Combining 3D Radiative Transfer Model and Convolutional Neural Network to Accurately Estimate Forest Canopy Cover From Very High-Resolution Satellite Images

Forest canopy cover (FCC) plays an important role in many ecological, hydrological and forestry applications. For large-scale applications, FCC is usually estimated from remotely sensed data by inverting radiative transfer models (RTMs) or using data-driven regressions. In this article, we proposed...

Full description

Saved in:
Bibliographic Details
Published inIEEE journal of selected topics in applied earth observations and remote sensing Vol. 14; pp. 10953 - 10963
Main Authors Jin, Decai, Qi, Jianbo, Huang, Huaguo, Li, Linyuan
Format Journal Article
LanguageEnglish
Published Piscataway IEEE 2021
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Forest canopy cover (FCC) plays an important role in many ecological, hydrological and forestry applications. For large-scale applications, FCC is usually estimated from remotely sensed data by inverting radiative transfer models (RTMs) or using data-driven regressions. In this article, we proposed a hybrid model, which combines a 3-D RTM and transfer learning-based convolutional neural network (T-CNN), to estimate FCC from very high-resolution satellite images (e.g., Chinese GaoFen-2, 1 m resolution with 4 bands). Unlike common hybrid models that are purely trained with simulation data, T-CNN combines simulation data-based pre-training and actual data-based transfer learning, which is a widely used technique in artificial intelligence for fine-tuning models. The performance of T-CNN was compared with a random forest (RF) model and two general CNN models, including CNN trained with actual dataset only (data-CNN) and CNN trained with RTM simulation data only (RTM-CNN). Results on the independent validation dataset (not used in training stage) showed that T-CNN had higher accuracy (RMSE = 0.121, R 2 = 0.83), compared with RF (RMSE = 0.26, R 2 = 0.61), Data-CNN (RMSE = 0.142, R 2 = 0.81), and RTM-CNN (RMSE = 0.144, R 2 = 0.73), which indicates that T-CNN has a strong transferability. Tests on different training sizes showed that T-CNN (0.084 < RMSE < 0.108) provided constantly better performances than RF (0.116 < RMSE < 0.122) and data-CNN (0.103 < RMSE < 0.128), which demonstrates the potential of T-CNN as an alternative to RTM-based inversion and data-driven regressions to estimate FCC, especially when training data is imbalanced and inadequate.
AbstractList Forest canopy cover (FCC) plays an important role in many ecological, hydrological and forestry applications. For large-scale applications, FCC is usually estimated from remotely sensed data by inverting radiative transfer models (RTMs) or using data-driven regressions. In this article, we proposed a hybrid model, which combines a 3-D RTM and transfer learning-based convolutional neural network (T-CNN), to estimate FCC from very high-resolution satellite images (e.g., Chinese GaoFen-2, 1 m resolution with 4 bands). Unlike common hybrid models that are purely trained with simulation data, T-CNN combines simulation data-based pre-training and actual data-based transfer learning, which is a widely used technique in artificial intelligence for fine-tuning models. The performance of T-CNN was compared with a random forest (RF) model and two general CNN models, including CNN trained with actual dataset only (data-CNN) and CNN trained with RTM simulation data only (RTM-CNN). Results on the independent validation dataset (not used in training stage) showed that T-CNN had higher accuracy (RMSE = 0.121, R 2 = 0.83), compared with RF (RMSE = 0.26, R 2 = 0.61), Data-CNN (RMSE = 0.142, R 2 = 0.81), and RTM-CNN (RMSE = 0.144, R 2 = 0.73), which indicates that T-CNN has a strong transferability. Tests on different training sizes showed that T-CNN (0.084 < RMSE < 0.108) provided constantly better performances than RF (0.116 < RMSE < 0.122) and data-CNN (0.103 < RMSE < 0.128), which demonstrates the potential of T-CNN as an alternative to RTM-based inversion and data-driven regressions to estimate FCC, especially when training data is imbalanced and inadequate.
Forest canopy cover (FCC) plays an important role in many ecological, hydrological and forestry applications. For large-scale applications, FCC is usually estimated from remotely sensed data by inverting radiative transfer models (RTMs) or using data-driven regressions. In this article, we proposed a hybrid model, which combines a 3-D RTM and transfer learning-based convolutional neural network (T-CNN), to estimate FCC from very high-resolution satellite images (e.g., Chinese GaoFen-2, 1 m resolution with 4 bands). Unlike common hybrid models that are purely trained with simulation data, T-CNN combines simulation data-based pre-training and actual data-based transfer learning, which is a widely used technique in artificial intelligence for fine-tuning models. The performance of T-CNN was compared with a random forest (RF) model and two general CNN models, including CNN trained with actual dataset only (data-CNN) and CNN trained with RTM simulation data only (RTM-CNN). Results on the independent validation dataset (not used in training stage) showed that T-CNN had higher accuracy (RMSE = 0.121, R2 = 0.83), compared with RF (RMSE = 0.26, R2 = 0.61), Data-CNN (RMSE = 0.142, R2 = 0.81), and RTM-CNN (RMSE = 0.144, R2 = 0.73), which indicates that T-CNN has a strong transferability. Tests on different training sizes showed that T-CNN (0.084 < RMSE < 0.108) provided constantly better performances than RF (0.116 < RMSE < 0.122) and data-CNN (0.103 < RMSE < 0.128), which demonstrates the potential of T-CNN as an alternative to RTM-based inversion and data-driven regressions to estimate FCC, especially when training data is imbalanced and inadequate.
Author Qi, Jianbo
Huang, Huaguo
Li, Linyuan
Jin, Decai
Author_xml – sequence: 1
  givenname: Decai
  surname: Jin
  fullname: Jin, Decai
  email: redbooks_jdc@gmail.com
  organization: State Forestry and Grassland Administration Key Laboratory of Forest Resources and Environmental Management, Beijing Forestry University, Beijing, China
– sequence: 2
  givenname: Jianbo
  orcidid: 0000-0001-6601-7882
  surname: Qi
  fullname: Qi, Jianbo
  email: jianboqi@bjfu.edu.cn
  organization: State Forestry and Grassland Administration Key Laboratory of Forest Resources and Environmental Management, Beijing Forestry University, Beijing, China
– sequence: 3
  givenname: Huaguo
  surname: Huang
  fullname: Huang, Huaguo
  email: huaguo_huang@bjfu.edu.cn
  organization: State Forestry and Grassland Administration Key Laboratory of Forest Resources and Environmental Management, Beijing Forestry University, Beijing, China
– sequence: 4
  givenname: Linyuan
  orcidid: 0000-0002-8237-7076
  surname: Li
  fullname: Li, Linyuan
  email: lilinyuan@bjfu.edu.cn
  organization: State Forestry and Grassland Administration Key Laboratory of Forest Resources and Environmental Management, Beijing Forestry University, Beijing, China
BookMark eNp9kcGO0zAQhiO0SHQXnmAvljin2HFsx8cqbHe72gWpLVwtJ54UlzQutlvUd-FhcTeFAwdOY43m-zSe_zq7GtwAWXZL8JQQLD88rtaz5Wpa4IJMKSkKhuWrbFIQRnLCKLvKJkRSmZMSl2-y6xC2GPNCSDrJftVu19jBDhtEP6KlNlZHewS09noIHXj07Az0SA8G1W44uv4QrRt0jz7Bwb-U-NP57yg6NGvb1IrQn9BdiHaXnmjuPISIaj24_SkZjsk4926HvoI_oQe7-ZYvIVysaHWme5u4xU5vILzNXne6D_DuUm-yL_O7df2QP32-X9Szp7wtcRVzSTouNAXOhO5aI5gpG6i0aABzRoXERDbEUNaZpuQMuGk46VrBjdCCibagN9li9Bqnt2rv0-7-pJy26qXh_EZpH23bg6oYlRJaig00JWCtmZaiqzgvDOaypMn1fnTtvftxSJ9XW3fw6WJBFUwyQaQgIk3Jcar1LgQPnWpt1OcjRK9trwhW52DVGKw6B6suwSaW_sP-2fj_1O1IWQD4S0hWMc4J_Q07trOY
CODEN IJSTHZ
CitedBy_id crossref_primary_10_1016_j_ecoinf_2024_102706
crossref_primary_10_1016_j_isprsjprs_2023_03_020
crossref_primary_10_1007_s11119_024_10207_z
crossref_primary_10_3390_rs14174317
crossref_primary_10_1109_JSTARS_2024_3450301
crossref_primary_10_34133_remotesensing_0033
crossref_primary_10_1016_j_rse_2024_114118
crossref_primary_10_1016_j_jag_2024_104235
crossref_primary_10_3390_rs14061453
crossref_primary_10_1016_j_asr_2025_02_052
crossref_primary_10_1088_2631_8695_ad6ca7
Cites_doi 10.1016/j.rse.2006.09.013
10.1016/j.compag.2018.02.016
10.1016/S0034-4257(01)00282-6
10.5589/m13-035
10.3390/rs12020283
10.1016/j.isprsjprs.2019.09.009
10.5589/m09-038
10.3390/rs70810017
10.1016/j.foreco.2005.10.056
10.1016/j.isprsjprs.2014.11.007
10.1109/TKDE.2009.191
10.1145/3209811.3212707
10.1016/j.rse.2011.05.010
10.1016/j.rse.2016.02.019
10.1126/science.275.5299.502
10.1016/j.jag.2016.08.009
10.1016/0034-4257(95)00253-7
10.1016/j.rse.2015.10.009
10.1109/JSTARS.2017.2711482
10.1038/s41586-019-0912-1
10.1080/01431160110040323
10.2134/agronj2003.1314
10.3390/rs12040684
10.1016/j.agrformet.2011.07.004
10.1016/j.rse.2010.12.011
10.1016/S0378-1127(97)00026-1
10.1016/j.rse.2018.11.014
10.3390/rs12182925
10.3390/rs11222637
10.1016/j.jag.2017.01.015
10.1109/TGRS.2020.3048493
10.1016/j.isprsjprs.2015.03.014
10.1007/s10113-013-0577-5
10.1016/j.rse.2016.01.015
10.1080/01431161.2015.1084438
10.1016/j.rse.2020.112061
10.3390/rs8060501
10.1016/j.isprsjprs.2020.12.010
10.1023/A:1010933404324
10.3390/rs5062639
10.1109/JSTARS.2015.2401515
10.1080/01431161.2013.833361
10.1016/S0034-4257(01)00292-9
10.1016/j.rse.2020.111716
10.3390/f9100623
10.1016/j.isprsjprs.2010.11.001
10.1038/s41524-020-00392-6
10.1016/j.rse.2021.112353
10.1016/j.gsf.2015.07.003
10.14214/sf.463
10.1016/j.rse.2013.01.013
10.1007/BF02991835
10.1029/2001JD000751
10.14358/PERS.80.9.863
10.1016/j.rse.2021.112438
10.1016/j.rse.2007.02.018
10.1080/01431160903130911
10.1080/17538947.2013.786146
10.3390/rs10091338
10.1016/j.jag.2016.10.007
10.1002/rse2.146
10.1016/S0034-4257(02)00035-4
10.1016/j.ecoinf.2010.03.004
10.1016/j.rse.2019.111347
10.1016/j.rse.2018.11.036
10.1016/j.rse.2018.08.011
10.1016/j.isprsjprs.2019.11.018
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021
DBID 97E
ESBDL
RIA
RIE
AAYXX
CITATION
7UA
8FD
C1K
F1W
FR3
H8D
H96
KR7
L.G
L7M
DOA
DOI 10.1109/JSTARS.2021.3122509
DatabaseName IEEE Xplore (IEEE)
IEEE Xplore Open Access Journals (WRLC)
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Water Resources Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Aerospace Database
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Advanced Technologies Database with Aerospace
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Aerospace Database
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Technology Research Database
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Water Resources Abstracts
Environmental Sciences and Pollution Management
DatabaseTitleList

Aerospace Database
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Geology
Forestry
EISSN 2151-1535
EndPage 10963
ExternalDocumentID oai_doaj_org_article_85399ec30deb4e0aa5a97f8662d06943
10_1109_JSTARS_2021_3122509
9585661
Genre orig-research
GrantInformation_xml – fundername: National Natural Science Foundation of China; National Science Foundation of China
  grantid: 42001279
  funderid: 10.13039/501100001809
– fundername: National Key R&D Program of China
  grantid: 2017YFC0504003-4
  funderid: 10.13039/501100013290
– fundername: National Natural Science Foundation of China
  grantid: 41571332
  funderid: 10.13039/501100001809
GroupedDBID 0R~
29I
4.4
5GY
5VS
6IK
97E
AAFWJ
AAJGR
AASAJ
AAWTH
ABAZT
ABVLG
ACIWK
AENEX
AETIX
AFPKN
AFRAH
AGSQL
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
DU5
EBS
EJD
ESBDL
GROUPED_DOAJ
HZ~
IFIPE
IPLJI
JAVBF
M43
O9-
OCL
OK1
RIA
RIE
RNS
AAYXX
CITATION
RIG
7UA
8FD
C1K
F1W
FR3
H8D
H96
KR7
L.G
L7M
ID FETCH-LOGICAL-c408t-91f67a3e657afcd75d4be8a7be065379019b1d35fdb465e6db61fc76d7a757c23
IEDL.DBID RIE
ISSN 1939-1404
IngestDate Wed Aug 27 01:25:28 EDT 2025
Fri Jul 25 10:52:24 EDT 2025
Tue Jul 01 03:16:19 EDT 2025
Thu Apr 24 22:50:59 EDT 2025
Wed Aug 27 02:26:42 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Language English
License https://creativecommons.org/licenses/by/4.0/legalcode
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c408t-91f67a3e657afcd75d4be8a7be065379019b1d35fdb465e6db61fc76d7a757c23
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-6601-7882
0000-0002-8237-7076
OpenAccessLink https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/document/9585661
PQID 2595719717
PQPubID 75722
PageCount 11
ParticipantIDs doaj_primary_oai_doaj_org_article_85399ec30deb4e0aa5a97f8662d06943
crossref_primary_10_1109_JSTARS_2021_3122509
proquest_journals_2595719717
crossref_citationtrail_10_1109_JSTARS_2021_3122509
ieee_primary_9585661
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20210000
2021-00-00
20210101
2021-01-01
PublicationDateYYYYMMDD 2021-01-01
PublicationDate_xml – year: 2021
  text: 20210000
PublicationDecade 2020
PublicationPlace Piscataway
PublicationPlace_xml – name: Piscataway
PublicationTitle IEEE journal of selected topics in applied earth observations and remote sensing
PublicationTitleAbbrev JSTARS
PublicationYear 2021
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref57
ref13
dimiceli (ref60) 2011
ref56
ref12
ref59
ref15
ref58
ref14
ref53
ref52
ref55
ref11
ref54
ref10
ref16
ref19
ref18
korhonen (ref43) 2009; 55
ref51
ref50
ref46
ref45
ref48
ref47
ref42
ref41
ref44
ref49
ref8
ref9
ref4
ref3
garcía-har (ref17) 2008
ref6
ref5
ref40
ref35
ref34
ref37
ref36
ref31
ref74
ref30
ref33
ref32
gjoreski (ref23) 2016
ref1
ref39
ref38
ref71
ref70
ref72
ref68
ref24
yan (ref73) 2016; 8
ref67
ref26
ref69
ref25
ref64
ref20
ref63
ref66
ref22
reichstein (ref62) 2019; 566
ref65
ref21
stocker (ref2) 2014
(ref7) 2004
ref28
ref27
ref29
ref61
References_xml – ident: ref65
  doi: 10.1016/j.rse.2006.09.013
– ident: ref25
  doi: 10.1016/j.compag.2018.02.016
– ident: ref37
  doi: 10.1016/S0034-4257(01)00282-6
– ident: ref50
  doi: 10.5589/m13-035
– ident: ref33
  doi: 10.3390/rs12020283
– year: 2011
  ident: ref60
  publication-title: Annual Global Automated MODIS Vegetation Continuous Fields (MOD44B) at 250m Spatial Resolution For Data Years Beginning Day 65 2000-2010 Collection 5 Percent Tree Cover
– ident: ref63
  doi: 10.1016/j.isprsjprs.2019.09.009
– ident: ref58
  doi: 10.5589/m09-038
– ident: ref13
  doi: 10.3390/rs70810017
– ident: ref10
  doi: 10.1016/j.foreco.2005.10.056
– ident: ref22
  doi: 10.1016/j.isprsjprs.2014.11.007
– ident: ref32
  doi: 10.1109/TKDE.2009.191
– ident: ref31
  doi: 10.1145/3209811.3212707
– ident: ref52
  doi: 10.1016/j.rse.2011.05.010
– year: 2014
  ident: ref2
  article-title: Climate Change 2013: The physical science basis. contribution of working group I to the fifth assessment report of ipcc the intergovernmental panel on climate change
– ident: ref14
  doi: 10.1016/j.rse.2016.02.019
– ident: ref6
  doi: 10.1126/science.275.5299.502
– ident: ref8
  doi: 10.1016/j.jag.2016.08.009
– ident: ref34
  doi: 10.1016/0034-4257(95)00253-7
– ident: ref61
  doi: 10.1016/j.rse.2015.10.009
– ident: ref20
  doi: 10.1109/JSTARS.2017.2711482
– year: 2008
  ident: ref17
  article-title: Inter-comparison of SEVIRI/MSG and MERIS/ENVISAT biophysical products over Europe and Africa
  publication-title: Proc 2nd MERIS/(A)ATSR User Workshop Frascati
– volume: 566
  start-page: 195
  year: 2019
  ident: ref62
  article-title: Deep learning and process understanding for data-driven earth system science
  publication-title: Nature
  doi: 10.1038/s41586-019-0912-1
– ident: ref30
  doi: 10.1080/01431160110040323
– ident: ref53
  doi: 10.2134/agronj2003.1314
– ident: ref48
  doi: 10.3390/rs12040684
– ident: ref18
  doi: 10.1016/j.agrformet.2011.07.004
– ident: ref21
  doi: 10.1016/j.rse.2010.12.011
– ident: ref51
  doi: 10.1016/S0378-1127(97)00026-1
– volume: 8
  start-page: 1
  year: 2016
  ident: ref73
  article-title: Evaluation of MODIS LAI/FPAR product collection 6. Part 2: Validation and intercomparison
  publication-title: Remote Sens
– ident: ref24
  doi: 10.1016/j.rse.2018.11.014
– ident: ref40
  doi: 10.3390/rs12182925
– ident: ref41
  doi: 10.3390/rs11222637
– ident: ref5
  doi: 10.1016/j.jag.2017.01.015
– year: 2016
  ident: ref23
  article-title: Comparing deep and classical machine learning methods for human activity recognition using wrist accelerometer
  publication-title: Proc the IJCAI-16 Workshop Deep Learn Artif Intell
– ident: ref72
  doi: 10.1109/TGRS.2020.3048493
– ident: ref29
  doi: 10.1016/j.isprsjprs.2015.03.014
– ident: ref4
  doi: 10.1007/s10113-013-0577-5
– ident: ref56
  doi: 10.1016/j.rse.2016.01.015
– ident: ref69
  doi: 10.1080/01431161.2015.1084438
– ident: ref45
  doi: 10.1016/j.rse.2020.112061
– ident: ref44
  doi: 10.3390/rs8060501
– ident: ref27
  doi: 10.1016/j.isprsjprs.2020.12.010
– ident: ref54
  doi: 10.1023/A:1010933404324
– ident: ref38
  doi: 10.3390/rs5062639
– ident: ref39
  doi: 10.1109/JSTARS.2015.2401515
– ident: ref57
  doi: 10.1080/01431161.2013.833361
– ident: ref11
  doi: 10.1016/S0034-4257(01)00292-9
– ident: ref26
  doi: 10.1016/j.rse.2020.111716
– ident: ref55
  doi: 10.3390/f9100623
– ident: ref66
  doi: 10.1016/j.isprsjprs.2010.11.001
– year: 2004
  ident: ref7
  article-title: Global forest resources assessment updata 2005
– ident: ref68
  doi: 10.1038/s41524-020-00392-6
– ident: ref47
  doi: 10.1016/j.rse.2021.112353
– ident: ref67
  doi: 10.1016/j.gsf.2015.07.003
– ident: ref3
  doi: 10.14214/sf.463
– ident: ref35
  doi: 10.1016/j.rse.2013.01.013
– ident: ref9
  doi: 10.1007/BF02991835
– volume: 55
  start-page: 323
  year: 2009
  ident: ref43
  article-title: Automated analysis of in situ canopy images for the estimation of forest canopy cover
  publication-title: Forest Sci
– ident: ref15
  doi: 10.1029/2001JD000751
– ident: ref46
  doi: 10.14358/PERS.80.9.863
– ident: ref74
  doi: 10.1016/j.rse.2021.112438
– ident: ref16
  doi: 10.1016/j.rse.2007.02.018
– ident: ref42
  doi: 10.1080/01431160903130911
– ident: ref59
  doi: 10.1080/17538947.2013.786146
– ident: ref1
  doi: 10.3390/rs10091338
– ident: ref71
  doi: 10.1016/j.jag.2016.10.007
– ident: ref28
  doi: 10.1002/rse2.146
– ident: ref64
  doi: 10.1016/S0034-4257(02)00035-4
– ident: ref12
  doi: 10.1016/j.ecoinf.2010.03.004
– ident: ref19
  doi: 10.1016/j.rse.2019.111347
– ident: ref36
  doi: 10.1016/j.rse.2018.11.036
– ident: ref49
  doi: 10.1016/j.rse.2018.08.011
– ident: ref70
  doi: 10.1016/j.isprsjprs.2019.11.018
SSID ssj0062793
Score 2.3707662
Snippet Forest canopy cover (FCC) plays an important role in many ecological, hydrological and forestry applications. For large-scale applications, FCC is usually...
SourceID doaj
proquest
crossref
ieee
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 10953
SubjectTerms Artificial intelligence
Artificial neural networks
Biological system modeling
Canopies
Canopy
convolutional neural network (CNN)
Convolutional neural networks
Data models
Datasets
FCC
forest canopy cover (FCC)
Forestry
High resolution
Hydrology
Image resolution
Learning
Neural networks
Plant cover
Radiative transfer
Remote sensing
Resolution
Satellite imagery
Simulation
Solid modeling
Spaceborne remote sensing
Three dimensional models
Three-dimensional (3-D) radiative transfer model
Three-dimensional displays
Training
Transfer learning
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZQJSQuCCiIpQXNgWOj5uVHjsvSpXDooaWoN8vP0zapdlOk_S_8WGYc76oSUrn0FCmyJ4nn8zysyTeMfQ5OqWBUWXjTCUxQYlWglzNF7VUTG97F1ie2zwtxft3-uOE3D1p9UU3YRA88LdypIurU4JrSB9uG0hhuOhmVELWnfzYTzyf6vF0yNdlgUSPsMsdQVXanCPL55RVmg3WFSSpCmOoPH_ihRNef-6v8Y5STp1m-Yi9ziAjz6dVes2ehf8Oef0steLeH7A9uYZvaOkDzFS6JW4BMFiSvE8MaqL3ZCkzvYTH0vzO0UCDxcKRLKvyGcYC5c_dEFbHawhludQxeA1Cvzs0IC9MPd1uUgFCH5Xq4hV9hvQUqCynoyH-SClcmMXrivO-3aJk2b9n18uzn4rzIPRYK15ZqRFsXhTRNEFya6LzkvrVBGWkDkdZKjBY6W_mGR29bwYPwVlTRSeGlkVy6unnHDvqhD-8ZGGVt5YRzjkjrLZUpqiqUpY0orXF8xurdimuXCcipD8ZKp0Sk7PSkJk1q0llNM3ayn3Q38W88PvwLqXI_lMiz0w2ElM6Q0v-D1IwdEhD2QjpMqTCMmbHjHTB03ugbjdkjl1WHSfGHp3j0EXtBnzOd8Ryzg3F9Hz5i1DPaTwngfwFx3v6t
  priority: 102
  providerName: Directory of Open Access Journals
Title Combining 3D Radiative Transfer Model and Convolutional Neural Network to Accurately Estimate Forest Canopy Cover From Very High-Resolution Satellite Images
URI https://ieeexplore.ieee.org/document/9585661
https://www.proquest.com/docview/2595719717
https://doaj.org/article/85399ec30deb4e0aa5a97f8662d06943
Volume 14
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwELZKJRAXHi2IhVL5wLHZ5uVHjsvSpSDBoaWot8iP8aXbpNruIm1_S38sM453hQAhTokie-Ion-dhj79h7B04rcHoPPOmkRighCJDK2ey0usqVKIJtY9sn1_l6UX9-VJc7rCj7VkYAIjJZzCm27iX73u3oqWy4wZ9W0mxzgMM3IazWhutK0sVCXbRH2kyooxJDENF3hwjxCdn5xgLlgWGqAhgyj78xQpFsv5UXeUPlRztzOwp-7IZ4ZBecjVeLe3Y3f1G3vi_n_CMPUkOJ58MCHnOdqDbY4-oIieVedtjDz_G2r7rfXaPusHGehG8-sDPiLSAdCGP5izAglPdtDk3nefTvvuRMIuyieAjXmJGOV_2fOLcijgo5mt-gjoEvWLgwyv51HT9zRol4Bzis0V_zb_DYs0p3ySjvYRBKj83kSoU-326RpV3-4JdzE6-TU-zVLwhc3Wul6hEg1SmAimUCc4r4WsL2igLxIar0A1pbOErEbytpQDprSyCU9Iro4RyZfWS7XZ9B68YN9rawknnHLHhW8p_1AXkuQ0orXJixMrNz2xdYjanAhvzNkY4edMOCGgJAW1CwIgdbTvdDMQe_27-nlCybUqs3PEB_t02TfJWE80vuCr3YGvIjRGmUUFLWXo6X1yN2D4hYiskgWHEDjaYa5MGuW0xLBWqaDDafv33Xm_YYxrgsBx0wHaXixW8RQdpaQ_jwsJhnB8_AWBiDso
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1JbxMxFLaqIpYLS0tFoIAPHDvpbF7mGEJDCm0PXVBvltcL6UyVJkjht_Bjec_jRAgQ4jSjkf3Go_n8Fvv5e4S881ZKr2WeOd1wCFBCkYGV01npZBUq1oTaRbbPMz69qj9ds-stcrA5C-O9j8lnfoi3cS_fdXaJS2WHDfi2HGOde2D3WdGf1lrrXV6KSLELHkmTIWlM4hgq8uYQQD46v4BosCwgSAUIY_7hL3Yo0vWn-ip_KOVoaSZPyOl6jH2CydfhcmGG9vtv9I3_-xFPyePkctJRj5FnZMu3O-QB1uTEQm875P7HWN13tUt-gHYwsWIErT7Qc6QtQG1Io0ELfk6xctqM6tbRcdd-S6gF2UjxES8xp5wuOjqydoksFLMVPQItAn6xp_0r6Vi33e0KJMAsopN5d0O_-PmKYsZJhrsJvVR6oSNZKPQ7vgGld_ecXE2OLsfTLJVvyGydywWo0cCFrjxnQgfrBHO18VIL45EPV4Aj0pjCVSw4U3PmuTO8CFZwJ7RgwpbVHtluu9a_IFRLYwrLrbXIh28wA1IWPs9NAGmVZQNSrn-msonbHEtszFSMcfJG9QhQiACVEDAgB5tOtz21x7-bv0eUbJoiL3d8AH9XpWmuJBL9elvlzpva51oz3YggOS8dnjCuBmQXEbERksAwIPtrzKmkQ-4UBKZMFA3E2y__3usteTi9PD1RJ8dnn1-RRzjYfnFon2wv5kv_GtylhXkTZ8lPOeURHg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Combining+3D+Radiative+Transfer+Model+and+Convolutional+Neural+Network+to+Accurately+Estimate+Forest+Canopy+Cover+From+Very+High-Resolution+Satellite+Images&rft.jtitle=IEEE+journal+of+selected+topics+in+applied+earth+observations+and+remote+sensing&rft.au=Jin%2C+Decai&rft.au=Qi%2C+Jianbo&rft.au=Huang%2C+Huaguo&rft.au=Li%2C+Linyuan&rft.date=2021&rft.issn=1939-1404&rft.eissn=2151-1535&rft.volume=14&rft.spage=10953&rft.epage=10963&rft_id=info:doi/10.1109%2FJSTARS.2021.3122509&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_JSTARS_2021_3122509
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1939-1404&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1939-1404&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1939-1404&client=summon