Subject-specific trunk segmental masses prediction for musculoskeletal models using artificial neural networks
Accurate determination of body segment parameters is crucial for studying human movement and joint forces using musculoskeletal (MSK) models. However, existing methods for predicting segment mass have limited generalizability and sensitivity to body shapes. With recent advancements in machine learni...
Saved in:
Published in | Medical & biological engineering & computing Vol. 62; no. 9; pp. 2757 - 2768 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Berlin/Heidelberg
Springer Berlin Heidelberg
01.09.2024
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
ISSN | 0140-0118 1741-0444 1741-0444 |
DOI | 10.1007/s11517-024-03100-4 |
Cover
Loading…
Abstract | Accurate determination of body segment parameters is crucial for studying human movement and joint forces using musculoskeletal (MSK) models. However, existing methods for predicting segment mass have limited generalizability and sensitivity to body shapes. With recent advancements in machine learning, this study proposed a novel artificial neural network-based method for computing subject-specific trunk segment mass and center of mass (CoM) using only anthropometric measurements. We first developed, trained, and validated two artificial neural networks that used anthropometric measurements as input to predict body shape (ANN1) and tissue mass (ANN2). Then, we calculated trunk segmental mass for two volunteers using the predicted body shape and tissue mass. The body shape model (ANN1) was tested on 279 subjects, and maximum deviation between the predicted body shape and the original was 28 mm. The tissue mass model (ANN2) was evaluated on 223 subjects, which when compared to ground truth data, had a mean error of less than 0.51% in the head, trunk, legs, and arms. We also compared the two volunteer’s trunk segment mass with experimental data and found similar trend and magnitude. Our findings suggested that the proposed method could serve as an effective and convenient tool for predicting trunk mass.
Graphical Abstract |
---|---|
AbstractList | Accurate determination of body segment parameters is crucial for studying human movement and joint forces using musculoskeletal (MSK) models. However, existing methods for predicting segment mass have limited generalizability and sensitivity to body shapes. With recent advancements in machine learning, this study proposed a novel artificial neural network-based method for computing subject-specific trunk segment mass and center of mass (CoM) using only anthropometric measurements. We first developed, trained, and validated two artificial neural networks that used anthropometric measurements as input to predict body shape (ANN1) and tissue mass (ANN2). Then, we calculated trunk segmental mass for two volunteers using the predicted body shape and tissue mass. The body shape model (ANN1) was tested on 279 subjects, and maximum deviation between the predicted body shape and the original was 28 mm. The tissue mass model (ANN2) was evaluated on 223 subjects, which when compared to ground truth data, had a mean error of less than 0.51% in the head, trunk, legs, and arms. We also compared the two volunteer’s trunk segment mass with experimental data and found similar trend and magnitude. Our findings suggested that the proposed method could serve as an effective and convenient tool for predicting trunk mass.
Graphical Abstract Accurate determination of body segment parameters is crucial for studying human movement and joint forces using musculoskeletal (MSK) models. However, existing methods for predicting segment mass have limited generalizability and sensitivity to body shapes. With recent advancements in machine learning, this study proposed a novel artificial neural network-based method for computing subject-specific trunk segment mass and center of mass (CoM) using only anthropometric measurements. We first developed, trained, and validated two artificial neural networks that used anthropometric measurements as input to predict body shape (ANN1) and tissue mass (ANN2). Then, we calculated trunk segmental mass for two volunteers using the predicted body shape and tissue mass. The body shape model (ANN1) was tested on 279 subjects, and maximum deviation between the predicted body shape and the original was 28 mm. The tissue mass model (ANN2) was evaluated on 223 subjects, which when compared to ground truth data, had a mean error of less than 0.51% in the head, trunk, legs, and arms. We also compared the two volunteer’s trunk segment mass with experimental data and found similar trend and magnitude. Our findings suggested that the proposed method could serve as an effective and convenient tool for predicting trunk mass. Accurate determination of body segment parameters is crucial for studying human movement and joint forces using musculoskeletal (MSK) models. However, existing methods for predicting segment mass have limited generalizability and sensitivity to body shapes. With recent advancements in machine learning, this study proposed a novel artificial neural network-based method for computing subject-specific trunk segment mass and center of mass (CoM) using only anthropometric measurements. We first developed, trained, and validated two artificial neural networks that used anthropometric measurements as input to predict body shape (ANN1) and tissue mass (ANN2). Then, we calculated trunk segmental mass for two volunteers using the predicted body shape and tissue mass. The body shape model (ANN1) was tested on 279 subjects, and maximum deviation between the predicted body shape and the original was 28 mm. The tissue mass model (ANN2) was evaluated on 223 subjects, which when compared to ground truth data, had a mean error of less than 0.51% in the head, trunk, legs, and arms. We also compared the two volunteer's trunk segment mass with experimental data and found similar trend and magnitude. Our findings suggested that the proposed method could serve as an effective and convenient tool for predicting trunk mass.Accurate determination of body segment parameters is crucial for studying human movement and joint forces using musculoskeletal (MSK) models. However, existing methods for predicting segment mass have limited generalizability and sensitivity to body shapes. With recent advancements in machine learning, this study proposed a novel artificial neural network-based method for computing subject-specific trunk segment mass and center of mass (CoM) using only anthropometric measurements. We first developed, trained, and validated two artificial neural networks that used anthropometric measurements as input to predict body shape (ANN1) and tissue mass (ANN2). Then, we calculated trunk segmental mass for two volunteers using the predicted body shape and tissue mass. The body shape model (ANN1) was tested on 279 subjects, and maximum deviation between the predicted body shape and the original was 28 mm. The tissue mass model (ANN2) was evaluated on 223 subjects, which when compared to ground truth data, had a mean error of less than 0.51% in the head, trunk, legs, and arms. We also compared the two volunteer's trunk segment mass with experimental data and found similar trend and magnitude. Our findings suggested that the proposed method could serve as an effective and convenient tool for predicting trunk mass. Accurate determination of body segment parameters is crucial for studying human movement and joint forces using musculoskeletal (MSK) models. However, existing methods for predicting segment mass have limited generalizability and sensitivity to body shapes. With recent advancements in machine learning, this study proposed a novel artificial neural network-based method for computing subject-specific trunk segment mass and center of mass (CoM) using only anthropometric measurements. We first developed, trained, and validated two artificial neural networks that used anthropometric measurements as input to predict body shape (ANN1) and tissue mass (ANN2). Then, we calculated trunk segmental mass for two volunteers using the predicted body shape and tissue mass. The body shape model (ANN1) was tested on 279 subjects, and maximum deviation between the predicted body shape and the original was 28 mm. The tissue mass model (ANN2) was evaluated on 223 subjects, which when compared to ground truth data, had a mean error of less than 0.51% in the head, trunk, legs, and arms. We also compared the two volunteer's trunk segment mass with experimental data and found similar trend and magnitude. Our findings suggested that the proposed method could serve as an effective and convenient tool for predicting trunk mass. |
Author | Liu, Tao El-Rich, Marwan |
Author_xml | – sequence: 1 givenname: Tao orcidid: 0000-0003-3171-4105 surname: Liu fullname: Liu, Tao email: tao.liu1@ucalgary.ca organization: Human Performance Lab, Faculty of Kinesiology, University of Calgary – sequence: 2 givenname: Marwan surname: El-Rich fullname: El-Rich, Marwan organization: Department of Mechanical Engineering, Khalifa University |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/38693326$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkc2LFDEQxYOsuLOr_4AHafDipTWfk85RFr9gwYN6Dpl09ZCZ7mRMJcj-92ZmdhH2sJ4eFL_3qKp3RS5iikDIa0bfM0r1B2RMMd1TLnsq2qSXz8iKacl6KqW8ICvKJO0pY8MluULcUcqZ4vIFuRTD2gjB1ysSf9TNDnzp8QA-TMF3Jde47xC2C8Ti5m5xiIDdIcMYfAkpdlPK3VLR1znhHmY4UWmEGbuKIW47l8sxKrR5hJpPUv6kvMeX5PnkZoRX93pNfn3-9PPma3_7_cu3m4-3vZd0KL0R0rDJcTV4CRvjjdaKKuUEjIKLNWgqtdaDnwSVk_ew4WYaRzNIZfigHIhr8u6ce8jpdwUsdgnoYZ5dhFTRCqaE5nzd5L8oVZTptZKsoW8fobtUc2yHNMoIo7QYjoFv7qm6WWC0hxwWl-_sw9MbMJwBnxNihsn6UNzxtSW7MFtG7bFfe-7Xtn7tqV8rm5U_sj6kP2kSZxM2OG4h_1v7CddfvPG34g |
CitedBy_id | crossref_primary_10_3390_bioengineering12030263 |
Cites_doi | 10.1007/s00138-012-0472-y 10.1016/j.medengphy.2018.10.001 10.1115/1.4000155 10.1002/mp.14492 10.1016/j.patcog.2017.02.018 10.1007/s10439-006-9088-6 10.1016/0010-4825(76)90070-6 10.1016/j.jbiomech.2021.110437 10.1016/j.berh.2020.101548 10.1109/CVPR42600.2020.00530 10.1016/0021-9290(89)90051-1 10.1007/s00198-005-1841-4 10.1136/jamia.1996.96236280 10.1080/10255842.2023.2181039 10.1016/S0966-6362(03)00013-4 10.1016/s0268-0033(00)00016-4 10.1016/S0021-9290(01)00161-0 10.1016/j.jbiomech.2018.12.008 10.1145/1073204.1073207 10.1016/0021-9290(90)90319-x 10.1007/BF02667349 10.1016/j.promfg.2015.07.884 10.1016/j.jbiomech.2005.04.014 10.1109/CVPR.2019.00462 10.1016/s0966-6362(99)00011-9 10.1371/journal.pone.0262296 10.20965/jrm.2011.p0978 10.1115/1.4034168 10.1007/978-3-319-66709-6_28 10.1007/978-3-030-01234-2_2 10.1109/3DV.2017.00055 10.3389/fbioe.2022.842382 10.1109/IM.1999.805368 |
ContentType | Journal Article |
Copyright | International Federation for Medical and Biological Engineering 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. 2024. International Federation for Medical and Biological Engineering. |
Copyright_xml | – notice: International Federation for Medical and Biological Engineering 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. – notice: 2024. International Federation for Medical and Biological Engineering. |
DBID | AAYXX CITATION NPM 3V. 7RV 7SC 7TB 7TS 7WY 7WZ 7X7 7XB 87Z 88A 88E 88I 8AL 8AO 8FD 8FE 8FG 8FH 8FI 8FJ 8FK 8FL ABUWG AFKRA ARAPS AZQEC BBNVY BENPR BEZIV BGLVJ BHPHI CCPQU DWQXO FR3 FRNLG FYUFA F~G GHDGH GNUQQ HCIFZ JQ2 K60 K6~ K7- K9. KB0 L.- L7M LK8 L~C L~D M0C M0N M0S M1P M2P M7P M7Z NAPCQ P5Z P62 P64 PHGZM PHGZT PJZUB PKEHL PPXIY PQBIZ PQBZA PQEST PQGLB PQQKQ PQUKI PRINS Q9U 7X8 7S9 L.6 |
DOI | 10.1007/s11517-024-03100-4 |
DatabaseName | CrossRef PubMed ProQuest Central (Corporate) Nursing & Allied Health Database Computer and Information Systems Abstracts Mechanical & Transportation Engineering Abstracts Physical Education Index ABI/INFORM Collection ABI/INFORM Global (PDF only) ProQuest Health & Medical Collection ProQuest Central (purchase pre-March 2016) ABI/INFORM Collection Biology Database (Alumni Edition) Medical Database (Alumni Edition) Science Database (Alumni Edition) Computing Database (Alumni Edition) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Collection ProQuest Hospital Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ABI/INFORM Collection (Alumni Edition) ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials Biological Science Database ProQuest Central Business Premium Collection Technology Collection Natural Science Collection ProQuest One Community College ProQuest Central Engineering Research Database Business Premium Collection (Alumni) Health Research Premium Collection ABI/INFORM Global (Corporate) Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection ProQuest Computer Science Collection ProQuest Business Collection (Alumni Edition) ProQuest Business Collection Computer Science Database ProQuest Health & Medical Complete (Alumni) Nursing & Allied Health Database (Alumni Edition) ABI/INFORM Professional Advanced Advanced Technologies Database with Aerospace Biological Sciences Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional ABI/INFORM Global Computing Database ProQuest Health & Medical Collection Proquest Medical Database Science Database Biological Science Database Biochemistry Abstracts 1 ProQuest Nursing & Allied Health Premium Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Biotechnology and BioEngineering Abstracts ProQuest Central Premium ProQuest One Academic ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Business ProQuest One Business (Alumni) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef PubMed ProQuest Business Collection (Alumni Edition) Computer Science Database ProQuest Central Student ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts SciTech Premium Collection ProQuest Central China ABI/INFORM Complete ProQuest One Applied & Life Sciences Health Research Premium Collection Natural Science Collection Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) Advanced Technologies & Aerospace Collection Business Premium Collection ABI/INFORM Global ProQuest Science Journals (Alumni Edition) ProQuest Biological Science Collection ProQuest One Academic Eastern Edition ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest Business Collection ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts Nursing & Allied Health Premium ProQuest Health & Medical Complete ProQuest One Academic UKI Edition ProQuest Nursing & Allied Health Source (Alumni) Engineering Research Database ProQuest One Academic ProQuest One Academic (New) ABI/INFORM Global (Corporate) ProQuest One Business Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) Mechanical & Transportation Engineering Abstracts ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Pharma Collection Physical Education Index ProQuest Biology Journals (Alumni Edition) ProQuest Central ABI/INFORM Professional Advanced ProQuest Health & Medical Research Collection Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Advanced Technologies Database with Aerospace ABI/INFORM Complete (Alumni Edition) ProQuest Computing ABI/INFORM Global (Alumni Edition) ProQuest Central Basic ProQuest Science Journals ProQuest Computing (Alumni Edition) ProQuest Nursing & Allied Health Source ProQuest SciTech Collection Computer and Information Systems Abstracts Professional Advanced Technologies & Aerospace Database ProQuest Medical Library ProQuest One Business (Alumni) Biochemistry Abstracts 1 ProQuest Central (Alumni) Business Premium Collection (Alumni) MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA MEDLINE - Academic PubMed ProQuest Business Collection (Alumni Edition) |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine |
EISSN | 1741-0444 |
EndPage | 2768 |
ExternalDocumentID | 38693326 10_1007_s11517_024_03100_4 |
Genre | Journal Article |
GrantInformation_xml | – fundername: Khalifa University grantid: FSU-2018-13 |
GroupedDBID | --- -4W -5B -5G -BR -EM -Y2 -~C -~X .4S .55 .86 .DC .GJ .VR 04C 06D 0R~ 0VY 1N0 1SB 2.D 203 28- 29M 29~ 2J2 2JN 2JY 2KG 2KM 2LR 2VQ 2~H 30V 36B 3V. 4.4 406 408 40D 40E 53G 5GY 5QI 5RE 5VS 67Z 6NX 7RV 7WY 7X7 88A 88E 88I 8AO 8FE 8FG 8FH 8FI 8FJ 8FL 8TC 8UJ 8VB 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANXM AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAWTL AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABDBF ABDPE ABDZT ABECU ABFTD ABFTV ABHLI ABHQN ABIPD ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABPLI ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABUWG ABWNU ABXPI ACAOD ACBNA ACBXY ACDTI ACGFO ACGFS ACGOD ACHSB ACHXU ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACPRK ACUHS ACZOJ ADBBV ADHHG ADHIR ADINQ ADJJI ADKNI ADKPE ADMLS ADRFC ADTPH ADURQ ADYFF ADYPR ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMOZ AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFEXP AFGCZ AFKRA AFLOW AFQWF AFRAH AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHIZS AHKAY AHMBA AHQJS AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ AKMHD AKVCP ALIPV ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARAPS ARCSS ARMRJ AXYYD AZFZN AZQEC B-. B0M BA0 BBNVY BBWZM BDATZ BENPR BEZIV BGLVJ BGNMA BHPHI BKEYQ BMSDO BPHCQ BSONS BVXVI CAG CCPQU COF CS3 CSCUP DDRTE DNIVK DPUIP DU5 DWQXO EAD EAP EAS EBA EBD EBLON EBR EBS EBU ECS EDO EHE EIHBH EIOEI EJD EMB EMK EMOBN EPL ESBYG EST ESX EX3 F5P FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRNLG FRRFC FSGXE FWDCC FYUFA GGCAI GGRSB GJIRD GNUQQ GNWQR GQ6 GQ7 GROUPED_ABI_INFORM_COMPLETE H13 HCIFZ HF~ HG5 HG6 HMCUK HMJXF HRMNR HVGLF HZ~ I-F IHE IJ- IKXTQ IMOTQ ITM IWAJR IXC IXE IZQ I~X I~Z J-C J0Z JBSCW JZLTJ K1G K60 K6V K6~ K7- KDC KOV L7B LAI LK8 LLZTM M0C M0L M0N M1P M2P M43 M4Y M7P MA- MK~ ML0 ML~ N2Q N9A NAPCQ NB0 NDZJH NF0 NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J P19 P2P P62 P9P PF0 PQBIZ PQBZA PQQKQ PROAC PSQYO PT4 PT5 Q2X QOK QOR QOS QWB R4E R89 R9I RHV RIG RNI ROL RPX RSV RXW RZK S16 S1Z S26 S27 S28 S3B SAP SBY SCLPG SDH SDM SEG SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW SSXJD STPWE SV3 SZN T13 T16 TAE TH9 TSG TSK TSV TUC TUS U2A U9L UG4 UKHRP UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK8 WOW X7M YLTOR Z45 Z7R Z7U Z7X Z7Z Z82 Z83 Z87 Z88 Z8M Z8O Z8R Z8T Z8V Z8W Z91 Z92 ZGI ZL0 ZMTXR ZOVNA ZXP ~8M ~EX ~KM AAPKM AAYXX ABBRH ABDBE ABFSG ACSTC ADHKG AEZWR AFDZB AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION PHGZM PHGZT ABRTQ NPM 7SC 7TB 7TS 7XB 8AL 8FD 8FK FR3 JQ2 K9. L.- L7M L~C L~D M7Z P64 PJZUB PKEHL PPXIY PQEST PQGLB PQUKI PRINS Q9U 7X8 7S9 L.6 |
ID | FETCH-LOGICAL-c408t-93491fa258c4eb9c9775055a3ed3236e7047778cf304fcceb29fdd98459285ae3 |
IEDL.DBID | U2A |
ISSN | 0140-0118 1741-0444 |
IngestDate | Fri Jul 11 13:34:24 EDT 2025 Mon Jul 21 10:40:03 EDT 2025 Tue Sep 02 03:25:42 EDT 2025 Mon Jul 21 05:55:40 EDT 2025 Thu Apr 24 22:56:47 EDT 2025 Tue Jul 01 02:58:36 EDT 2025 Fri Feb 21 02:38:33 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 9 |
Keywords | Tissue mass Body segment parameters Center of mass Body shape prediction |
Language | English |
License | 2024. International Federation for Medical and Biological Engineering. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c408t-93491fa258c4eb9c9775055a3ed3236e7047778cf304fcceb29fdd98459285ae3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0003-3171-4105 |
PMID | 38693326 |
PQID | 3093957385 |
PQPubID | 54161 |
PageCount | 12 |
ParticipantIDs | proquest_miscellaneous_3153722615 proquest_miscellaneous_3050176541 proquest_journals_3093957385 pubmed_primary_38693326 crossref_citationtrail_10_1007_s11517_024_03100_4 crossref_primary_10_1007_s11517_024_03100_4 springer_journals_10_1007_s11517_024_03100_4 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2024-09-01 |
PublicationDateYYYYMMDD | 2024-09-01 |
PublicationDate_xml | – month: 09 year: 2024 text: 2024-09-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Berlin/Heidelberg |
PublicationPlace_xml | – name: Berlin/Heidelberg – name: United States – name: Heidelberg |
PublicationTitle | Medical & biological engineering & computing |
PublicationTitleAbbrev | Med Biol Eng Comput |
PublicationTitleAlternate | Med Biol Eng Comput |
PublicationYear | 2024 |
Publisher | Springer Berlin Heidelberg Springer Nature B.V |
Publisher_xml | – name: Springer Berlin Heidelberg – name: Springer Nature B.V |
References | Silva, Ambrósio (CR4) 2004; 19 Speerin, Needs, Chua (CR34) 2020; 34 Kudzia, Jackson, Dumas (CR14) 2022; 17 Pearsall, Reid, Livingston (CR17) 1996; 24 Dempster (CR23) 1955 Sheets, Corazza, Andriacchi (CR8) 2010; 132 CR18 Pishchulin, Wuhrer, Helten (CR20) 2017; 67 Tian, Ng, Wong (CR24) 2020; 47 Clauser, McConville, Young (CR22) 1971; 13 CR36 CR35 Durkin, Dowling (CR11) 2006; 34 Zhu, Mok (CR26) 2015; 3 Huang, Wu (CR10) 1976; 6 Kocabas, Athanasiou, Black (CR19) 2020 Fritz, Kröll, Schwameder (CR5) 2019; 84 Mungiole, Martin (CR31) 1990; 23 Smith, Bull (CR13) 2018; 62 CR2 Anguelov, Srinivasan, Koller (CR27) 2005; 24 Martin, Mungiole, Marzke, Longhill (CR9) 1989; 22 CR7 CR29 CR28 Zhu, Zuo, Wang (CR25) 2019 Wuhrer, Shu (CR30) 2013; 24 Norton, Donaldson, Dekker (CR12) 2002; 35 CR21 Rao, Amarantini, Berton, Favier (CR1) 2006; 39 Liu, Khalaf, Hebela (CR15) 2021; 122 Makovey, Naganathan, Sambrook (CR33) 2005; 16 Köhler, Schüler, Quaas (CR6) 2024; 27 Spitzer, Ackerman, Scherzinger, Whitlock (CR16) 1996; 3 Cheng, Chen, Chen (CR32) 2000; 15 Pearsall, Costigan (CR3) 1999; 9 MPT Silva (3100_CR4) 2004; 19 V Spitzer (3100_CR16) 1996; 3 S Zhu (3100_CR26) 2015; 3 JL Durkin (3100_CR11) 2006; 34 3100_CR21 J Norton (3100_CR12) 2002; 35 T Liu (3100_CR15) 2021; 122 P Kudzia (3100_CR14) 2022; 17 M Mungiole (3100_CR31) 1990; 23 DJ Pearsall (3100_CR3) 1999; 9 DJ Pearsall (3100_CR17) 1996; 24 J Fritz (3100_CR5) 2019; 84 J Makovey (3100_CR33) 2005; 16 PE Martin (3100_CR9) 1989; 22 IY Tian (3100_CR24) 2020; 47 H-P Köhler (3100_CR6) 2024; 27 3100_CR29 3100_CR28 3100_CR7 3100_CR2 WT Dempster (3100_CR23) 1955 S Wuhrer (3100_CR30) 2013; 24 R Speerin (3100_CR34) 2020; 34 G Rao (3100_CR1) 2006; 39 HK Huang (3100_CR10) 1976; 6 L Pishchulin (3100_CR20) 2017; 67 M Kocabas (3100_CR19) 2020 AL Sheets (3100_CR8) 2010; 132 H Zhu (3100_CR25) 2019 CE Clauser (3100_CR22) 1971; 13 SHL Smith (3100_CR13) 2018; 62 3100_CR36 3100_CR35 D Anguelov (3100_CR27) 2005; 24 3100_CR18 CK Cheng (3100_CR32) 2000; 15 |
References_xml | – volume: 24 start-page: 1133 year: 2013 end-page: 1147 ident: CR30 article-title: Estimating 3D Human Shapes from Measurements publication-title: Mach Vis Appl doi: 10.1007/s00138-012-0472-y – ident: CR18 – volume: 13 start-page: 270 year: 1971 ident: CR22 article-title: Weight, Volume, and Center of Mass Segments of the Human Body publication-title: J Occup Environ Med – ident: CR2 – volume: 62 start-page: 36 year: 2018 end-page: 45 ident: CR13 article-title: Rapid calculation of bespoke body segment parameters using 3D infra-red scanning publication-title: Med Eng Phys doi: 10.1016/j.medengphy.2018.10.001 – volume: 132 start-page: 011004 year: 2010 ident: CR8 article-title: An automated image-based method of 3D subject-specific body segment parameter estimation for kinetic analyses of rapid movements publication-title: J Biomech Eng doi: 10.1115/1.4000155 – volume: 47 start-page: 6232 year: 2020 end-page: 6245 ident: CR24 article-title: Predicting 3D body shape and body composition from conventional 2D photography publication-title: Med Phys doi: 10.1002/mp.14492 – volume: 67 start-page: 276 year: 2017 end-page: 286 ident: CR20 article-title: Building Statistical Shape Spaces for 3D Human Modeling publication-title: Pattern Recogn doi: 10.1016/j.patcog.2017.02.018 – volume: 34 start-page: 1483 year: 2006 end-page: 1493 ident: CR11 article-title: Body segment parameter estimation of the human lower leg using an elliptical model with validation from DEXA publication-title: Ann Biomed Eng doi: 10.1007/s10439-006-9088-6 – volume: 6 start-page: 337 year: 1976 end-page: 343 ident: CR10 article-title: The evaluation of mass densities of human body in vivo from CT scans publication-title: Comput Biol Med doi: 10.1016/0010-4825(76)90070-6 – volume: 122 start-page: 110437 year: 2021 ident: CR15 article-title: Prediction of human male trunk mass distribution using anthropometric measurements: A feasibility study publication-title: J Biomech doi: 10.1016/j.jbiomech.2021.110437 – ident: CR35 – ident: CR29 – volume: 34 start-page: 101548 year: 2020 ident: CR34 article-title: Implementing models of care for musculoskeletal conditions in health systems to support value-based care publication-title: Best Pract Res Clin Rheumatol doi: 10.1016/j.berh.2020.101548 – start-page: 5252 year: 2020 end-page: 5262 ident: CR19 article-title: VIBE: Video Inference for Human Body Pose and Shape Estimation publication-title: 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) doi: 10.1109/CVPR42600.2020.00530 – volume: 22 start-page: 367 year: 1989 end-page: 376 ident: CR9 article-title: The use of magnetic resonance imaging for measuring segment inertial properties publication-title: J Biomech doi: 10.1016/0021-9290(89)90051-1 – volume: 16 start-page: 1495 year: 2005 end-page: 1505 ident: CR33 article-title: Gender differences in relationships between body composition components, their distribution and bone mineral density: a cross-sectional opposite sex twin study publication-title: Osteoporos Int doi: 10.1007/s00198-005-1841-4 – volume: 3 start-page: 118 year: 1996 end-page: 130 ident: CR16 article-title: The visible human male: a technical report publication-title: J Am Med Inform Assoc doi: 10.1136/jamia.1996.96236280 – ident: CR21 – volume: 27 start-page: 267 year: 2024 end-page: 275 ident: CR6 article-title: The influence of body segment estimation methods on body segment inertia parameters and joint moments in javelin throwing publication-title: Comput Methods Biomech Biomed Engin doi: 10.1080/10255842.2023.2181039 – volume: 19 start-page: 35 year: 2004 end-page: 49 ident: CR4 article-title: Sensitivity of the results produced by the inverse dynamic analysis of a human stride to perturbed input data publication-title: Gait Posture doi: 10.1016/S0966-6362(03)00013-4 – volume: 15 start-page: 559 year: 2000 end-page: 566 ident: CR32 article-title: Segment inertial properties of Chinese adults determined from magnetic resonance imaging publication-title: Clin Biomech (Bristol, Avon) doi: 10.1016/s0268-0033(00)00016-4 – volume: 35 start-page: 81 year: 2002 end-page: 86 ident: CR12 article-title: 3D whole body scanning to determine mass properties of legs publication-title: J Biomech doi: 10.1016/S0021-9290(01)00161-0 – volume: 84 start-page: 11 year: 2019 end-page: 17 ident: CR5 article-title: Influence of body segment parameter estimation on calculated ground reaction forces in highly dynamic movements publication-title: J Biomech doi: 10.1016/j.jbiomech.2018.12.008 – volume: 24 start-page: 408 year: 2005 end-page: 416 ident: CR27 article-title: SCAPE: shape completion and animation of people publication-title: ACM Trans Graph doi: 10.1145/1073204.1073207 – volume: 23 start-page: 1039 year: 1990 end-page: 1046 ident: CR31 article-title: Estimating segment inertial properties: comparison of magnetic resonance imaging with existing methods publication-title: J Biomech doi: 10.1016/0021-9290(90)90319-x – volume: 24 start-page: 198 year: 1996 end-page: 210 ident: CR17 article-title: Segmental inertial parameters of the human trunk as determined from computed tomography publication-title: Ann Biomed Eng doi: 10.1007/BF02667349 – year: 1955 ident: CR23 publication-title: Space requirements of the seated operator: geometrical, kinematic, and mechanical aspects of the body with special reference to the limbs – ident: CR36 – volume: 3 start-page: 3812 year: 2015 end-page: 3819 ident: CR26 article-title: Predicting Realistic and Precise Human Body Models Under Clothing Based on Orthogonal-view Photos publication-title: Procedia Manuf doi: 10.1016/j.promfg.2015.07.884 – volume: 39 start-page: 1531 year: 2006 end-page: 1536 ident: CR1 article-title: Influence of body segments’ parameters estimation models on inverse dynamics solutions during gait publication-title: J Biomech doi: 10.1016/j.jbiomech.2005.04.014 – ident: CR7 – start-page: 4486 year: 2019 end-page: 4495 ident: CR25 article-title: Detailed Human Shape Estimation From a Single Image by Hierarchical Mesh Deformation publication-title: 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) doi: 10.1109/CVPR.2019.00462 – ident: CR28 – volume: 9 start-page: 173 year: 1999 end-page: 183 ident: CR3 article-title: The effect of segment parameter error on gait analysis results publication-title: Gait Posture doi: 10.1016/s0966-6362(99)00011-9 – volume: 17 start-page: e0262296 year: 2022 ident: CR14 article-title: Estimating body segment parameters from three-dimensional human body scans publication-title: PLoS ONE doi: 10.1371/journal.pone.0262296 – volume: 62 start-page: 36 year: 2018 ident: 3100_CR13 publication-title: Med Eng Phys doi: 10.1016/j.medengphy.2018.10.001 – volume: 23 start-page: 1039 year: 1990 ident: 3100_CR31 publication-title: J Biomech doi: 10.1016/0021-9290(90)90319-x – ident: 3100_CR36 doi: 10.20965/jrm.2011.p0978 – ident: 3100_CR2 doi: 10.1115/1.4034168 – volume: 34 start-page: 1483 year: 2006 ident: 3100_CR11 publication-title: Ann Biomed Eng doi: 10.1007/s10439-006-9088-6 – ident: 3100_CR28 doi: 10.1007/978-3-319-66709-6_28 – volume: 122 start-page: 110437 year: 2021 ident: 3100_CR15 publication-title: J Biomech doi: 10.1016/j.jbiomech.2021.110437 – volume: 13 start-page: 270 year: 1971 ident: 3100_CR22 publication-title: J Occup Environ Med – ident: 3100_CR18 doi: 10.1007/978-3-030-01234-2_2 – ident: 3100_CR7 – start-page: 5252 volume-title: 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) year: 2020 ident: 3100_CR19 doi: 10.1109/CVPR42600.2020.00530 – volume: 39 start-page: 1531 year: 2006 ident: 3100_CR1 publication-title: J Biomech doi: 10.1016/j.jbiomech.2005.04.014 – ident: 3100_CR29 doi: 10.1109/3DV.2017.00055 – ident: 3100_CR35 doi: 10.3389/fbioe.2022.842382 – volume: 132 start-page: 011004 year: 2010 ident: 3100_CR8 publication-title: J Biomech Eng doi: 10.1115/1.4000155 – ident: 3100_CR21 doi: 10.1109/IM.1999.805368 – volume: 67 start-page: 276 year: 2017 ident: 3100_CR20 publication-title: Pattern Recogn doi: 10.1016/j.patcog.2017.02.018 – volume: 22 start-page: 367 year: 1989 ident: 3100_CR9 publication-title: J Biomech doi: 10.1016/0021-9290(89)90051-1 – volume: 47 start-page: 6232 year: 2020 ident: 3100_CR24 publication-title: Med Phys doi: 10.1002/mp.14492 – volume: 34 start-page: 101548 year: 2020 ident: 3100_CR34 publication-title: Best Pract Res Clin Rheumatol doi: 10.1016/j.berh.2020.101548 – volume: 35 start-page: 81 year: 2002 ident: 3100_CR12 publication-title: J Biomech doi: 10.1016/S0021-9290(01)00161-0 – volume-title: Space requirements of the seated operator: geometrical, kinematic, and mechanical aspects of the body with special reference to the limbs year: 1955 ident: 3100_CR23 – volume: 24 start-page: 408 year: 2005 ident: 3100_CR27 publication-title: ACM Trans Graph doi: 10.1145/1073204.1073207 – volume: 84 start-page: 11 year: 2019 ident: 3100_CR5 publication-title: J Biomech doi: 10.1016/j.jbiomech.2018.12.008 – volume: 17 start-page: e0262296 year: 2022 ident: 3100_CR14 publication-title: PLoS ONE doi: 10.1371/journal.pone.0262296 – volume: 3 start-page: 3812 year: 2015 ident: 3100_CR26 publication-title: Procedia Manuf doi: 10.1016/j.promfg.2015.07.884 – volume: 19 start-page: 35 year: 2004 ident: 3100_CR4 publication-title: Gait Posture doi: 10.1016/S0966-6362(03)00013-4 – volume: 3 start-page: 118 year: 1996 ident: 3100_CR16 publication-title: J Am Med Inform Assoc doi: 10.1136/jamia.1996.96236280 – volume: 9 start-page: 173 year: 1999 ident: 3100_CR3 publication-title: Gait Posture doi: 10.1016/s0966-6362(99)00011-9 – start-page: 4486 volume-title: 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) year: 2019 ident: 3100_CR25 doi: 10.1109/CVPR.2019.00462 – volume: 15 start-page: 559 year: 2000 ident: 3100_CR32 publication-title: Clin Biomech (Bristol, Avon) doi: 10.1016/s0268-0033(00)00016-4 – volume: 27 start-page: 267 year: 2024 ident: 3100_CR6 publication-title: Comput Methods Biomech Biomed Engin doi: 10.1080/10255842.2023.2181039 – volume: 6 start-page: 337 year: 1976 ident: 3100_CR10 publication-title: Comput Biol Med doi: 10.1016/0010-4825(76)90070-6 – volume: 24 start-page: 198 year: 1996 ident: 3100_CR17 publication-title: Ann Biomed Eng doi: 10.1007/BF02667349 – volume: 16 start-page: 1495 year: 2005 ident: 3100_CR33 publication-title: Osteoporos Int doi: 10.1007/s00198-005-1841-4 – volume: 24 start-page: 1133 year: 2013 ident: 3100_CR30 publication-title: Mach Vis Appl doi: 10.1007/s00138-012-0472-y |
SSID | ssj0021524 |
Score | 2.4099636 |
Snippet | Accurate determination of body segment parameters is crucial for studying human movement and joint forces using musculoskeletal (MSK) models. However, existing... |
SourceID | proquest pubmed crossref springer |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 2757 |
SubjectTerms | Anthropometry Artificial neural networks Biomedical and Life Sciences Biomedical Engineering and Bioengineering Biomedicine Computer Applications head Human motion Human Physiology humans Imaging Machine learning musculoskeletal system Neural networks Original Article Parameter sensitivity prediction Predictions Radiology Segments |
SummonAdditionalLinks | – databaseName: ProQuest Health & Medical Collection dbid: 7X7 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3dS8MwEA86QXwRv51OieCbBtt8tM2TiDiGoE8O9la6JN2D2s11-_-9S7MNGe6pD03Lcbnkfpe7_I6QW6Hi1AmrmE50yaSTmg25TRis8YLbgvPS-GqL96TXl68DNQgHbnUoq1zsiX6jtmODZ-QPmLHTCrlXHic_DLtGYXY1tNDYJjtIXYbBVzpYBVzgm-SyhBGQdLg001ydA1eXMvBQDMkxIyb_OqY1tLmWKfUOqHtA9gNypE_NVB-SLVcdkd23kBs_JhXsAXiowvDyJBYA0dl0Xn3S2o0aAn_6XWCGl06m-A1OCAXESr_nWIs6rj_BAflR2BunplgQP6JoWA3HBEXmS__wdeP1Cel3Xz6eeyx0U2BGRtmMaSF1XBZcZUa6oTYA_AD9qEI4K7hIXBrJNE0zU4pIlsZAxK1La3UmleaZKpw4Ja1qXLlzQgunEwhgY1UmQnIDDg2C2zgWUkTWAmJok3ihytwEqnHsePGVr0iSUf05qD_36s9lm9wtv5k0RBsbR3cWM5SHRVfnKxNpk5vla1gumAMpKjee4xgFexA2P98wBrxACrA0hv-cNbO_FElkiRYAedvkfmEOKwH-l_dis7yXZI97U8TatQ5pgX24KwA7s-G1t-hfmCr5HQ priority: 102 providerName: ProQuest |
Title | Subject-specific trunk segmental masses prediction for musculoskeletal models using artificial neural networks |
URI | https://link.springer.com/article/10.1007/s11517-024-03100-4 https://www.ncbi.nlm.nih.gov/pubmed/38693326 https://www.proquest.com/docview/3093957385 https://www.proquest.com/docview/3050176541 https://www.proquest.com/docview/3153722615 |
Volume | 62 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT9wwEB4VkFAvqNBSlsfKSNxaS4kfcXzcVrsgUBFCXWl7irKOwwHIIrL7_5lxHquKFolLfMg4ssYznm8yDwOcSR0bLwvNbWJLrryyfC6KhKOO56LIhShdyLa4Ti6m6nKmZ21RWN1lu3chyXBSr4vd0DgZjjaFUzvLiKsN2NLou5NcT8Wod7PQIqk-cRHxc1sq8-9v_G2OXmHMV_HRYHYmn2CnxYts1GzwLnzw1R5s_2oj4p-hQs2nXymcSiYp7Yctn1fVPav9XdO2nz3mFNdlT880h7aBIU5ljyvKQF3U92h2AhXdiFMzSoO_YyROTWcJRv0uwxCyxesvMJ2Mf_-84O0dCtypKF1yK5WNy1zo1Ck_tw7hHmIenUtfSCETbyJljEldKSNVOod-ti2LwqZKW5Hq3Mt92KwWlT8AlnuboNsa6zKRSjg0Y-jSxrFUMioKxAkDiDtWZq5tME73XDxk69bIxP4M2Z8F9mdqAN_6OU9Ne403qY-7HcpaVaszCuVaTU15BnDav0YlochHXvnFimg0njx05fkbNHj2GwSjMX7na7P7_ZJkmliJQHcA3ztxWC_g_-s9fB_5EXwUQTQpg-0YNlFe_AlCnuV8CBtmZvCZTs6HsDU6_3M1xvHH-Prmdhik_wVcQvrL |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB6VIAEXBLRAaAtbqZzoingftveAUAWE9Hlqpd6Ms7vOodQJcSLEn-pvZGb9iFBFbj3lkLU1mv125xvPC2Bf6ijx0mluYlNw5ZXhY-Fijmc8Fy4XorAh2-I8Hl2q4yt9tQG3bS0MpVW2d2K4qN3U0jfyjxSxM5p6r3ye_eI0NYqiq-0IjRoWJ_7Pb3TZqk9HX3F_3wsx_HbxZcSbqQLcqkG64EYqExW50KlVfmwsEiBkATqX3kkhY58MVJIkqS3Q0S-sRc_TFM6ZVGkjUp17ie99AA-VRHGoMn34vXPw0BaqLmUSmXtTpFOX6qFpTThaRE7NOAdc_WsI77DbO5HZYPCGz-Bpw1TZYQ2t57Dhyxfw6KyJxW9CiXcOfcThVKxJCUdsMV-W16zyk3pgALvJKaLMZnN6hgDAkCGzmyXlvk6razR4YRXN4qkYJeBPGAG57mnBqNNm-Al56tUWXN6Lnl9Cr5yW_jWw3JsYHeZIF7FUwqIBRWc6iqSSA-eQofQhalWZ2aa1OU3Y-JmtmjKT-jNUfxbUn6k-fOiemdWNPdau3ml3KGsOeZWtINmHve5vPJ4Uc8lLP13SGo13Hg1bX7MGrU6CNDjC97yqd78TSaaxkUix-3DQwmElwP_lfbNe3nfweHRxdpqdHp2fbMMTEWBJeXM70EOs-F0kWovx24BuBj_u-zj9BbGVNWI |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9wwEB5RkFAvVUtfW6B1JXpqLRI_kviAUFW6hUJRD0XilmZthwMlu5BdVfw1fh0zzmOFEHvjtId1otH4G883mfEMwJbUceql09wkpuTKK8NHwiUcbbwQrhCitKHa4jjZP1E_T_XpEtx0d2GorLI7E8NB7caWvpFvU8bOaOq9sl22ZRG_94a7k0tOE6Qo09qN02ggcuiv_2P4Vu8c7OFefxJi-P3Pt33eThjgVkXZlBupTFwWQmdW-ZGxSIaQEehCeieFTHwaqTRNM1ti0F9ai1GoKZ0zmdJGZLrwEt_7BFZQqoimJ2TDH32wh35R9eWTyOLbCzvNtT10sylH78ipMWfE1V2neI_p3svSBuc3fA7PWtbKvjYwewFLvlqD1V9tXv4lVHj-0AcdThc3qfiITa9m1Tmr_VkzPIBdFJRdZpMreobAwJAts4sZ1cGO63N0fmEVzeWpGRXjnzECddPfglHXzfATatbrV3DyKHp-DcvVuPJvgRXeJBg8x7pMpBIWnSkG1nEslYycQ7YygLhTZW7bNuc0beNfPm_QTOrPUf15UH-uBvC5f2bSNPlYuHqj26G8Nfg6n8NzAB_7v9FUKf9SVH48ozUazz8avL5gDXqgFClxjO950-x-L5LMEiORbg_gSweHuQAPy_tusbwfYBUNKT86OD5ch6cioJJK6DZgGaHiN5FzTUfvA7gZ_H1sa7oFMcg5jw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Subject-specific+trunk+segmental+masses+prediction+for+musculoskeletal+models+using+artificial+neural+networks&rft.jtitle=Medical+%26+biological+engineering+%26+computing&rft.au=Liu%2C+Tao&rft.au=El-Rich%2C+Marwan&rft.date=2024-09-01&rft.issn=0140-0118&rft.eissn=1741-0444&rft.volume=62&rft.issue=9&rft.spage=2757&rft.epage=2768&rft_id=info:doi/10.1007%2Fs11517-024-03100-4&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s11517_024_03100_4 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0140-0118&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0140-0118&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0140-0118&client=summon |