Predicting school performance and early risk of failure from an intelligent tutoring system

In many rural Indian schools, English is a second language for teachers and students. Intelligent tutoring systems have good potential because they enable students to learn at their own pace, in an exploratory manner. This paper describes a 3-year longitudinal study of 2123 Indian students who used...

Full description

Saved in:
Bibliographic Details
Published inEducation and information technologies Vol. 25; no. 5; pp. 3995 - 4013
Main Authors Haridas, Mithun, Gutjahr, Georg, Raman, Raghu, Ramaraju, Rudraraju, Nedungadi, Prema
Format Journal Article
LanguageEnglish
Published New York Springer US 01.09.2020
Springer
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
Abstract In many rural Indian schools, English is a second language for teachers and students. Intelligent tutoring systems have good potential because they enable students to learn at their own pace, in an exploratory manner. This paper describes a 3-year longitudinal study of 2123 Indian students who used the intelligent tutoring system, AmritaITS. The aim of the study was to use the students’ interaction logs with AmritaITS to: (1) predict student performance, in English and Mathematics subjects, via summative and formative assessments, (2) predict students who may be at risk of failing the final examination and (3) screen students who may have reading difficulties. The prediction models for summative assessments were significantly improved by formative assessments scores, along with AmritaITS logs. The receiver operating characteristic (ROC) curve showed that students at risk of failing a class could be identified early, with high sensitivity and specificity. The models also provide recommendations for the amount of time required for students to use the system, and reach the appropriate grade level. Finally, the models demonstrated promise in identifying students who might be at risk of suffering from reading difficulties.
AbstractList In many rural Indian schools, English is a second language for teachers and students. Intelligent tutoring systems have good potential because they enable students to learn at their own pace, in an exploratory manner. This paper describes a 3-year longitudinal study of 2123 Indian students who used the intelligent tutoring system, AmritaITS. The aim of the study was to use the students' interaction logs with AmritaITS to: (1) predict student performance, in English and Mathematics subjects, via summative and formative assessments, (2) predict students who may be at risk of failing the final examination and (3) screen students who may have reading difficulties. The prediction models for summative assessments were significantly improved by formative assessments scores, along with AmritaITS logs. The receiver operating characteristic (ROC) curve showed that students at risk of failing a class could be identified early, with high sensitivity and specificity. The models also provide recommendations for the amount of time required for students to use the system, and reach the appropriate grade level. Finally, the models demonstrated promise in identifying students who might be at risk of suffering from reading difficulties.
Audience Academic
Author Ramaraju, Rudraraju
Haridas, Mithun
Gutjahr, Georg
Nedungadi, Prema
Raman, Raghu
Author_xml – sequence: 1
  givenname: Mithun
  surname: Haridas
  fullname: Haridas, Mithun
  email: mithunh@am.amrita.edu
  organization: Center for Research in Analytics and Technologies for Education (CREATE), Amrita Vishwa Vidyapeetham
– sequence: 2
  givenname: Georg
  surname: Gutjahr
  fullname: Gutjahr, Georg
  organization: Center for Research in Analytics and Technologies for Education (CREATE), Amrita Vishwa Vidyapeetham
– sequence: 3
  givenname: Raghu
  surname: Raman
  fullname: Raman, Raghu
  organization: School of Business, Amrita Vishwa Vidyapeetham
– sequence: 4
  givenname: Rudraraju
  surname: Ramaraju
  fullname: Ramaraju, Rudraraju
  organization: UAB School of Medicine, University of Alabama
– sequence: 5
  givenname: Prema
  surname: Nedungadi
  fullname: Nedungadi, Prema
  organization: Center for Research in Analytics and Technologies for Education (CREATE), Amrita Vishwa Vidyapeetham
BackLink http://eric.ed.gov/ERICWebPortal/detail?accno=EJ1266207$$DView record in ERIC
BookMark eNp9kU9r3DAQxU1JoUmaL1AoCHp2OiNpLfsYQvqPQHNITzkIWR5tldrSVtIe9ttXiVtCSwk6SOi93xuYd9IchRioad4gnCOAep8ROjG0wKFFQClbeNEc40aJVnXQH9W36KDlYqNeNSc53wPAoCQ_bu5uEk3eFh-2LNvvMc5sR8nFtJhgiZkwMTJpPrDk8w8WHXPGz_tEzKW4VJn5UGie_ZZCYWVfYnpMOuRCy-vmpTNzprPf92nz7cPV7eWn9vrrx8-XF9etldCXdkBhkfedFWPPuR37aeJ8wFGMo-wRJ-TOKSvVqIg6O1qrkGBA6ToheppInDbv1txdij_3lIu-j_sU6kjNpegEbgD5k2trZtI-uFiSsYvPVl8oFAr5ILG6zv_jqmeixdu6dOfr_1_A2xWg5K3eJb-YdNBXX5B3HQdV9X7VbYo5J3La-mKKj6EG-1kj6IcG9dqgrg3qxwY1VJT_g_6JfxYSK5R3D1VQelrGM9Qv5LOt5g
CitedBy_id crossref_primary_10_1007_s10639_022_11120_6
crossref_primary_10_1109_ACCESS_2024_3363634
crossref_primary_10_1007_s40593_024_00434_w
crossref_primary_10_1016_j_eswa_2023_120604
crossref_primary_10_1016_j_joitmc_2024_100430
crossref_primary_10_1080_23311886_2023_2299134
crossref_primary_10_3390_s21206783
crossref_primary_10_1007_s10639_021_10738_2
crossref_primary_10_1007_s11409_023_09346_x
crossref_primary_10_1109_ACCESS_2024_3496318
crossref_primary_10_1109_TLT_2024_3396393
Cites_doi 10.1177/0013164408318758
10.18608/jla.2014.11.6
10.1037/a0037123
10.1007/s11257-009-9063-7
10.3102/0034654315581420
10.1109/ICEIT.2010.5607608
10.2307/2685660
10.1007/978-0-387-84858-7
10.7899/jce-14-12
10.1007/11774303_4
10.1007/978-3-7091-2670-7_25
10.7763/ijmlc.2013.v3.307
10.1007/s11423-012-9250-9
10.1093/acprof:oso/9780195152968.001.0001
10.1109/ICCCN.2012.6289249
10.1109/MITE.2017.00030
10.1007/978-3-642-48425-4_2
10.1007/BF00849556
10.1007/s40593-014-0024-x
10.1007/978-3-319-24277-4
10.1111/jcpp.12488
10.1016/j.patrec.2005.10.010
10.4103/IJPSYM.IJPSYM_86_18
10.1111/j.1600-0587.2012.07348.x
10.1109/CCIP.2015.7100688
10.1007/978-3-642-21869-9_49
10.4108/eai.16-5-2016.2263338
10.2196/resprot.9583
10.1109/TLT.2009.17
ContentType Journal Article
Copyright Springer Science+Business Media, LLC, part of Springer Nature 2020
COPYRIGHT 2020 Springer
Springer Science+Business Media, LLC, part of Springer Nature 2020.
Copyright_xml – notice: Springer Science+Business Media, LLC, part of Springer Nature 2020
– notice: COPYRIGHT 2020 Springer
– notice: Springer Science+Business Media, LLC, part of Springer Nature 2020.
DBID AAYXX
CITATION
7SW
BJH
BNH
BNI
BNJ
BNO
ERI
PET
REK
WWN
0-V
3V.
7XB
88B
8FK
8G5
ABUWG
AFKRA
AHOVV
ALSLI
AZQEC
BENPR
CCPQU
CJNVE
DWQXO
GNUQQ
GUQSH
M0P
M2O
MBDVC
PHGZM
PHGZT
PKEHL
PQEDU
PQEST
PQQKQ
PQUKI
PRINS
Q9U
DOI 10.1007/s10639-020-10144-0
DatabaseName CrossRef
ERIC
ERIC (Ovid)
ERIC
ERIC
ERIC (Legacy Platform)
ERIC( SilverPlatter )
ERIC
ERIC PlusText (Legacy Platform)
Education Resources Information Center (ERIC)
ERIC
ProQuest Social Sciences Premium Collection
ProQuest Central (Corporate)
ProQuest Central (purchase pre-March 2016)
Education Database (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Research Library
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Education Research Index
Social Science Premium Collection
ProQuest Central Essentials
ProQuest Central
ProQuest One
Education Collection
ProQuest Central Korea
ProQuest Central Student
ProQuest Research Library
Education Database
Research Library
Research Library (Corporate)
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest One Academic Middle East (New)
ProQuest One Education
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
DatabaseTitle CrossRef
ERIC
ProQuest One Education
Social Science Premium Collection
Education Collection
Research Library Prep
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Basic
ProQuest Education Journals
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
ProQuest One Community College
Research Library (Alumni Edition)
ProQuest Central China
ProQuest Central
ProQuest Social Sciences Premium Collection
ProQuest One Academic UKI Edition
ProQuest Central Korea
ProQuest Research Library
ProQuest Central (New)
ProQuest One Academic
ProQuest Education Journals (Alumni Edition)
ProQuest One Academic (New)
ProQuest Central (Alumni)
DatabaseTitleList ERIC

ProQuest One Education

Database_xml – sequence: 1
  dbid: ERI
  name: ERIC
  url: https://eric.ed.gov/
  sourceTypes: Index Database
– sequence: 2
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Education
Computer Science
EISSN 1573-7608
ERIC EJ1266207
EndPage 4013
ExternalDocumentID A713712941
EJ1266207
10_1007_s10639_020_10144_0
GeographicLocations India
United Kingdom
GeographicLocations_xml – name: India
– name: United Kingdom
GroupedDBID -4Z
-59
-5G
-BR
-EM
-W8
-Y2
-~C
.86
.GO
.VR
0-V
06D
0R~
0VY
1N0
1SB
2.D
203
28-
29G
2J2
2JN
2JY
2KG
2LR
2P1
2VQ
2~H
30V
3V.
4.4
406
408
409
40D
40E
5GY
5QI
5VS
67Z
6NX
8G5
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAHSB
AAIAL
AAJBT
AAJKR
AANZL
AAOBN
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYOK
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTD
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABOPQ
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACAOD
ACDTI
ACGFO
ACGFS
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACREN
ACSNA
ACYUM
ACZOJ
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADMLS
ADRFC
ADTPH
ADURQ
ADYFF
ADYOE
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFGCZ
AFKRA
AFLOW
AFQWF
AFWTZ
AFYQB
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALSLI
ALWAN
AMKLP
AMTXH
AMXSW
AMYLF
AMYQR
AOCGG
ARALO
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
AZQEC
B-.
BA0
BBWZM
BDATZ
BENPR
BGNMA
BPHCQ
BSONS
CAG
CCPQU
CJNVE
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
DWQXO
EBLON
EBS
EDJ
EIOEI
EJD
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ6
GQ7
GQ8
GUQSH
GXS
H13
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I09
IAO
ICD
IEA
IER
IHE
IJ-
IKXTQ
ITC
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KDC
KOV
KOW
LAK
LLZTM
M0P
M2O
M4Y
MA-
MK~
ML~
N2Q
NB0
NDZJH
NPVJJ
NQJWS
NU0
O-J
O9-
O93
O9G
O9I
O9J
OAM
OVD
P19
P2P
P9O
PF0
PQEDU
PQQKQ
PROAC
PT4
PT5
Q2X
QOK
QOS
R-Y
R4E
R89
R9I
RHV
RNI
ROL
RPX
RSV
RZC
RZD
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCJ
SCLPG
SCO
SDH
SDM
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TEORI
TSG
TSK
TSV
TUC
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK6
WK8
YLTOR
Z45
Z81
Z83
Z88
ZMTXR
~A9
~EX
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ACMFV
ACSTC
ADHKG
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
7SW
ABRTQ
BJH
BNH
BNI
BNJ
BNO
ERI
PET
PUEGO
REK
WWN
AEIIB
PMFND
7XB
8FK
AHOVV
MBDVC
PKEHL
PQEST
PQUKI
PRINS
Q9U
ID FETCH-LOGICAL-c408t-913c1286c3b822cb8dd2291b3bb4811d12ff7c47b7ee6cbcc71e0914f6338ede3
IEDL.DBID BENPR
ISSN 1360-2357
IngestDate Sat Aug 23 13:13:55 EDT 2025
Tue Jun 17 21:43:30 EDT 2025
Tue Jun 10 20:35:27 EDT 2025
Tue Sep 02 19:28:19 EDT 2025
Tue Jul 01 04:15:35 EDT 2025
Thu Apr 24 23:07:07 EDT 2025
Fri Feb 21 02:34:46 EST 2025
IsDoiOpenAccess false
IsOpenAccess false
IsPeerReviewed true
IsScholarly true
Issue 5
Keywords Rural education
Reading difficulties
Longitudinal analysis
Student performance
Intelligent tutoring system
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c408t-913c1286c3b822cb8dd2291b3bb4811d12ff7c47b7ee6cbcc71e0914f6338ede3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2436315012
PQPubID 55384
PageCount 19
ParticipantIDs proquest_journals_2436315012
gale_infotracmisc_A713712941
gale_infotracacademiconefile_A713712941
eric_primary_EJ1266207
crossref_citationtrail_10_1007_s10639_020_10144_0
crossref_primary_10_1007_s10639_020_10144_0
springer_journals_10_1007_s10639_020_10144_0
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20200900
2020-09-00
20200901
PublicationDateYYYYMMDD 2020-09-01
PublicationDate_xml – month: 9
  year: 2020
  text: 20200900
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationSubtitle The Official Journal of the IFIP Technical Committee on Education
PublicationTitle Education and information technologies
PublicationTitleAbbrev Educ Inf Technol
PublicationYear 2020
Publisher Springer US
Springer
Springer Nature B.V
Publisher_xml – name: Springer US
– name: Springer
– name: Springer Nature B.V
References Carroll, J. M., Solity, J., & Shapiro, L. R. (2016). Predicting dyslexia using prereading skills: The role of sensorimotor and cognitive abilities. Journal of Child Psychology and Psychiatry, and Allied Disciplines. https://doi.org/10.1111/jcpp.12488.
Feng, M., Heffernan, N., & Koedinger, K. (2009b). Addressing the assessment challenge with an online system that tutors as it assesses. User Modeling and User-Adapted Interaction. https://doi.org/10.1007/s11257-009-9063-7.
Feng, M., Heffernan, N. T., Heffernan, C., & Mani, M. (2009a). Using mixed-effects modeling to analyze different grain-sized skill models in an intelligent tutoring system. In IEEE Transactions on Learning Technologies. https://doi.org/10.1109/TLT.2009.17.
Ma, W., Adesope, O. O., Nesbit, J. C., & Liu, Q. (2014). Intelligent tutoring systems and learning outcomes: A meta-analysis. Journal of Educational Psychology. https://doi.org/10.1037/a0037123.
MandalPKTowards positing a paradigm for continuous and comprehensive evaluation in social sciencesJournal of Indian Education2010364352
VanLehn, K. (2006). The behavior of tutoring systems. International Journal of Artifical Intelligence in Education.
Hastie, T., Tibshirani, R., Friedman, J. (2009). The elements of statistical learning the elements of statistical LearningData mining, inference, and prediction, Second Edition. Book. https://doi.org/10.1007/978-0-387-84858-7.
Heffernan, N. T., & Heffernan, C. L. (2014). The ASSISTments ecosystem: Building a platform that brings scientists and teachers together for minimally invasive research on human learning and teaching. International Journal of Artificial Intelligence in Education. https://doi.org/10.1007/s40593-014-0024-x.
ShaywitzSOvercoming dyslexia: A new and complete science-based program for reading problems at any level2003New YorkKnopf
Corbett, A. T., & Bhatnagar, A. (1997). Student modeling in the ACT programming Tutor: Adjusting a Procedural Learning Model With Declarative Knowledge. In User Modeling. https://doi.org/10.1007/978-3-7091-2670-7_25.
WickhamHggplot2: Elegant graphics for data analysis2016New YorkSpringer-Verlag10.1007/978-3-319-24277-4http://ggplot2.org
Singleton, C., & Horne, J. (2004). The development and validity of Lucid Adult Dyslexia Screening (LADS). https://pdfs.semanticscholar.org/b2c5/d0de03b8e0c8dfc6d6bb1643fd5c8c4947c0.pdf
Nedungadi, P., & Remya, M. S. (2015). Incorporating forgetting in the personalized, clustered, Bayesian knowledge tracing (PC-BKT) model. In Proceedings - 2015 International Conference on Cognitive Computing and Information Processing, CCIP 2015. https://doi.org/10.1109/CCIP.2015.7100688.
Raman, R., & Nedungadi, P. (2010). Adaptive learning methodologies to support reforms in Continuous formative Evaluation. In ICEIT 2010–2010 International Conference on Educational and Information Technology, Proceedings. https://doi.org/10.1109/ICEIT.2010.5607608.
SoodMRToornstraASerenoMIBolandMFilarettiDSoodAA Digital App to Aid Detection, Monitoring, and Management of Dyslexia in Young Children (DIMMAND): Protocol for a Digital Health and Education SolutionJMIR Research Protocols201875e13510.2196/resprot.9583
Dormann, C. F., Elith, J., Bacher, S., Buchmann, C., Carl, G., Carré, G., et al. (2013). Collinearity: A review of methods to deal with it and a simulation study evaluating their performance. Ecography. https://doi.org/10.1111/j.1600-0587.2012.07348.x.
Elsom-CookMStudent modelling in intelligent tutoring systemsArtificial Intelligence Review1993722724010.1007/BF00849556
Cleveland, W. S., & Loader, C. (2012). Smoothing by local Regression: Principles and Methods. https://doi.org/10.1007/978-3-642-48425-4_2.
Gutjahr, G., Menon, K., & Nedungadi, P. (2017). Using an intelligent tutoring system to predict mathematics and English assessments (pp. 135–140). https://doi.org/10.1109/MITE.2017.00030.
Singer, J. D., & Willett, J. B. (2009). Applied longitudinal data analysis. Applied Longitudinal Data Analysis.https://doi.org/10.1093/acprof:oso/9780195152968.001.0001.
Kamala, R., & Ramganesh, E. (2015). Difficulties in identifying the dyslexics in multilingual context. International Journal of Humanities and Social Science Invention, 4.
Fawcett, T. (2006). An introduction to ROC analysis. Pattern Recognition Letters. https://doi.org/10.1016/j.patrec.2005.10.010.
Feng, M., Heffernan, N. T., & Koedinger, K. R. (2006). Predicting state test scores better with intelligent tutoring Systems: Developing Metrics to Measure Assistance Required. https://doi.org/10.1007/11774303_4.
Gaggi, O., Galiazzo, G., Palazzi, C., Facoetti, A., & Franceschini, S. (2012). A serious game for predicting the risk of developmental dyslexia in pre-readers children. In 2012 21st International Conference on Computer Communications and Networks, ICCCN 2012 - Proceedings. https://doi.org/10.1109/ICCCN.2012.6289249.
Conati, C. (2009). Intelligent tutoring systems: New challenges and directions. In IJCAI International Joint Conference on Artificial Intelligence.
Pardos, Z., Baker, R., Pedro, M. S., Gowda, S. M., & Gowda, S. M. (2014). Affective states and state tests: Investigating how affect and engagement during the school year predict end-of-year learning outcomes. Journal of Learning Analytics.
Rahman, M. M., & Davis, D. N. (2013). Addressing the class imbalance problem in medical datasets. International Journal of Machine Learning and Computing. https://doi.org/10.7763/ijmlc.2013.v3.307.
Venables, W. N., & Ripley, B. D. (2002). Modern applied statistics with S fourth edition. World. https://doi.org/10.2307/2685660.
Cox P. (2011). Comparisons of selected benchmark testing methodologies as predictors of Virginia standards of learning test scores. Virginia Polytechnic Institute.
Trivedi, S., Pardos, Z. A., & Heffernan, N. T. (2011). Clustering students to generate an ensemble to improve standard test score predictions. In Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics). https://doi.org/10.1007/978-3-642-21869-9_49.
Ritter, S., Joshi, A., Fancsali, S. E., & Nixon, T. (2013). Predicting standardized test scores from cognitive tutor interactions. In Proceedings of the 6th International Conference on Educational Data Mining.
KohliASamitaSPadhySKSpecific learning disabilities: Issues that remain unansweredIndian Journal of Psychological Medicine201840539940510.4103/IJPSYM.IJPSYM_86_18
Zhang, N., & Henderson, C. N. R. (2014). Can formative quizzes predict or improve summative exam performance?*. Journal of Chiropractic Education. https://doi.org/10.7899/jce-14-12.
Bischl, B., Lang, M., Kotthoff, L., Schiffner, J., Richter, J., Studerus, E., et al. (2016). Mlr: Machine learning in R. The Journal of Machine Learning Research.
Anozie, N., & Junker, B. W. (2006). Predicting end-of-year accountability assessment scores from monthly student records in an online tutoring system. American Association for Artificial Intelligence Workshop on Educational Data Mining (AAAI-06). Doi: WS-06-05/WS06-05-001.
Kulik, J. A., & Fletcher, J. D. (2016). Effectiveness of intelligent tutoring Systems: A Meta-Analytic Review. REVIEW OF EDUCATIONAL RESEARCH. https://doi.org/10.3102/0034654315581420.
Bates, D., Maechler, M., & Bolker, B. (2013). lme4: Linear mixed-effects models using S4 classes. R package version 1.1-7. Doi:Citeulike-article-id:1080437.
Lunardon, N., Menardi, G., & Torelli, N. (2014). {ROSE}: A {P}ackage for {B}inary {I}mbalanced {L}earning. {R} Journal, 6(1), 82–92.
Ayers, E., & Junker, B. (2008). IRT modeling of tutor performance to predict end-of-year exam scores. Educational and Psychological Measurement. https://doi.org/10.1177/0013164408318758.
NedungadiPRamanRA new approach to personalization: Integrating e-learning and m-learningEducational Technology Research and Development20126065967810.1007/s11423-012-9250-9
Nedungadi, P. (2015). Framework and models for personalized formative evaluation in adaptive learning systems. Amrita Vishwa Vidyapeetham University.
Rello, L., Ballesteros, M., Alarcón Sánchez, D., Serra, M., Ali, A., & Bigham, J. P. (2016). Dytective: Diagnosing risk of dyslexia with a game. ACM. https://doi.org/10.4108/eai.16-5-2016.2263338.
H Wickham (10144_CR41) 2016
10144_CR24
10144_CR23
10144_CR22
10144_CR20
10144_CR42
PK Mandal (10144_CR25) 2010; 36
10144_CR40
10144_CR19
10144_CR18
10144_CR17
10144_CR39
10144_CR16
10144_CR38
10144_CR15
P Nedungadi (10144_CR27) 2012; 60
10144_CR14
A Kohli (10144_CR21) 2018; 40
10144_CR36
10144_CR13
10144_CR35
10144_CR12
10144_CR33
MR Sood (10144_CR37) 2018; 7
10144_CR10
10144_CR32
S Shaywitz (10144_CR34) 2003
10144_CR31
10144_CR30
10144_CR3
10144_CR2
10144_CR1
10144_CR29
10144_CR28
10144_CR26
10144_CR9
M Elsom-Cook (10144_CR11) 1993; 7
10144_CR8
10144_CR7
10144_CR6
10144_CR5
10144_CR4
References_xml – reference: Nedungadi, P., & Remya, M. S. (2015). Incorporating forgetting in the personalized, clustered, Bayesian knowledge tracing (PC-BKT) model. In Proceedings - 2015 International Conference on Cognitive Computing and Information Processing, CCIP 2015. https://doi.org/10.1109/CCIP.2015.7100688.
– reference: Heffernan, N. T., & Heffernan, C. L. (2014). The ASSISTments ecosystem: Building a platform that brings scientists and teachers together for minimally invasive research on human learning and teaching. International Journal of Artificial Intelligence in Education. https://doi.org/10.1007/s40593-014-0024-x.
– reference: Venables, W. N., & Ripley, B. D. (2002). Modern applied statistics with S fourth edition. World. https://doi.org/10.2307/2685660.
– reference: Kamala, R., & Ramganesh, E. (2015). Difficulties in identifying the dyslexics in multilingual context. International Journal of Humanities and Social Science Invention, 4.
– reference: ShaywitzSOvercoming dyslexia: A new and complete science-based program for reading problems at any level2003New YorkKnopf
– reference: Singer, J. D., & Willett, J. B. (2009). Applied longitudinal data analysis. Applied Longitudinal Data Analysis.https://doi.org/10.1093/acprof:oso/9780195152968.001.0001.
– reference: Singleton, C., & Horne, J. (2004). The development and validity of Lucid Adult Dyslexia Screening (LADS). https://pdfs.semanticscholar.org/b2c5/d0de03b8e0c8dfc6d6bb1643fd5c8c4947c0.pdf
– reference: Raman, R., & Nedungadi, P. (2010). Adaptive learning methodologies to support reforms in Continuous formative Evaluation. In ICEIT 2010–2010 International Conference on Educational and Information Technology, Proceedings. https://doi.org/10.1109/ICEIT.2010.5607608.
– reference: MandalPKTowards positing a paradigm for continuous and comprehensive evaluation in social sciencesJournal of Indian Education2010364352
– reference: KohliASamitaSPadhySKSpecific learning disabilities: Issues that remain unansweredIndian Journal of Psychological Medicine201840539940510.4103/IJPSYM.IJPSYM_86_18
– reference: Conati, C. (2009). Intelligent tutoring systems: New challenges and directions. In IJCAI International Joint Conference on Artificial Intelligence.
– reference: Anozie, N., & Junker, B. W. (2006). Predicting end-of-year accountability assessment scores from monthly student records in an online tutoring system. American Association for Artificial Intelligence Workshop on Educational Data Mining (AAAI-06). Doi: WS-06-05/WS06-05-001.
– reference: Elsom-CookMStudent modelling in intelligent tutoring systemsArtificial Intelligence Review1993722724010.1007/BF00849556
– reference: Gutjahr, G., Menon, K., & Nedungadi, P. (2017). Using an intelligent tutoring system to predict mathematics and English assessments (pp. 135–140). https://doi.org/10.1109/MITE.2017.00030.
– reference: Lunardon, N., Menardi, G., & Torelli, N. (2014). {ROSE}: A {P}ackage for {B}inary {I}mbalanced {L}earning. {R} Journal, 6(1), 82–92.
– reference: Gaggi, O., Galiazzo, G., Palazzi, C., Facoetti, A., & Franceschini, S. (2012). A serious game for predicting the risk of developmental dyslexia in pre-readers children. In 2012 21st International Conference on Computer Communications and Networks, ICCCN 2012 - Proceedings. https://doi.org/10.1109/ICCCN.2012.6289249.
– reference: NedungadiPRamanRA new approach to personalization: Integrating e-learning and m-learningEducational Technology Research and Development20126065967810.1007/s11423-012-9250-9
– reference: Cox P. (2011). Comparisons of selected benchmark testing methodologies as predictors of Virginia standards of learning test scores. Virginia Polytechnic Institute.
– reference: Bates, D., Maechler, M., & Bolker, B. (2013). lme4: Linear mixed-effects models using S4 classes. R package version 1.1-7. Doi:Citeulike-article-id:1080437.
– reference: Rello, L., Ballesteros, M., Alarcón Sánchez, D., Serra, M., Ali, A., & Bigham, J. P. (2016). Dytective: Diagnosing risk of dyslexia with a game. ACM. https://doi.org/10.4108/eai.16-5-2016.2263338.
– reference: VanLehn, K. (2006). The behavior of tutoring systems. International Journal of Artifical Intelligence in Education.
– reference: Fawcett, T. (2006). An introduction to ROC analysis. Pattern Recognition Letters. https://doi.org/10.1016/j.patrec.2005.10.010.
– reference: Nedungadi, P. (2015). Framework and models for personalized formative evaluation in adaptive learning systems. Amrita Vishwa Vidyapeetham University.
– reference: Hastie, T., Tibshirani, R., Friedman, J. (2009). The elements of statistical learning the elements of statistical LearningData mining, inference, and prediction, Second Edition. Book. https://doi.org/10.1007/978-0-387-84858-7.
– reference: Zhang, N., & Henderson, C. N. R. (2014). Can formative quizzes predict or improve summative exam performance?*. Journal of Chiropractic Education. https://doi.org/10.7899/jce-14-12.
– reference: Feng, M., Heffernan, N. T., Heffernan, C., & Mani, M. (2009a). Using mixed-effects modeling to analyze different grain-sized skill models in an intelligent tutoring system. In IEEE Transactions on Learning Technologies. https://doi.org/10.1109/TLT.2009.17.
– reference: Pardos, Z., Baker, R., Pedro, M. S., Gowda, S. M., & Gowda, S. M. (2014). Affective states and state tests: Investigating how affect and engagement during the school year predict end-of-year learning outcomes. Journal of Learning Analytics.
– reference: Ma, W., Adesope, O. O., Nesbit, J. C., & Liu, Q. (2014). Intelligent tutoring systems and learning outcomes: A meta-analysis. Journal of Educational Psychology. https://doi.org/10.1037/a0037123.
– reference: Trivedi, S., Pardos, Z. A., & Heffernan, N. T. (2011). Clustering students to generate an ensemble to improve standard test score predictions. In Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics). https://doi.org/10.1007/978-3-642-21869-9_49.
– reference: Ayers, E., & Junker, B. (2008). IRT modeling of tutor performance to predict end-of-year exam scores. Educational and Psychological Measurement. https://doi.org/10.1177/0013164408318758.
– reference: Rahman, M. M., & Davis, D. N. (2013). Addressing the class imbalance problem in medical datasets. International Journal of Machine Learning and Computing. https://doi.org/10.7763/ijmlc.2013.v3.307.
– reference: Kulik, J. A., & Fletcher, J. D. (2016). Effectiveness of intelligent tutoring Systems: A Meta-Analytic Review. REVIEW OF EDUCATIONAL RESEARCH. https://doi.org/10.3102/0034654315581420.
– reference: SoodMRToornstraASerenoMIBolandMFilarettiDSoodAA Digital App to Aid Detection, Monitoring, and Management of Dyslexia in Young Children (DIMMAND): Protocol for a Digital Health and Education SolutionJMIR Research Protocols201875e13510.2196/resprot.9583
– reference: Cleveland, W. S., & Loader, C. (2012). Smoothing by local Regression: Principles and Methods. https://doi.org/10.1007/978-3-642-48425-4_2.
– reference: WickhamHggplot2: Elegant graphics for data analysis2016New YorkSpringer-Verlag10.1007/978-3-319-24277-4http://ggplot2.org
– reference: Carroll, J. M., Solity, J., & Shapiro, L. R. (2016). Predicting dyslexia using prereading skills: The role of sensorimotor and cognitive abilities. Journal of Child Psychology and Psychiatry, and Allied Disciplines. https://doi.org/10.1111/jcpp.12488.
– reference: Corbett, A. T., & Bhatnagar, A. (1997). Student modeling in the ACT programming Tutor: Adjusting a Procedural Learning Model With Declarative Knowledge. In User Modeling. https://doi.org/10.1007/978-3-7091-2670-7_25.
– reference: Feng, M., Heffernan, N. T., & Koedinger, K. R. (2006). Predicting state test scores better with intelligent tutoring Systems: Developing Metrics to Measure Assistance Required. https://doi.org/10.1007/11774303_4.
– reference: Bischl, B., Lang, M., Kotthoff, L., Schiffner, J., Richter, J., Studerus, E., et al. (2016). Mlr: Machine learning in R. The Journal of Machine Learning Research.
– reference: Dormann, C. F., Elith, J., Bacher, S., Buchmann, C., Carl, G., Carré, G., et al. (2013). Collinearity: A review of methods to deal with it and a simulation study evaluating their performance. Ecography. https://doi.org/10.1111/j.1600-0587.2012.07348.x.
– reference: Ritter, S., Joshi, A., Fancsali, S. E., & Nixon, T. (2013). Predicting standardized test scores from cognitive tutor interactions. In Proceedings of the 6th International Conference on Educational Data Mining.
– reference: Feng, M., Heffernan, N., & Koedinger, K. (2009b). Addressing the assessment challenge with an online system that tutors as it assesses. User Modeling and User-Adapted Interaction. https://doi.org/10.1007/s11257-009-9063-7.
– ident: 10144_CR2
  doi: 10.1177/0013164408318758
– ident: 10144_CR29
  doi: 10.18608/jla.2014.11.6
– ident: 10144_CR7
– ident: 10144_CR24
  doi: 10.1037/a0037123
– ident: 10144_CR9
– ident: 10144_CR15
  doi: 10.1007/s11257-009-9063-7
– ident: 10144_CR22
  doi: 10.3102/0034654315581420
– ident: 10144_CR31
  doi: 10.1109/ICEIT.2010.5607608
– ident: 10144_CR3
– ident: 10144_CR40
  doi: 10.2307/2685660
– ident: 10144_CR33
– ident: 10144_CR18
  doi: 10.1007/978-0-387-84858-7
– ident: 10144_CR42
  doi: 10.7899/jce-14-12
– ident: 10144_CR13
  doi: 10.1007/11774303_4
– ident: 10144_CR8
  doi: 10.1007/978-3-7091-2670-7_25
– ident: 10144_CR30
  doi: 10.7763/ijmlc.2013.v3.307
– volume: 60
  start-page: 659
  year: 2012
  ident: 10144_CR27
  publication-title: Educational Technology Research and Development
  doi: 10.1007/s11423-012-9250-9
– ident: 10144_CR35
  doi: 10.1093/acprof:oso/9780195152968.001.0001
– ident: 10144_CR16
  doi: 10.1109/ICCCN.2012.6289249
– ident: 10144_CR17
  doi: 10.1109/MITE.2017.00030
– volume: 36
  start-page: 43
  year: 2010
  ident: 10144_CR25
  publication-title: Journal of Indian Education
– volume-title: Overcoming dyslexia: A new and complete science-based program for reading problems at any level
  year: 2003
  ident: 10144_CR34
– ident: 10144_CR23
– ident: 10144_CR6
  doi: 10.1007/978-3-642-48425-4_2
– volume: 7
  start-page: 227
  year: 1993
  ident: 10144_CR11
  publication-title: Artificial Intelligence Review
  doi: 10.1007/BF00849556
– ident: 10144_CR19
  doi: 10.1007/s40593-014-0024-x
– ident: 10144_CR4
– volume-title: ggplot2: Elegant graphics for data analysis
  year: 2016
  ident: 10144_CR41
  doi: 10.1007/978-3-319-24277-4
– ident: 10144_CR5
  doi: 10.1111/jcpp.12488
– ident: 10144_CR12
  doi: 10.1016/j.patrec.2005.10.010
– volume: 40
  start-page: 399
  issue: 5
  year: 2018
  ident: 10144_CR21
  publication-title: Indian Journal of Psychological Medicine
  doi: 10.4103/IJPSYM.IJPSYM_86_18
– ident: 10144_CR39
– ident: 10144_CR10
  doi: 10.1111/j.1600-0587.2012.07348.x
– ident: 10144_CR28
  doi: 10.1109/CCIP.2015.7100688
– ident: 10144_CR36
– ident: 10144_CR38
  doi: 10.1007/978-3-642-21869-9_49
– ident: 10144_CR32
  doi: 10.4108/eai.16-5-2016.2263338
– ident: 10144_CR1
– volume: 7
  start-page: e135
  issue: 5
  year: 2018
  ident: 10144_CR37
  publication-title: JMIR Research Protocols
  doi: 10.2196/resprot.9583
– ident: 10144_CR14
  doi: 10.1109/TLT.2009.17
– ident: 10144_CR20
– ident: 10144_CR26
RelatedPersons Amma
RelatedPersons_xml – fullname: Amma
SSID ssj0009742
Score 2.295038
Snippet In many rural Indian schools, English is a second language for teachers and students. Intelligent tutoring systems have good potential because they enable...
SourceID proquest
gale
eric
crossref
springer
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 3995
SubjectTerms Academic Achievement
Academic failure
Amma
At Risk Students
Computer Appl. in Social and Behavioral Sciences
Computer Science
Computers and Education
Education
Educational Technology
English (Second Language)
Foreign Countries
Formative Evaluation
Information Systems Applications (incl.Internet)
Intelligent systems
Intelligent Tutoring Systems
Longitudinal Studies
Mathematics Achievement
Predictor Variables
Reading Difficulties
Rural Schools
Scores
Second Language Learning
Summative Evaluation
Tutoring
Tutors and tutoring
User Interfaces and Human Computer Interaction
SummonAdditionalLinks – databaseName: SpringerLink Journals (ICM)
  dbid: U2A
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8QwEB5kvejBx6pYX-QgeNBC02ab9riIy7KgeHBB8BCaNAVB6rJb_78zMd26vsBzpmnpzCQzzHzfAJwbyblJEkxyMhuFVCgKMQwpwlzmaREJWeQOLnZ7l46nYvI4ePSgsEXb7d6WJN1J_QnshrdpSOkOzZcVISbq6wPK3dGKp_Gwo9qVbmQOT9IoJDIXD5X5eY-V68h3PH89m78VSd3dM9qBLR80suGHlndhzdZ92G4HMjDvn30awezbNfqw-YlpcA-e7udUkaEeZ7ZwxJts1kEGWFGXzBLVMaNWc_Zasap4poZ1RvATXGbPS-rOhjXEe-B2cjTQ-zAd3Txcj0M_VyE0IsoaKrYbvJZSk2gMD4zOyjKOc64TrUXGecnjqpJGSC2tTY02qE-LYYWoUsxnbWmTA-jVr7U9BFamxFSe84rwrjIvM4tbY7IuTZ5pq4sAePt7lfGk4zT74kV1dMmkEoUqUU4lKgrgcvnM7INy40_pA9LaUvJmwjHmiCMZwAXpUZGj4itN4fEG-OFEeaWGmJ5LjHYED-BkRRIdzKwut5agvIMvVCySNMFgmscBXLXW0S3__r1H_xM_ho2YzNV1tZ1Ar5m_2VMMgxp95qz-HYhX-aA
  priority: 102
  providerName: Springer Nature
Title Predicting school performance and early risk of failure from an intelligent tutoring system
URI https://link.springer.com/article/10.1007/s10639-020-10144-0
http://eric.ed.gov/ERICWebPortal/detail?accno=EJ1266207
https://www.proquest.com/docview/2436315012
Volume 25
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3dT9swED8BfYEHxPjQAqzyA9IewCJOTJw8TWUUEAyEgEqgPVix40hIqC00_P-7M25DN42X5MGOY92d7Tvf3e8A9qwSwqYpGjm5izk5ijiqISUvVJGVsVRl4dPFrq6z84G8eDh6CBdukxBWOd0T_UZdjSzdkR8mMs1S1F5E8mP8wqlqFHlXQwmNRejgFpyj8dU57l_f3Lawu8qXzxFpFnMCdglpMyF5Dk9nTuYT1auVPJ47mkL089_79D8OU38Ona7BalAgWe-d419gwQ3XqfZyiNNYh5UPEIMb8PvmlVwxFNzMJh5xk43bXAFWDivmCOOYUYw5G9WsLp8oUp1R3gk2s6cZZmfDGgI88CN5_OdNGJz273-e81BQgVsZ5w152S2SKbOpQb3AmryqkqQQJjVG5kJUIqlrZaUyyrnMGouMdKhPyDpDQ9ZVLt2CpeFo6L4CqzKCKC9ETYmuqqhyh0Ojla5skRtnygjElJbaBrRxKnrxrFucZKK_RvprT38dR7A_-2b8jrXxae8tYtGsZ_9CoLKRxCqC78Q0TSsUf2nLkGiAEyesK91Du1yhmiNFBLtzPXFl2fnmKdt1WNkT3cphBAdTUWib_z_f7c9H24HlhGTRh6_twlLz-ua-ob7TmC50eidXv-7offZ42e8GIe96Wx-fg6T3B8MG_N8
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1fb9QwDLfG9gA8IBhMFDbIA4gHiGjS0LQP0zTgptu_04Q2aRIPWZOm0iR0d-yKEF-Kzzg7l145EHvbc1I3dRzbqe2fAV45LYTLMrzkFD7lFCji6IZUvNRlXqVKV2UoFzse5cMzdXD-4XwFfne1MJRW2enEoKjriaN_5O-lyvIMvRchd6bfOXWNouhq10JjLhaH_tdPvLLNtvc_4_6-lnJvcPppyGNXAe5UWrQUanaolHOXWTSOzhZ1LWUpbGatKoSohWwa7ZS22vvcWYdf49GoqibH25yvfYZ078AaLidFRbD2cTA6-dLD_OrQrkfgICcgmVimE4v10BvgdF2j_riKp0umMGZb_20X_gnQBru39xAeRIeV7c4l7BGs-PE69XqOeSHrcP8PSMPH8PXkikI_lEzNZgHhk0372gRWjWvmCVOZUU47mzSsqS4pM55RnQsOs8sFRmjLWgJYCJQC3vQTOLsVVm_A6ngy9k-B1TlBopeiocJaXdaFR9LeSu3KwnpbJSA6XhoX0c2pycY30-MyE_8N8t8E_ps0gbeLZ6ZzbI8bZ2_QFi1mDg4EOjcy1Qm8oU0zpBHwla6KhQ24cMLWMrtaZBrdKiUS2FyaiSfZLQ93226iJpmZXu4TeNeJQj_8__U-u5naS7g7PD0-Mkf7o8PncE-SXIbUuU1Yba9--C30tVr7Igo4g4vbPlPXzJw1MQ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1fb9QwDLfGTULwgGAw0TEgDyAeIFqTdE37gNBgd9ofOJ0QkybxEJo0lSahu2NXhPhqfDrsXHrlQOxtz0nd1HFsp7Z_BnjmtBBOKbzkFD7lFCji6IZUvNRlXqWZrspQLvZhnB-dZSfn--cb8KurhaG0yk4nBkVdzxz9I9-TmcoVei9C7jUxLWJyOHoz_8apgxRFWrt2GksROfU_f-D1bfH6-BD3-rmUo-Gnd0c8dhjgLkuLlsLODhV07pRFQ-lsUddSlsIqa7NCiFrIptEu01Z7nzvr8Ms8GtisyfFm52uvkO4N2NT4jekANt8Ox5OPPeSvDq17hMpTTqAysWQnFu6hZ8Dp6ka9cjOerpnFmHn9t434J1gbbODoLtyJzis7WErbPdjw0y3q-xxzRLbg9h_whvfh8-SSwkCUWM0WAe2Tzfs6BVZNa-YJX5lRfjubNaypLihLnlHNCw6zixVeaMtaAlsIlAL29AM4uxZWb8NgOpv6h8DqnODRS9FQka0u68IjaW-ldmVhva0SEB0vjYtI59Rw46vpMZqJ_wb5bwL_TZrAy9Uz8yXOx5Wzt2mLVjOHJwIdHZnqBF7QphnSDvhKV8UiB1w44WyZAy2URhcrEwnsrs3EU-3Wh7ttN1GrLEx_BhJ41YlCP_z_9e5cTe0p3MSzZN4fj08fwS1JYhmy6HZh0F5-94_R7WrtkyjfDL5c95H6DWxMOWY
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Predicting+school+performance+and+early+risk+of+failure+from+an+intelligent+tutoring+system&rft.jtitle=Education+and+information+technologies&rft.au=Haridas%2C+Mithun&rft.au=Gutjahr%2C+Georg&rft.au=Raman%2C+Raghu&rft.au=Ramaraju%2C+Rudraraju&rft.date=2020-09-01&rft.pub=Springer&rft.issn=1360-2357&rft.volume=25&rft.issue=5&rft.spage=3995&rft_id=info:doi/10.1007%2Fs10639-020-10144-0&rft.externalDocID=A713712941
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1360-2357&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1360-2357&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1360-2357&client=summon