Remaining Useful Life Interval Prediction for Complex System Based on BiGRU Optimized by Log-norm
The task of remaining useful life (RUL) uncertainty management is the major challenge in solving the failure of the complex mechanical system. Primary research methods use statistical models or stochastic processes to fit the distribution of historical degradation data. However, it is difficult to a...
Saved in:
Published in | IEEE access Vol. 10; p. 1 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Piscataway
IEEE
2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The task of remaining useful life (RUL) uncertainty management is the major challenge in solving the failure of the complex mechanical system. Primary research methods use statistical models or stochastic processes to fit the distribution of historical degradation data. However, it is difficult to accurately capture the degradation information of monitoring big data through statistics in practice. In this paper, the prediction interval (PI) obtained by the proposed feature attention-log-norm bidirectional gated recurrent unit (FA-LBiGRU) model is adopted to quantify the prediction uncertainty of RUL. Initially, the critical feature vectors are extracted from multi-dimensional, nonlinear, and large-scale sensor signals using the feature attention mechanism. Additionally, the BiGRU network is used to model and learn the time-varying characteristics of the attention-weighted features from the forward and backward directions, and the network parameters are trained by the maximum log-likelihood loss function. Ultimately, the probability density function based on the lognormal distribution is calculated to measure the uncertainty of the equipment RUL. The effectiveness of the proposed method is verified through the well-known benchmark data set of the turbofan engines provided by NASA. The experimental results show that the proposed methods can obtain higher point prediction accuracy for the complex system compared with state-of-the-art approaches and high-quality PIs satisfying real-time requirements. |
---|---|
AbstractList | The task of remaining useful life (RUL) uncertainty management is the major challenge in solving the failure of the complex mechanical system. Primary research methods use statistical models or stochastic processes to fit the distribution of historical degradation data. However, it is difficult to accurately capture the degradation information of monitoring big data through statistics in practice. In this paper, the prediction interval (PI) obtained by the proposed feature attention-log-norm bidirectional gated recurrent unit (FA-LBiGRU) model is adopted to quantify the prediction uncertainty of RUL. Initially, the critical feature vectors are extracted from multi-dimensional, nonlinear, and large-scale sensor signals using the feature attention mechanism. Additionally, the BiGRU network is used to model and learn the time-varying characteristics of the attention-weighted features from the forward and backward directions, and the network parameters are trained by the maximum log-likelihood loss function. Ultimately, the probability density function based on the lognormal distribution is calculated to measure the uncertainty of the equipment RUL. The effectiveness of the proposed method is verified through the well-known benchmark data set of the turbofan engines provided by NASA. The experimental results show that the proposed methods can obtain higher point prediction accuracy for the complex system compared with state-of-the-art approaches and high-quality PIs satisfying real-time requirements. |
Author | Yan, Xiaojia Xu, Dongxue Liang, Weige |
Author_xml | – sequence: 1 givenname: Xiaojia orcidid: 0000-0003-0304-3068 surname: Yan fullname: Yan, Xiaojia organization: College of Weapon Engineering, Naval University of Engineering, Wuhan, China – sequence: 2 givenname: Weige surname: Liang fullname: Liang, Weige organization: College of Weapon Engineering, Naval University of Engineering, Wuhan, China – sequence: 3 givenname: Dongxue orcidid: 0000-0002-4023-7817 surname: Xu fullname: Xu, Dongxue organization: College of Weapon Engineering, Naval University of Engineering, Wuhan, China |
BookMark | eNpNUV1r3DAQFCWFpml-QV4EffZVn5b0mJg0PThIyfWehSyvDx22dZV8pddfXyUOIfuyy-zM7MJ8RhdTnAChG0pWlBLz7bZp7rfbFSOMrTijrDbiA7pktDYVl7y-eDd_Qtc5H0gpXSCpLpF7gtGFKUx7vMvQnwa8CT3g9TRD-uMG_DNBF_wc4oT7mHATx-MAf_H2nGcY8Z3L0OGyuwsPTzv8eJzDGP4VqD3jTdxXU0zjF_Sxd0OG69d-hXbf7381P6rN48O6ud1UXhA9V0YAAcOZkqbVrQLVCUk0EO9NzWpJBDANSvat6Ag3ShHjBdfO6L4vGsH5FVovvl10B3tMYXTpbKML9gWIaW9dmoMfwApoW-1o75lUQojWSK59C0AIUCeJKV5fF69jir9PkGd7iKc0lfctU6ymVHOpC4svLJ9izgn6t6uU2Odo7BKNfY7GvkZTVDeLKgDAm8IYyoXi_D8SqIoT |
CODEN | IAECCG |
CitedBy_id | crossref_primary_10_3390_electronics13071195 crossref_primary_10_1016_j_ress_2024_109954 |
Cites_doi | 10.1016/j.energy.2021.123038 10.1109/TIE.2019.2947839 10.1007/s00170-018-2874-0 10.1016/j.ress.2021.108200 10.1109/TPEL.2020.3033297 10.1016/j.measurement.2021.109706 10.1109/PHM.2008.4711422 10.1016/j.measurement.2021.109287 10.1016/j.neucom.2019.07.075 10.1016/j.isatra.2019.07.004 10.1109/ICPHM.2018.8448804 10.1016/j.ymssp.2017.11.016 10.1109/ACCESS.2020.2995656 10.1007/s10845-018-1428-5 10.1016/j.ress.2020.107249 10.1016/j.engfailanal.2022.106231 10.1016/j.ress.2022.108330 10.1016/j.cie.2021.107533 10.1016/j.isatra.2022.04.042 10.1109/ACCESS.2019.2925634 10.1016/j.jpowsour.2019.227591 10.1016/j.ymssp.2021.108315 10.1109/TIM.2021.3054025 10.1109/PHM.2008.4711414 10.1016/j.cie.2022.108204 10.1109/TVT.2018.2805189 10.1109/TIE.2019.2907440 10.1016/j.ymssp.2019.106302 10.1016/j.neucom.2022.04.055 10.1016/j.ress.2022.108429 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022 |
DBID | 97E ESBDL RIA RIE AAYXX CITATION 7SC 7SP 7SR 8BQ 8FD JG9 JQ2 L7M L~C L~D DOA |
DOI | 10.1109/ACCESS.2022.3212694 |
DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005-present IEEE Open Access Journals IEEE All-Society Periodicals Package (ASPP) 1998–Present IEL CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts METADEX Technology Research Database Materials Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace METADEX Computer and Information Systems Abstracts Professional |
DatabaseTitleList | Materials Research Database |
Database_xml | – sequence: 1 dbid: DOA name: Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: RIE name: IEL url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 2169-3536 |
EndPage | 1 |
ExternalDocumentID | oai_doaj_org_article_4ebb8a1fc257444b9538cbee00e1a509 10_1109_ACCESS_2022_3212694 9913473 |
Genre | orig-research |
GrantInformation_xml | – fundername: Natural Science Foundation of Hubei Province grantid: 2019CFB362 funderid: 10.13039/501100003819 – fundername: National Natural Science Foundation of China grantid: 61640308 funderid: 10.13039/501100001809 |
GroupedDBID | 0R~ 4.4 5VS 6IK 97E AAJGR ACGFS ADBBV ALMA_UNASSIGNED_HOLDINGS BCNDV BEFXN BFFAM BGNUA BKEBE BPEOZ EBS EJD ESBDL GROUPED_DOAJ IFIPE IPLJI JAVBF KQ8 M43 M~E O9- OCL OK1 RIA RIE RIG RNS AAYXX CITATION 7SC 7SP 7SR 8BQ 8FD JG9 JQ2 L7M L~C L~D |
ID | FETCH-LOGICAL-c408t-94e0e932759b8b7e7d4508e0cc9626504e28e75fb4d0397709c438a98ff275433 |
IEDL.DBID | RIE |
ISSN | 2169-3536 |
IngestDate | Tue Oct 22 15:14:40 EDT 2024 Thu Oct 10 18:28:51 EDT 2024 Fri Aug 23 03:12:35 EDT 2024 Mon Nov 04 12:05:39 EST 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c408t-94e0e932759b8b7e7d4508e0cc9626504e28e75fb4d0397709c438a98ff275433 |
ORCID | 0000-0002-4023-7817 0000-0003-0304-3068 |
OpenAccessLink | https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/document/9913473 |
PQID | 2726118358 |
PQPubID | 4845423 |
PageCount | 1 |
ParticipantIDs | ieee_primary_9913473 proquest_journals_2726118358 doaj_primary_oai_doaj_org_article_4ebb8a1fc257444b9538cbee00e1a509 crossref_primary_10_1109_ACCESS_2022_3212694 |
PublicationCentury | 2000 |
PublicationDate | 20220000 2022-00-00 20220101 2022-01-01 |
PublicationDateYYYYMMDD | 2022-01-01 |
PublicationDate_xml | – year: 2022 text: 20220000 |
PublicationDecade | 2020 |
PublicationPlace | Piscataway |
PublicationPlace_xml | – name: Piscataway |
PublicationTitle | IEEE access |
PublicationTitleAbbrev | Access |
PublicationYear | 2022 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref13 ref12 ref15 ref14 ref30 ref11 ref10 ref2 ref1 ref17 ref16 ref19 ref18 ref24 ref23 ref26 ref25 ref20 ref22 ref21 ref28 ref27 ref29 ref8 ref7 ref9 ref4 ref3 ref6 ref5 |
References_xml | – ident: ref6 doi: 10.1016/j.energy.2021.123038 – ident: ref25 doi: 10.1109/TIE.2019.2947839 – ident: ref27 doi: 10.1007/s00170-018-2874-0 – ident: ref18 doi: 10.1016/j.ress.2021.108200 – ident: ref19 doi: 10.1109/TPEL.2020.3033297 – ident: ref16 doi: 10.1016/j.measurement.2021.109706 – ident: ref29 doi: 10.1109/PHM.2008.4711422 – ident: ref14 doi: 10.1016/j.measurement.2021.109287 – ident: ref22 doi: 10.1016/j.neucom.2019.07.075 – ident: ref8 doi: 10.1016/j.isatra.2019.07.004 – ident: ref26 doi: 10.1109/ICPHM.2018.8448804 – ident: ref5 doi: 10.1016/j.ymssp.2017.11.016 – ident: ref11 doi: 10.1109/ACCESS.2020.2995656 – ident: ref15 doi: 10.1007/s10845-018-1428-5 – ident: ref20 doi: 10.1016/j.ress.2020.107249 – ident: ref4 doi: 10.1016/j.engfailanal.2022.106231 – ident: ref7 doi: 10.1016/j.ress.2022.108330 – ident: ref17 doi: 10.1016/j.cie.2021.107533 – ident: ref2 doi: 10.1016/j.isatra.2022.04.042 – ident: ref23 doi: 10.1109/ACCESS.2019.2925634 – ident: ref1 doi: 10.1016/j.jpowsour.2019.227591 – ident: ref9 doi: 10.1016/j.ymssp.2021.108315 – ident: ref28 doi: 10.1109/TIM.2021.3054025 – ident: ref30 doi: 10.1109/PHM.2008.4711414 – ident: ref3 doi: 10.1016/j.cie.2022.108204 – ident: ref13 doi: 10.1109/TVT.2018.2805189 – ident: ref24 doi: 10.1109/TIE.2019.2907440 – ident: ref21 doi: 10.1016/j.ymssp.2019.106302 – ident: ref10 doi: 10.1016/j.neucom.2022.04.055 – ident: ref12 doi: 10.1016/j.ress.2022.108429 |
SSID | ssj0000816957 |
Score | 2.2945123 |
Snippet | The task of remaining useful life (RUL) uncertainty management is the major challenge in solving the failure of the complex mechanical system. Primary research... |
SourceID | doaj proquest crossref ieee |
SourceType | Open Website Aggregation Database Publisher |
StartPage | 1 |
SubjectTerms | Big Data Complex systems Data models Degradation Feature extraction Fusion model gated recurrent unit Logic gates Mechanical systems prediction intervals Predictive models Probability density functions remaining useful life Statistical analysis Statistical methods Statistical models Stochastic processes system prognostics Turbofan engines Uncertainty uncertainty management Useful life |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07T8MwELZQJxgQUBCFgjwwEuomTmKPbUWpUCmoIlI3K3bOqFIfqA8J-PWck7QqYmBhtfPyd_b5O9v5jpAbaw04ZU-PZTzGACW1ntQ29bQNhA8iMEy7pYGnQdRL-OMoHO2k-nJnwgp54AK4BgetRdq0BvsW51xLHKFGAzAGzTQsf91jcieYyn2waEYyjEuZIaxvtDodbBEGhL5_F6C_jiT_MRXliv1lipVffjmfbLpH5LBkibRVfN0x2YPZCTnY0Q6sknQI0yK7A02WYNcT2h9boPkKH_Ye-rJwWzAOdoq8lLpxP4EPWiiU0zZOXhnFuvb4YZjQZ3Qc0_EXFulP2p-_eQOksqck6d6_dnpemS_BM5yJlSc5MEA-FodSCx1DnHGkX8CMkRi2hIyDLyAOreYZc7yPScMDkUphLd7Dg-CMVGbzGZwTmgXSMCGZ1RBx7TNhwyiVTbDo2mUGrEZuN9Cp90IWQ-XhBJOqQFo5pFWJdI20HbzbS52mdV6AllalpdVflq6RqjPO9iHSHRqIgxqpb4ylyvG3VH6MkSF6q1Bc_MerL8m-a06x9FInldViDVdIRlb6Ou933yiq2VQ priority: 102 providerName: Directory of Open Access Journals |
Title | Remaining Useful Life Interval Prediction for Complex System Based on BiGRU Optimized by Log-norm |
URI | https://ieeexplore.ieee.org/document/9913473 https://www.proquest.com/docview/2726118358 https://doaj.org/article/4ebb8a1fc257444b9538cbee00e1a509 |
Volume | 10 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1NT9wwEB0BJ3ooX626LSAfOJLFmzhrz5Fd8SEEbYW6EjcrdsbVCtitYFei_HrGTnZFaQ-9RU4cOXn2-M3YfgNwEIKnqOyZyVppdlCqkKELVeZCYXIyhZcuhgauvvbPR-riprxZgcPlWRgiSpvPqBsv01p-PfXzGCo7wrhMrItVWNWIzVmtZTwlJpDAUrfCQj2JR8fDIX8Du4B53i3YQvdR_TH5JI3-NqnKX5Y4TS-nG3C1aFizq-S2O5-5rn9-o9n4vy3fhPctzxTHTcfYghWabMO7V-qDO1Bd032TH0KMHinM78TlOJBIMULuf-L7Q1zEicAJZrYiWo47ehKNxrkY8PRXC743GJ9dj8Q3Nj3342cucr_F5fRnNmEy_AFGpyc_hudZm3Eh80qaWYaKJDGj0yU64zTpWjGBI-k9suNTSkW5IV0Gp2oZmaNErwpToQmB66ii-Ahrk-mEPoGoC_TSoAyO-srl0oSyX2GPAk8OWJPswOECCvurEdawySGRaBvkbETOtsh1YBDhWj4aVbFTAf9m2w4yq8g5U_WCZzuklHLI1tw7IimpVzEz6sBOhGb5khaVDuwuwLftCH60uWbfku1daT7_u9YXWI8NbMIxu7A2e5jTHhOUmdtPjv1-6p8v_l7jkA |
link.rule.ids | 315,783,787,799,867,2109,4031,27935,27936,27937,55086 |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3PT9swFH5i5bDtAGzdtA7GfODYtG7iJPaxrYDC2jIhKnGzYud5qgbtRFtp9K_nOUmr_eDALXLiyPHnPH_v2f4ewIlzFr2yZ8BzkZKDkrlAGZcFxkUyRBlZbnxoYDROBhNxeRvf7kBzexYGEYvNZ9jyl8Vafj63Kx8qayu_TJxGr2CXeLVMytNa24iKTyGh4rSSFupw1e72-_QV5ASGYSsiG50o8df0U6j0V2lV_rPFxQRztg-jTdPKfSU_W6uladn1P6qNL237AexVTJN1y6HxDnZw9h7e_qE_WIfsGu_LDBFsskC3umPDqUNWRAlpBLLvD34Zx0PHiNsybzvu8DcrVc5ZjybAnNG93vT8esKuyPjcT9dUZB7ZcP4jmBEd_gCTs9Ob_iCoci4EVnC5DJRAjsTp0lgZaVJMc0FdjdxaRa5PzAWGEtPYGZFzzx25siKSmZLOUR0RRR-hNpvP8BOwPFKWS8WdwUSYkEsXJ5nqoKPpQeXIG9DcQKF_ldIaunBJuNIlctojpyvkGtDzcG0f9brYRQF1s65-My3QGJl1nCVLJIQwiuy5NYicYycjbtSAuodm-5IKlQYcbcDX1T-80GFK3iVZvFh-fr7WV3g9uBkN9fBi_O0Q3vjGlsGZI6gtH1b4hejK0hwXo_QJq2nl5g |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Remaining+Useful+Life+Interval+Prediction+for+Complex+System+Based+on+BiGRU+Optimized+by+Log-norm&rft.jtitle=IEEE+access&rft.au=Yan%2C+Xiaojia&rft.au=Liang%2C+Weige&rft.au=Xu%2C+Dongxue&rft.date=2022&rft.pub=IEEE&rft.eissn=2169-3536&rft.spage=1&rft.epage=1&rft_id=info:doi/10.1109%2FACCESS.2022.3212694&rft.externalDocID=9913473 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2169-3536&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2169-3536&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2169-3536&client=summon |