Remaining Useful Life Interval Prediction for Complex System Based on BiGRU Optimized by Log-norm

The task of remaining useful life (RUL) uncertainty management is the major challenge in solving the failure of the complex mechanical system. Primary research methods use statistical models or stochastic processes to fit the distribution of historical degradation data. However, it is difficult to a...

Full description

Saved in:
Bibliographic Details
Published inIEEE access Vol. 10; p. 1
Main Authors Yan, Xiaojia, Liang, Weige, Xu, Dongxue
Format Journal Article
LanguageEnglish
Published Piscataway IEEE 2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The task of remaining useful life (RUL) uncertainty management is the major challenge in solving the failure of the complex mechanical system. Primary research methods use statistical models or stochastic processes to fit the distribution of historical degradation data. However, it is difficult to accurately capture the degradation information of monitoring big data through statistics in practice. In this paper, the prediction interval (PI) obtained by the proposed feature attention-log-norm bidirectional gated recurrent unit (FA-LBiGRU) model is adopted to quantify the prediction uncertainty of RUL. Initially, the critical feature vectors are extracted from multi-dimensional, nonlinear, and large-scale sensor signals using the feature attention mechanism. Additionally, the BiGRU network is used to model and learn the time-varying characteristics of the attention-weighted features from the forward and backward directions, and the network parameters are trained by the maximum log-likelihood loss function. Ultimately, the probability density function based on the lognormal distribution is calculated to measure the uncertainty of the equipment RUL. The effectiveness of the proposed method is verified through the well-known benchmark data set of the turbofan engines provided by NASA. The experimental results show that the proposed methods can obtain higher point prediction accuracy for the complex system compared with state-of-the-art approaches and high-quality PIs satisfying real-time requirements.
AbstractList The task of remaining useful life (RUL) uncertainty management is the major challenge in solving the failure of the complex mechanical system. Primary research methods use statistical models or stochastic processes to fit the distribution of historical degradation data. However, it is difficult to accurately capture the degradation information of monitoring big data through statistics in practice. In this paper, the prediction interval (PI) obtained by the proposed feature attention-log-norm bidirectional gated recurrent unit (FA-LBiGRU) model is adopted to quantify the prediction uncertainty of RUL. Initially, the critical feature vectors are extracted from multi-dimensional, nonlinear, and large-scale sensor signals using the feature attention mechanism. Additionally, the BiGRU network is used to model and learn the time-varying characteristics of the attention-weighted features from the forward and backward directions, and the network parameters are trained by the maximum log-likelihood loss function. Ultimately, the probability density function based on the lognormal distribution is calculated to measure the uncertainty of the equipment RUL. The effectiveness of the proposed method is verified through the well-known benchmark data set of the turbofan engines provided by NASA. The experimental results show that the proposed methods can obtain higher point prediction accuracy for the complex system compared with state-of-the-art approaches and high-quality PIs satisfying real-time requirements.
Author Yan, Xiaojia
Xu, Dongxue
Liang, Weige
Author_xml – sequence: 1
  givenname: Xiaojia
  orcidid: 0000-0003-0304-3068
  surname: Yan
  fullname: Yan, Xiaojia
  organization: College of Weapon Engineering, Naval University of Engineering, Wuhan, China
– sequence: 2
  givenname: Weige
  surname: Liang
  fullname: Liang, Weige
  organization: College of Weapon Engineering, Naval University of Engineering, Wuhan, China
– sequence: 3
  givenname: Dongxue
  orcidid: 0000-0002-4023-7817
  surname: Xu
  fullname: Xu, Dongxue
  organization: College of Weapon Engineering, Naval University of Engineering, Wuhan, China
BookMark eNpNUV1r3DAQFCWFpml-QV4EffZVn5b0mJg0PThIyfWehSyvDx22dZV8pddfXyUOIfuyy-zM7MJ8RhdTnAChG0pWlBLz7bZp7rfbFSOMrTijrDbiA7pktDYVl7y-eDd_Qtc5H0gpXSCpLpF7gtGFKUx7vMvQnwa8CT3g9TRD-uMG_DNBF_wc4oT7mHATx-MAf_H2nGcY8Z3L0OGyuwsPTzv8eJzDGP4VqD3jTdxXU0zjF_Sxd0OG69d-hXbf7381P6rN48O6ud1UXhA9V0YAAcOZkqbVrQLVCUk0EO9NzWpJBDANSvat6Ag3ShHjBdfO6L4vGsH5FVovvl10B3tMYXTpbKML9gWIaW9dmoMfwApoW-1o75lUQojWSK59C0AIUCeJKV5fF69jir9PkGd7iKc0lfctU6ymVHOpC4svLJ9izgn6t6uU2Odo7BKNfY7GvkZTVDeLKgDAm8IYyoXi_D8SqIoT
CODEN IAECCG
CitedBy_id crossref_primary_10_3390_electronics13071195
crossref_primary_10_1016_j_ress_2024_109954
Cites_doi 10.1016/j.energy.2021.123038
10.1109/TIE.2019.2947839
10.1007/s00170-018-2874-0
10.1016/j.ress.2021.108200
10.1109/TPEL.2020.3033297
10.1016/j.measurement.2021.109706
10.1109/PHM.2008.4711422
10.1016/j.measurement.2021.109287
10.1016/j.neucom.2019.07.075
10.1016/j.isatra.2019.07.004
10.1109/ICPHM.2018.8448804
10.1016/j.ymssp.2017.11.016
10.1109/ACCESS.2020.2995656
10.1007/s10845-018-1428-5
10.1016/j.ress.2020.107249
10.1016/j.engfailanal.2022.106231
10.1016/j.ress.2022.108330
10.1016/j.cie.2021.107533
10.1016/j.isatra.2022.04.042
10.1109/ACCESS.2019.2925634
10.1016/j.jpowsour.2019.227591
10.1016/j.ymssp.2021.108315
10.1109/TIM.2021.3054025
10.1109/PHM.2008.4711414
10.1016/j.cie.2022.108204
10.1109/TVT.2018.2805189
10.1109/TIE.2019.2907440
10.1016/j.ymssp.2019.106302
10.1016/j.neucom.2022.04.055
10.1016/j.ress.2022.108429
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022
DBID 97E
ESBDL
RIA
RIE
AAYXX
CITATION
7SC
7SP
7SR
8BQ
8FD
JG9
JQ2
L7M
L~C
L~D
DOA
DOI 10.1109/ACCESS.2022.3212694
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005-present
IEEE Open Access Journals
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEL
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
METADEX
Computer and Information Systems Abstracts Professional
DatabaseTitleList Materials Research Database


Database_xml – sequence: 1
  dbid: DOA
  name: Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: RIE
  name: IEL
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2169-3536
EndPage 1
ExternalDocumentID oai_doaj_org_article_4ebb8a1fc257444b9538cbee00e1a509
10_1109_ACCESS_2022_3212694
9913473
Genre orig-research
GrantInformation_xml – fundername: Natural Science Foundation of Hubei Province
  grantid: 2019CFB362
  funderid: 10.13039/501100003819
– fundername: National Natural Science Foundation of China
  grantid: 61640308
  funderid: 10.13039/501100001809
GroupedDBID 0R~
4.4
5VS
6IK
97E
AAJGR
ACGFS
ADBBV
ALMA_UNASSIGNED_HOLDINGS
BCNDV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
EJD
ESBDL
GROUPED_DOAJ
IFIPE
IPLJI
JAVBF
KQ8
M43
M~E
O9-
OCL
OK1
RIA
RIE
RIG
RNS
AAYXX
CITATION
7SC
7SP
7SR
8BQ
8FD
JG9
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c408t-94e0e932759b8b7e7d4508e0cc9626504e28e75fb4d0397709c438a98ff275433
IEDL.DBID RIE
ISSN 2169-3536
IngestDate Tue Oct 22 15:14:40 EDT 2024
Thu Oct 10 18:28:51 EDT 2024
Fri Aug 23 03:12:35 EDT 2024
Mon Nov 04 12:05:39 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c408t-94e0e932759b8b7e7d4508e0cc9626504e28e75fb4d0397709c438a98ff275433
ORCID 0000-0002-4023-7817
0000-0003-0304-3068
OpenAccessLink https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/document/9913473
PQID 2726118358
PQPubID 4845423
PageCount 1
ParticipantIDs ieee_primary_9913473
proquest_journals_2726118358
doaj_primary_oai_doaj_org_article_4ebb8a1fc257444b9538cbee00e1a509
crossref_primary_10_1109_ACCESS_2022_3212694
PublicationCentury 2000
PublicationDate 20220000
2022-00-00
20220101
2022-01-01
PublicationDateYYYYMMDD 2022-01-01
PublicationDate_xml – year: 2022
  text: 20220000
PublicationDecade 2020
PublicationPlace Piscataway
PublicationPlace_xml – name: Piscataway
PublicationTitle IEEE access
PublicationTitleAbbrev Access
PublicationYear 2022
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref12
ref15
ref14
ref30
ref11
ref10
ref2
ref1
ref17
ref16
ref19
ref18
ref24
ref23
ref26
ref25
ref20
ref22
ref21
ref28
ref27
ref29
ref8
ref7
ref9
ref4
ref3
ref6
ref5
References_xml – ident: ref6
  doi: 10.1016/j.energy.2021.123038
– ident: ref25
  doi: 10.1109/TIE.2019.2947839
– ident: ref27
  doi: 10.1007/s00170-018-2874-0
– ident: ref18
  doi: 10.1016/j.ress.2021.108200
– ident: ref19
  doi: 10.1109/TPEL.2020.3033297
– ident: ref16
  doi: 10.1016/j.measurement.2021.109706
– ident: ref29
  doi: 10.1109/PHM.2008.4711422
– ident: ref14
  doi: 10.1016/j.measurement.2021.109287
– ident: ref22
  doi: 10.1016/j.neucom.2019.07.075
– ident: ref8
  doi: 10.1016/j.isatra.2019.07.004
– ident: ref26
  doi: 10.1109/ICPHM.2018.8448804
– ident: ref5
  doi: 10.1016/j.ymssp.2017.11.016
– ident: ref11
  doi: 10.1109/ACCESS.2020.2995656
– ident: ref15
  doi: 10.1007/s10845-018-1428-5
– ident: ref20
  doi: 10.1016/j.ress.2020.107249
– ident: ref4
  doi: 10.1016/j.engfailanal.2022.106231
– ident: ref7
  doi: 10.1016/j.ress.2022.108330
– ident: ref17
  doi: 10.1016/j.cie.2021.107533
– ident: ref2
  doi: 10.1016/j.isatra.2022.04.042
– ident: ref23
  doi: 10.1109/ACCESS.2019.2925634
– ident: ref1
  doi: 10.1016/j.jpowsour.2019.227591
– ident: ref9
  doi: 10.1016/j.ymssp.2021.108315
– ident: ref28
  doi: 10.1109/TIM.2021.3054025
– ident: ref30
  doi: 10.1109/PHM.2008.4711414
– ident: ref3
  doi: 10.1016/j.cie.2022.108204
– ident: ref13
  doi: 10.1109/TVT.2018.2805189
– ident: ref24
  doi: 10.1109/TIE.2019.2907440
– ident: ref21
  doi: 10.1016/j.ymssp.2019.106302
– ident: ref10
  doi: 10.1016/j.neucom.2022.04.055
– ident: ref12
  doi: 10.1016/j.ress.2022.108429
SSID ssj0000816957
Score 2.2945123
Snippet The task of remaining useful life (RUL) uncertainty management is the major challenge in solving the failure of the complex mechanical system. Primary research...
SourceID doaj
proquest
crossref
ieee
SourceType Open Website
Aggregation Database
Publisher
StartPage 1
SubjectTerms Big Data
Complex systems
Data models
Degradation
Feature extraction
Fusion model
gated recurrent unit
Logic gates
Mechanical systems
prediction intervals
Predictive models
Probability density functions
remaining useful life
Statistical analysis
Statistical methods
Statistical models
Stochastic processes
system prognostics
Turbofan engines
Uncertainty
uncertainty management
Useful life
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07T8MwELZQJxgQUBCFgjwwEuomTmKPbUWpUCmoIlI3K3bOqFIfqA8J-PWck7QqYmBhtfPyd_b5O9v5jpAbaw04ZU-PZTzGACW1ntQ29bQNhA8iMEy7pYGnQdRL-OMoHO2k-nJnwgp54AK4BgetRdq0BvsW51xLHKFGAzAGzTQsf91jcieYyn2waEYyjEuZIaxvtDodbBEGhL5_F6C_jiT_MRXliv1lipVffjmfbLpH5LBkibRVfN0x2YPZCTnY0Q6sknQI0yK7A02WYNcT2h9boPkKH_Ye-rJwWzAOdoq8lLpxP4EPWiiU0zZOXhnFuvb4YZjQZ3Qc0_EXFulP2p-_eQOksqck6d6_dnpemS_BM5yJlSc5MEA-FodSCx1DnHGkX8CMkRi2hIyDLyAOreYZc7yPScMDkUphLd7Dg-CMVGbzGZwTmgXSMCGZ1RBx7TNhwyiVTbDo2mUGrEZuN9Cp90IWQ-XhBJOqQFo5pFWJdI20HbzbS52mdV6AllalpdVflq6RqjPO9iHSHRqIgxqpb4ylyvG3VH6MkSF6q1Bc_MerL8m-a06x9FInldViDVdIRlb6Ou933yiq2VQ
  priority: 102
  providerName: Directory of Open Access Journals
Title Remaining Useful Life Interval Prediction for Complex System Based on BiGRU Optimized by Log-norm
URI https://ieeexplore.ieee.org/document/9913473
https://www.proquest.com/docview/2726118358
https://doaj.org/article/4ebb8a1fc257444b9538cbee00e1a509
Volume 10
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1NT9wwEB0BJ3ooX626LSAfOJLFmzhrz5Fd8SEEbYW6EjcrdsbVCtitYFei_HrGTnZFaQ-9RU4cOXn2-M3YfgNwEIKnqOyZyVppdlCqkKELVeZCYXIyhZcuhgauvvbPR-riprxZgcPlWRgiSpvPqBsv01p-PfXzGCo7wrhMrItVWNWIzVmtZTwlJpDAUrfCQj2JR8fDIX8Du4B53i3YQvdR_TH5JI3-NqnKX5Y4TS-nG3C1aFizq-S2O5-5rn9-o9n4vy3fhPctzxTHTcfYghWabMO7V-qDO1Bd032TH0KMHinM78TlOJBIMULuf-L7Q1zEicAJZrYiWo47ehKNxrkY8PRXC743GJ9dj8Q3Nj3342cucr_F5fRnNmEy_AFGpyc_hudZm3Eh80qaWYaKJDGj0yU64zTpWjGBI-k9suNTSkW5IV0Gp2oZmaNErwpToQmB66ii-Ahrk-mEPoGoC_TSoAyO-srl0oSyX2GPAk8OWJPswOECCvurEdawySGRaBvkbETOtsh1YBDhWj4aVbFTAf9m2w4yq8g5U_WCZzuklHLI1tw7IimpVzEz6sBOhGb5khaVDuwuwLftCH60uWbfku1daT7_u9YXWI8NbMIxu7A2e5jTHhOUmdtPjv1-6p8v_l7jkA
link.rule.ids 315,783,787,799,867,2109,4031,27935,27936,27937,55086
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3PT9swFH5i5bDtAGzdtA7GfODYtG7iJPaxrYDC2jIhKnGzYud5qgbtRFtp9K_nOUmr_eDALXLiyPHnPH_v2f4ewIlzFr2yZ8BzkZKDkrlAGZcFxkUyRBlZbnxoYDROBhNxeRvf7kBzexYGEYvNZ9jyl8Vafj63Kx8qayu_TJxGr2CXeLVMytNa24iKTyGh4rSSFupw1e72-_QV5ASGYSsiG50o8df0U6j0V2lV_rPFxQRztg-jTdPKfSU_W6uladn1P6qNL237AexVTJN1y6HxDnZw9h7e_qE_WIfsGu_LDBFsskC3umPDqUNWRAlpBLLvD34Zx0PHiNsybzvu8DcrVc5ZjybAnNG93vT8esKuyPjcT9dUZB7ZcP4jmBEd_gCTs9Ob_iCoci4EVnC5DJRAjsTp0lgZaVJMc0FdjdxaRa5PzAWGEtPYGZFzzx25siKSmZLOUR0RRR-hNpvP8BOwPFKWS8WdwUSYkEsXJ5nqoKPpQeXIG9DcQKF_ldIaunBJuNIlctojpyvkGtDzcG0f9brYRQF1s65-My3QGJl1nCVLJIQwiuy5NYicYycjbtSAuodm-5IKlQYcbcDX1T-80GFK3iVZvFh-fr7WV3g9uBkN9fBi_O0Q3vjGlsGZI6gtH1b4hejK0hwXo_QJq2nl5g
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Remaining+Useful+Life+Interval+Prediction+for+Complex+System+Based+on+BiGRU+Optimized+by+Log-norm&rft.jtitle=IEEE+access&rft.au=Yan%2C+Xiaojia&rft.au=Liang%2C+Weige&rft.au=Xu%2C+Dongxue&rft.date=2022&rft.pub=IEEE&rft.eissn=2169-3536&rft.spage=1&rft.epage=1&rft_id=info:doi/10.1109%2FACCESS.2022.3212694&rft.externalDocID=9913473
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2169-3536&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2169-3536&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2169-3536&client=summon