Subject-specific trunk segmental masses prediction for musculoskeletal models using artificial neural networks

Accurate determination of body segment parameters is crucial for studying human movement and joint forces using musculoskeletal (MSK) models. However, existing methods for predicting segment mass have limited generalizability and sensitivity to body shapes. With recent advancements in machine learni...

Full description

Saved in:
Bibliographic Details
Published inMedical & biological engineering & computing Vol. 62; no. 9; pp. 2757 - 2768
Main Authors Liu, Tao, El-Rich, Marwan
Format Journal Article
LanguageEnglish
Published Berlin/Heidelberg Springer Berlin Heidelberg 01.09.2024
Springer Nature B.V
Subjects
Online AccessGet full text
ISSN0140-0118
1741-0444
1741-0444
DOI10.1007/s11517-024-03100-4

Cover

Loading…
Abstract Accurate determination of body segment parameters is crucial for studying human movement and joint forces using musculoskeletal (MSK) models. However, existing methods for predicting segment mass have limited generalizability and sensitivity to body shapes. With recent advancements in machine learning, this study proposed a novel artificial neural network-based method for computing subject-specific trunk segment mass and center of mass (CoM) using only anthropometric measurements. We first developed, trained, and validated two artificial neural networks that used anthropometric measurements as input to predict body shape (ANN1) and tissue mass (ANN2). Then, we calculated trunk segmental mass for two volunteers using the predicted body shape and tissue mass. The body shape model (ANN1) was tested on 279 subjects, and maximum deviation between the predicted body shape and the original was 28 mm. The tissue mass model (ANN2) was evaluated on 223 subjects, which when compared to ground truth data, had a mean error of less than 0.51% in the head, trunk, legs, and arms. We also compared the two volunteer’s trunk segment mass with experimental data and found similar trend and magnitude. Our findings suggested that the proposed method could serve as an effective and convenient tool for predicting trunk mass. Graphical Abstract
AbstractList Accurate determination of body segment parameters is crucial for studying human movement and joint forces using musculoskeletal (MSK) models. However, existing methods for predicting segment mass have limited generalizability and sensitivity to body shapes. With recent advancements in machine learning, this study proposed a novel artificial neural network-based method for computing subject-specific trunk segment mass and center of mass (CoM) using only anthropometric measurements. We first developed, trained, and validated two artificial neural networks that used anthropometric measurements as input to predict body shape (ANN1) and tissue mass (ANN2). Then, we calculated trunk segmental mass for two volunteers using the predicted body shape and tissue mass. The body shape model (ANN1) was tested on 279 subjects, and maximum deviation between the predicted body shape and the original was 28 mm. The tissue mass model (ANN2) was evaluated on 223 subjects, which when compared to ground truth data, had a mean error of less than 0.51% in the head, trunk, legs, and arms. We also compared the two volunteer’s trunk segment mass with experimental data and found similar trend and magnitude. Our findings suggested that the proposed method could serve as an effective and convenient tool for predicting trunk mass. Graphical Abstract
Accurate determination of body segment parameters is crucial for studying human movement and joint forces using musculoskeletal (MSK) models. However, existing methods for predicting segment mass have limited generalizability and sensitivity to body shapes. With recent advancements in machine learning, this study proposed a novel artificial neural network-based method for computing subject-specific trunk segment mass and center of mass (CoM) using only anthropometric measurements. We first developed, trained, and validated two artificial neural networks that used anthropometric measurements as input to predict body shape (ANN1) and tissue mass (ANN2). Then, we calculated trunk segmental mass for two volunteers using the predicted body shape and tissue mass. The body shape model (ANN1) was tested on 279 subjects, and maximum deviation between the predicted body shape and the original was 28 mm. The tissue mass model (ANN2) was evaluated on 223 subjects, which when compared to ground truth data, had a mean error of less than 0.51% in the head, trunk, legs, and arms. We also compared the two volunteer’s trunk segment mass with experimental data and found similar trend and magnitude. Our findings suggested that the proposed method could serve as an effective and convenient tool for predicting trunk mass.
Accurate determination of body segment parameters is crucial for studying human movement and joint forces using musculoskeletal (MSK) models. However, existing methods for predicting segment mass have limited generalizability and sensitivity to body shapes. With recent advancements in machine learning, this study proposed a novel artificial neural network-based method for computing subject-specific trunk segment mass and center of mass (CoM) using only anthropometric measurements. We first developed, trained, and validated two artificial neural networks that used anthropometric measurements as input to predict body shape (ANN1) and tissue mass (ANN2). Then, we calculated trunk segmental mass for two volunteers using the predicted body shape and tissue mass. The body shape model (ANN1) was tested on 279 subjects, and maximum deviation between the predicted body shape and the original was 28 mm. The tissue mass model (ANN2) was evaluated on 223 subjects, which when compared to ground truth data, had a mean error of less than 0.51% in the head, trunk, legs, and arms. We also compared the two volunteer's trunk segment mass with experimental data and found similar trend and magnitude. Our findings suggested that the proposed method could serve as an effective and convenient tool for predicting trunk mass.Accurate determination of body segment parameters is crucial for studying human movement and joint forces using musculoskeletal (MSK) models. However, existing methods for predicting segment mass have limited generalizability and sensitivity to body shapes. With recent advancements in machine learning, this study proposed a novel artificial neural network-based method for computing subject-specific trunk segment mass and center of mass (CoM) using only anthropometric measurements. We first developed, trained, and validated two artificial neural networks that used anthropometric measurements as input to predict body shape (ANN1) and tissue mass (ANN2). Then, we calculated trunk segmental mass for two volunteers using the predicted body shape and tissue mass. The body shape model (ANN1) was tested on 279 subjects, and maximum deviation between the predicted body shape and the original was 28 mm. The tissue mass model (ANN2) was evaluated on 223 subjects, which when compared to ground truth data, had a mean error of less than 0.51% in the head, trunk, legs, and arms. We also compared the two volunteer's trunk segment mass with experimental data and found similar trend and magnitude. Our findings suggested that the proposed method could serve as an effective and convenient tool for predicting trunk mass.
Accurate determination of body segment parameters is crucial for studying human movement and joint forces using musculoskeletal (MSK) models. However, existing methods for predicting segment mass have limited generalizability and sensitivity to body shapes. With recent advancements in machine learning, this study proposed a novel artificial neural network-based method for computing subject-specific trunk segment mass and center of mass (CoM) using only anthropometric measurements. We first developed, trained, and validated two artificial neural networks that used anthropometric measurements as input to predict body shape (ANN1) and tissue mass (ANN2). Then, we calculated trunk segmental mass for two volunteers using the predicted body shape and tissue mass. The body shape model (ANN1) was tested on 279 subjects, and maximum deviation between the predicted body shape and the original was 28 mm. The tissue mass model (ANN2) was evaluated on 223 subjects, which when compared to ground truth data, had a mean error of less than 0.51% in the head, trunk, legs, and arms. We also compared the two volunteer's trunk segment mass with experimental data and found similar trend and magnitude. Our findings suggested that the proposed method could serve as an effective and convenient tool for predicting trunk mass.
Author Liu, Tao
El-Rich, Marwan
Author_xml – sequence: 1
  givenname: Tao
  orcidid: 0000-0003-3171-4105
  surname: Liu
  fullname: Liu, Tao
  email: tao.liu1@ucalgary.ca
  organization: Human Performance Lab, Faculty of Kinesiology, University of Calgary
– sequence: 2
  givenname: Marwan
  surname: El-Rich
  fullname: El-Rich, Marwan
  organization: Department of Mechanical Engineering, Khalifa University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/38693326$$D View this record in MEDLINE/PubMed
BookMark eNqFkc2LFDEQxYOsuLOr_4AHafDipTWfk85RFr9gwYN6Dpl09ZCZ7mRMJcj-92ZmdhH2sJ4eFL_3qKp3RS5iikDIa0bfM0r1B2RMMd1TLnsq2qSXz8iKacl6KqW8ICvKJO0pY8MluULcUcqZ4vIFuRTD2gjB1ysSf9TNDnzp8QA-TMF3Jde47xC2C8Ti5m5xiIDdIcMYfAkpdlPK3VLR1znhHmY4UWmEGbuKIW47l8sxKrR5hJpPUv6kvMeX5PnkZoRX93pNfn3-9PPma3_7_cu3m4-3vZd0KL0R0rDJcTV4CRvjjdaKKuUEjIKLNWgqtdaDnwSVk_ew4WYaRzNIZfigHIhr8u6ce8jpdwUsdgnoYZ5dhFTRCqaE5nzd5L8oVZTptZKsoW8fobtUc2yHNMoIo7QYjoFv7qm6WWC0hxwWl-_sw9MbMJwBnxNihsn6UNzxtSW7MFtG7bFfe-7Xtn7tqV8rm5U_sj6kP2kSZxM2OG4h_1v7CddfvPG34g
CitedBy_id crossref_primary_10_3390_bioengineering12030263
Cites_doi 10.1007/s00138-012-0472-y
10.1016/j.medengphy.2018.10.001
10.1115/1.4000155
10.1002/mp.14492
10.1016/j.patcog.2017.02.018
10.1007/s10439-006-9088-6
10.1016/0010-4825(76)90070-6
10.1016/j.jbiomech.2021.110437
10.1016/j.berh.2020.101548
10.1109/CVPR42600.2020.00530
10.1016/0021-9290(89)90051-1
10.1007/s00198-005-1841-4
10.1136/jamia.1996.96236280
10.1080/10255842.2023.2181039
10.1016/S0966-6362(03)00013-4
10.1016/s0268-0033(00)00016-4
10.1016/S0021-9290(01)00161-0
10.1016/j.jbiomech.2018.12.008
10.1145/1073204.1073207
10.1016/0021-9290(90)90319-x
10.1007/BF02667349
10.1016/j.promfg.2015.07.884
10.1016/j.jbiomech.2005.04.014
10.1109/CVPR.2019.00462
10.1016/s0966-6362(99)00011-9
10.1371/journal.pone.0262296
10.20965/jrm.2011.p0978
10.1115/1.4034168
10.1007/978-3-319-66709-6_28
10.1007/978-3-030-01234-2_2
10.1109/3DV.2017.00055
10.3389/fbioe.2022.842382
10.1109/IM.1999.805368
ContentType Journal Article
Copyright International Federation for Medical and Biological Engineering 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
2024. International Federation for Medical and Biological Engineering.
Copyright_xml – notice: International Federation for Medical and Biological Engineering 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
– notice: 2024. International Federation for Medical and Biological Engineering.
DBID AAYXX
CITATION
NPM
3V.
7RV
7SC
7TB
7TS
7WY
7WZ
7X7
7XB
87Z
88A
88E
88I
8AL
8AO
8FD
8FE
8FG
8FH
8FI
8FJ
8FK
8FL
ABUWG
AFKRA
ARAPS
AZQEC
BBNVY
BENPR
BEZIV
BGLVJ
BHPHI
CCPQU
DWQXO
FR3
FRNLG
FYUFA
F~G
GHDGH
GNUQQ
HCIFZ
JQ2
K60
K6~
K7-
K9.
KB0
L.-
L7M
LK8
L~C
L~D
M0C
M0N
M0S
M1P
M2P
M7P
M7Z
NAPCQ
P5Z
P62
P64
PHGZM
PHGZT
PJZUB
PKEHL
PPXIY
PQBIZ
PQBZA
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
7X8
7S9
L.6
DOI 10.1007/s11517-024-03100-4
DatabaseName CrossRef
PubMed
ProQuest Central (Corporate)
Nursing & Allied Health Database
Computer and Information Systems Abstracts
Mechanical & Transportation Engineering Abstracts
Physical Education Index
ABI/INFORM Collection
ABI/INFORM Global (PDF only)
ProQuest Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
ABI/INFORM Collection
Biology Database (Alumni Edition)
Medical Database (Alumni Edition)
Science Database (Alumni Edition)
Computing Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Collection
ProQuest Hospital Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ABI/INFORM Collection (Alumni Edition)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
Biological Science Database
ProQuest Central
Business Premium Collection
Technology Collection
Natural Science Collection
ProQuest One Community College
ProQuest Central
Engineering Research Database
Business Premium Collection (Alumni)
Health Research Premium Collection
ABI/INFORM Global (Corporate)
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
ProQuest Business Collection (Alumni Edition)
ProQuest Business Collection
Computer Science Database
ProQuest Health & Medical Complete (Alumni)
Nursing & Allied Health Database (Alumni Edition)
ABI/INFORM Professional Advanced
Advanced Technologies Database with Aerospace
Biological Sciences
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
ABI/INFORM Global
Computing Database
ProQuest Health & Medical Collection
Proquest Medical Database
Science Database
Biological Science Database
Biochemistry Abstracts 1
ProQuest Nursing & Allied Health Premium
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
ProQuest Central Premium
ProQuest One Academic
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Business
ProQuest One Business (Alumni)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
PubMed
ProQuest Business Collection (Alumni Edition)
Computer Science Database
ProQuest Central Student
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
SciTech Premium Collection
ProQuest Central China
ABI/INFORM Complete
ProQuest One Applied & Life Sciences
Health Research Premium Collection
Natural Science Collection
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Advanced Technologies & Aerospace Collection
Business Premium Collection
ABI/INFORM Global
ProQuest Science Journals (Alumni Edition)
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest Business Collection
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
Nursing & Allied Health Premium
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
ProQuest Nursing & Allied Health Source (Alumni)
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
ABI/INFORM Global (Corporate)
ProQuest One Business
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
Mechanical & Transportation Engineering Abstracts
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Pharma Collection
Physical Education Index
ProQuest Biology Journals (Alumni Edition)
ProQuest Central
ABI/INFORM Professional Advanced
ProQuest Health & Medical Research Collection
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Advanced Technologies Database with Aerospace
ABI/INFORM Complete (Alumni Edition)
ProQuest Computing
ABI/INFORM Global (Alumni Edition)
ProQuest Central Basic
ProQuest Science Journals
ProQuest Computing (Alumni Edition)
ProQuest Nursing & Allied Health Source
ProQuest SciTech Collection
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
ProQuest Medical Library
ProQuest One Business (Alumni)
Biochemistry Abstracts 1
ProQuest Central (Alumni)
Business Premium Collection (Alumni)
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList
AGRICOLA
MEDLINE - Academic
PubMed
ProQuest Business Collection (Alumni Edition)
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1741-0444
EndPage 2768
ExternalDocumentID 38693326
10_1007_s11517_024_03100_4
Genre Journal Article
GrantInformation_xml – fundername: Khalifa University
  grantid: FSU-2018-13
GroupedDBID ---
-4W
-5B
-5G
-BR
-EM
-Y2
-~C
-~X
.4S
.55
.86
.DC
.GJ
.VR
04C
06D
0R~
0VY
1N0
1SB
2.D
203
28-
29M
29~
2J2
2JN
2JY
2KG
2KM
2LR
2VQ
2~H
30V
36B
3V.
4.4
406
408
40D
40E
53G
5GY
5QI
5RE
5VS
67Z
6NX
7RV
7WY
7X7
88A
88E
88I
8AO
8FE
8FG
8FH
8FI
8FJ
8FL
8TC
8UJ
8VB
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANXM
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAWTL
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABDBF
ABDPE
ABDZT
ABECU
ABFTD
ABFTV
ABHLI
ABHQN
ABIPD
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABPLI
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACAOD
ACBNA
ACBXY
ACDTI
ACGFO
ACGFS
ACGOD
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACPRK
ACUHS
ACZOJ
ADBBV
ADHHG
ADHIR
ADINQ
ADJJI
ADKNI
ADKPE
ADMLS
ADRFC
ADTPH
ADURQ
ADYFF
ADYPR
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMOZ
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFGCZ
AFKRA
AFLOW
AFQWF
AFRAH
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHIZS
AHKAY
AHMBA
AHQJS
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
AKMHD
AKVCP
ALIPV
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARCSS
ARMRJ
AXYYD
AZFZN
AZQEC
B-.
B0M
BA0
BBNVY
BBWZM
BDATZ
BENPR
BEZIV
BGLVJ
BGNMA
BHPHI
BKEYQ
BMSDO
BPHCQ
BSONS
BVXVI
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DNIVK
DPUIP
DU5
DWQXO
EAD
EAP
EAS
EBA
EBD
EBLON
EBR
EBS
EBU
ECS
EDO
EHE
EIHBH
EIOEI
EJD
EMB
EMK
EMOBN
EPL
ESBYG
EST
ESX
EX3
F5P
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRNLG
FRRFC
FSGXE
FWDCC
FYUFA
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ6
GQ7
GROUPED_ABI_INFORM_COMPLETE
H13
HCIFZ
HF~
HG5
HG6
HMCUK
HMJXF
HRMNR
HVGLF
HZ~
I-F
IHE
IJ-
IKXTQ
IMOTQ
ITM
IWAJR
IXC
IXE
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JZLTJ
K1G
K60
K6V
K6~
K7-
KDC
KOV
L7B
LAI
LK8
LLZTM
M0C
M0L
M0N
M1P
M2P
M43
M4Y
M7P
MA-
MK~
ML0
ML~
N2Q
N9A
NAPCQ
NB0
NDZJH
NF0
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
P19
P2P
P62
P9P
PF0
PQBIZ
PQBZA
PQQKQ
PROAC
PSQYO
PT4
PT5
Q2X
QOK
QOR
QOS
QWB
R4E
R89
R9I
RHV
RIG
RNI
ROL
RPX
RSV
RXW
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SBY
SCLPG
SDH
SDM
SEG
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
SSXJD
STPWE
SV3
SZN
T13
T16
TAE
TH9
TSG
TSK
TSV
TUC
TUS
U2A
U9L
UG4
UKHRP
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
WOW
X7M
YLTOR
Z45
Z7R
Z7U
Z7X
Z7Z
Z82
Z83
Z87
Z88
Z8M
Z8O
Z8R
Z8T
Z8V
Z8W
Z91
Z92
ZGI
ZL0
ZMTXR
ZOVNA
ZXP
~8M
~EX
~KM
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ACSTC
ADHKG
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
ABRTQ
NPM
7SC
7TB
7TS
7XB
8AL
8FD
8FK
FR3
JQ2
K9.
L.-
L7M
L~C
L~D
M7Z
P64
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQUKI
PRINS
Q9U
7X8
7S9
L.6
ID FETCH-LOGICAL-c408t-93491fa258c4eb9c9775055a3ed3236e7047778cf304fcceb29fdd98459285ae3
IEDL.DBID U2A
ISSN 0140-0118
1741-0444
IngestDate Fri Jul 11 13:34:24 EDT 2025
Mon Jul 21 10:40:03 EDT 2025
Tue Sep 02 03:25:42 EDT 2025
Mon Jul 21 05:55:40 EDT 2025
Thu Apr 24 22:56:47 EDT 2025
Tue Jul 01 02:58:36 EDT 2025
Fri Feb 21 02:38:33 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 9
Keywords Tissue mass
Body segment parameters
Center of mass
Body shape prediction
Language English
License 2024. International Federation for Medical and Biological Engineering.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c408t-93491fa258c4eb9c9775055a3ed3236e7047778cf304fcceb29fdd98459285ae3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0003-3171-4105
PMID 38693326
PQID 3093957385
PQPubID 54161
PageCount 12
ParticipantIDs proquest_miscellaneous_3153722615
proquest_miscellaneous_3050176541
proquest_journals_3093957385
pubmed_primary_38693326
crossref_citationtrail_10_1007_s11517_024_03100_4
crossref_primary_10_1007_s11517_024_03100_4
springer_journals_10_1007_s11517_024_03100_4
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-09-01
PublicationDateYYYYMMDD 2024-09-01
PublicationDate_xml – month: 09
  year: 2024
  text: 2024-09-01
  day: 01
PublicationDecade 2020
PublicationPlace Berlin/Heidelberg
PublicationPlace_xml – name: Berlin/Heidelberg
– name: United States
– name: Heidelberg
PublicationTitle Medical & biological engineering & computing
PublicationTitleAbbrev Med Biol Eng Comput
PublicationTitleAlternate Med Biol Eng Comput
PublicationYear 2024
Publisher Springer Berlin Heidelberg
Springer Nature B.V
Publisher_xml – name: Springer Berlin Heidelberg
– name: Springer Nature B.V
References Silva, Ambrósio (CR4) 2004; 19
Speerin, Needs, Chua (CR34) 2020; 34
Kudzia, Jackson, Dumas (CR14) 2022; 17
Pearsall, Reid, Livingston (CR17) 1996; 24
Dempster (CR23) 1955
Sheets, Corazza, Andriacchi (CR8) 2010; 132
CR18
Pishchulin, Wuhrer, Helten (CR20) 2017; 67
Tian, Ng, Wong (CR24) 2020; 47
Clauser, McConville, Young (CR22) 1971; 13
CR36
CR35
Durkin, Dowling (CR11) 2006; 34
Zhu, Mok (CR26) 2015; 3
Huang, Wu (CR10) 1976; 6
Kocabas, Athanasiou, Black (CR19) 2020
Fritz, Kröll, Schwameder (CR5) 2019; 84
Mungiole, Martin (CR31) 1990; 23
Smith, Bull (CR13) 2018; 62
CR2
Anguelov, Srinivasan, Koller (CR27) 2005; 24
Martin, Mungiole, Marzke, Longhill (CR9) 1989; 22
CR7
CR29
CR28
Zhu, Zuo, Wang (CR25) 2019
Wuhrer, Shu (CR30) 2013; 24
Norton, Donaldson, Dekker (CR12) 2002; 35
CR21
Rao, Amarantini, Berton, Favier (CR1) 2006; 39
Liu, Khalaf, Hebela (CR15) 2021; 122
Makovey, Naganathan, Sambrook (CR33) 2005; 16
Köhler, Schüler, Quaas (CR6) 2024; 27
Spitzer, Ackerman, Scherzinger, Whitlock (CR16) 1996; 3
Cheng, Chen, Chen (CR32) 2000; 15
Pearsall, Costigan (CR3) 1999; 9
MPT Silva (3100_CR4) 2004; 19
V Spitzer (3100_CR16) 1996; 3
S Zhu (3100_CR26) 2015; 3
JL Durkin (3100_CR11) 2006; 34
3100_CR21
J Norton (3100_CR12) 2002; 35
T Liu (3100_CR15) 2021; 122
P Kudzia (3100_CR14) 2022; 17
M Mungiole (3100_CR31) 1990; 23
DJ Pearsall (3100_CR3) 1999; 9
DJ Pearsall (3100_CR17) 1996; 24
J Fritz (3100_CR5) 2019; 84
J Makovey (3100_CR33) 2005; 16
PE Martin (3100_CR9) 1989; 22
IY Tian (3100_CR24) 2020; 47
H-P Köhler (3100_CR6) 2024; 27
3100_CR29
3100_CR28
3100_CR7
3100_CR2
WT Dempster (3100_CR23) 1955
S Wuhrer (3100_CR30) 2013; 24
R Speerin (3100_CR34) 2020; 34
G Rao (3100_CR1) 2006; 39
HK Huang (3100_CR10) 1976; 6
L Pishchulin (3100_CR20) 2017; 67
M Kocabas (3100_CR19) 2020
AL Sheets (3100_CR8) 2010; 132
H Zhu (3100_CR25) 2019
CE Clauser (3100_CR22) 1971; 13
SHL Smith (3100_CR13) 2018; 62
3100_CR36
3100_CR35
D Anguelov (3100_CR27) 2005; 24
3100_CR18
CK Cheng (3100_CR32) 2000; 15
References_xml – volume: 24
  start-page: 1133
  year: 2013
  end-page: 1147
  ident: CR30
  article-title: Estimating 3D Human Shapes from Measurements
  publication-title: Mach Vis Appl
  doi: 10.1007/s00138-012-0472-y
– ident: CR18
– volume: 13
  start-page: 270
  year: 1971
  ident: CR22
  article-title: Weight, Volume, and Center of Mass Segments of the Human Body
  publication-title: J Occup Environ Med
– ident: CR2
– volume: 62
  start-page: 36
  year: 2018
  end-page: 45
  ident: CR13
  article-title: Rapid calculation of bespoke body segment parameters using 3D infra-red scanning
  publication-title: Med Eng Phys
  doi: 10.1016/j.medengphy.2018.10.001
– volume: 132
  start-page: 011004
  year: 2010
  ident: CR8
  article-title: An automated image-based method of 3D subject-specific body segment parameter estimation for kinetic analyses of rapid movements
  publication-title: J Biomech Eng
  doi: 10.1115/1.4000155
– volume: 47
  start-page: 6232
  year: 2020
  end-page: 6245
  ident: CR24
  article-title: Predicting 3D body shape and body composition from conventional 2D photography
  publication-title: Med Phys
  doi: 10.1002/mp.14492
– volume: 67
  start-page: 276
  year: 2017
  end-page: 286
  ident: CR20
  article-title: Building Statistical Shape Spaces for 3D Human Modeling
  publication-title: Pattern Recogn
  doi: 10.1016/j.patcog.2017.02.018
– volume: 34
  start-page: 1483
  year: 2006
  end-page: 1493
  ident: CR11
  article-title: Body segment parameter estimation of the human lower leg using an elliptical model with validation from DEXA
  publication-title: Ann Biomed Eng
  doi: 10.1007/s10439-006-9088-6
– volume: 6
  start-page: 337
  year: 1976
  end-page: 343
  ident: CR10
  article-title: The evaluation of mass densities of human body in vivo from CT scans
  publication-title: Comput Biol Med
  doi: 10.1016/0010-4825(76)90070-6
– volume: 122
  start-page: 110437
  year: 2021
  ident: CR15
  article-title: Prediction of human male trunk mass distribution using anthropometric measurements: A feasibility study
  publication-title: J Biomech
  doi: 10.1016/j.jbiomech.2021.110437
– ident: CR35
– ident: CR29
– volume: 34
  start-page: 101548
  year: 2020
  ident: CR34
  article-title: Implementing models of care for musculoskeletal conditions in health systems to support value-based care
  publication-title: Best Pract Res Clin Rheumatol
  doi: 10.1016/j.berh.2020.101548
– start-page: 5252
  year: 2020
  end-page: 5262
  ident: CR19
  article-title: VIBE: Video Inference for Human Body Pose and Shape Estimation
  publication-title: 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)
  doi: 10.1109/CVPR42600.2020.00530
– volume: 22
  start-page: 367
  year: 1989
  end-page: 376
  ident: CR9
  article-title: The use of magnetic resonance imaging for measuring segment inertial properties
  publication-title: J Biomech
  doi: 10.1016/0021-9290(89)90051-1
– volume: 16
  start-page: 1495
  year: 2005
  end-page: 1505
  ident: CR33
  article-title: Gender differences in relationships between body composition components, their distribution and bone mineral density: a cross-sectional opposite sex twin study
  publication-title: Osteoporos Int
  doi: 10.1007/s00198-005-1841-4
– volume: 3
  start-page: 118
  year: 1996
  end-page: 130
  ident: CR16
  article-title: The visible human male: a technical report
  publication-title: J Am Med Inform Assoc
  doi: 10.1136/jamia.1996.96236280
– ident: CR21
– volume: 27
  start-page: 267
  year: 2024
  end-page: 275
  ident: CR6
  article-title: The influence of body segment estimation methods on body segment inertia parameters and joint moments in javelin throwing
  publication-title: Comput Methods Biomech Biomed Engin
  doi: 10.1080/10255842.2023.2181039
– volume: 19
  start-page: 35
  year: 2004
  end-page: 49
  ident: CR4
  article-title: Sensitivity of the results produced by the inverse dynamic analysis of a human stride to perturbed input data
  publication-title: Gait Posture
  doi: 10.1016/S0966-6362(03)00013-4
– volume: 15
  start-page: 559
  year: 2000
  end-page: 566
  ident: CR32
  article-title: Segment inertial properties of Chinese adults determined from magnetic resonance imaging
  publication-title: Clin Biomech (Bristol, Avon)
  doi: 10.1016/s0268-0033(00)00016-4
– volume: 35
  start-page: 81
  year: 2002
  end-page: 86
  ident: CR12
  article-title: 3D whole body scanning to determine mass properties of legs
  publication-title: J Biomech
  doi: 10.1016/S0021-9290(01)00161-0
– volume: 84
  start-page: 11
  year: 2019
  end-page: 17
  ident: CR5
  article-title: Influence of body segment parameter estimation on calculated ground reaction forces in highly dynamic movements
  publication-title: J Biomech
  doi: 10.1016/j.jbiomech.2018.12.008
– volume: 24
  start-page: 408
  year: 2005
  end-page: 416
  ident: CR27
  article-title: SCAPE: shape completion and animation of people
  publication-title: ACM Trans Graph
  doi: 10.1145/1073204.1073207
– volume: 23
  start-page: 1039
  year: 1990
  end-page: 1046
  ident: CR31
  article-title: Estimating segment inertial properties: comparison of magnetic resonance imaging with existing methods
  publication-title: J Biomech
  doi: 10.1016/0021-9290(90)90319-x
– volume: 24
  start-page: 198
  year: 1996
  end-page: 210
  ident: CR17
  article-title: Segmental inertial parameters of the human trunk as determined from computed tomography
  publication-title: Ann Biomed Eng
  doi: 10.1007/BF02667349
– year: 1955
  ident: CR23
  publication-title: Space requirements of the seated operator: geometrical, kinematic, and mechanical aspects of the body with special reference to the limbs
– ident: CR36
– volume: 3
  start-page: 3812
  year: 2015
  end-page: 3819
  ident: CR26
  article-title: Predicting Realistic and Precise Human Body Models Under Clothing Based on Orthogonal-view Photos
  publication-title: Procedia Manuf
  doi: 10.1016/j.promfg.2015.07.884
– volume: 39
  start-page: 1531
  year: 2006
  end-page: 1536
  ident: CR1
  article-title: Influence of body segments’ parameters estimation models on inverse dynamics solutions during gait
  publication-title: J Biomech
  doi: 10.1016/j.jbiomech.2005.04.014
– ident: CR7
– start-page: 4486
  year: 2019
  end-page: 4495
  ident: CR25
  article-title: Detailed Human Shape Estimation From a Single Image by Hierarchical Mesh Deformation
  publication-title: 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)
  doi: 10.1109/CVPR.2019.00462
– ident: CR28
– volume: 9
  start-page: 173
  year: 1999
  end-page: 183
  ident: CR3
  article-title: The effect of segment parameter error on gait analysis results
  publication-title: Gait Posture
  doi: 10.1016/s0966-6362(99)00011-9
– volume: 17
  start-page: e0262296
  year: 2022
  ident: CR14
  article-title: Estimating body segment parameters from three-dimensional human body scans
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0262296
– volume: 62
  start-page: 36
  year: 2018
  ident: 3100_CR13
  publication-title: Med Eng Phys
  doi: 10.1016/j.medengphy.2018.10.001
– volume: 23
  start-page: 1039
  year: 1990
  ident: 3100_CR31
  publication-title: J Biomech
  doi: 10.1016/0021-9290(90)90319-x
– ident: 3100_CR36
  doi: 10.20965/jrm.2011.p0978
– ident: 3100_CR2
  doi: 10.1115/1.4034168
– volume: 34
  start-page: 1483
  year: 2006
  ident: 3100_CR11
  publication-title: Ann Biomed Eng
  doi: 10.1007/s10439-006-9088-6
– ident: 3100_CR28
  doi: 10.1007/978-3-319-66709-6_28
– volume: 122
  start-page: 110437
  year: 2021
  ident: 3100_CR15
  publication-title: J Biomech
  doi: 10.1016/j.jbiomech.2021.110437
– volume: 13
  start-page: 270
  year: 1971
  ident: 3100_CR22
  publication-title: J Occup Environ Med
– ident: 3100_CR18
  doi: 10.1007/978-3-030-01234-2_2
– ident: 3100_CR7
– start-page: 5252
  volume-title: 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)
  year: 2020
  ident: 3100_CR19
  doi: 10.1109/CVPR42600.2020.00530
– volume: 39
  start-page: 1531
  year: 2006
  ident: 3100_CR1
  publication-title: J Biomech
  doi: 10.1016/j.jbiomech.2005.04.014
– ident: 3100_CR29
  doi: 10.1109/3DV.2017.00055
– ident: 3100_CR35
  doi: 10.3389/fbioe.2022.842382
– volume: 132
  start-page: 011004
  year: 2010
  ident: 3100_CR8
  publication-title: J Biomech Eng
  doi: 10.1115/1.4000155
– ident: 3100_CR21
  doi: 10.1109/IM.1999.805368
– volume: 67
  start-page: 276
  year: 2017
  ident: 3100_CR20
  publication-title: Pattern Recogn
  doi: 10.1016/j.patcog.2017.02.018
– volume: 22
  start-page: 367
  year: 1989
  ident: 3100_CR9
  publication-title: J Biomech
  doi: 10.1016/0021-9290(89)90051-1
– volume: 47
  start-page: 6232
  year: 2020
  ident: 3100_CR24
  publication-title: Med Phys
  doi: 10.1002/mp.14492
– volume: 34
  start-page: 101548
  year: 2020
  ident: 3100_CR34
  publication-title: Best Pract Res Clin Rheumatol
  doi: 10.1016/j.berh.2020.101548
– volume: 35
  start-page: 81
  year: 2002
  ident: 3100_CR12
  publication-title: J Biomech
  doi: 10.1016/S0021-9290(01)00161-0
– volume-title: Space requirements of the seated operator: geometrical, kinematic, and mechanical aspects of the body with special reference to the limbs
  year: 1955
  ident: 3100_CR23
– volume: 24
  start-page: 408
  year: 2005
  ident: 3100_CR27
  publication-title: ACM Trans Graph
  doi: 10.1145/1073204.1073207
– volume: 84
  start-page: 11
  year: 2019
  ident: 3100_CR5
  publication-title: J Biomech
  doi: 10.1016/j.jbiomech.2018.12.008
– volume: 17
  start-page: e0262296
  year: 2022
  ident: 3100_CR14
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0262296
– volume: 3
  start-page: 3812
  year: 2015
  ident: 3100_CR26
  publication-title: Procedia Manuf
  doi: 10.1016/j.promfg.2015.07.884
– volume: 19
  start-page: 35
  year: 2004
  ident: 3100_CR4
  publication-title: Gait Posture
  doi: 10.1016/S0966-6362(03)00013-4
– volume: 3
  start-page: 118
  year: 1996
  ident: 3100_CR16
  publication-title: J Am Med Inform Assoc
  doi: 10.1136/jamia.1996.96236280
– volume: 9
  start-page: 173
  year: 1999
  ident: 3100_CR3
  publication-title: Gait Posture
  doi: 10.1016/s0966-6362(99)00011-9
– start-page: 4486
  volume-title: 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)
  year: 2019
  ident: 3100_CR25
  doi: 10.1109/CVPR.2019.00462
– volume: 15
  start-page: 559
  year: 2000
  ident: 3100_CR32
  publication-title: Clin Biomech (Bristol, Avon)
  doi: 10.1016/s0268-0033(00)00016-4
– volume: 27
  start-page: 267
  year: 2024
  ident: 3100_CR6
  publication-title: Comput Methods Biomech Biomed Engin
  doi: 10.1080/10255842.2023.2181039
– volume: 6
  start-page: 337
  year: 1976
  ident: 3100_CR10
  publication-title: Comput Biol Med
  doi: 10.1016/0010-4825(76)90070-6
– volume: 24
  start-page: 198
  year: 1996
  ident: 3100_CR17
  publication-title: Ann Biomed Eng
  doi: 10.1007/BF02667349
– volume: 16
  start-page: 1495
  year: 2005
  ident: 3100_CR33
  publication-title: Osteoporos Int
  doi: 10.1007/s00198-005-1841-4
– volume: 24
  start-page: 1133
  year: 2013
  ident: 3100_CR30
  publication-title: Mach Vis Appl
  doi: 10.1007/s00138-012-0472-y
SSID ssj0021524
Score 2.4099636
Snippet Accurate determination of body segment parameters is crucial for studying human movement and joint forces using musculoskeletal (MSK) models. However, existing...
SourceID proquest
pubmed
crossref
springer
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 2757
SubjectTerms Anthropometry
Artificial neural networks
Biomedical and Life Sciences
Biomedical Engineering and Bioengineering
Biomedicine
Computer Applications
head
Human motion
Human Physiology
humans
Imaging
Machine learning
musculoskeletal system
Neural networks
Original Article
Parameter sensitivity
prediction
Predictions
Radiology
Segments
SummonAdditionalLinks – databaseName: ProQuest Health & Medical Collection
  dbid: 7X7
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3dS8MwEA86QXwRv51OieCbBtt8tM2TiDiGoE8O9la6JN2D2s11-_-9S7MNGe6pD03Lcbnkfpe7_I6QW6Hi1AmrmE50yaSTmg25TRis8YLbgvPS-GqL96TXl68DNQgHbnUoq1zsiX6jtmODZ-QPmLHTCrlXHic_DLtGYXY1tNDYJjtIXYbBVzpYBVzgm-SyhBGQdLg001ydA1eXMvBQDMkxIyb_OqY1tLmWKfUOqHtA9gNypE_NVB-SLVcdkd23kBs_JhXsAXiowvDyJBYA0dl0Xn3S2o0aAn_6XWCGl06m-A1OCAXESr_nWIs6rj_BAflR2BunplgQP6JoWA3HBEXmS__wdeP1Cel3Xz6eeyx0U2BGRtmMaSF1XBZcZUa6oTYA_AD9qEI4K7hIXBrJNE0zU4pIlsZAxK1La3UmleaZKpw4Ja1qXLlzQgunEwhgY1UmQnIDDg2C2zgWUkTWAmJok3ihytwEqnHsePGVr0iSUf05qD_36s9lm9wtv5k0RBsbR3cWM5SHRVfnKxNpk5vla1gumAMpKjee4xgFexA2P98wBrxACrA0hv-cNbO_FElkiRYAedvkfmEOKwH-l_dis7yXZI97U8TatQ5pgX24KwA7s-G1t-hfmCr5HQ
  priority: 102
  providerName: ProQuest
Title Subject-specific trunk segmental masses prediction for musculoskeletal models using artificial neural networks
URI https://link.springer.com/article/10.1007/s11517-024-03100-4
https://www.ncbi.nlm.nih.gov/pubmed/38693326
https://www.proquest.com/docview/3093957385
https://www.proquest.com/docview/3050176541
https://www.proquest.com/docview/3153722615
Volume 62
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT9wwEB4VkFAvqNBSlsfKSNxaS4kfcXzcVrsgUBFCXWl7irKOwwHIIrL7_5lxHquKFolLfMg4ssYznm8yDwOcSR0bLwvNbWJLrryyfC6KhKOO56LIhShdyLa4Ti6m6nKmZ21RWN1lu3chyXBSr4vd0DgZjjaFUzvLiKsN2NLou5NcT8Wod7PQIqk-cRHxc1sq8-9v_G2OXmHMV_HRYHYmn2CnxYts1GzwLnzw1R5s_2oj4p-hQs2nXymcSiYp7Yctn1fVPav9XdO2nz3mFNdlT880h7aBIU5ljyvKQF3U92h2AhXdiFMzSoO_YyROTWcJRv0uwxCyxesvMJ2Mf_-84O0dCtypKF1yK5WNy1zo1Ck_tw7hHmIenUtfSCETbyJljEldKSNVOod-ti2LwqZKW5Hq3Mt92KwWlT8AlnuboNsa6zKRSjg0Y-jSxrFUMioKxAkDiDtWZq5tME73XDxk69bIxP4M2Z8F9mdqAN_6OU9Ne403qY-7HcpaVaszCuVaTU15BnDav0YlochHXvnFimg0njx05fkbNHj2GwSjMX7na7P7_ZJkmliJQHcA3ztxWC_g_-s9fB_5EXwUQTQpg-0YNlFe_AlCnuV8CBtmZvCZTs6HsDU6_3M1xvHH-Prmdhik_wVcQvrL
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB6VIAEXBLRAaAtbqZzoingftveAUAWE9Hlqpd6Ms7vOodQJcSLEn-pvZGb9iFBFbj3lkLU1mv125xvPC2Bf6ijx0mluYlNw5ZXhY-Fijmc8Fy4XorAh2-I8Hl2q4yt9tQG3bS0MpVW2d2K4qN3U0jfyjxSxM5p6r3ye_eI0NYqiq-0IjRoWJ_7Pb3TZqk9HX3F_3wsx_HbxZcSbqQLcqkG64EYqExW50KlVfmwsEiBkATqX3kkhY58MVJIkqS3Q0S-sRc_TFM6ZVGkjUp17ie99AA-VRHGoMn34vXPw0BaqLmUSmXtTpFOX6qFpTThaRE7NOAdc_WsI77DbO5HZYPCGz-Bpw1TZYQ2t57Dhyxfw6KyJxW9CiXcOfcThVKxJCUdsMV-W16zyk3pgALvJKaLMZnN6hgDAkCGzmyXlvk6razR4YRXN4qkYJeBPGAG57mnBqNNm-Al56tUWXN6Lnl9Cr5yW_jWw3JsYHeZIF7FUwqIBRWc6iqSSA-eQofQhalWZ2aa1OU3Y-JmtmjKT-jNUfxbUn6k-fOiemdWNPdau3ml3KGsOeZWtINmHve5vPJ4Uc8lLP13SGo13Hg1bX7MGrU6CNDjC97yqd78TSaaxkUix-3DQwmElwP_lfbNe3nfweHRxdpqdHp2fbMMTEWBJeXM70EOs-F0kWovx24BuBj_u-zj9BbGVNWI
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9wwEB5RkFAvVUtfW6B1JXpqLRI_kviAUFW6hUJRD0XilmZthwMlu5BdVfw1fh0zzmOFEHvjtId1otH4G883mfEMwJbUceql09wkpuTKK8NHwiUcbbwQrhCitKHa4jjZP1E_T_XpEtx0d2GorLI7E8NB7caWvpFvU8bOaOq9sl22ZRG_94a7k0tOE6Qo09qN02ggcuiv_2P4Vu8c7OFefxJi-P3Pt33eThjgVkXZlBupTFwWQmdW-ZGxSIaQEehCeieFTHwaqTRNM1ti0F9ai1GoKZ0zmdJGZLrwEt_7BFZQqoimJ2TDH32wh35R9eWTyOLbCzvNtT10sylH78ipMWfE1V2neI_p3svSBuc3fA7PWtbKvjYwewFLvlqD1V9tXv4lVHj-0AcdThc3qfiITa9m1Tmr_VkzPIBdFJRdZpMreobAwJAts4sZ1cGO63N0fmEVzeWpGRXjnzECddPfglHXzfATatbrV3DyKHp-DcvVuPJvgRXeJBg8x7pMpBIWnSkG1nEslYycQ7YygLhTZW7bNuc0beNfPm_QTOrPUf15UH-uBvC5f2bSNPlYuHqj26G8Nfg6n8NzAB_7v9FUKf9SVH48ozUazz8avL5gDXqgFClxjO950-x-L5LMEiORbg_gSweHuQAPy_tusbwfYBUNKT86OD5ch6cioJJK6DZgGaHiN5FzTUfvA7gZ_H1sa7oFMcg5jw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Subject-specific+trunk+segmental+masses+prediction+for+musculoskeletal+models+using+artificial+neural+networks&rft.jtitle=Medical+%26+biological+engineering+%26+computing&rft.au=Liu%2C+Tao&rft.au=El-Rich%2C+Marwan&rft.date=2024-09-01&rft.issn=0140-0118&rft.eissn=1741-0444&rft.volume=62&rft.issue=9&rft.spage=2757&rft.epage=2768&rft_id=info:doi/10.1007%2Fs11517-024-03100-4&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s11517_024_03100_4
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0140-0118&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0140-0118&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0140-0118&client=summon