3-540-47969-4_30 – ident: ref15 doi: 10.1145/954339.954342 – ident: ref4 doi: 10.1109/TPAMI.2003.1227983 – ident: ref7 doi: 10.1007/s11263-005-3962-9 – ident: ref18 doi: 10.1007/0-387-27257-7_8 – ident: ref20 doi: 10.1109/34.598235 – ident: ref17 doi: 10.1109/icics.2003.1292698 – year: 2009 ident: ref8 article-title: Generic Elastic Models for 2D Pose Synthesis and Face Recognition – ident: ref24 doi: 10.1109/AFGR.2008.4813399 – ident: ref6 doi: 10.1109/34.784284 – ident: ref10 doi: 10.1162/jocn.1991.3.1.71 – ident: ref19 doi: 10.1109/34.254061 – ident: ref22 doi: 10.1109/AFGR.2000.840648 – ident: ref14 doi: 10.1109/CVPR.2005.268 – ident: ref21 doi: 10.1109/TPAMI.2006.120 – ident: ref3 doi: 10.1109/CVPR.1994.323814 – ident: ref13 doi: 10.1023/B:VISI.0000029666.37597.d3 – ident: ref26 doi: 10.1007/s11263-007-0075-7 – ident: ref11 doi: 10.1006/cviu.1995.1004 – ident: ref25 doi: 10.1109/ICPR.1994.576366 – ident: ref9 doi: 10.1007/11564386_4 – ident: ref12 doi: 10.1109/34.927467 – ident: ref16 doi: 10.1109/TPAMI.2008.79 – volume-title: technical report year: 1970 ident: ref5 article-title: Shape from Shading: A Method for Obtaining the Shape of a Smooth Opaque Object from One View – ident: ref23 doi: 10.1109/BTAS.2009.5339057 |
SSID | ssj0014503 |
Score | 2.4211996 |
Snippet | Classical face recognition techniques have been successful at operating under well-controlled conditions; however, they have difficulty in robustly performing... |
SourceID | proquest pubmed crossref ieee |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 1952 |
SubjectTerms | 3D face modeling Biometric Identification - methods Computational modeling Databases, Factual Face Face - anatomy & histology Face recognition generic elastic models Humans Imaging, Three-Dimensional - methods Linear Models Models, Theoretical Pose-invariant face recognition Posture Principal component analysis Shape Solid modeling Studies Three dimensional displays |
Title | Unconstrained Pose-Invariant Face Recognition Using 3D Generic Elastic Models |
URI | https://ieeexplore.ieee.org/document/5887348 https://www.ncbi.nlm.nih.gov/pubmed/21670487 https://www.proquest.com/docview/884833745 https://www.proquest.com/docview/1711535504 |
Volume | 33 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB61PcGBQstjKSAjIXHBW2fjxPaxgq5apEUV6kq9Rc54IiGqBLG7HPj1jJ2HAFGJW6Q4ceyZsb_JjL8BeOPRxfhfLTVv_1Jb1UhXZo0sXL3woQm1t_E08upTebHWH2-Kmz14N52FIaKUfEbzeJli-aHDXfxVdlqwReTa7sM-O279Wa0pYqCLVAWZEQxbOLsRA0Fjptzp9dXZ6rJn6-R1OtH_loY11_yxF6XiKnfjzLTfLA9hNX5pn2bydb7b1nP8-ReJ4_8O5SE8GICnOOs15RHsUXsEh2NRBzHY-BHc_42h8BhW6xYjgoyFJCiIq25D8rL9wQ42S0QsPZL4PKYgda1ICQgi_yASm_UXFOcMzrlDEUuu3W4ew3p5fv3-Qg4VGCRqZbfSaWI8UJdFsI1tlMYcyQVl2EeyC1LEq7axIfNKN-gWjQ9Y8swadNphgSrPn8BB27X0DISnvNQemzogxdRS7xpCF7yJTxqrZyBHWVQ40JPHwd1WyU1RrkpirKIYKxbjDN5O7b_1xBx3tjyO8z-1GqZ-BiejqKvBbjeVtdrmudHFDF5Pd9ngYhTFt9TtNlVmGEQzSlP8yU97DZlePSrW8393eQL3FmMKYfYCDrbfd_SSMc22fpWU-RcVJfEu |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB6VcgAOFFoeS3kYCYkL3jobJ7aPFXS1C01VoV2pN8vxQ0JUCWJ3OfDrGTsPAaISt0hx4tgzY3-TGX8D8MZYFeN_NeW4_VMuWaCqzAItVD0zLrjayHgaubooF2v-8aq42oN341kY731KPvPTeJli-a61u_ir7KRAi8i5vAW3cd8vsu601hgz4EWqg4wYBm0cHYmeojFj6mR1eVotO75OXKkTAXApUHfFH7tRKq9yM9JMO878AKrhW7tEk6_T3bae2p9_0Tj-72AewP0eepLTTlcewp5vDuFgKOtAeis_hHu_cRQeQbVubMSQsZSEd-Sy3Xi6bH6gi40yIXNjPfk8JCG1DUkpCCT_QBKf9RdLzhCeY4ckFl273jyC9fxs9X5B-xoM1HImt1Rxj4igLgsngwyM29x65ZhAL0nOPPO4bgvpMsN4sGoWjLMlzqywiitbWJbnj2G_aRv_FIjxecmNDbWzPiaXGhW8Vc6I-KSQfAJ0kIW2PUF5HNy1To4KUzqJUUcxahTjBN6O7b911Bw3tjyK8z-26qd-AseDqHVvuRstJZd5LngxgdfjXTS5GEcxjW93G50JhNGI0xh-8pNOQ8ZXD4r17N9dvoI7i1V1rs-XF5-O4e5sSCjMnsP-9vvOv0CEs61fJsX-BdBK9Hc |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Unconstrained+Pose-Invariant+Face+Recognition+Using+3D+Generic+Elastic+Models&rft.jtitle=IEEE+transactions+on+pattern+analysis+and+machine+intelligence&rft.au=Prabhu%2C+Utsav&rft.au=Heo%2C+Jingu&rft.au=Savvides%2C+Marios&rft.date=2011-10-01&rft.issn=1939-3539&rft.eissn=1939-3539&rft.volume=33&rft.issue=10&rft.spage=1952&rft_id=info:doi/10.1109%2FTPAMI.2011.123&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0162-8828&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0162-8828&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0162-8828&client=summon |