Combining 3D Radiative Transfer Model and Convolutional Neural Network to Accurately Estimate Forest Canopy Cover From Very High-Resolution Satellite Images
Forest canopy cover (FCC) plays an important role in many ecological, hydrological and forestry applications. For large-scale applications, FCC is usually estimated from remotely sensed data by inverting radiative transfer models (RTMs) or using data-driven regressions. In this article, we proposed...
Saved in:
Published in | IEEE journal of selected topics in applied earth observations and remote sensing Vol. 14; pp. 10953 - 10963 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Piscataway
IEEE
2021
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Forest canopy cover (FCC) plays an important role in many ecological, hydrological and forestry applications. For large-scale applications, FCC is usually estimated from remotely sensed data by inverting radiative transfer models (RTMs) or using data-driven regressions. In this article, we proposed a hybrid model, which combines a 3-D RTM and transfer learning-based convolutional neural network (T-CNN), to estimate FCC from very high-resolution satellite images (e.g., Chinese GaoFen-2, 1 m resolution with 4 bands). Unlike common hybrid models that are purely trained with simulation data, T-CNN combines simulation data-based pre-training and actual data-based transfer learning, which is a widely used technique in artificial intelligence for fine-tuning models. The performance of T-CNN was compared with a random forest (RF) model and two general CNN models, including CNN trained with actual dataset only (data-CNN) and CNN trained with RTM simulation data only (RTM-CNN). Results on the independent validation dataset (not used in training stage) showed that T-CNN had higher accuracy (RMSE = 0.121, R 2 = 0.83), compared with RF (RMSE = 0.26, R 2 = 0.61), Data-CNN (RMSE = 0.142, R 2 = 0.81), and RTM-CNN (RMSE = 0.144, R 2 = 0.73), which indicates that T-CNN has a strong transferability. Tests on different training sizes showed that T-CNN (0.084 < RMSE < 0.108) provided constantly better performances than RF (0.116 < RMSE < 0.122) and data-CNN (0.103 < RMSE < 0.128), which demonstrates the potential of T-CNN as an alternative to RTM-based inversion and data-driven regressions to estimate FCC, especially when training data is imbalanced and inadequate. |
---|---|
AbstractList | Forest canopy cover (FCC) plays an important role in many ecological, hydrological and forestry applications. For large-scale applications, FCC is usually estimated from remotely sensed data by inverting radiative transfer models (RTMs) or using data-driven regressions. In this article, we proposed a hybrid model, which combines a 3-D RTM and transfer learning-based convolutional neural network (T-CNN), to estimate FCC from very high-resolution satellite images (e.g., Chinese GaoFen-2, 1 m resolution with 4 bands). Unlike common hybrid models that are purely trained with simulation data, T-CNN combines simulation data-based pre-training and actual data-based transfer learning, which is a widely used technique in artificial intelligence for fine-tuning models. The performance of T-CNN was compared with a random forest (RF) model and two general CNN models, including CNN trained with actual dataset only (data-CNN) and CNN trained with RTM simulation data only (RTM-CNN). Results on the independent validation dataset (not used in training stage) showed that T-CNN had higher accuracy (RMSE = 0.121, R 2 = 0.83), compared with RF (RMSE = 0.26, R 2 = 0.61), Data-CNN (RMSE = 0.142, R 2 = 0.81), and RTM-CNN (RMSE = 0.144, R 2 = 0.73), which indicates that T-CNN has a strong transferability. Tests on different training sizes showed that T-CNN (0.084 < RMSE < 0.108) provided constantly better performances than RF (0.116 < RMSE < 0.122) and data-CNN (0.103 < RMSE < 0.128), which demonstrates the potential of T-CNN as an alternative to RTM-based inversion and data-driven regressions to estimate FCC, especially when training data is imbalanced and inadequate. Forest canopy cover (FCC) plays an important role in many ecological, hydrological and forestry applications. For large-scale applications, FCC is usually estimated from remotely sensed data by inverting radiative transfer models (RTMs) or using data-driven regressions. In this article, we proposed a hybrid model, which combines a 3-D RTM and transfer learning-based convolutional neural network (T-CNN), to estimate FCC from very high-resolution satellite images (e.g., Chinese GaoFen-2, 1 m resolution with 4 bands). Unlike common hybrid models that are purely trained with simulation data, T-CNN combines simulation data-based pre-training and actual data-based transfer learning, which is a widely used technique in artificial intelligence for fine-tuning models. The performance of T-CNN was compared with a random forest (RF) model and two general CNN models, including CNN trained with actual dataset only (data-CNN) and CNN trained with RTM simulation data only (RTM-CNN). Results on the independent validation dataset (not used in training stage) showed that T-CNN had higher accuracy (RMSE = 0.121, R2 = 0.83), compared with RF (RMSE = 0.26, R2 = 0.61), Data-CNN (RMSE = 0.142, R2 = 0.81), and RTM-CNN (RMSE = 0.144, R2 = 0.73), which indicates that T-CNN has a strong transferability. Tests on different training sizes showed that T-CNN (0.084 < RMSE < 0.108) provided constantly better performances than RF (0.116 < RMSE < 0.122) and data-CNN (0.103 < RMSE < 0.128), which demonstrates the potential of T-CNN as an alternative to RTM-based inversion and data-driven regressions to estimate FCC, especially when training data is imbalanced and inadequate. |
Author | Qi, Jianbo Huang, Huaguo Li, Linyuan Jin, Decai |
Author_xml | – sequence: 1 givenname: Decai surname: Jin fullname: Jin, Decai email: redbooks_jdc@gmail.com organization: State Forestry and Grassland Administration Key Laboratory of Forest Resources and Environmental Management, Beijing Forestry University, Beijing, China – sequence: 2 givenname: Jianbo orcidid: 0000-0001-6601-7882 surname: Qi fullname: Qi, Jianbo email: jianboqi@bjfu.edu.cn organization: State Forestry and Grassland Administration Key Laboratory of Forest Resources and Environmental Management, Beijing Forestry University, Beijing, China – sequence: 3 givenname: Huaguo surname: Huang fullname: Huang, Huaguo email: huaguo_huang@bjfu.edu.cn organization: State Forestry and Grassland Administration Key Laboratory of Forest Resources and Environmental Management, Beijing Forestry University, Beijing, China – sequence: 4 givenname: Linyuan orcidid: 0000-0002-8237-7076 surname: Li fullname: Li, Linyuan email: lilinyuan@bjfu.edu.cn organization: State Forestry and Grassland Administration Key Laboratory of Forest Resources and Environmental Management, Beijing Forestry University, Beijing, China |
BookMark | eNp9kcGO0zAQhiO0SHQXnmAvljin2HFsx8cqbHe72gWpLVwtJ54UlzQutlvUd-FhcTeFAwdOY43m-zSe_zq7GtwAWXZL8JQQLD88rtaz5Wpa4IJMKSkKhuWrbFIQRnLCKLvKJkRSmZMSl2-y6xC2GPNCSDrJftVu19jBDhtEP6KlNlZHewS09noIHXj07Az0SA8G1W44uv4QrRt0jz7Bwb-U-NP57yg6NGvb1IrQn9BdiHaXnmjuPISIaj24_SkZjsk4926HvoI_oQe7-ZYvIVysaHWme5u4xU5vILzNXne6D_DuUm-yL_O7df2QP32-X9Szp7wtcRVzSTouNAXOhO5aI5gpG6i0aABzRoXERDbEUNaZpuQMuGk46VrBjdCCibagN9li9Bqnt2rv0-7-pJy26qXh_EZpH23bg6oYlRJaig00JWCtmZaiqzgvDOaypMn1fnTtvftxSJ9XW3fw6WJBFUwyQaQgIk3Jcar1LgQPnWpt1OcjRK9trwhW52DVGKw6B6suwSaW_sP-2fj_1O1IWQD4S0hWMc4J_Q07trOY |
CODEN | IJSTHZ |
CitedBy_id | crossref_primary_10_1016_j_ecoinf_2024_102706 crossref_primary_10_1016_j_isprsjprs_2023_03_020 crossref_primary_10_1007_s11119_024_10207_z crossref_primary_10_3390_rs14174317 crossref_primary_10_1109_JSTARS_2024_3450301 crossref_primary_10_34133_remotesensing_0033 crossref_primary_10_1016_j_rse_2024_114118 crossref_primary_10_1016_j_jag_2024_104235 crossref_primary_10_3390_rs14061453 crossref_primary_10_1016_j_asr_2025_02_052 crossref_primary_10_1088_2631_8695_ad6ca7 |
Cites_doi | 10.1016/j.rse.2006.09.013 10.1016/j.compag.2018.02.016 10.1016/S0034-4257(01)00282-6 10.5589/m13-035 10.3390/rs12020283 10.1016/j.isprsjprs.2019.09.009 10.5589/m09-038 10.3390/rs70810017 10.1016/j.foreco.2005.10.056 10.1016/j.isprsjprs.2014.11.007 10.1109/TKDE.2009.191 10.1145/3209811.3212707 10.1016/j.rse.2011.05.010 10.1016/j.rse.2016.02.019 10.1126/science.275.5299.502 10.1016/j.jag.2016.08.009 10.1016/0034-4257(95)00253-7 10.1016/j.rse.2015.10.009 10.1109/JSTARS.2017.2711482 10.1038/s41586-019-0912-1 10.1080/01431160110040323 10.2134/agronj2003.1314 10.3390/rs12040684 10.1016/j.agrformet.2011.07.004 10.1016/j.rse.2010.12.011 10.1016/S0378-1127(97)00026-1 10.1016/j.rse.2018.11.014 10.3390/rs12182925 10.3390/rs11222637 10.1016/j.jag.2017.01.015 10.1109/TGRS.2020.3048493 10.1016/j.isprsjprs.2015.03.014 10.1007/s10113-013-0577-5 10.1016/j.rse.2016.01.015 10.1080/01431161.2015.1084438 10.1016/j.rse.2020.112061 10.3390/rs8060501 10.1016/j.isprsjprs.2020.12.010 10.1023/A:1010933404324 10.3390/rs5062639 10.1109/JSTARS.2015.2401515 10.1080/01431161.2013.833361 10.1016/S0034-4257(01)00292-9 10.1016/j.rse.2020.111716 10.3390/f9100623 10.1016/j.isprsjprs.2010.11.001 10.1038/s41524-020-00392-6 10.1016/j.rse.2021.112353 10.1016/j.gsf.2015.07.003 10.14214/sf.463 10.1016/j.rse.2013.01.013 10.1007/BF02991835 10.1029/2001JD000751 10.14358/PERS.80.9.863 10.1016/j.rse.2021.112438 10.1016/j.rse.2007.02.018 10.1080/01431160903130911 10.1080/17538947.2013.786146 10.3390/rs10091338 10.1016/j.jag.2016.10.007 10.1002/rse2.146 10.1016/S0034-4257(02)00035-4 10.1016/j.ecoinf.2010.03.004 10.1016/j.rse.2019.111347 10.1016/j.rse.2018.11.036 10.1016/j.rse.2018.08.011 10.1016/j.isprsjprs.2019.11.018 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021 |
DBID | 97E ESBDL RIA RIE AAYXX CITATION 7UA 8FD C1K F1W FR3 H8D H96 KR7 L.G L7M DOA |
DOI | 10.1109/JSTARS.2021.3122509 |
DatabaseName | IEEE Xplore (IEEE) IEEE Xplore Open Access Journals (WRLC) IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Water Resources Abstracts Technology Research Database Environmental Sciences and Pollution Management ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database Aerospace Database Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources Civil Engineering Abstracts Aquatic Science & Fisheries Abstracts (ASFA) Professional Advanced Technologies Database with Aerospace DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef Aerospace Database Civil Engineering Abstracts Aquatic Science & Fisheries Abstracts (ASFA) Professional Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources Technology Research Database ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database Advanced Technologies Database with Aerospace Water Resources Abstracts Environmental Sciences and Pollution Management |
DatabaseTitleList | Aerospace Database |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Geology Forestry |
EISSN | 2151-1535 |
EndPage | 10963 |
ExternalDocumentID | oai_doaj_org_article_85399ec30deb4e0aa5a97f8662d06943 10_1109_JSTARS_2021_3122509 9585661 |
Genre | orig-research |
GrantInformation_xml | – fundername: National Natural Science Foundation of China; National Science Foundation of China grantid: 42001279 funderid: 10.13039/501100001809 – fundername: National Key R&D Program of China grantid: 2017YFC0504003-4 funderid: 10.13039/501100013290 – fundername: National Natural Science Foundation of China grantid: 41571332 funderid: 10.13039/501100001809 |
GroupedDBID | 0R~ 29I 4.4 5GY 5VS 6IK 97E AAFWJ AAJGR AASAJ AAWTH ABAZT ABVLG ACIWK AENEX AETIX AFPKN AFRAH AGSQL ALMA_UNASSIGNED_HOLDINGS BEFXN BFFAM BGNUA BKEBE BPEOZ DU5 EBS EJD ESBDL GROUPED_DOAJ HZ~ IFIPE IPLJI JAVBF M43 O9- OCL OK1 RIA RIE RNS AAYXX CITATION RIG 7UA 8FD C1K F1W FR3 H8D H96 KR7 L.G L7M |
ID | FETCH-LOGICAL-c408t-91f67a3e657afcd75d4be8a7be065379019b1d35fdb465e6db61fc76d7a757c23 |
IEDL.DBID | RIE |
ISSN | 1939-1404 |
IngestDate | Wed Aug 27 01:25:28 EDT 2025 Fri Jul 25 10:52:24 EDT 2025 Tue Jul 01 03:16:19 EDT 2025 Thu Apr 24 22:50:59 EDT 2025 Wed Aug 27 02:26:42 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Language | English |
License | https://creativecommons.org/licenses/by/4.0/legalcode |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c408t-91f67a3e657afcd75d4be8a7be065379019b1d35fdb465e6db61fc76d7a757c23 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0001-6601-7882 0000-0002-8237-7076 |
OpenAccessLink | https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/document/9585661 |
PQID | 2595719717 |
PQPubID | 75722 |
PageCount | 11 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_85399ec30deb4e0aa5a97f8662d06943 crossref_primary_10_1109_JSTARS_2021_3122509 proquest_journals_2595719717 crossref_citationtrail_10_1109_JSTARS_2021_3122509 ieee_primary_9585661 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20210000 2021-00-00 20210101 2021-01-01 |
PublicationDateYYYYMMDD | 2021-01-01 |
PublicationDate_xml | – year: 2021 text: 20210000 |
PublicationDecade | 2020 |
PublicationPlace | Piscataway |
PublicationPlace_xml | – name: Piscataway |
PublicationTitle | IEEE journal of selected topics in applied earth observations and remote sensing |
PublicationTitleAbbrev | JSTARS |
PublicationYear | 2021 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref57 ref13 dimiceli (ref60) 2011 ref56 ref12 ref59 ref15 ref58 ref14 ref53 ref52 ref55 ref11 ref54 ref10 ref16 ref19 ref18 korhonen (ref43) 2009; 55 ref51 ref50 ref46 ref45 ref48 ref47 ref42 ref41 ref44 ref49 ref8 ref9 ref4 ref3 garcía-har (ref17) 2008 ref6 ref5 ref40 ref35 ref34 ref37 ref36 ref31 ref74 ref30 ref33 ref32 gjoreski (ref23) 2016 ref1 ref39 ref38 ref71 ref70 ref72 ref68 ref24 yan (ref73) 2016; 8 ref67 ref26 ref69 ref25 ref64 ref20 ref63 ref66 ref22 reichstein (ref62) 2019; 566 ref65 ref21 stocker (ref2) 2014 (ref7) 2004 ref28 ref27 ref29 ref61 |
References_xml | – ident: ref65 doi: 10.1016/j.rse.2006.09.013 – ident: ref25 doi: 10.1016/j.compag.2018.02.016 – ident: ref37 doi: 10.1016/S0034-4257(01)00282-6 – ident: ref50 doi: 10.5589/m13-035 – ident: ref33 doi: 10.3390/rs12020283 – year: 2011 ident: ref60 publication-title: Annual Global Automated MODIS Vegetation Continuous Fields (MOD44B) at 250m Spatial Resolution For Data Years Beginning Day 65 2000-2010 Collection 5 Percent Tree Cover – ident: ref63 doi: 10.1016/j.isprsjprs.2019.09.009 – ident: ref58 doi: 10.5589/m09-038 – ident: ref13 doi: 10.3390/rs70810017 – ident: ref10 doi: 10.1016/j.foreco.2005.10.056 – ident: ref22 doi: 10.1016/j.isprsjprs.2014.11.007 – ident: ref32 doi: 10.1109/TKDE.2009.191 – ident: ref31 doi: 10.1145/3209811.3212707 – ident: ref52 doi: 10.1016/j.rse.2011.05.010 – year: 2014 ident: ref2 article-title: Climate Change 2013: The physical science basis. contribution of working group I to the fifth assessment report of ipcc the intergovernmental panel on climate change – ident: ref14 doi: 10.1016/j.rse.2016.02.019 – ident: ref6 doi: 10.1126/science.275.5299.502 – ident: ref8 doi: 10.1016/j.jag.2016.08.009 – ident: ref34 doi: 10.1016/0034-4257(95)00253-7 – ident: ref61 doi: 10.1016/j.rse.2015.10.009 – ident: ref20 doi: 10.1109/JSTARS.2017.2711482 – year: 2008 ident: ref17 article-title: Inter-comparison of SEVIRI/MSG and MERIS/ENVISAT biophysical products over Europe and Africa publication-title: Proc 2nd MERIS/(A)ATSR User Workshop Frascati – volume: 566 start-page: 195 year: 2019 ident: ref62 article-title: Deep learning and process understanding for data-driven earth system science publication-title: Nature doi: 10.1038/s41586-019-0912-1 – ident: ref30 doi: 10.1080/01431160110040323 – ident: ref53 doi: 10.2134/agronj2003.1314 – ident: ref48 doi: 10.3390/rs12040684 – ident: ref18 doi: 10.1016/j.agrformet.2011.07.004 – ident: ref21 doi: 10.1016/j.rse.2010.12.011 – ident: ref51 doi: 10.1016/S0378-1127(97)00026-1 – volume: 8 start-page: 1 year: 2016 ident: ref73 article-title: Evaluation of MODIS LAI/FPAR product collection 6. Part 2: Validation and intercomparison publication-title: Remote Sens – ident: ref24 doi: 10.1016/j.rse.2018.11.014 – ident: ref40 doi: 10.3390/rs12182925 – ident: ref41 doi: 10.3390/rs11222637 – ident: ref5 doi: 10.1016/j.jag.2017.01.015 – year: 2016 ident: ref23 article-title: Comparing deep and classical machine learning methods for human activity recognition using wrist accelerometer publication-title: Proc the IJCAI-16 Workshop Deep Learn Artif Intell – ident: ref72 doi: 10.1109/TGRS.2020.3048493 – ident: ref29 doi: 10.1016/j.isprsjprs.2015.03.014 – ident: ref4 doi: 10.1007/s10113-013-0577-5 – ident: ref56 doi: 10.1016/j.rse.2016.01.015 – ident: ref69 doi: 10.1080/01431161.2015.1084438 – ident: ref45 doi: 10.1016/j.rse.2020.112061 – ident: ref44 doi: 10.3390/rs8060501 – ident: ref27 doi: 10.1016/j.isprsjprs.2020.12.010 – ident: ref54 doi: 10.1023/A:1010933404324 – ident: ref38 doi: 10.3390/rs5062639 – ident: ref39 doi: 10.1109/JSTARS.2015.2401515 – ident: ref57 doi: 10.1080/01431161.2013.833361 – ident: ref11 doi: 10.1016/S0034-4257(01)00292-9 – ident: ref26 doi: 10.1016/j.rse.2020.111716 – ident: ref55 doi: 10.3390/f9100623 – ident: ref66 doi: 10.1016/j.isprsjprs.2010.11.001 – year: 2004 ident: ref7 article-title: Global forest resources assessment updata 2005 – ident: ref68 doi: 10.1038/s41524-020-00392-6 – ident: ref47 doi: 10.1016/j.rse.2021.112353 – ident: ref67 doi: 10.1016/j.gsf.2015.07.003 – ident: ref3 doi: 10.14214/sf.463 – ident: ref35 doi: 10.1016/j.rse.2013.01.013 – ident: ref9 doi: 10.1007/BF02991835 – volume: 55 start-page: 323 year: 2009 ident: ref43 article-title: Automated analysis of in situ canopy images for the estimation of forest canopy cover publication-title: Forest Sci – ident: ref15 doi: 10.1029/2001JD000751 – ident: ref46 doi: 10.14358/PERS.80.9.863 – ident: ref74 doi: 10.1016/j.rse.2021.112438 – ident: ref16 doi: 10.1016/j.rse.2007.02.018 – ident: ref42 doi: 10.1080/01431160903130911 – ident: ref59 doi: 10.1080/17538947.2013.786146 – ident: ref1 doi: 10.3390/rs10091338 – ident: ref71 doi: 10.1016/j.jag.2016.10.007 – ident: ref28 doi: 10.1002/rse2.146 – ident: ref64 doi: 10.1016/S0034-4257(02)00035-4 – ident: ref12 doi: 10.1016/j.ecoinf.2010.03.004 – ident: ref19 doi: 10.1016/j.rse.2019.111347 – ident: ref36 doi: 10.1016/j.rse.2018.11.036 – ident: ref49 doi: 10.1016/j.rse.2018.08.011 – ident: ref70 doi: 10.1016/j.isprsjprs.2019.11.018 |
SSID | ssj0062793 |
Score | 2.3707662 |
Snippet | Forest canopy cover (FCC) plays an important role in many ecological, hydrological and forestry applications. For large-scale applications, FCC is usually... |
SourceID | doaj proquest crossref ieee |
SourceType | Open Website Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 10953 |
SubjectTerms | Artificial intelligence Artificial neural networks Biological system modeling Canopies Canopy convolutional neural network (CNN) Convolutional neural networks Data models Datasets FCC forest canopy cover (FCC) Forestry High resolution Hydrology Image resolution Learning Neural networks Plant cover Radiative transfer Remote sensing Resolution Satellite imagery Simulation Solid modeling Spaceborne remote sensing Three dimensional models Three-dimensional (3-D) radiative transfer model Three-dimensional displays Training Transfer learning |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZQJSQuCCiIpQXNgWOj5uVHjsvSpXDooaWoN8vP0zapdlOk_S_8WGYc76oSUrn0FCmyJ4nn8zysyTeMfQ5OqWBUWXjTCUxQYlWglzNF7VUTG97F1ie2zwtxft3-uOE3D1p9UU3YRA88LdypIurU4JrSB9uG0hhuOhmVELWnfzYTzyf6vF0yNdlgUSPsMsdQVXanCPL55RVmg3WFSSpCmOoPH_ihRNef-6v8Y5STp1m-Yi9ziAjz6dVes2ehf8Oef0steLeH7A9uYZvaOkDzFS6JW4BMFiSvE8MaqL3ZCkzvYTH0vzO0UCDxcKRLKvyGcYC5c_dEFbHawhludQxeA1Cvzs0IC9MPd1uUgFCH5Xq4hV9hvQUqCynoyH-SClcmMXrivO-3aJk2b9n18uzn4rzIPRYK15ZqRFsXhTRNEFya6LzkvrVBGWkDkdZKjBY6W_mGR29bwYPwVlTRSeGlkVy6unnHDvqhD-8ZGGVt5YRzjkjrLZUpqiqUpY0orXF8xurdimuXCcipD8ZKp0Sk7PSkJk1q0llNM3ayn3Q38W88PvwLqXI_lMiz0w2ElM6Q0v-D1IwdEhD2QjpMqTCMmbHjHTB03ugbjdkjl1WHSfGHp3j0EXtBnzOd8Ryzg3F9Hz5i1DPaTwngfwFx3v6t priority: 102 providerName: Directory of Open Access Journals |
Title | Combining 3D Radiative Transfer Model and Convolutional Neural Network to Accurately Estimate Forest Canopy Cover From Very High-Resolution Satellite Images |
URI | https://ieeexplore.ieee.org/document/9585661 https://www.proquest.com/docview/2595719717 https://doaj.org/article/85399ec30deb4e0aa5a97f8662d06943 |
Volume | 14 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwELZKJRAXHi2IhVL5wLHZ5uVHjsvSpSDBoaWot8iP8aXbpNruIm1_S38sM453hQAhTokie-Ion-dhj79h7B04rcHoPPOmkRighCJDK2ey0usqVKIJtY9sn1_l6UX9-VJc7rCj7VkYAIjJZzCm27iX73u3oqWy4wZ9W0mxzgMM3IazWhutK0sVCXbRH2kyooxJDENF3hwjxCdn5xgLlgWGqAhgyj78xQpFsv5UXeUPlRztzOwp-7IZ4ZBecjVeLe3Y3f1G3vi_n_CMPUkOJ58MCHnOdqDbY4-oIieVedtjDz_G2r7rfXaPusHGehG8-sDPiLSAdCGP5izAglPdtDk3nefTvvuRMIuyieAjXmJGOV_2fOLcijgo5mt-gjoEvWLgwyv51HT9zRol4Bzis0V_zb_DYs0p3ySjvYRBKj83kSoU-326RpV3-4JdzE6-TU-zVLwhc3Wul6hEg1SmAimUCc4r4WsL2igLxIar0A1pbOErEbytpQDprSyCU9Iro4RyZfWS7XZ9B68YN9rawknnHLHhW8p_1AXkuQ0orXJixMrNz2xdYjanAhvzNkY4edMOCGgJAW1CwIgdbTvdDMQe_27-nlCybUqs3PEB_t02TfJWE80vuCr3YGvIjRGmUUFLWXo6X1yN2D4hYiskgWHEDjaYa5MGuW0xLBWqaDDafv33Xm_YYxrgsBx0wHaXixW8RQdpaQ_jwsJhnB8_AWBiDso |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1JbxMxFLaqIpYLS0tFoIAPHDvpbF7mGEJDCm0PXVBvltcL6UyVJkjht_Bjec_jRAgQ4jSjkf3Go_n8Fvv5e4S881ZKr2WeOd1wCFBCkYGV01npZBUq1oTaRbbPMz69qj9ds-stcrA5C-O9j8lnfoi3cS_fdXaJS2WHDfi2HGOde2D3WdGf1lrrXV6KSLELHkmTIWlM4hgq8uYQQD46v4BosCwgSAUIY_7hL3Yo0vWn-ip_KOVoaSZPyOl6jH2CydfhcmGG9vtv9I3_-xFPyePkctJRj5FnZMu3O-QB1uTEQm875P7HWN13tUt-gHYwsWIErT7Qc6QtQG1Io0ELfk6xctqM6tbRcdd-S6gF2UjxES8xp5wuOjqydoksFLMVPQItAn6xp_0r6Vi33e0KJMAsopN5d0O_-PmKYsZJhrsJvVR6oSNZKPQ7vgGld_ecXE2OLsfTLJVvyGydywWo0cCFrjxnQgfrBHO18VIL45EPV4Aj0pjCVSw4U3PmuTO8CFZwJ7RgwpbVHtluu9a_IFRLYwrLrbXIh28wA1IWPs9NAGmVZQNSrn-msonbHEtszFSMcfJG9QhQiACVEDAgB5tOtz21x7-bv0eUbJoiL3d8AH9XpWmuJBL9elvlzpva51oz3YggOS8dnjCuBmQXEbERksAwIPtrzKmkQ-4UBKZMFA3E2y__3usteTi9PD1RJ8dnn1-RRzjYfnFon2wv5kv_GtylhXkTZ8lPOeURHg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Combining+3D+Radiative+Transfer+Model+and+Convolutional+Neural+Network+to+Accurately+Estimate+Forest+Canopy+Cover+From+Very+High-Resolution+Satellite+Images&rft.jtitle=IEEE+journal+of+selected+topics+in+applied+earth+observations+and+remote+sensing&rft.au=Jin%2C+Decai&rft.au=Qi%2C+Jianbo&rft.au=Huang%2C+Huaguo&rft.au=Li%2C+Linyuan&rft.date=2021&rft.issn=1939-1404&rft.eissn=2151-1535&rft.volume=14&rft.spage=10953&rft.epage=10963&rft_id=info:doi/10.1109%2FJSTARS.2021.3122509&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_JSTARS_2021_3122509 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1939-1404&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1939-1404&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1939-1404&client=summon |