Predicting school performance and early risk of failure from an intelligent tutoring system
In many rural Indian schools, English is a second language for teachers and students. Intelligent tutoring systems have good potential because they enable students to learn at their own pace, in an exploratory manner. This paper describes a 3-year longitudinal study of 2123 Indian students who used...
Saved in:
Published in | Education and information technologies Vol. 25; no. 5; pp. 3995 - 4013 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
New York
Springer US
01.09.2020
Springer Springer Nature B.V |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | In many rural Indian schools, English is a second language for teachers and students. Intelligent tutoring systems have good potential because they enable students to learn at their own pace, in an exploratory manner. This paper describes a 3-year longitudinal study of 2123 Indian students who used the intelligent tutoring system, AmritaITS. The aim of the study was to use the students’ interaction logs with AmritaITS to: (1) predict student performance, in English and Mathematics subjects, via summative and formative assessments, (2) predict students who may be at risk of failing the final examination and (3) screen students who may have reading difficulties. The prediction models for summative assessments were significantly improved by formative assessments scores, along with AmritaITS logs. The receiver operating characteristic (ROC) curve showed that students at risk of failing a class could be identified early, with high sensitivity and specificity. The models also provide recommendations for the amount of time required for students to use the system, and reach the appropriate grade level. Finally, the models demonstrated promise in identifying students who might be at risk of suffering from reading difficulties. |
---|---|
AbstractList | In many rural Indian schools, English is a second language for teachers and students. Intelligent tutoring systems have good potential because they enable students to learn at their own pace, in an exploratory manner. This paper describes a 3-year longitudinal study of 2123 Indian students who used the intelligent tutoring system, AmritaITS. The aim of the study was to use the students' interaction logs with AmritaITS to: (1) predict student performance, in English and Mathematics subjects, via summative and formative assessments, (2) predict students who may be at risk of failing the final examination and (3) screen students who may have reading difficulties. The prediction models for summative assessments were significantly improved by formative assessments scores, along with AmritaITS logs. The receiver operating characteristic (ROC) curve showed that students at risk of failing a class could be identified early, with high sensitivity and specificity. The models also provide recommendations for the amount of time required for students to use the system, and reach the appropriate grade level. Finally, the models demonstrated promise in identifying students who might be at risk of suffering from reading difficulties. |
Audience | Academic |
Author | Ramaraju, Rudraraju Haridas, Mithun Gutjahr, Georg Nedungadi, Prema Raman, Raghu |
Author_xml | – sequence: 1 givenname: Mithun surname: Haridas fullname: Haridas, Mithun email: mithunh@am.amrita.edu organization: Center for Research in Analytics and Technologies for Education (CREATE), Amrita Vishwa Vidyapeetham – sequence: 2 givenname: Georg surname: Gutjahr fullname: Gutjahr, Georg organization: Center for Research in Analytics and Technologies for Education (CREATE), Amrita Vishwa Vidyapeetham – sequence: 3 givenname: Raghu surname: Raman fullname: Raman, Raghu organization: School of Business, Amrita Vishwa Vidyapeetham – sequence: 4 givenname: Rudraraju surname: Ramaraju fullname: Ramaraju, Rudraraju organization: UAB School of Medicine, University of Alabama – sequence: 5 givenname: Prema surname: Nedungadi fullname: Nedungadi, Prema organization: Center for Research in Analytics and Technologies for Education (CREATE), Amrita Vishwa Vidyapeetham |
BackLink | http://eric.ed.gov/ERICWebPortal/detail?accno=EJ1266207$$DView record in ERIC |
BookMark | eNp9kU9r3DAQxU1JoUmaL1AoCHp2OiNpLfsYQvqPQHNITzkIWR5tldrSVtIe9ttXiVtCSwk6SOi93xuYd9IchRioad4gnCOAep8ROjG0wKFFQClbeNEc40aJVnXQH9W36KDlYqNeNSc53wPAoCQ_bu5uEk3eFh-2LNvvMc5sR8nFtJhgiZkwMTJpPrDk8w8WHXPGz_tEzKW4VJn5UGie_ZZCYWVfYnpMOuRCy-vmpTNzprPf92nz7cPV7eWn9vrrx8-XF9etldCXdkBhkfedFWPPuR37aeJ8wFGMo-wRJ-TOKSvVqIg6O1qrkGBA6ToheppInDbv1txdij_3lIu-j_sU6kjNpegEbgD5k2trZtI-uFiSsYvPVl8oFAr5ILG6zv_jqmeixdu6dOfr_1_A2xWg5K3eJb-YdNBXX5B3HQdV9X7VbYo5J3La-mKKj6EG-1kj6IcG9dqgrg3qxwY1VJT_g_6JfxYSK5R3D1VQelrGM9Qv5LOt5g |
CitedBy_id | crossref_primary_10_1007_s10639_022_11120_6 crossref_primary_10_1109_ACCESS_2024_3363634 crossref_primary_10_1007_s40593_024_00434_w crossref_primary_10_1016_j_eswa_2023_120604 crossref_primary_10_1016_j_joitmc_2024_100430 crossref_primary_10_1080_23311886_2023_2299134 crossref_primary_10_3390_s21206783 crossref_primary_10_1007_s10639_021_10738_2 crossref_primary_10_1007_s11409_023_09346_x crossref_primary_10_1109_ACCESS_2024_3496318 crossref_primary_10_1109_TLT_2024_3396393 |
Cites_doi | 10.1177/0013164408318758 10.18608/jla.2014.11.6 10.1037/a0037123 10.1007/s11257-009-9063-7 10.3102/0034654315581420 10.1109/ICEIT.2010.5607608 10.2307/2685660 10.1007/978-0-387-84858-7 10.7899/jce-14-12 10.1007/11774303_4 10.1007/978-3-7091-2670-7_25 10.7763/ijmlc.2013.v3.307 10.1007/s11423-012-9250-9 10.1093/acprof:oso/9780195152968.001.0001 10.1109/ICCCN.2012.6289249 10.1109/MITE.2017.00030 10.1007/978-3-642-48425-4_2 10.1007/BF00849556 10.1007/s40593-014-0024-x 10.1007/978-3-319-24277-4 10.1111/jcpp.12488 10.1016/j.patrec.2005.10.010 10.4103/IJPSYM.IJPSYM_86_18 10.1111/j.1600-0587.2012.07348.x 10.1109/CCIP.2015.7100688 10.1007/978-3-642-21869-9_49 10.4108/eai.16-5-2016.2263338 10.2196/resprot.9583 10.1109/TLT.2009.17 |
ContentType | Journal Article |
Copyright | Springer Science+Business Media, LLC, part of Springer Nature 2020 COPYRIGHT 2020 Springer Springer Science+Business Media, LLC, part of Springer Nature 2020. |
Copyright_xml | – notice: Springer Science+Business Media, LLC, part of Springer Nature 2020 – notice: COPYRIGHT 2020 Springer – notice: Springer Science+Business Media, LLC, part of Springer Nature 2020. |
DBID | AAYXX CITATION 7SW BJH BNH BNI BNJ BNO ERI PET REK WWN 0-V 3V. 7XB 88B 8FK 8G5 ABUWG AFKRA AHOVV ALSLI AZQEC BENPR CCPQU CJNVE DWQXO GNUQQ GUQSH M0P M2O MBDVC PHGZM PHGZT PKEHL PQEDU PQEST PQQKQ PQUKI PRINS Q9U |
DOI | 10.1007/s10639-020-10144-0 |
DatabaseName | CrossRef ERIC ERIC (Ovid) ERIC ERIC ERIC (Legacy Platform) ERIC( SilverPlatter ) ERIC ERIC PlusText (Legacy Platform) Education Resources Information Center (ERIC) ERIC ProQuest Social Sciences Premium Collection ProQuest Central (Corporate) ProQuest Central (purchase pre-March 2016) Education Database (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Research Library ProQuest Central (Alumni) ProQuest Central UK/Ireland Education Research Index Social Science Premium Collection ProQuest Central Essentials ProQuest Central ProQuest One Education Collection ProQuest Central Korea ProQuest Central Student ProQuest Research Library Education Database Research Library Research Library (Corporate) ProQuest Central Premium ProQuest One Academic (New) ProQuest One Academic Middle East (New) ProQuest One Education ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic |
DatabaseTitle | CrossRef ERIC ProQuest One Education Social Science Premium Collection Education Collection Research Library Prep ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Central Basic ProQuest Education Journals ProQuest Central Essentials ProQuest One Academic Eastern Edition ProQuest Central (Alumni Edition) ProQuest One Community College Research Library (Alumni Edition) ProQuest Central China ProQuest Central ProQuest Social Sciences Premium Collection ProQuest One Academic UKI Edition ProQuest Central Korea ProQuest Research Library ProQuest Central (New) ProQuest One Academic ProQuest Education Journals (Alumni Edition) ProQuest One Academic (New) ProQuest Central (Alumni) |
DatabaseTitleList | ERIC ProQuest One Education |
Database_xml | – sequence: 1 dbid: ERI name: ERIC url: https://eric.ed.gov/ sourceTypes: Index Database – sequence: 2 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Education Computer Science |
EISSN | 1573-7608 |
ERIC | EJ1266207 |
EndPage | 4013 |
ExternalDocumentID | A713712941 EJ1266207 10_1007_s10639_020_10144_0 |
GeographicLocations | India United Kingdom |
GeographicLocations_xml | – name: India – name: United Kingdom |
GroupedDBID | -4Z -59 -5G -BR -EM -W8 -Y2 -~C .86 .GO .VR 0-V 06D 0R~ 0VY 1N0 1SB 2.D 203 28- 29G 2J2 2JN 2JY 2KG 2LR 2P1 2VQ 2~H 30V 3V. 4.4 406 408 409 40D 40E 5GY 5QI 5VS 67Z 6NX 8G5 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAHSB AAIAL AAJBT AAJKR AANZL AAOBN AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYOK AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDZT ABECU ABFTD ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABOPQ ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABUWG ABWNU ABXPI ACAOD ACDTI ACGFO ACGFS ACHSB ACHXU ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACREN ACSNA ACYUM ACZOJ ADHHG ADHIR ADIMF ADINQ ADKNI ADKPE ADMLS ADRFC ADTPH ADURQ ADYFF ADYOE ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFEXP AFGCZ AFKRA AFLOW AFQWF AFWTZ AFYQB AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALSLI ALWAN AMKLP AMTXH AMXSW AMYLF AMYQR AOCGG ARALO ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN AZQEC B-. BA0 BBWZM BDATZ BENPR BGNMA BPHCQ BSONS CAG CCPQU CJNVE COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 DWQXO EBLON EBS EDJ EIOEI EJD ESBYG FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNUQQ GNWQR GQ6 GQ7 GQ8 GUQSH GXS H13 HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I09 IAO ICD IEA IER IHE IJ- IKXTQ ITC ITM IWAJR IXC IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ KDC KOV KOW LAK LLZTM M0P M2O M4Y MA- MK~ ML~ N2Q NB0 NDZJH NPVJJ NQJWS NU0 O-J O9- O93 O9G O9I O9J OAM OVD P19 P2P P9O PF0 PQEDU PQQKQ PROAC PT4 PT5 Q2X QOK QOS R-Y R4E R89 R9I RHV RNI ROL RPX RSV RZC RZD RZK S16 S1Z S26 S27 S28 S3B SAP SCJ SCLPG SCO SDH SDM SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TEORI TSG TSK TSV TUC U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK6 WK8 YLTOR Z45 Z81 Z83 Z88 ZMTXR ~A9 ~EX AAPKM AAYXX ABBRH ABDBE ABFSG ACMFV ACSTC ADHKG AEZWR AFDZB AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION PHGZM PHGZT 7SW ABRTQ BJH BNH BNI BNJ BNO ERI PET PUEGO REK WWN AEIIB PMFND 7XB 8FK AHOVV MBDVC PKEHL PQEST PQUKI PRINS Q9U |
ID | FETCH-LOGICAL-c408t-913c1286c3b822cb8dd2291b3bb4811d12ff7c47b7ee6cbcc71e0914f6338ede3 |
IEDL.DBID | BENPR |
ISSN | 1360-2357 |
IngestDate | Sat Aug 23 13:13:55 EDT 2025 Tue Jun 17 21:43:30 EDT 2025 Tue Jun 10 20:35:27 EDT 2025 Tue Sep 02 19:28:19 EDT 2025 Tue Jul 01 04:15:35 EDT 2025 Thu Apr 24 23:07:07 EDT 2025 Fri Feb 21 02:34:46 EST 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | false |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 5 |
Keywords | Rural education Reading difficulties Longitudinal analysis Student performance Intelligent tutoring system |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c408t-913c1286c3b822cb8dd2291b3bb4811d12ff7c47b7ee6cbcc71e0914f6338ede3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
PQID | 2436315012 |
PQPubID | 55384 |
PageCount | 19 |
ParticipantIDs | proquest_journals_2436315012 gale_infotracmisc_A713712941 gale_infotracacademiconefile_A713712941 eric_primary_EJ1266207 crossref_citationtrail_10_1007_s10639_020_10144_0 crossref_primary_10_1007_s10639_020_10144_0 springer_journals_10_1007_s10639_020_10144_0 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20200900 2020-09-00 20200901 |
PublicationDateYYYYMMDD | 2020-09-01 |
PublicationDate_xml | – month: 9 year: 2020 text: 20200900 |
PublicationDecade | 2020 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York |
PublicationSubtitle | The Official Journal of the IFIP Technical Committee on Education |
PublicationTitle | Education and information technologies |
PublicationTitleAbbrev | Educ Inf Technol |
PublicationYear | 2020 |
Publisher | Springer US Springer Springer Nature B.V |
Publisher_xml | – name: Springer US – name: Springer – name: Springer Nature B.V |
References | Carroll, J. M., Solity, J., & Shapiro, L. R. (2016). Predicting dyslexia using prereading skills: The role of sensorimotor and cognitive abilities. Journal of Child Psychology and Psychiatry, and Allied Disciplines. https://doi.org/10.1111/jcpp.12488. Feng, M., Heffernan, N., & Koedinger, K. (2009b). Addressing the assessment challenge with an online system that tutors as it assesses. User Modeling and User-Adapted Interaction. https://doi.org/10.1007/s11257-009-9063-7. Feng, M., Heffernan, N. T., Heffernan, C., & Mani, M. (2009a). Using mixed-effects modeling to analyze different grain-sized skill models in an intelligent tutoring system. In IEEE Transactions on Learning Technologies. https://doi.org/10.1109/TLT.2009.17. Ma, W., Adesope, O. O., Nesbit, J. C., & Liu, Q. (2014). Intelligent tutoring systems and learning outcomes: A meta-analysis. Journal of Educational Psychology. https://doi.org/10.1037/a0037123. MandalPKTowards positing a paradigm for continuous and comprehensive evaluation in social sciencesJournal of Indian Education2010364352 VanLehn, K. (2006). The behavior of tutoring systems. International Journal of Artifical Intelligence in Education. Hastie, T., Tibshirani, R., Friedman, J. (2009). The elements of statistical learning the elements of statistical LearningData mining, inference, and prediction, Second Edition. Book. https://doi.org/10.1007/978-0-387-84858-7. Heffernan, N. T., & Heffernan, C. L. (2014). The ASSISTments ecosystem: Building a platform that brings scientists and teachers together for minimally invasive research on human learning and teaching. International Journal of Artificial Intelligence in Education. https://doi.org/10.1007/s40593-014-0024-x. ShaywitzSOvercoming dyslexia: A new and complete science-based program for reading problems at any level2003New YorkKnopf Corbett, A. T., & Bhatnagar, A. (1997). Student modeling in the ACT programming Tutor: Adjusting a Procedural Learning Model With Declarative Knowledge. In User Modeling. https://doi.org/10.1007/978-3-7091-2670-7_25. WickhamHggplot2: Elegant graphics for data analysis2016New YorkSpringer-Verlag10.1007/978-3-319-24277-4http://ggplot2.org Singleton, C., & Horne, J. (2004). The development and validity of Lucid Adult Dyslexia Screening (LADS). https://pdfs.semanticscholar.org/b2c5/d0de03b8e0c8dfc6d6bb1643fd5c8c4947c0.pdf Nedungadi, P., & Remya, M. S. (2015). Incorporating forgetting in the personalized, clustered, Bayesian knowledge tracing (PC-BKT) model. In Proceedings - 2015 International Conference on Cognitive Computing and Information Processing, CCIP 2015. https://doi.org/10.1109/CCIP.2015.7100688. Raman, R., & Nedungadi, P. (2010). Adaptive learning methodologies to support reforms in Continuous formative Evaluation. In ICEIT 2010–2010 International Conference on Educational and Information Technology, Proceedings. https://doi.org/10.1109/ICEIT.2010.5607608. SoodMRToornstraASerenoMIBolandMFilarettiDSoodAA Digital App to Aid Detection, Monitoring, and Management of Dyslexia in Young Children (DIMMAND): Protocol for a Digital Health and Education SolutionJMIR Research Protocols201875e13510.2196/resprot.9583 Dormann, C. F., Elith, J., Bacher, S., Buchmann, C., Carl, G., Carré, G., et al. (2013). Collinearity: A review of methods to deal with it and a simulation study evaluating their performance. Ecography. https://doi.org/10.1111/j.1600-0587.2012.07348.x. Elsom-CookMStudent modelling in intelligent tutoring systemsArtificial Intelligence Review1993722724010.1007/BF00849556 Cleveland, W. S., & Loader, C. (2012). Smoothing by local Regression: Principles and Methods. https://doi.org/10.1007/978-3-642-48425-4_2. Gutjahr, G., Menon, K., & Nedungadi, P. (2017). Using an intelligent tutoring system to predict mathematics and English assessments (pp. 135–140). https://doi.org/10.1109/MITE.2017.00030. Singer, J. D., & Willett, J. B. (2009). Applied longitudinal data analysis. Applied Longitudinal Data Analysis.https://doi.org/10.1093/acprof:oso/9780195152968.001.0001. Kamala, R., & Ramganesh, E. (2015). Difficulties in identifying the dyslexics in multilingual context. International Journal of Humanities and Social Science Invention, 4. Fawcett, T. (2006). An introduction to ROC analysis. Pattern Recognition Letters. https://doi.org/10.1016/j.patrec.2005.10.010. Feng, M., Heffernan, N. T., & Koedinger, K. R. (2006). Predicting state test scores better with intelligent tutoring Systems: Developing Metrics to Measure Assistance Required. https://doi.org/10.1007/11774303_4. Gaggi, O., Galiazzo, G., Palazzi, C., Facoetti, A., & Franceschini, S. (2012). A serious game for predicting the risk of developmental dyslexia in pre-readers children. In 2012 21st International Conference on Computer Communications and Networks, ICCCN 2012 - Proceedings. https://doi.org/10.1109/ICCCN.2012.6289249. Conati, C. (2009). Intelligent tutoring systems: New challenges and directions. In IJCAI International Joint Conference on Artificial Intelligence. Pardos, Z., Baker, R., Pedro, M. S., Gowda, S. M., & Gowda, S. M. (2014). Affective states and state tests: Investigating how affect and engagement during the school year predict end-of-year learning outcomes. Journal of Learning Analytics. Rahman, M. M., & Davis, D. N. (2013). Addressing the class imbalance problem in medical datasets. International Journal of Machine Learning and Computing. https://doi.org/10.7763/ijmlc.2013.v3.307. Venables, W. N., & Ripley, B. D. (2002). Modern applied statistics with S fourth edition. World. https://doi.org/10.2307/2685660. Cox P. (2011). Comparisons of selected benchmark testing methodologies as predictors of Virginia standards of learning test scores. Virginia Polytechnic Institute. Trivedi, S., Pardos, Z. A., & Heffernan, N. T. (2011). Clustering students to generate an ensemble to improve standard test score predictions. In Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics). https://doi.org/10.1007/978-3-642-21869-9_49. Ritter, S., Joshi, A., Fancsali, S. E., & Nixon, T. (2013). Predicting standardized test scores from cognitive tutor interactions. In Proceedings of the 6th International Conference on Educational Data Mining. KohliASamitaSPadhySKSpecific learning disabilities: Issues that remain unansweredIndian Journal of Psychological Medicine201840539940510.4103/IJPSYM.IJPSYM_86_18 Zhang, N., & Henderson, C. N. R. (2014). Can formative quizzes predict or improve summative exam performance?*. Journal of Chiropractic Education. https://doi.org/10.7899/jce-14-12. Bischl, B., Lang, M., Kotthoff, L., Schiffner, J., Richter, J., Studerus, E., et al. (2016). Mlr: Machine learning in R. The Journal of Machine Learning Research. Anozie, N., & Junker, B. W. (2006). Predicting end-of-year accountability assessment scores from monthly student records in an online tutoring system. American Association for Artificial Intelligence Workshop on Educational Data Mining (AAAI-06). Doi: WS-06-05/WS06-05-001. Kulik, J. A., & Fletcher, J. D. (2016). Effectiveness of intelligent tutoring Systems: A Meta-Analytic Review. REVIEW OF EDUCATIONAL RESEARCH. https://doi.org/10.3102/0034654315581420. Bates, D., Maechler, M., & Bolker, B. (2013). lme4: Linear mixed-effects models using S4 classes. R package version 1.1-7. Doi:Citeulike-article-id:1080437. Lunardon, N., Menardi, G., & Torelli, N. (2014). {ROSE}: A {P}ackage for {B}inary {I}mbalanced {L}earning. {R} Journal, 6(1), 82–92. Ayers, E., & Junker, B. (2008). IRT modeling of tutor performance to predict end-of-year exam scores. Educational and Psychological Measurement. https://doi.org/10.1177/0013164408318758. NedungadiPRamanRA new approach to personalization: Integrating e-learning and m-learningEducational Technology Research and Development20126065967810.1007/s11423-012-9250-9 Nedungadi, P. (2015). Framework and models for personalized formative evaluation in adaptive learning systems. Amrita Vishwa Vidyapeetham University. Rello, L., Ballesteros, M., Alarcón Sánchez, D., Serra, M., Ali, A., & Bigham, J. P. (2016). Dytective: Diagnosing risk of dyslexia with a game. ACM. https://doi.org/10.4108/eai.16-5-2016.2263338. H Wickham (10144_CR41) 2016 10144_CR24 10144_CR23 10144_CR22 10144_CR20 10144_CR42 PK Mandal (10144_CR25) 2010; 36 10144_CR40 10144_CR19 10144_CR18 10144_CR17 10144_CR39 10144_CR16 10144_CR38 10144_CR15 P Nedungadi (10144_CR27) 2012; 60 10144_CR14 A Kohli (10144_CR21) 2018; 40 10144_CR36 10144_CR13 10144_CR35 10144_CR12 10144_CR33 MR Sood (10144_CR37) 2018; 7 10144_CR10 10144_CR32 S Shaywitz (10144_CR34) 2003 10144_CR31 10144_CR30 10144_CR3 10144_CR2 10144_CR1 10144_CR29 10144_CR28 10144_CR26 10144_CR9 M Elsom-Cook (10144_CR11) 1993; 7 10144_CR8 10144_CR7 10144_CR6 10144_CR5 10144_CR4 |
References_xml | – reference: Nedungadi, P., & Remya, M. S. (2015). Incorporating forgetting in the personalized, clustered, Bayesian knowledge tracing (PC-BKT) model. In Proceedings - 2015 International Conference on Cognitive Computing and Information Processing, CCIP 2015. https://doi.org/10.1109/CCIP.2015.7100688. – reference: Heffernan, N. T., & Heffernan, C. L. (2014). The ASSISTments ecosystem: Building a platform that brings scientists and teachers together for minimally invasive research on human learning and teaching. International Journal of Artificial Intelligence in Education. https://doi.org/10.1007/s40593-014-0024-x. – reference: Venables, W. N., & Ripley, B. D. (2002). Modern applied statistics with S fourth edition. World. https://doi.org/10.2307/2685660. – reference: Kamala, R., & Ramganesh, E. (2015). Difficulties in identifying the dyslexics in multilingual context. International Journal of Humanities and Social Science Invention, 4. – reference: ShaywitzSOvercoming dyslexia: A new and complete science-based program for reading problems at any level2003New YorkKnopf – reference: Singer, J. D., & Willett, J. B. (2009). Applied longitudinal data analysis. Applied Longitudinal Data Analysis.https://doi.org/10.1093/acprof:oso/9780195152968.001.0001. – reference: Singleton, C., & Horne, J. (2004). The development and validity of Lucid Adult Dyslexia Screening (LADS). https://pdfs.semanticscholar.org/b2c5/d0de03b8e0c8dfc6d6bb1643fd5c8c4947c0.pdf – reference: Raman, R., & Nedungadi, P. (2010). Adaptive learning methodologies to support reforms in Continuous formative Evaluation. In ICEIT 2010–2010 International Conference on Educational and Information Technology, Proceedings. https://doi.org/10.1109/ICEIT.2010.5607608. – reference: MandalPKTowards positing a paradigm for continuous and comprehensive evaluation in social sciencesJournal of Indian Education2010364352 – reference: KohliASamitaSPadhySKSpecific learning disabilities: Issues that remain unansweredIndian Journal of Psychological Medicine201840539940510.4103/IJPSYM.IJPSYM_86_18 – reference: Conati, C. (2009). Intelligent tutoring systems: New challenges and directions. In IJCAI International Joint Conference on Artificial Intelligence. – reference: Anozie, N., & Junker, B. W. (2006). Predicting end-of-year accountability assessment scores from monthly student records in an online tutoring system. American Association for Artificial Intelligence Workshop on Educational Data Mining (AAAI-06). Doi: WS-06-05/WS06-05-001. – reference: Elsom-CookMStudent modelling in intelligent tutoring systemsArtificial Intelligence Review1993722724010.1007/BF00849556 – reference: Gutjahr, G., Menon, K., & Nedungadi, P. (2017). Using an intelligent tutoring system to predict mathematics and English assessments (pp. 135–140). https://doi.org/10.1109/MITE.2017.00030. – reference: Lunardon, N., Menardi, G., & Torelli, N. (2014). {ROSE}: A {P}ackage for {B}inary {I}mbalanced {L}earning. {R} Journal, 6(1), 82–92. – reference: Gaggi, O., Galiazzo, G., Palazzi, C., Facoetti, A., & Franceschini, S. (2012). A serious game for predicting the risk of developmental dyslexia in pre-readers children. In 2012 21st International Conference on Computer Communications and Networks, ICCCN 2012 - Proceedings. https://doi.org/10.1109/ICCCN.2012.6289249. – reference: NedungadiPRamanRA new approach to personalization: Integrating e-learning and m-learningEducational Technology Research and Development20126065967810.1007/s11423-012-9250-9 – reference: Cox P. (2011). Comparisons of selected benchmark testing methodologies as predictors of Virginia standards of learning test scores. Virginia Polytechnic Institute. – reference: Bates, D., Maechler, M., & Bolker, B. (2013). lme4: Linear mixed-effects models using S4 classes. R package version 1.1-7. Doi:Citeulike-article-id:1080437. – reference: Rello, L., Ballesteros, M., Alarcón Sánchez, D., Serra, M., Ali, A., & Bigham, J. P. (2016). Dytective: Diagnosing risk of dyslexia with a game. ACM. https://doi.org/10.4108/eai.16-5-2016.2263338. – reference: VanLehn, K. (2006). The behavior of tutoring systems. International Journal of Artifical Intelligence in Education. – reference: Fawcett, T. (2006). An introduction to ROC analysis. Pattern Recognition Letters. https://doi.org/10.1016/j.patrec.2005.10.010. – reference: Nedungadi, P. (2015). Framework and models for personalized formative evaluation in adaptive learning systems. Amrita Vishwa Vidyapeetham University. – reference: Hastie, T., Tibshirani, R., Friedman, J. (2009). The elements of statistical learning the elements of statistical LearningData mining, inference, and prediction, Second Edition. Book. https://doi.org/10.1007/978-0-387-84858-7. – reference: Zhang, N., & Henderson, C. N. R. (2014). Can formative quizzes predict or improve summative exam performance?*. Journal of Chiropractic Education. https://doi.org/10.7899/jce-14-12. – reference: Feng, M., Heffernan, N. T., Heffernan, C., & Mani, M. (2009a). Using mixed-effects modeling to analyze different grain-sized skill models in an intelligent tutoring system. In IEEE Transactions on Learning Technologies. https://doi.org/10.1109/TLT.2009.17. – reference: Pardos, Z., Baker, R., Pedro, M. S., Gowda, S. M., & Gowda, S. M. (2014). Affective states and state tests: Investigating how affect and engagement during the school year predict end-of-year learning outcomes. Journal of Learning Analytics. – reference: Ma, W., Adesope, O. O., Nesbit, J. C., & Liu, Q. (2014). Intelligent tutoring systems and learning outcomes: A meta-analysis. Journal of Educational Psychology. https://doi.org/10.1037/a0037123. – reference: Trivedi, S., Pardos, Z. A., & Heffernan, N. T. (2011). Clustering students to generate an ensemble to improve standard test score predictions. In Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics). https://doi.org/10.1007/978-3-642-21869-9_49. – reference: Ayers, E., & Junker, B. (2008). IRT modeling of tutor performance to predict end-of-year exam scores. Educational and Psychological Measurement. https://doi.org/10.1177/0013164408318758. – reference: Rahman, M. M., & Davis, D. N. (2013). Addressing the class imbalance problem in medical datasets. International Journal of Machine Learning and Computing. https://doi.org/10.7763/ijmlc.2013.v3.307. – reference: Kulik, J. A., & Fletcher, J. D. (2016). Effectiveness of intelligent tutoring Systems: A Meta-Analytic Review. REVIEW OF EDUCATIONAL RESEARCH. https://doi.org/10.3102/0034654315581420. – reference: SoodMRToornstraASerenoMIBolandMFilarettiDSoodAA Digital App to Aid Detection, Monitoring, and Management of Dyslexia in Young Children (DIMMAND): Protocol for a Digital Health and Education SolutionJMIR Research Protocols201875e13510.2196/resprot.9583 – reference: Cleveland, W. S., & Loader, C. (2012). Smoothing by local Regression: Principles and Methods. https://doi.org/10.1007/978-3-642-48425-4_2. – reference: WickhamHggplot2: Elegant graphics for data analysis2016New YorkSpringer-Verlag10.1007/978-3-319-24277-4http://ggplot2.org – reference: Carroll, J. M., Solity, J., & Shapiro, L. R. (2016). Predicting dyslexia using prereading skills: The role of sensorimotor and cognitive abilities. Journal of Child Psychology and Psychiatry, and Allied Disciplines. https://doi.org/10.1111/jcpp.12488. – reference: Corbett, A. T., & Bhatnagar, A. (1997). Student modeling in the ACT programming Tutor: Adjusting a Procedural Learning Model With Declarative Knowledge. In User Modeling. https://doi.org/10.1007/978-3-7091-2670-7_25. – reference: Feng, M., Heffernan, N. T., & Koedinger, K. R. (2006). Predicting state test scores better with intelligent tutoring Systems: Developing Metrics to Measure Assistance Required. https://doi.org/10.1007/11774303_4. – reference: Bischl, B., Lang, M., Kotthoff, L., Schiffner, J., Richter, J., Studerus, E., et al. (2016). Mlr: Machine learning in R. The Journal of Machine Learning Research. – reference: Dormann, C. F., Elith, J., Bacher, S., Buchmann, C., Carl, G., Carré, G., et al. (2013). Collinearity: A review of methods to deal with it and a simulation study evaluating their performance. Ecography. https://doi.org/10.1111/j.1600-0587.2012.07348.x. – reference: Ritter, S., Joshi, A., Fancsali, S. E., & Nixon, T. (2013). Predicting standardized test scores from cognitive tutor interactions. In Proceedings of the 6th International Conference on Educational Data Mining. – reference: Feng, M., Heffernan, N., & Koedinger, K. (2009b). Addressing the assessment challenge with an online system that tutors as it assesses. User Modeling and User-Adapted Interaction. https://doi.org/10.1007/s11257-009-9063-7. – ident: 10144_CR2 doi: 10.1177/0013164408318758 – ident: 10144_CR29 doi: 10.18608/jla.2014.11.6 – ident: 10144_CR7 – ident: 10144_CR24 doi: 10.1037/a0037123 – ident: 10144_CR9 – ident: 10144_CR15 doi: 10.1007/s11257-009-9063-7 – ident: 10144_CR22 doi: 10.3102/0034654315581420 – ident: 10144_CR31 doi: 10.1109/ICEIT.2010.5607608 – ident: 10144_CR3 – ident: 10144_CR40 doi: 10.2307/2685660 – ident: 10144_CR33 – ident: 10144_CR18 doi: 10.1007/978-0-387-84858-7 – ident: 10144_CR42 doi: 10.7899/jce-14-12 – ident: 10144_CR13 doi: 10.1007/11774303_4 – ident: 10144_CR8 doi: 10.1007/978-3-7091-2670-7_25 – ident: 10144_CR30 doi: 10.7763/ijmlc.2013.v3.307 – volume: 60 start-page: 659 year: 2012 ident: 10144_CR27 publication-title: Educational Technology Research and Development doi: 10.1007/s11423-012-9250-9 – ident: 10144_CR35 doi: 10.1093/acprof:oso/9780195152968.001.0001 – ident: 10144_CR16 doi: 10.1109/ICCCN.2012.6289249 – ident: 10144_CR17 doi: 10.1109/MITE.2017.00030 – volume: 36 start-page: 43 year: 2010 ident: 10144_CR25 publication-title: Journal of Indian Education – volume-title: Overcoming dyslexia: A new and complete science-based program for reading problems at any level year: 2003 ident: 10144_CR34 – ident: 10144_CR23 – ident: 10144_CR6 doi: 10.1007/978-3-642-48425-4_2 – volume: 7 start-page: 227 year: 1993 ident: 10144_CR11 publication-title: Artificial Intelligence Review doi: 10.1007/BF00849556 – ident: 10144_CR19 doi: 10.1007/s40593-014-0024-x – ident: 10144_CR4 – volume-title: ggplot2: Elegant graphics for data analysis year: 2016 ident: 10144_CR41 doi: 10.1007/978-3-319-24277-4 – ident: 10144_CR5 doi: 10.1111/jcpp.12488 – ident: 10144_CR12 doi: 10.1016/j.patrec.2005.10.010 – volume: 40 start-page: 399 issue: 5 year: 2018 ident: 10144_CR21 publication-title: Indian Journal of Psychological Medicine doi: 10.4103/IJPSYM.IJPSYM_86_18 – ident: 10144_CR39 – ident: 10144_CR10 doi: 10.1111/j.1600-0587.2012.07348.x – ident: 10144_CR28 doi: 10.1109/CCIP.2015.7100688 – ident: 10144_CR36 – ident: 10144_CR38 doi: 10.1007/978-3-642-21869-9_49 – ident: 10144_CR32 doi: 10.4108/eai.16-5-2016.2263338 – ident: 10144_CR1 – volume: 7 start-page: e135 issue: 5 year: 2018 ident: 10144_CR37 publication-title: JMIR Research Protocols doi: 10.2196/resprot.9583 – ident: 10144_CR14 doi: 10.1109/TLT.2009.17 – ident: 10144_CR20 – ident: 10144_CR26 |
RelatedPersons | Amma |
RelatedPersons_xml | – fullname: Amma |
SSID | ssj0009742 |
Score | 2.295038 |
Snippet | In many rural Indian schools, English is a second language for teachers and students. Intelligent tutoring systems have good potential because they enable... |
SourceID | proquest gale eric crossref springer |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 3995 |
SubjectTerms | Academic Achievement Academic failure Amma At Risk Students Computer Appl. in Social and Behavioral Sciences Computer Science Computers and Education Education Educational Technology English (Second Language) Foreign Countries Formative Evaluation Information Systems Applications (incl.Internet) Intelligent systems Intelligent Tutoring Systems Longitudinal Studies Mathematics Achievement Predictor Variables Reading Difficulties Rural Schools Scores Second Language Learning Summative Evaluation Tutoring Tutors and tutoring User Interfaces and Human Computer Interaction |
SummonAdditionalLinks | – databaseName: SpringerLink Journals (ICM) dbid: U2A link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8QwEB5kvejBx6pYX-QgeNBC02ab9riIy7KgeHBB8BCaNAVB6rJb_78zMd26vsBzpmnpzCQzzHzfAJwbyblJEkxyMhuFVCgKMQwpwlzmaREJWeQOLnZ7l46nYvI4ePSgsEXb7d6WJN1J_QnshrdpSOkOzZcVISbq6wPK3dGKp_Gwo9qVbmQOT9IoJDIXD5X5eY-V68h3PH89m78VSd3dM9qBLR80suGHlndhzdZ92G4HMjDvn30awezbNfqw-YlpcA-e7udUkaEeZ7ZwxJts1kEGWFGXzBLVMaNWc_Zasap4poZ1RvATXGbPS-rOhjXEe-B2cjTQ-zAd3Txcj0M_VyE0IsoaKrYbvJZSk2gMD4zOyjKOc64TrUXGecnjqpJGSC2tTY02qE-LYYWoUsxnbWmTA-jVr7U9BFamxFSe84rwrjIvM4tbY7IuTZ5pq4sAePt7lfGk4zT74kV1dMmkEoUqUU4lKgrgcvnM7INy40_pA9LaUvJmwjHmiCMZwAXpUZGj4itN4fEG-OFEeaWGmJ5LjHYED-BkRRIdzKwut5agvIMvVCySNMFgmscBXLXW0S3__r1H_xM_ho2YzNV1tZ1Ar5m_2VMMgxp95qz-HYhX-aA priority: 102 providerName: Springer Nature |
Title | Predicting school performance and early risk of failure from an intelligent tutoring system |
URI | https://link.springer.com/article/10.1007/s10639-020-10144-0 http://eric.ed.gov/ERICWebPortal/detail?accno=EJ1266207 https://www.proquest.com/docview/2436315012 |
Volume | 25 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3dT9swED8BfYEHxPjQAqzyA9IewCJOTJw8TWUUEAyEgEqgPVix40hIqC00_P-7M25DN42X5MGOY92d7Tvf3e8A9qwSwqYpGjm5izk5ijiqISUvVJGVsVRl4dPFrq6z84G8eDh6CBdukxBWOd0T_UZdjSzdkR8mMs1S1F5E8mP8wqlqFHlXQwmNRejgFpyj8dU57l_f3Lawu8qXzxFpFnMCdglpMyF5Dk9nTuYT1auVPJ47mkL089_79D8OU38Ona7BalAgWe-d419gwQ3XqfZyiNNYh5UPEIMb8PvmlVwxFNzMJh5xk43bXAFWDivmCOOYUYw5G9WsLp8oUp1R3gk2s6cZZmfDGgI88CN5_OdNGJz273-e81BQgVsZ5w152S2SKbOpQb3AmryqkqQQJjVG5kJUIqlrZaUyyrnMGouMdKhPyDpDQ9ZVLt2CpeFo6L4CqzKCKC9ETYmuqqhyh0Ojla5skRtnygjElJbaBrRxKnrxrFucZKK_RvprT38dR7A_-2b8jrXxae8tYtGsZ_9CoLKRxCqC78Q0TSsUf2nLkGiAEyesK91Du1yhmiNFBLtzPXFl2fnmKdt1WNkT3cphBAdTUWib_z_f7c9H24HlhGTRh6_twlLz-ua-ob7TmC50eidXv-7offZ42e8GIe96Wx-fg6T3B8MG_N8 |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1fb9QwDLfG9gA8IBhMFDbIA4gHiGjS0LQP0zTgptu_04Q2aRIPWZOm0iR0d-yKEF-Kzzg7l145EHvbc1I3dRzbqe2fAV45LYTLMrzkFD7lFCji6IZUvNRlXqVKV2UoFzse5cMzdXD-4XwFfne1MJRW2enEoKjriaN_5O-lyvIMvRchd6bfOXWNouhq10JjLhaH_tdPvLLNtvc_4_6-lnJvcPppyGNXAe5UWrQUanaolHOXWTSOzhZ1LWUpbGatKoSohWwa7ZS22vvcWYdf49GoqibH25yvfYZ078AaLidFRbD2cTA6-dLD_OrQrkfgICcgmVimE4v10BvgdF2j_riKp0umMGZb_20X_gnQBru39xAeRIeV7c4l7BGs-PE69XqOeSHrcP8PSMPH8PXkikI_lEzNZgHhk0372gRWjWvmCVOZUU47mzSsqS4pM55RnQsOs8sFRmjLWgJYCJQC3vQTOLsVVm_A6ngy9k-B1TlBopeiocJaXdaFR9LeSu3KwnpbJSA6XhoX0c2pycY30-MyE_8N8t8E_ps0gbeLZ6ZzbI8bZ2_QFi1mDg4EOjcy1Qm8oU0zpBHwla6KhQ24cMLWMrtaZBrdKiUS2FyaiSfZLQ93226iJpmZXu4TeNeJQj_8__U-u5naS7g7PD0-Mkf7o8PncE-SXIbUuU1Yba9--C30tVr7Igo4g4vbPlPXzJw1MQ |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1fb9QwDLfGTULwgGAw0TEgDyAeIFqTdE37gNBgd9ofOJ0QkybxEJo0lSahu2NXhPhqfDrsXHrlQOxtz0nd1HFsp7Z_BnjmtBBOKbzkFD7lFCji6IZUvNRlXqWZrspQLvZhnB-dZSfn--cb8KurhaG0yk4nBkVdzxz9I9-TmcoVei9C7jUxLWJyOHoz_8apgxRFWrt2GksROfU_f-D1bfH6-BD3-rmUo-Gnd0c8dhjgLkuLlsLODhV07pRFQ-lsUddSlsIqa7NCiFrIptEu01Z7nzvr8Ms8GtisyfFm52uvkO4N2NT4jekANt8Ox5OPPeSvDq17hMpTTqAysWQnFu6hZ8Dp6ka9cjOerpnFmHn9t434J1gbbODoLtyJzis7WErbPdjw0y3q-xxzRLbg9h_whvfh8-SSwkCUWM0WAe2Tzfs6BVZNa-YJX5lRfjubNaypLihLnlHNCw6zixVeaMtaAlsIlAL29AM4uxZWb8NgOpv6h8DqnODRS9FQka0u68IjaW-ldmVhva0SEB0vjYtI59Rw46vpMZqJ_wb5bwL_TZrAy9Uz8yXOx5Wzt2mLVjOHJwIdHZnqBF7QphnSDvhKV8UiB1w44WyZAy2URhcrEwnsrs3EU-3Wh7ttN1GrLEx_BhJ41YlCP_z_9e5cTe0p3MSzZN4fj08fwS1JYhmy6HZh0F5-94_R7WrtkyjfDL5c95H6DWxMOWY |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Predicting+school+performance+and+early+risk+of+failure+from+an+intelligent+tutoring+system&rft.jtitle=Education+and+information+technologies&rft.au=Haridas%2C+Mithun&rft.au=Gutjahr%2C+Georg&rft.au=Raman%2C+Raghu&rft.au=Ramaraju%2C+Rudraraju&rft.date=2020-09-01&rft.pub=Springer&rft.issn=1360-2357&rft.volume=25&rft.issue=5&rft.spage=3995&rft_id=info:doi/10.1007%2Fs10639-020-10144-0&rft.externalDocID=A713712941 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1360-2357&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1360-2357&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1360-2357&client=summon |