Variable Selection and Modeling of Drivers' Decision in Overtaking Behavior Based on Logistic Regression Model With Gazing Information

This paper investigates the decision-making characteristics of the driver in the overtaking on the highway road. For the research purpose, a novel method was proposed by introducing a logistic regression model accompanied by the statistical test technique, which does not require prior knowledge abou...

Full description

Saved in:
Bibliographic Details
Published inIEEE access Vol. 9; pp. 127672 - 127684
Main Authors Nwadiuto, Jude C., Yoshino, Soichi, Okuda, Hiroyuki, Suzuki, Tatsuya
Format Journal Article
LanguageEnglish
Published Piscataway IEEE 2021
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN2169-3536
2169-3536
DOI10.1109/ACCESS.2021.3111753

Cover

Loading…
Abstract This paper investigates the decision-making characteristics of the driver in the overtaking on the highway road. For the research purpose, a novel method was proposed by introducing a logistic regression model accompanied by the statistical test technique, which does not require prior knowledge about the explanatory variables. This study hypothesizes that the driver's gazing behavior is crucial for the decision-making process in driving and hence, the line-of-sight information was introduced to estimate driver's gazing behavior in the model of driver's decision specifically for reproducing the overtaking driving behavior accurately. Consequently, the proposed model realized a high describability on the decision of the driver when performing the overtaking driving task, which is one of the significant advancements of the present study with respect to the past similar studies. This study integrates the perspectives of intelligent vehicle design and cognitive science by revealing which factor the driver pays attention to in a changeable driving environment due to various observable factors. In experiments based on the driving simulator with six human subjects, the overtaking behavior was successfully estimated by specifying a set of variables to reconstruct the driver's behavior and then the proposed model provided a minimum set of necessary variables accompanied with key coefficients. In conclusion, the proposed approach based on a simple logistic regression model demonstrated driving behaviors with an accurate estimation of the driver's intention without the need for prior knowledge, and it may contribute to higher describability for various driving actions in a dynamic environment.
AbstractList This paper investigates the decision-making characteristics of the driver in the overtaking on the highway road. For the research purpose, a novel method was proposed by introducing a logistic regression model accompanied by the statistical test technique, which does not require prior knowledge about the explanatory variables. This study hypothesizes that the driver's gazing behavior is crucial for the decision-making process in driving and hence, the line-of-sight information was introduced to estimate driver's gazing behavior in the model of driver's decision specifically for reproducing the overtaking driving behavior accurately. Consequently, the proposed model realized a high describability on the decision of the driver when performing the overtaking driving task, which is one of the significant advancements of the present study with respect to the past similar studies. This study integrates the perspectives of intelligent vehicle design and cognitive science by revealing which factor the driver pays attention to in a changeable driving environment due to various observable factors. In experiments based on the driving simulator with six human subjects, the overtaking behavior was successfully estimated by specifying a set of variables to reconstruct the driver's behavior and then the proposed model provided a minimum set of necessary variables accompanied with key coefficients. In conclusion, the proposed approach based on a simple logistic regression model demonstrated driving behaviors with an accurate estimation of the driver's intention without the need for prior knowledge, and it may contribute to higher describability for various driving actions in a dynamic environment.
Author Nwadiuto, Jude C.
Suzuki, Tatsuya
Yoshino, Soichi
Okuda, Hiroyuki
Author_xml – sequence: 1
  givenname: Jude C.
  orcidid: 0000-0001-5965-9844
  surname: Nwadiuto
  fullname: Nwadiuto, Jude C.
  email: nwadiuto.jude.chibuike@b.mbox.nagoya-u.ac.jp
  organization: Department of Mechanical Systems Engineering, Nagoya University, Nagoya, Japan
– sequence: 2
  givenname: Soichi
  surname: Yoshino
  fullname: Yoshino, Soichi
  organization: Toyota Research Institute-Advanced Development, Tokyo, Japan
– sequence: 3
  givenname: Hiroyuki
  orcidid: 0000-0002-2910-4634
  surname: Okuda
  fullname: Okuda, Hiroyuki
  organization: Department of Mechanical Systems Engineering, Nagoya University, Nagoya, Japan
– sequence: 4
  givenname: Tatsuya
  orcidid: 0000-0002-0182-308X
  surname: Suzuki
  fullname: Suzuki, Tatsuya
  organization: Department of Mechanical Systems Engineering, Nagoya University, Nagoya, Japan
BookMark eNqFUctuEzEUHaEiUUq_oBtLLFgl-DEej5dt-iBSqkqEx9K6sa9Th-m42NNK8AF8N55MVVVs8MbW8Xlc3fO2Ouhjj1V1wuicMao_ni4WF-v1nFPO5oIxpqR4VR1y1uiZkKI5ePF-Ux3nvKPltAWS6rD68w1SgE2HZI0d2iHEnkDvyHV02IV-S6In5yk8YsofyDnakEdG6MlNgQb4MVLO8BYeQ0zkDDI6Uv5XcRvyECz5jNuEea_ZO5LvYbglV_B71C17H9MdjJnvqtceuozHT_dR9fXy4svi02x1c7VcnK5mtqbtMNMcWimobjRFCqg22reebuym5kzS2inmQTlmJZM1WuVBarS-dbRprJPgxFG1nHxdhJ25T-EO0i8TIZg9ENPWQCqDd2iw4TV3QoJXvLZtCQaOWtWi2QhHPS9e7yev-xR_PmAezC4-pL6Mb7hUkvFW1k1hiYllU8w5oX9OZdSM_ZmpPzP2Z576Kyr9j8qGYb-pIUHo_qM9mbQBEZ_TtBS1kq34C1P3q30
CODEN IAECCG
CitedBy_id crossref_primary_10_1016_j_trf_2024_03_003
crossref_primary_10_3390_su14116829
crossref_primary_10_1109_ACCESS_2022_3217644
Cites_doi 10.1016/j.physa.2017.11.133
10.1109/IVS.2011.5940464
10.3390/app11114938
10.1016/j.physa.2017.12.103
10.1016/j.ymssp.2020.107589
10.1287/trsc.2015.0622
10.1109/TITS.2014.2326082
10.1155/2020/2172156
10.1109/TSMCB.2011.2167509
10.1109/TITS.2007.903441
10.1109/ISSC.2018.8585340
10.14236/ewic/HCI2009.57
10.1109/FUZZY.1998.687479
10.3390/s18093151
10.1109/ITSC.2013.6728526
10.1109/ITSC.2010.5625154
10.1109/ITSC.2015.251
10.1109/TNN.2008.2007906
10.1016/j.physa.2017.12.100
10.1109/TITS.2006.883111
10.1109/IROS.2008.4650671
10.1109/IROS.2012.6385614
10.1109/ICASSP.2006.1660988
10.1109/TITS.2010.2050141
10.1109/IVS.2015.7225894
10.11613/BM.2014.003
10.2991/icsma-16.2016.73
10.1680/jmuen.16.00063
10.4271/2007-01-0440
10.1109/ITSC.2019.8916962
10.1109/TSMCA.2011.2109375
10.1109/TITS.2015.2449837
10.1002/0471722146
10.1016/j.physa.2018.05.042
10.1109/TITS.2012.2207893
10.1016/j.trb.2017.08.012
10.1002/bimj.201700067
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021
DBID 97E
ESBDL
RIA
RIE
AAYXX
CITATION
7SC
7SP
7SR
8BQ
8FD
JG9
JQ2
L7M
L~C
L~D
DOA
DOI 10.1109/ACCESS.2021.3111753
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE Xplore Open Access Journals
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Directory of Open Access Journals
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
METADEX
Computer and Information Systems Abstracts Professional
DatabaseTitleList
Materials Research Database

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2169-3536
EndPage 127684
ExternalDocumentID oai_doaj_org_article_e6242d35af724c8a85a2e97436b3d0f2
10_1109_ACCESS_2021_3111753
9534758
Genre orig-research
GroupedDBID 0R~
4.4
5VS
6IK
97E
AAJGR
ABAZT
ABVLG
ACGFS
ADBBV
AGSQL
ALMA_UNASSIGNED_HOLDINGS
BCNDV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
EJD
ESBDL
GROUPED_DOAJ
IPLJI
JAVBF
KQ8
M43
M~E
O9-
OCL
OK1
RIA
RIE
RNS
AAYXX
CITATION
RIG
7SC
7SP
7SR
8BQ
8FD
JG9
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c408t-92a85309690e0ae7b9f8f0bcb421504d71fa7d1c5154ec7fa59ecf8d066cd5ad3
IEDL.DBID RIE
ISSN 2169-3536
IngestDate Wed Aug 27 01:30:23 EDT 2025
Mon Jun 30 03:36:26 EDT 2025
Tue Jul 01 04:03:50 EDT 2025
Thu Apr 24 23:08:37 EDT 2025
Wed Aug 27 02:27:18 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Language English
License https://creativecommons.org/licenses/by/4.0/legalcode
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c408t-92a85309690e0ae7b9f8f0bcb421504d71fa7d1c5154ec7fa59ecf8d066cd5ad3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-5965-9844
0000-0002-2910-4634
0000-0002-0182-308X
OpenAccessLink https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/document/9534758
PQID 2575128546
PQPubID 4845423
PageCount 13
ParticipantIDs doaj_primary_oai_doaj_org_article_e6242d35af724c8a85a2e97436b3d0f2
crossref_primary_10_1109_ACCESS_2021_3111753
proquest_journals_2575128546
ieee_primary_9534758
crossref_citationtrail_10_1109_ACCESS_2021_3111753
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20210000
2021-00-00
20210101
2021-01-01
PublicationDateYYYYMMDD 2021-01-01
PublicationDate_xml – year: 2021
  text: 20210000
PublicationDecade 2020
PublicationPlace Piscataway
PublicationPlace_xml – name: Piscataway
PublicationTitle IEEE access
PublicationTitleAbbrev Access
PublicationYear 2021
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
(ref4) 2021
akita (ref25) 2007
ref34
ref12
ref15
ref14
ref31
ref33
ref11
ref32
ref10
ref1
ref39
ref17
ref38
ref16
ref19
rong (ref6) 2020
ref18
wei (ref37) 2013
nguyen (ref30) 2020
ref46
ref24
ref45
ref23
ref26
ref47
bartneck (ref2) 2020
ref20
ref42
ref41
ref22
ref44
ref21
ref43
dosovitskiy (ref5) 2017
xu (ref36) 2010
ref27
ref29
ref8
ref7
akita (ref28) 2008
ref9
ref3
ref40
li (ref35) 2003
References_xml – year: 2021
  ident: ref4
  publication-title: Taxonomy and Definitions for Terms Related to Driving Automation Systems for On-Road Motor Vehicles
– ident: ref13
  doi: 10.1016/j.physa.2017.11.133
– ident: ref7
  doi: 10.1109/IVS.2011.5940464
– ident: ref31
  doi: 10.3390/app11114938
– start-page: 1
  year: 2020
  ident: ref6
  article-title: LGSVL simulator: A high fidelity simulator for autonomous driving
  publication-title: Proc IEEE 23rd Int Conf Intell Transp Syst (ITSC)
– ident: ref14
  doi: 10.1016/j.physa.2017.12.103
– ident: ref27
  doi: 10.1016/j.ymssp.2020.107589
– ident: ref9
  doi: 10.1287/trsc.2015.0622
– ident: ref23
  doi: 10.1109/TITS.2014.2326082
– ident: ref10
  doi: 10.1155/2020/2172156
– ident: ref8
  doi: 10.1109/TSMCB.2011.2167509
– ident: ref21
  doi: 10.1109/TITS.2007.903441
– ident: ref3
  doi: 10.1109/ISSC.2018.8585340
– ident: ref45
  doi: 10.14236/ewic/HCI2009.57
– ident: ref34
  doi: 10.1109/FUZZY.1998.687479
– ident: ref44
  doi: 10.3390/s18093151
– start-page: 1
  year: 2017
  ident: ref5
  article-title: CARLA: An open urban driving simulator
  publication-title: Proc 1st Annu Conf Robot Learn
– ident: ref47
  doi: 10.1109/ITSC.2013.6728526
– ident: ref24
  doi: 10.1109/ITSC.2010.5625154
– ident: ref33
  doi: 10.1109/ITSC.2015.251
– ident: ref38
  doi: 10.1109/TNN.2008.2007906
– ident: ref15
  doi: 10.1016/j.physa.2017.12.100
– ident: ref17
  doi: 10.1109/TITS.2006.883111
– start-page: 6778
  year: 2013
  ident: ref37
  article-title: Modeling of human driver behavior via receding horizon and artificial neural network controllers
  publication-title: Proc 52nd IEEE Conf Decis Control
– ident: ref19
  doi: 10.1109/IROS.2008.4650671
– ident: ref20
  doi: 10.1109/IROS.2012.6385614
– ident: ref41
  doi: 10.1109/ICASSP.2006.1660988
– ident: ref18
  doi: 10.1109/TITS.2010.2050141
– ident: ref46
  doi: 10.1109/IVS.2015.7225894
– ident: ref40
  doi: 10.11613/BM.2014.003
– ident: ref11
  doi: 10.2991/icsma-16.2016.73
– ident: ref1
  doi: 10.1680/jmuen.16.00063
– year: 2020
  ident: ref2
  article-title: Autonomous vehicles
  publication-title: An Introduction to Ethics in Robotics and AI
– ident: ref42
  doi: 10.4271/2007-01-0440
– ident: ref29
  doi: 10.1109/ITSC.2019.8916962
– ident: ref22
  doi: 10.1109/TSMCA.2011.2109375
– ident: ref26
  doi: 10.1109/TITS.2015.2449837
– ident: ref39
  doi: 10.1002/0471722146
– start-page: 1233
  year: 2007
  ident: ref25
  article-title: Analysis of vehicle following behavior of human driver based on hybrid dynamical system model
  publication-title: Proc IEEE Int Conf Control Appl
– ident: ref12
  doi: 10.1016/j.physa.2018.05.042
– start-page: 3714
  year: 2020
  ident: ref30
  article-title: Modeling car-following behavior in downtown area based on unsupervised clustering and variable selection method
  publication-title: Proc IEEE Int Conf Syst Man Cybern (SMC)
– ident: ref32
  doi: 10.1109/TITS.2012.2207893
– start-page: 2884
  year: 2008
  ident: ref28
  article-title: Analysis and synthesis of driving behavior based on mode segmentation
  publication-title: Proc Int Conf Control Autom Syst
– start-page: 663
  year: 2010
  ident: ref36
  article-title: Driver behavior analysis based on Bayesian network and multiple classifiers
  publication-title: Proc IEEE Int Conf Intell Comput Intell Syst
– ident: ref16
  doi: 10.1016/j.trb.2017.08.012
– start-page: 140
  year: 2003
  ident: ref35
  article-title: Simulation of car-following decision using fuzzy neural networks system
  publication-title: Proc IEEE Int Conf Intell Transp Syst
– ident: ref43
  doi: 10.1002/bimj.201700067
SSID ssj0000816957
Score 2.2273405
Snippet This paper investigates the decision-making characteristics of the driver in the overtaking on the highway road. For the research purpose, a novel method was...
SourceID doaj
proquest
crossref
ieee
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 127672
SubjectTerms Data models
Decision making
Driver behavior
gazing behavior
Hidden Markov models
Input variables
Intelligent vehicles
line-of-sight information
logistic regression
Logistics
Mathematical model
model selection
Overtaking behavior
Regression models
Statistical analysis
statistical test
Statistical tests
Switches
Variables
Vehicles
SummonAdditionalLinks – databaseName: Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELaqntoDoi2IhYLmgNQLUfNybB_b7UuoUKlQ6M1yPHa7EkrRsv0L_G5mHHe1CKm9cM3Djj0Tz3yJ5_uEeC8RO2PQF31f9QWFAFcYFVTByyVq743xXDv86XN3dtV-vJbXK1JfvCdspAceJ24_cAEDNtJFVbdeOy1dHSgJbrq-wTKm1Zdi3gqYSmuwrjojVaYZqkqzfzCd0ogIENYV4dREUPlXKEqM_Vli5Z91OQWbk-fiWc4S4WB8ui2xFoZtsbnCHbgjfn8jlMt1T_AlSdnQ_IIbEFjcjEvM4S7C0TztutiDo6ykA7MBLliBOWlQQSZHnMMhxTIEOn-eCoJmHi7DzbhDdhhbhO-zxS2cMhn1DeQaJu7zhbg6Of46PSuyqELh21IvClPTFDYEXEwZShdUb6KOZe_7loJ_2aKqolNYecpz2uBVdNIEHzVSauJROmxeivXhbgivBBB867TsIiLDRLINtaQcStUGTUEPJ6J-mF_rM-M4C1_8sAl5lMaORrFsFJuNMhEfljf9HAk3Hr_8kA23vJTZstMB8iGbfcg-5UMTscNmXzZiZNMSjpqI3Qc3sPnN_mVr_lHFZafd6__R9RuxwcMZP-rsivXF_D68pTRn0b9LHv0H1cn32w
  priority: 102
  providerName: Directory of Open Access Journals
Title Variable Selection and Modeling of Drivers' Decision in Overtaking Behavior Based on Logistic Regression Model With Gazing Information
URI https://ieeexplore.ieee.org/document/9534758
https://www.proquest.com/docview/2575128546
https://doaj.org/article/e6242d35af724c8a85a2e97436b3d0f2
Volume 9
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Nb9QwEB21PcEBCgWxUCofkLg023w5jo_tllIhChJQ6M3yZ7sCZdGSvfAD-ruZcbwRpQhxizaJ16vxeubZfu8BvODONVI6mxlTmAxTgM6k8CKj6dK11kppiTt89q45Pa_fXPCLDdgfuTDe-3j4zE_pMu7lu4Vd0VLZgeRVjfXtJmwicBu4WuN6ChlISC6SsFCRy4PD2Qx_A0LAskBkGiUpbySfqNGfTFVuzcQxvZzch7N1x4ZTJV-nq95M7c8_NBv_t-fbcC_VmexwGBgPYMN3D-Hub-qDO3D9GXEyMafYx2iGgxFiunOM7NGIpM4WgR0v47mNl-w4efGwecfek4dzdLFiSV5xyY4wGzqG999GStHcsg_-cjhj2w0tsi_z_oq9JjnrS5ZYUPSdj-D85NWn2WmWbBkyW-dtn8lSY45H6CNzn2svjAxtyI01NZYPee1EEbRwhcVKqfZWBM2lt6F1WNxYx7WrHsNWt-j8E2AIAJuWN8E5Apq21diS0I6L2reYNt0EynW8lE2a5WSd8U1F7JJLNQRZUZBVCvIE9seXvg-SHf9-_IgGwvgo6W3HDzCAKv19lScajau4DqKssZ8t16VHKFY1pnJ5KCewQ0EfG0nxnsDuelipNDf8UCVtdRFxtXn697eewR3q4LDQswtb_XLln2Pp05u9uGSwF0f-L6VIAsE
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB6VcgAOvErFQgEfkLg027wcx8d2S1lgt0jQQm-W40dZgbJoyV74AfxuZhxvxEuIW5TYjqNxPDO2v-8DeMqtraS0JmmarEnQBehECicSmi5tbYyUhrDD89Nqel6-uuAXW7A_YGGcc-HwmRvTZdjLt0uzpqWyA8mLEuPbK3CVExi3R2sNKyokISG5iNRCWSoPDicT_ApMAvMMc9NASvmL-wks_VFW5Y-5ODiYk1sw33StP1fyabzumrH59htr4__2_TbcjJEmO-yHxh3Ycu1duPET_-AOfH-PmTJhp9i7IIeDNmK6tYwE0gimzpaeHa_CyY1n7Diq8bBFy96QinPQsWKRYHHFjtAfWobPZwFUtDDsrbvsT9m2fYvsw6L7yF4QofUlizgoeuc9OD95fjaZJlGYITFlWneJzDV6eUx-ZOpS7UQjfe3TxjQlBhBpaUXmtbCZwVipdEZ4zaUzvrYY3hjLtS12Ybtdtu4-MEwBq5pX3lpKNU2tsSWhLRelq9Fx2hHkG3spE1nLSTzjswrZSypVb2RFRlbRyCPYHyp96Uk7_l38iAbCUJQYt8MNNKCKP7ByBKSxBdde5CX2s-Y6d5iMFVVT2NTnI9ghow-NRHuPYG8zrFScHb6qnDa7CLpaPfh7rSdwbXo2n6nZy9PXD-E6dbZf9tmD7W61do8wEOqax2H8_wAmJAUU
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Variable+Selection+and+Modeling+of+Drivers%27+Decision+in+Overtaking+Behavior+Based+on+Logistic+Regression+Model+With+Gazing+Information&rft.jtitle=IEEE+access&rft.au=Nwadiuto%2C+Jude+C.&rft.au=Yoshino%2C+Soichi&rft.au=Okuda%2C+Hiroyuki&rft.au=Suzuki%2C+Tatsuya&rft.date=2021&rft.pub=IEEE&rft.eissn=2169-3536&rft.volume=9&rft.spage=127672&rft.epage=127684&rft_id=info:doi/10.1109%2FACCESS.2021.3111753&rft.externalDocID=9534758
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2169-3536&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2169-3536&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2169-3536&client=summon