Variable Selection and Modeling of Drivers' Decision in Overtaking Behavior Based on Logistic Regression Model With Gazing Information
This paper investigates the decision-making characteristics of the driver in the overtaking on the highway road. For the research purpose, a novel method was proposed by introducing a logistic regression model accompanied by the statistical test technique, which does not require prior knowledge abou...
Saved in:
Published in | IEEE access Vol. 9; pp. 127672 - 127684 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Piscataway
IEEE
2021
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
ISSN | 2169-3536 2169-3536 |
DOI | 10.1109/ACCESS.2021.3111753 |
Cover
Loading…
Abstract | This paper investigates the decision-making characteristics of the driver in the overtaking on the highway road. For the research purpose, a novel method was proposed by introducing a logistic regression model accompanied by the statistical test technique, which does not require prior knowledge about the explanatory variables. This study hypothesizes that the driver's gazing behavior is crucial for the decision-making process in driving and hence, the line-of-sight information was introduced to estimate driver's gazing behavior in the model of driver's decision specifically for reproducing the overtaking driving behavior accurately. Consequently, the proposed model realized a high describability on the decision of the driver when performing the overtaking driving task, which is one of the significant advancements of the present study with respect to the past similar studies. This study integrates the perspectives of intelligent vehicle design and cognitive science by revealing which factor the driver pays attention to in a changeable driving environment due to various observable factors. In experiments based on the driving simulator with six human subjects, the overtaking behavior was successfully estimated by specifying a set of variables to reconstruct the driver's behavior and then the proposed model provided a minimum set of necessary variables accompanied with key coefficients. In conclusion, the proposed approach based on a simple logistic regression model demonstrated driving behaviors with an accurate estimation of the driver's intention without the need for prior knowledge, and it may contribute to higher describability for various driving actions in a dynamic environment. |
---|---|
AbstractList | This paper investigates the decision-making characteristics of the driver in the overtaking on the highway road. For the research purpose, a novel method was proposed by introducing a logistic regression model accompanied by the statistical test technique, which does not require prior knowledge about the explanatory variables. This study hypothesizes that the driver's gazing behavior is crucial for the decision-making process in driving and hence, the line-of-sight information was introduced to estimate driver's gazing behavior in the model of driver's decision specifically for reproducing the overtaking driving behavior accurately. Consequently, the proposed model realized a high describability on the decision of the driver when performing the overtaking driving task, which is one of the significant advancements of the present study with respect to the past similar studies. This study integrates the perspectives of intelligent vehicle design and cognitive science by revealing which factor the driver pays attention to in a changeable driving environment due to various observable factors. In experiments based on the driving simulator with six human subjects, the overtaking behavior was successfully estimated by specifying a set of variables to reconstruct the driver's behavior and then the proposed model provided a minimum set of necessary variables accompanied with key coefficients. In conclusion, the proposed approach based on a simple logistic regression model demonstrated driving behaviors with an accurate estimation of the driver's intention without the need for prior knowledge, and it may contribute to higher describability for various driving actions in a dynamic environment. |
Author | Nwadiuto, Jude C. Suzuki, Tatsuya Yoshino, Soichi Okuda, Hiroyuki |
Author_xml | – sequence: 1 givenname: Jude C. orcidid: 0000-0001-5965-9844 surname: Nwadiuto fullname: Nwadiuto, Jude C. email: nwadiuto.jude.chibuike@b.mbox.nagoya-u.ac.jp organization: Department of Mechanical Systems Engineering, Nagoya University, Nagoya, Japan – sequence: 2 givenname: Soichi surname: Yoshino fullname: Yoshino, Soichi organization: Toyota Research Institute-Advanced Development, Tokyo, Japan – sequence: 3 givenname: Hiroyuki orcidid: 0000-0002-2910-4634 surname: Okuda fullname: Okuda, Hiroyuki organization: Department of Mechanical Systems Engineering, Nagoya University, Nagoya, Japan – sequence: 4 givenname: Tatsuya orcidid: 0000-0002-0182-308X surname: Suzuki fullname: Suzuki, Tatsuya organization: Department of Mechanical Systems Engineering, Nagoya University, Nagoya, Japan |
BookMark | eNqFUctuEzEUHaEiUUq_oBtLLFgl-DEej5dt-iBSqkqEx9K6sa9Th-m42NNK8AF8N55MVVVs8MbW8Xlc3fO2Ouhjj1V1wuicMao_ni4WF-v1nFPO5oIxpqR4VR1y1uiZkKI5ePF-Ux3nvKPltAWS6rD68w1SgE2HZI0d2iHEnkDvyHV02IV-S6In5yk8YsofyDnakEdG6MlNgQb4MVLO8BYeQ0zkDDI6Uv5XcRvyECz5jNuEea_ZO5LvYbglV_B71C17H9MdjJnvqtceuozHT_dR9fXy4svi02x1c7VcnK5mtqbtMNMcWimobjRFCqg22reebuym5kzS2inmQTlmJZM1WuVBarS-dbRprJPgxFG1nHxdhJ25T-EO0i8TIZg9ENPWQCqDd2iw4TV3QoJXvLZtCQaOWtWi2QhHPS9e7yev-xR_PmAezC4-pL6Mb7hUkvFW1k1hiYllU8w5oX9OZdSM_ZmpPzP2Z576Kyr9j8qGYb-pIUHo_qM9mbQBEZ_TtBS1kq34C1P3q30 |
CODEN | IAECCG |
CitedBy_id | crossref_primary_10_1016_j_trf_2024_03_003 crossref_primary_10_3390_su14116829 crossref_primary_10_1109_ACCESS_2022_3217644 |
Cites_doi | 10.1016/j.physa.2017.11.133 10.1109/IVS.2011.5940464 10.3390/app11114938 10.1016/j.physa.2017.12.103 10.1016/j.ymssp.2020.107589 10.1287/trsc.2015.0622 10.1109/TITS.2014.2326082 10.1155/2020/2172156 10.1109/TSMCB.2011.2167509 10.1109/TITS.2007.903441 10.1109/ISSC.2018.8585340 10.14236/ewic/HCI2009.57 10.1109/FUZZY.1998.687479 10.3390/s18093151 10.1109/ITSC.2013.6728526 10.1109/ITSC.2010.5625154 10.1109/ITSC.2015.251 10.1109/TNN.2008.2007906 10.1016/j.physa.2017.12.100 10.1109/TITS.2006.883111 10.1109/IROS.2008.4650671 10.1109/IROS.2012.6385614 10.1109/ICASSP.2006.1660988 10.1109/TITS.2010.2050141 10.1109/IVS.2015.7225894 10.11613/BM.2014.003 10.2991/icsma-16.2016.73 10.1680/jmuen.16.00063 10.4271/2007-01-0440 10.1109/ITSC.2019.8916962 10.1109/TSMCA.2011.2109375 10.1109/TITS.2015.2449837 10.1002/0471722146 10.1016/j.physa.2018.05.042 10.1109/TITS.2012.2207893 10.1016/j.trb.2017.08.012 10.1002/bimj.201700067 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021 |
DBID | 97E ESBDL RIA RIE AAYXX CITATION 7SC 7SP 7SR 8BQ 8FD JG9 JQ2 L7M L~C L~D DOA |
DOI | 10.1109/ACCESS.2021.3111753 |
DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE Xplore Open Access Journals IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts METADEX Technology Research Database Materials Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Directory of Open Access Journals |
DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace METADEX Computer and Information Systems Abstracts Professional |
DatabaseTitleList | Materials Research Database |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 2169-3536 |
EndPage | 127684 |
ExternalDocumentID | oai_doaj_org_article_e6242d35af724c8a85a2e97436b3d0f2 10_1109_ACCESS_2021_3111753 9534758 |
Genre | orig-research |
GroupedDBID | 0R~ 4.4 5VS 6IK 97E AAJGR ABAZT ABVLG ACGFS ADBBV AGSQL ALMA_UNASSIGNED_HOLDINGS BCNDV BEFXN BFFAM BGNUA BKEBE BPEOZ EBS EJD ESBDL GROUPED_DOAJ IPLJI JAVBF KQ8 M43 M~E O9- OCL OK1 RIA RIE RNS AAYXX CITATION RIG 7SC 7SP 7SR 8BQ 8FD JG9 JQ2 L7M L~C L~D |
ID | FETCH-LOGICAL-c408t-92a85309690e0ae7b9f8f0bcb421504d71fa7d1c5154ec7fa59ecf8d066cd5ad3 |
IEDL.DBID | RIE |
ISSN | 2169-3536 |
IngestDate | Wed Aug 27 01:30:23 EDT 2025 Mon Jun 30 03:36:26 EDT 2025 Tue Jul 01 04:03:50 EDT 2025 Thu Apr 24 23:08:37 EDT 2025 Wed Aug 27 02:27:18 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Language | English |
License | https://creativecommons.org/licenses/by/4.0/legalcode |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c408t-92a85309690e0ae7b9f8f0bcb421504d71fa7d1c5154ec7fa59ecf8d066cd5ad3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0001-5965-9844 0000-0002-2910-4634 0000-0002-0182-308X |
OpenAccessLink | https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/document/9534758 |
PQID | 2575128546 |
PQPubID | 4845423 |
PageCount | 13 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_e6242d35af724c8a85a2e97436b3d0f2 crossref_primary_10_1109_ACCESS_2021_3111753 proquest_journals_2575128546 ieee_primary_9534758 crossref_citationtrail_10_1109_ACCESS_2021_3111753 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20210000 2021-00-00 20210101 2021-01-01 |
PublicationDateYYYYMMDD | 2021-01-01 |
PublicationDate_xml | – year: 2021 text: 20210000 |
PublicationDecade | 2020 |
PublicationPlace | Piscataway |
PublicationPlace_xml | – name: Piscataway |
PublicationTitle | IEEE access |
PublicationTitleAbbrev | Access |
PublicationYear | 2021 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref13 (ref4) 2021 akita (ref25) 2007 ref34 ref12 ref15 ref14 ref31 ref33 ref11 ref32 ref10 ref1 ref39 ref17 ref38 ref16 ref19 rong (ref6) 2020 ref18 wei (ref37) 2013 nguyen (ref30) 2020 ref46 ref24 ref45 ref23 ref26 ref47 bartneck (ref2) 2020 ref20 ref42 ref41 ref22 ref44 ref21 ref43 dosovitskiy (ref5) 2017 xu (ref36) 2010 ref27 ref29 ref8 ref7 akita (ref28) 2008 ref9 ref3 ref40 li (ref35) 2003 |
References_xml | – year: 2021 ident: ref4 publication-title: Taxonomy and Definitions for Terms Related to Driving Automation Systems for On-Road Motor Vehicles – ident: ref13 doi: 10.1016/j.physa.2017.11.133 – ident: ref7 doi: 10.1109/IVS.2011.5940464 – ident: ref31 doi: 10.3390/app11114938 – start-page: 1 year: 2020 ident: ref6 article-title: LGSVL simulator: A high fidelity simulator for autonomous driving publication-title: Proc IEEE 23rd Int Conf Intell Transp Syst (ITSC) – ident: ref14 doi: 10.1016/j.physa.2017.12.103 – ident: ref27 doi: 10.1016/j.ymssp.2020.107589 – ident: ref9 doi: 10.1287/trsc.2015.0622 – ident: ref23 doi: 10.1109/TITS.2014.2326082 – ident: ref10 doi: 10.1155/2020/2172156 – ident: ref8 doi: 10.1109/TSMCB.2011.2167509 – ident: ref21 doi: 10.1109/TITS.2007.903441 – ident: ref3 doi: 10.1109/ISSC.2018.8585340 – ident: ref45 doi: 10.14236/ewic/HCI2009.57 – ident: ref34 doi: 10.1109/FUZZY.1998.687479 – ident: ref44 doi: 10.3390/s18093151 – start-page: 1 year: 2017 ident: ref5 article-title: CARLA: An open urban driving simulator publication-title: Proc 1st Annu Conf Robot Learn – ident: ref47 doi: 10.1109/ITSC.2013.6728526 – ident: ref24 doi: 10.1109/ITSC.2010.5625154 – ident: ref33 doi: 10.1109/ITSC.2015.251 – ident: ref38 doi: 10.1109/TNN.2008.2007906 – ident: ref15 doi: 10.1016/j.physa.2017.12.100 – ident: ref17 doi: 10.1109/TITS.2006.883111 – start-page: 6778 year: 2013 ident: ref37 article-title: Modeling of human driver behavior via receding horizon and artificial neural network controllers publication-title: Proc 52nd IEEE Conf Decis Control – ident: ref19 doi: 10.1109/IROS.2008.4650671 – ident: ref20 doi: 10.1109/IROS.2012.6385614 – ident: ref41 doi: 10.1109/ICASSP.2006.1660988 – ident: ref18 doi: 10.1109/TITS.2010.2050141 – ident: ref46 doi: 10.1109/IVS.2015.7225894 – ident: ref40 doi: 10.11613/BM.2014.003 – ident: ref11 doi: 10.2991/icsma-16.2016.73 – ident: ref1 doi: 10.1680/jmuen.16.00063 – year: 2020 ident: ref2 article-title: Autonomous vehicles publication-title: An Introduction to Ethics in Robotics and AI – ident: ref42 doi: 10.4271/2007-01-0440 – ident: ref29 doi: 10.1109/ITSC.2019.8916962 – ident: ref22 doi: 10.1109/TSMCA.2011.2109375 – ident: ref26 doi: 10.1109/TITS.2015.2449837 – ident: ref39 doi: 10.1002/0471722146 – start-page: 1233 year: 2007 ident: ref25 article-title: Analysis of vehicle following behavior of human driver based on hybrid dynamical system model publication-title: Proc IEEE Int Conf Control Appl – ident: ref12 doi: 10.1016/j.physa.2018.05.042 – start-page: 3714 year: 2020 ident: ref30 article-title: Modeling car-following behavior in downtown area based on unsupervised clustering and variable selection method publication-title: Proc IEEE Int Conf Syst Man Cybern (SMC) – ident: ref32 doi: 10.1109/TITS.2012.2207893 – start-page: 2884 year: 2008 ident: ref28 article-title: Analysis and synthesis of driving behavior based on mode segmentation publication-title: Proc Int Conf Control Autom Syst – start-page: 663 year: 2010 ident: ref36 article-title: Driver behavior analysis based on Bayesian network and multiple classifiers publication-title: Proc IEEE Int Conf Intell Comput Intell Syst – ident: ref16 doi: 10.1016/j.trb.2017.08.012 – start-page: 140 year: 2003 ident: ref35 article-title: Simulation of car-following decision using fuzzy neural networks system publication-title: Proc IEEE Int Conf Intell Transp Syst – ident: ref43 doi: 10.1002/bimj.201700067 |
SSID | ssj0000816957 |
Score | 2.2273405 |
Snippet | This paper investigates the decision-making characteristics of the driver in the overtaking on the highway road. For the research purpose, a novel method was... |
SourceID | doaj proquest crossref ieee |
SourceType | Open Website Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 127672 |
SubjectTerms | Data models Decision making Driver behavior gazing behavior Hidden Markov models Input variables Intelligent vehicles line-of-sight information logistic regression Logistics Mathematical model model selection Overtaking behavior Regression models Statistical analysis statistical test Statistical tests Switches Variables Vehicles |
SummonAdditionalLinks | – databaseName: Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELaqntoDoi2IhYLmgNQLUfNybB_b7UuoUKlQ6M1yPHa7EkrRsv0L_G5mHHe1CKm9cM3Djj0Tz3yJ5_uEeC8RO2PQF31f9QWFAFcYFVTByyVq743xXDv86XN3dtV-vJbXK1JfvCdspAceJ24_cAEDNtJFVbdeOy1dHSgJbrq-wTKm1Zdi3gqYSmuwrjojVaYZqkqzfzCd0ogIENYV4dREUPlXKEqM_Vli5Z91OQWbk-fiWc4S4WB8ui2xFoZtsbnCHbgjfn8jlMt1T_AlSdnQ_IIbEFjcjEvM4S7C0TztutiDo6ykA7MBLliBOWlQQSZHnMMhxTIEOn-eCoJmHi7DzbhDdhhbhO-zxS2cMhn1DeQaJu7zhbg6Of46PSuyqELh21IvClPTFDYEXEwZShdUb6KOZe_7loJ_2aKqolNYecpz2uBVdNIEHzVSauJROmxeivXhbgivBBB867TsIiLDRLINtaQcStUGTUEPJ6J-mF_rM-M4C1_8sAl5lMaORrFsFJuNMhEfljf9HAk3Hr_8kA23vJTZstMB8iGbfcg-5UMTscNmXzZiZNMSjpqI3Qc3sPnN_mVr_lHFZafd6__R9RuxwcMZP-rsivXF_D68pTRn0b9LHv0H1cn32w priority: 102 providerName: Directory of Open Access Journals |
Title | Variable Selection and Modeling of Drivers' Decision in Overtaking Behavior Based on Logistic Regression Model With Gazing Information |
URI | https://ieeexplore.ieee.org/document/9534758 https://www.proquest.com/docview/2575128546 https://doaj.org/article/e6242d35af724c8a85a2e97436b3d0f2 |
Volume | 9 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Nb9QwEB21PcEBCgWxUCofkLg023w5jo_tllIhChJQ6M3yZ7sCZdGSvfAD-ruZcbwRpQhxizaJ16vxeubZfu8BvODONVI6mxlTmAxTgM6k8CKj6dK11kppiTt89q45Pa_fXPCLDdgfuTDe-3j4zE_pMu7lu4Vd0VLZgeRVjfXtJmwicBu4WuN6ChlISC6SsFCRy4PD2Qx_A0LAskBkGiUpbySfqNGfTFVuzcQxvZzch7N1x4ZTJV-nq95M7c8_NBv_t-fbcC_VmexwGBgPYMN3D-Hub-qDO3D9GXEyMafYx2iGgxFiunOM7NGIpM4WgR0v47mNl-w4efGwecfek4dzdLFiSV5xyY4wGzqG999GStHcsg_-cjhj2w0tsi_z_oq9JjnrS5ZYUPSdj-D85NWn2WmWbBkyW-dtn8lSY45H6CNzn2svjAxtyI01NZYPee1EEbRwhcVKqfZWBM2lt6F1WNxYx7WrHsNWt-j8E2AIAJuWN8E5Apq21diS0I6L2reYNt0EynW8lE2a5WSd8U1F7JJLNQRZUZBVCvIE9seXvg-SHf9-_IgGwvgo6W3HDzCAKv19lScajau4DqKssZ8t16VHKFY1pnJ5KCewQ0EfG0nxnsDuelipNDf8UCVtdRFxtXn697eewR3q4LDQswtb_XLln2Pp05u9uGSwF0f-L6VIAsE |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB6VcgAOvErFQgEfkLg027wcx8d2S1lgt0jQQm-W40dZgbJoyV74AfxuZhxvxEuIW5TYjqNxPDO2v-8DeMqtraS0JmmarEnQBehECicSmi5tbYyUhrDD89Nqel6-uuAXW7A_YGGcc-HwmRvTZdjLt0uzpqWyA8mLEuPbK3CVExi3R2sNKyokISG5iNRCWSoPDicT_ApMAvMMc9NASvmL-wks_VFW5Y-5ODiYk1sw33StP1fyabzumrH59htr4__2_TbcjJEmO-yHxh3Ycu1duPET_-AOfH-PmTJhp9i7IIeDNmK6tYwE0gimzpaeHa_CyY1n7Diq8bBFy96QinPQsWKRYHHFjtAfWobPZwFUtDDsrbvsT9m2fYvsw6L7yF4QofUlizgoeuc9OD95fjaZJlGYITFlWneJzDV6eUx-ZOpS7UQjfe3TxjQlBhBpaUXmtbCZwVipdEZ4zaUzvrYY3hjLtS12Ybtdtu4-MEwBq5pX3lpKNU2tsSWhLRelq9Fx2hHkG3spE1nLSTzjswrZSypVb2RFRlbRyCPYHyp96Uk7_l38iAbCUJQYt8MNNKCKP7ByBKSxBdde5CX2s-Y6d5iMFVVT2NTnI9ghow-NRHuPYG8zrFScHb6qnDa7CLpaPfh7rSdwbXo2n6nZy9PXD-E6dbZf9tmD7W61do8wEOqax2H8_wAmJAUU |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Variable+Selection+and+Modeling+of+Drivers%27+Decision+in+Overtaking+Behavior+Based+on+Logistic+Regression+Model+With+Gazing+Information&rft.jtitle=IEEE+access&rft.au=Nwadiuto%2C+Jude+C.&rft.au=Yoshino%2C+Soichi&rft.au=Okuda%2C+Hiroyuki&rft.au=Suzuki%2C+Tatsuya&rft.date=2021&rft.pub=IEEE&rft.eissn=2169-3536&rft.volume=9&rft.spage=127672&rft.epage=127684&rft_id=info:doi/10.1109%2FACCESS.2021.3111753&rft.externalDocID=9534758 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2169-3536&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2169-3536&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2169-3536&client=summon |