Brain organoids: advances, applications and challenges
Brain organoids are self-assembled three-dimensional aggregates generated from pluripotent stem cells with cell types and cytoarchitectures that resemble the embryonic human brain. As such, they have emerged as novel model systems that can be used to investigate human brain development and disorders...
Saved in:
Published in | Development (Cambridge) Vol. 146; no. 8 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
England
The Company of Biologists Ltd
15.04.2019
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Brain organoids are self-assembled three-dimensional aggregates generated from pluripotent stem cells with cell types and cytoarchitectures that resemble the embryonic human brain. As such, they have emerged as novel model systems that can be used to investigate human brain development and disorders. Although brain organoids mimic many key features of early human brain development at molecular, cellular, structural and functional levels, some aspects of brain development, such as the formation of distinct cortical neuronal layers, gyrification, and the establishment of complex neuronal circuitry, are not fully recapitulated. Here, we summarize recent advances in the development of brain organoid methodologies and discuss their applications in disease modeling. In addition, we compare current organoid systems to the embryonic human brain, highlighting features that currently can and cannot be recapitulated, and discuss perspectives for advancing current brain organoid technologies to expand their applications. |
---|---|
AbstractList | Brain organoids are self-assembled three-dimensional aggregates generated from pluripotent stem cells with cell types and cytoarchitectures that resemble the embryonic human brain. As such, they have emerged as novel model systems that can be used to investigate human brain development and disorders. Although brain organoids mimic many key features of early human brain development at molecular, cellular, structural and functional levels, some aspects of brain development, such as the formation of distinct cortical neuronal layers, gyrification, and the establishment of complex neuronal circuitry, are not fully recapitulated. Here, we summarize recent advances in the development of brain organoid methodologies and discuss their applications in disease modeling. In addition, we compare current organoid systems to the embryonic human brain, highlighting features that currently can and cannot be recapitulated, and discuss perspectives for advancing current brain organoid technologies to expand their applications.Brain organoids are self-assembled three-dimensional aggregates generated from pluripotent stem cells with cell types and cytoarchitectures that resemble the embryonic human brain. As such, they have emerged as novel model systems that can be used to investigate human brain development and disorders. Although brain organoids mimic many key features of early human brain development at molecular, cellular, structural and functional levels, some aspects of brain development, such as the formation of distinct cortical neuronal layers, gyrification, and the establishment of complex neuronal circuitry, are not fully recapitulated. Here, we summarize recent advances in the development of brain organoid methodologies and discuss their applications in disease modeling. In addition, we compare current organoid systems to the embryonic human brain, highlighting features that currently can and cannot be recapitulated, and discuss perspectives for advancing current brain organoid technologies to expand their applications. Brain organoids are self-assembled three-dimensional aggregates generated from pluripotent stem cells with cell types and cytoarchitectures that resemble the embryonic human brain. As such, they have emerged as novel model systems that can be used to investigate human brain development and disorders. Although brain organoids mimic many key features of early human brain development at molecular, cellular, structural and functional levels, some aspects of brain development, such as the formation of distinct cortical neuronal layers, gyrification, and the establishment of complex neuronal circuitry, are not fully recapitulated. Here, we summarize recent advances in the development of brain organoid methodologies and discuss their applications in disease modeling. In addition, we compare current organoid systems to the embryonic human brain, highlighting features that currently can and cannot be recapitulated, and discuss perspectives for advancing current brain organoid technologies to expand their applications. Brain organoids are self-assembled three-dimensional aggregates generated from pluripotent stem cells with cell types and cytoarchitectures that resemble the embryonic human brain. As such, they have emerged as novel model systems that can be used to investigate human brain development and disorders. Although brain organoids mimic many key features of early human brain development at molecular, cellular, structural and functional levels, some aspects of brain development, such as the formation of distinct cortical neuronal layers, gyrification, and the establishment of complex neuronal circuitry, are not fully recapitulated. Here, we summarize recent advances in the development of brain organoid methodologies and discuss their applications in disease modeling. In addition, we compare current organoid systems to the embryonic human brain, highlighting features that currently can and cannot be recapitulated, and discuss perspectives for advancing current brain organoid technologies to expand their applications. Summary: In this Review, we discuss recent advances in the production of brain organoids, highlighting their potential applications as model systems for understanding disease states as well as normal brain development across species. |
Author | Ming, Guo-li Qian, Xuyu Song, Hongjun |
AuthorAffiliation | 2 Biomedical Engineering Graduate Program , Johns Hopkins University School of Medicine , Baltimore, MD 21205 , USA 1 Department of Neuroscience and Mahoney Institute for Neurosciences , Perelman School for Medicine, University of Pennsylvania , Philadelphia, PA 19104 , USA 6 Department of Psychiatry , Perelman School for Medicine, University of Pennsylvania , Philadelphia, PA 19104 , USA 3 Department of Cell and Developmental Biology , Perelman School for Medicine, University of Pennsylvania , Philadelphia, PA 19104 , USA 5 The Epigenetics Institute, Perelman School for Medicine, University of Pennsylvania , Philadelphia, PA 19104 , USA 4 Institute for Regenerative Medicine, Perelman School for Medicine, University of Pennsylvania , Philadelphia, PA 19104 , USA |
AuthorAffiliation_xml | – name: 2 Biomedical Engineering Graduate Program , Johns Hopkins University School of Medicine , Baltimore, MD 21205 , USA – name: 1 Department of Neuroscience and Mahoney Institute for Neurosciences , Perelman School for Medicine, University of Pennsylvania , Philadelphia, PA 19104 , USA – name: 6 Department of Psychiatry , Perelman School for Medicine, University of Pennsylvania , Philadelphia, PA 19104 , USA – name: 4 Institute for Regenerative Medicine, Perelman School for Medicine, University of Pennsylvania , Philadelphia, PA 19104 , USA – name: 5 The Epigenetics Institute, Perelman School for Medicine, University of Pennsylvania , Philadelphia, PA 19104 , USA – name: 3 Department of Cell and Developmental Biology , Perelman School for Medicine, University of Pennsylvania , Philadelphia, PA 19104 , USA |
Author_xml | – sequence: 1 givenname: Xuyu surname: Qian fullname: Qian, Xuyu organization: Department of Neuroscience and Mahoney Institute for Neurosciences, Perelman School for Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA, Biomedical Engineering Graduate Program, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA – sequence: 2 givenname: Hongjun surname: Song fullname: Song, Hongjun organization: Department of Neuroscience and Mahoney Institute for Neurosciences, Perelman School for Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA, Department of Cell and Developmental Biology, Perelman School for Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA, Institute for Regenerative Medicine, Perelman School for Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA, The Epigenetics Institute, Perelman School for Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA – sequence: 3 givenname: Guo-li orcidid: 0000-0002-2517-6075 surname: Ming fullname: Ming, Guo-li organization: Department of Neuroscience and Mahoney Institute for Neurosciences, Perelman School for Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA, Department of Cell and Developmental Biology, Perelman School for Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA, Institute for Regenerative Medicine, Perelman School for Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA, Department of Psychiatry, Perelman School for Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/30992274$$D View this record in MEDLINE/PubMed |
BookMark | eNptkc1LxDAQxYOsuOvHxT9AehSxOknTpvEgqPgFghc9h2k6XSPdZG26C_73VldFxdMc5jfvDe9tspEPnhjb5XDEhRTHNS2PeFGAkmtswqVSqeZCj9gEdA4p15qP2WaMzwCQFUptsHEGWguh5IQV5x06n4Ruij64Op4kWC_RW4qHCc7nrbPYu-Bjgr5O7BO2LfkpxW223mAbaedzbrHHq8uHi5v07v769uLsLrUSyj7VoNXwmLQAdVOQzG0pEanMFYiS11neVJSLSnFbNhWqhlARVLUtNZYNyirbYqcr3fmimlFtyfcdtmbeuRl2ryagM7833j2ZaViaIodMl3oQ2P8U6MLLgmJvZi5aalv0FBbRCMFBF1ypd3Tvp9e3yVdYA3CwAmwXYuyo-UY4mPcmzNCEWTUxwPAHtq7_yHL407X_nbwBnMyMag |
CitedBy_id | crossref_primary_10_1016_j_semcdb_2021_03_011 crossref_primary_10_1007_s12035_023_03836_4 crossref_primary_10_1007_s12264_023_01065_2 crossref_primary_10_3389_fncel_2024_1488691 crossref_primary_10_1038_s41598_020_75813_z crossref_primary_10_1088_1758_5090_ad867e crossref_primary_10_3390_mi10100638 crossref_primary_10_1016_j_stem_2019_09_002 crossref_primary_10_7554_eLife_98081_2 crossref_primary_10_3389_fcell_2020_604448 crossref_primary_10_1541_ieejsmas_143_82 crossref_primary_10_1016_j_dr_2024_101184 crossref_primary_10_3389_fncel_2024_1480845 crossref_primary_10_3390_cells11091411 crossref_primary_10_1002_2211_5463_13601 crossref_primary_10_1039_D1LC00737H crossref_primary_10_1016_j_isci_2021_102063 crossref_primary_10_1089_crispr_2021_0070 crossref_primary_10_1016_j_mattod_2025_02_002 crossref_primary_10_1080_17460441_2024_2373165 crossref_primary_10_3389_ftox_2022_812863 crossref_primary_10_3390_ijms22020924 crossref_primary_10_15283_ijsc21195 crossref_primary_10_3390_biom11050699 crossref_primary_10_1021_acsami_4c22692 crossref_primary_10_3390_microorganisms8111637 crossref_primary_10_3390_cells14020070 crossref_primary_10_1016_j_envpol_2024_124934 crossref_primary_10_1088_1741_2552_ac3e02 crossref_primary_10_1021_acs_chemrev_2c00212 crossref_primary_10_3390_mi12040441 crossref_primary_10_1080_01480545_2022_2066114 crossref_primary_10_1016_j_jmb_2021_167243 crossref_primary_10_1155_2021_5511630 crossref_primary_10_51335_organoid_2024_4_e12 crossref_primary_10_1002_btm2_10296 crossref_primary_10_1186_s40478_020_01077_3 crossref_primary_10_1016_j_scitotenv_2022_157047 crossref_primary_10_1002_adfm_202002931 crossref_primary_10_1111_cpr_13201 crossref_primary_10_1186_s13229_020_00334_5 crossref_primary_10_1002_ibra_12139 crossref_primary_10_1016_j_jare_2023_01_006 crossref_primary_10_3389_fncom_2020_588224 crossref_primary_10_1002_anbr_202400052 crossref_primary_10_3390_gels8060379 crossref_primary_10_1016_j_brainres_2020_147028 crossref_primary_10_1038_s41398_023_02510_6 crossref_primary_10_1016_j_stemcr_2020_05_006 crossref_primary_10_3389_fbioe_2025_1515340 crossref_primary_10_3390_ijms25147750 crossref_primary_10_3389_fnins_2022_1031075 crossref_primary_10_1021_acsbiomaterials_0c01365 crossref_primary_10_1039_D1LC00603G crossref_primary_10_1017_S0963180123000543 crossref_primary_10_3389_fmolb_2021_686410 crossref_primary_10_3390_ijms25020993 crossref_primary_10_3389_fbioe_2022_1048731 crossref_primary_10_3390_membranes11020112 crossref_primary_10_1038_s41420_022_00958_x crossref_primary_10_3389_fnmol_2022_858582 crossref_primary_10_1186_s13619_024_00219_5 crossref_primary_10_1002_adhm_202302745 crossref_primary_10_1038_s41582_022_00723_9 crossref_primary_10_3233_JAD_231184 crossref_primary_10_1016_j_mtbio_2023_100741 crossref_primary_10_1096_fj_202000372R crossref_primary_10_1016_j_bioactmat_2024_05_043 crossref_primary_10_1016_j_neuron_2019_08_028 crossref_primary_10_3390_cells13100792 crossref_primary_10_1021_acs_nanolett_3c02570 crossref_primary_10_1093_burnst_tkae070 crossref_primary_10_1111_jnc_15908 crossref_primary_10_51335_organoid_2022_2_e7 crossref_primary_10_3390_cells11010106 crossref_primary_10_1021_acs_estlett_4c00154 crossref_primary_10_51335_organoid_2022_2_e8 crossref_primary_10_15283_ijsc21157 crossref_primary_10_3389_fnins_2020_593248 crossref_primary_10_1063_5_0043014 crossref_primary_10_1038_s41419_020_03002_x crossref_primary_10_1177_10738584211015136 crossref_primary_10_3390_ijms22041692 crossref_primary_10_1038_s41467_021_27464_5 crossref_primary_10_1038_s41598_021_85129_1 crossref_primary_10_1016_j_celrep_2024_115068 crossref_primary_10_1254_fpj_21003 crossref_primary_10_1038_s41578_021_00279_y crossref_primary_10_3390_pharmaceutics15051369 crossref_primary_10_1016_j_jmb_2021_167165 crossref_primary_10_3389_fnmol_2024_1459877 crossref_primary_10_33920_med_01_2501_02 crossref_primary_10_1128_jvi_01122_22 crossref_primary_10_1016_j_cell_2023_04_022 crossref_primary_10_3390_cancers15041253 crossref_primary_10_54537_tusebdergisi_1213712 crossref_primary_10_1038_s41586_021_03343_3 crossref_primary_10_1002_dneu_22828 crossref_primary_10_1007_s43657_021_00015_0 crossref_primary_10_1016_j_tics_2021_01_005 crossref_primary_10_1017_erm_2022_40 crossref_primary_10_1016_j_stem_2022_09_010 crossref_primary_10_1063_5_0048837 crossref_primary_10_1038_s41380_022_01708_2 crossref_primary_10_2174_1389201020666191129103730 crossref_primary_10_1126_sciadv_adj4735 crossref_primary_10_1038_s41587_024_02128_z crossref_primary_10_1016_j_biopsych_2022_12_017 crossref_primary_10_1016_j_ecoenv_2024_116876 crossref_primary_10_1155_2022_7264649 crossref_primary_10_1016_j_biopsych_2022_12_015 crossref_primary_10_1016_j_ymgme_2022_04_005 crossref_primary_10_1016_j_isci_2021_103438 crossref_primary_10_1038_s41514_021_00070_x crossref_primary_10_1177_20417314241286092 crossref_primary_10_1101_cshperspect_a035709 crossref_primary_10_1016_j_dmpk_2024_101031 crossref_primary_10_3389_frai_2024_1376042 crossref_primary_10_1016_j_dmpk_2024_101036 crossref_primary_10_1021_acschemneuro_1c00201 crossref_primary_10_1021_acsnano_4c10525 crossref_primary_10_3389_fncel_2023_1308479 crossref_primary_10_1038_s41564_024_01657_2 crossref_primary_10_3390_ijms22062962 crossref_primary_10_1080_10408444_2020_1756219 crossref_primary_10_3389_fcell_2024_1478549 crossref_primary_10_5483_BMBRep_2024_0077 crossref_primary_10_1016_j_expneurol_2024_115110 crossref_primary_10_1038_s41586_023_06713_1 crossref_primary_10_4103_1673_5374_390972 crossref_primary_10_5483_BMBRep_2023_0222 crossref_primary_10_3390_ijms21197113 crossref_primary_10_1038_s41536_021_00135_1 crossref_primary_10_3389_fnins_2024_1360482 crossref_primary_10_1016_j_conb_2023_102698 crossref_primary_10_1002_bit_28606 crossref_primary_10_3390_medicina57060532 crossref_primary_10_3390_organoids2010002 crossref_primary_10_3389_fphar_2025_1563198 crossref_primary_10_3389_fimmu_2023_1172262 crossref_primary_10_1016_j_reprotox_2025_108862 crossref_primary_10_1155_2019_2149812 crossref_primary_10_1016_j_cpt_2023_10_005 crossref_primary_10_1186_s13287_023_03341_4 crossref_primary_10_1242_dev_200439 crossref_primary_10_1021_acsbiomaterials_4c01383 crossref_primary_10_3389_fcell_2020_00220 crossref_primary_10_1007_s00604_023_06165_4 crossref_primary_10_1016_j_schres_2022_06_028 crossref_primary_10_3389_fcimb_2023_1129451 crossref_primary_10_1038_s41467_023_43141_1 crossref_primary_10_23838_pfm_2024_00086 crossref_primary_10_1186_s13010_022_00119_z crossref_primary_10_3389_fcell_2021_591017 crossref_primary_10_1186_s13567_021_00931_z crossref_primary_10_1007_s43188_025_00279_y crossref_primary_10_1016_j_neuint_2021_105012 crossref_primary_10_1080_14789450_2020_1723419 crossref_primary_10_4103_NRR_NRR_D_23_00928 crossref_primary_10_3389_fncel_2019_00361 crossref_primary_10_3390_bioengineering10040449 crossref_primary_10_1038_s41583_021_00496_y crossref_primary_10_1038_s41418_020_0566_4 crossref_primary_10_3390_organoids4010001 crossref_primary_10_3390_ijms23073877 crossref_primary_10_3389_fphar_2020_00396 crossref_primary_10_3390_genes13040639 crossref_primary_10_54097_vhxbb234 crossref_primary_10_3389_fimmu_2022_826091 crossref_primary_10_1038_s41536_022_00246_3 crossref_primary_10_1038_s41583_020_0263_9 crossref_primary_10_1016_j_mcn_2023_103876 crossref_primary_10_1007_s12551_019_00590_7 crossref_primary_10_1016_j_bbcan_2024_189235 crossref_primary_10_51335_organoid_2022_2_e21 crossref_primary_10_3389_fphy_2022_1100090 crossref_primary_10_1016_j_cobme_2020_02_002 crossref_primary_10_1016_j_neuint_2021_105039 crossref_primary_10_3389_fsci_2023_1017235 crossref_primary_10_1186_s13073_020_00733_6 crossref_primary_10_1002_admt_202400645 crossref_primary_10_1038_s41564_023_01405_y crossref_primary_10_51335_organoid_2021_1_e11 crossref_primary_10_1002_med_21922 crossref_primary_10_1038_s41467_023_44675_0 crossref_primary_10_37285_ijpsn_2024_17_1_8 crossref_primary_10_3389_fcell_2020_00797 crossref_primary_10_1038_s42003_023_04547_1 crossref_primary_10_1016_j_cej_2024_150368 crossref_primary_10_3389_fncel_2024_1335849 crossref_primary_10_1007_s12015_021_10254_3 crossref_primary_10_1038_s41582_021_00612_7 crossref_primary_10_1016_j_neuroimage_2021_117779 crossref_primary_10_34133_bmef_0065 crossref_primary_10_1002_adhm_202302456 crossref_primary_10_1186_s40035_024_00446_5 crossref_primary_10_51335_organoid_2022_2_e25 crossref_primary_10_3390_organoids1020011 crossref_primary_10_7554_eLife_98081 crossref_primary_10_1088_2516_1091_acce12 crossref_primary_10_1016_j_semcdb_2020_05_023 crossref_primary_10_1016_j_semcdb_2020_05_026 crossref_primary_10_1016_j_ymthe_2021_01_001 crossref_primary_10_1016_j_envpol_2024_125232 crossref_primary_10_1146_annurev_bioeng_082120_042814 crossref_primary_10_1103_PRXLife_2_043014 crossref_primary_10_1016_j_semcdb_2020_05_013 crossref_primary_10_1088_1758_5090_ad1b1e crossref_primary_10_3389_fneur_2023_1213969 crossref_primary_10_1016_j_addr_2024_115344 crossref_primary_10_1038_s42003_021_02910_8 crossref_primary_10_3389_fmolb_2020_00224 crossref_primary_10_1091_mbc_E19_04_0211 crossref_primary_10_1016_j_celrep_2024_113883 crossref_primary_10_1038_s41593_021_00906_5 crossref_primary_10_1016_j_tibtech_2023_10_008 crossref_primary_10_1002_jnr_25123 crossref_primary_10_3390_ijms241310762 crossref_primary_10_3390_pharmaceutics16040443 crossref_primary_10_1016_j_neuron_2020_08_029 crossref_primary_10_1016_j_biocel_2024_106617 crossref_primary_10_1007_s11019_022_10082_3 crossref_primary_10_1155_2022_2150680 crossref_primary_10_1039_D3LC00294B crossref_primary_10_1016_j_bbi_2022_04_007 crossref_primary_10_3390_brainsci12050552 crossref_primary_10_7554_eLife_98096 crossref_primary_10_1016_j_stemcr_2022_04_003 crossref_primary_10_1109_TNSRE_2022_3150325 crossref_primary_10_1016_j_tibtech_2022_07_011 crossref_primary_10_3390_ijms24043113 crossref_primary_10_1016_j_stem_2021_04_006 crossref_primary_10_4103_NRR_NRR_D_24_00901 crossref_primary_10_1016_j_expneurol_2023_114386 crossref_primary_10_2174_1386207325666220408091206 crossref_primary_10_14791_btrt_2022_0037 crossref_primary_10_1016_j_stem_2020_02_002 crossref_primary_10_1093_oons_kvae007 crossref_primary_10_3390_pharmaceutics14112301 crossref_primary_10_1016_j_hlife_2025_02_002 crossref_primary_10_3390_biomedicines9040440 crossref_primary_10_1002_SMMD_20230028 crossref_primary_10_1111_ejn_16651 crossref_primary_10_1038_s41586_024_08172_8 crossref_primary_10_3389_fnmol_2022_818696 crossref_primary_10_3389_fnmol_2022_840265 crossref_primary_10_3389_fncel_2024_1403734 crossref_primary_10_1177_09636897241303271 crossref_primary_10_1016_j_neuron_2020_09_018 crossref_primary_10_1038_s41598_022_16369_y crossref_primary_10_1038_s41582_021_00578_6 crossref_primary_10_1038_s41592_024_02384_6 crossref_primary_10_1002_stem_3156 crossref_primary_10_1016_j_jpha_2023_04_003 crossref_primary_10_1016_j_csbj_2020_09_008 crossref_primary_10_12688_molpsychol_17553_1 crossref_primary_10_3390_biomedicines11051261 crossref_primary_10_1186_s13619_022_00150_7 crossref_primary_10_3389_fcell_2023_1332901 crossref_primary_10_1007_s13365_021_01049_w crossref_primary_10_3390_cells10123422 crossref_primary_10_1177_24725552211024547 crossref_primary_10_1007_s00018_023_04951_0 crossref_primary_10_1093_lifemedi_lnad027 crossref_primary_10_1016_j_stem_2024_10_016 crossref_primary_10_1038_s41596_024_01029_4 crossref_primary_10_3390_ijms231911527 crossref_primary_10_1093_mam_ozae119 crossref_primary_10_1038_s41586_022_05219_6 crossref_primary_10_1186_s13229_020_00370_1 crossref_primary_10_1016_j_crmeth_2024_100777 crossref_primary_10_1177_1073858420960112 crossref_primary_10_1016_j_isci_2020_101485 crossref_primary_10_1016_j_xpro_2022_101860 crossref_primary_10_3389_fnsyn_2019_00033 crossref_primary_10_3389_fmed_2021_574047 crossref_primary_10_1089_scd_2020_0069 crossref_primary_10_1016_j_expneurol_2021_113619 crossref_primary_10_1001_jamapsychiatry_2020_0196 crossref_primary_10_4103_1673_5374_369100 crossref_primary_10_1186_s13619_021_00103_6 crossref_primary_10_3389_fonc_2020_604121 crossref_primary_10_3390_cells11142135 crossref_primary_10_1007_s13770_020_00250_y crossref_primary_10_3390_ijms25126522 crossref_primary_10_1016_j_brainres_2019_146427 crossref_primary_10_1016_j_isci_2020_101770 crossref_primary_10_1038_s41380_024_02728_w crossref_primary_10_1002_admi_202101297 crossref_primary_10_3390_biom13020260 crossref_primary_10_1002_stem_3368 crossref_primary_10_3390_ijms25042392 crossref_primary_10_1089_ten_tec_2020_0337 crossref_primary_10_1360_SSV_2021_0098 crossref_primary_10_5483_BMBRep_2022_55_5_043 crossref_primary_10_1186_s13058_024_01865_y crossref_primary_10_3390_molecules25051150 crossref_primary_10_1002_mco2_735 crossref_primary_10_3389_fphar_2020_00407 crossref_primary_10_1016_j_tice_2025_102831 crossref_primary_10_1016_j_devcel_2022_09_011 crossref_primary_10_3389_fnins_2024_1522652 crossref_primary_10_1002_advs_202400847 crossref_primary_10_1093_jmcb_mjaa013 crossref_primary_10_1016_j_stem_2023_01_004 crossref_primary_10_1093_jmcb_mjaa012 crossref_primary_10_3390_jfb13030146 crossref_primary_10_1007_s11481_019_09880_z crossref_primary_10_1016_j_stem_2025_02_010 crossref_primary_10_1002_adhm_202303180 crossref_primary_10_1016_j_stem_2025_02_011 crossref_primary_10_1186_s12974_019_1614_1 crossref_primary_10_3389_frai_2023_1307613 crossref_primary_10_15283_ijsc24056 crossref_primary_10_1039_D4AY01205D crossref_primary_10_1038_s41380_024_02487_8 crossref_primary_10_1042_BST20230341 crossref_primary_10_1186_s13287_021_02369_8 crossref_primary_10_3389_fcell_2020_579659 crossref_primary_10_1016_j_bcp_2023_115679 crossref_primary_10_1038_s41380_020_00999_7 crossref_primary_10_1038_s41684_019_0465_9 crossref_primary_10_1016_j_isci_2022_104580 crossref_primary_10_3390_organoids2040017 crossref_primary_10_1016_j_lfs_2024_122610 crossref_primary_10_2174_1570159X21666230817085811 crossref_primary_10_3389_fnagi_2021_643889 crossref_primary_10_3390_cells9051301 crossref_primary_10_3390_ijms22031203 crossref_primary_10_1039_D4BM00317A crossref_primary_10_1016_j_scr_2020_101870 crossref_primary_10_1007_s44272_024_00012_0 crossref_primary_10_1016_j_drudis_2019_11_010 crossref_primary_10_3389_fncel_2024_1435619 crossref_primary_10_3390_pharmaceutics13050704 crossref_primary_10_3390_ma14133664 crossref_primary_10_1016_j_neuron_2022_06_004 crossref_primary_10_2139_ssrn_3867731 crossref_primary_10_3390_pathogens10111510 crossref_primary_10_1016_j_neuron_2022_10_004 crossref_primary_10_1016_j_brain_2022_100062 crossref_primary_10_1063_5_0035610 crossref_primary_10_1002_aur_70005 crossref_primary_10_1016_j_biopsych_2023_01_004 crossref_primary_10_1128_mBio_00680_21 crossref_primary_10_1002_mabi_202100191 crossref_primary_10_1016_j_jneumeth_2019_108533 crossref_primary_10_1021_envhealth_3c00199 crossref_primary_10_1038_s12276_021_00587_x crossref_primary_10_3389_fnins_2024_1498801 crossref_primary_10_1177_20417314221147113 crossref_primary_10_1186_s41021_021_00214_1 crossref_primary_10_3390_biology10080740 crossref_primary_10_3390_v14030634 crossref_primary_10_3390_biom13010025 crossref_primary_10_1016_j_scitotenv_2021_149043 crossref_primary_10_1002_mco2_70020 crossref_primary_10_1038_s41378_024_00817_y crossref_primary_10_3390_cells11111725 crossref_primary_10_1016_j_bcp_2022_115080 crossref_primary_10_3389_fnins_2021_668857 crossref_primary_10_3389_fnmol_2019_00277 crossref_primary_10_1016_j_conb_2025_103011 crossref_primary_10_1134_S1062360420040074 crossref_primary_10_59717_j_xinn_med_2024_100076 crossref_primary_10_12688_molpsychol_17557_1 crossref_primary_10_1016_j_conb_2022_102536 crossref_primary_10_3389_fcell_2021_709824 crossref_primary_10_1038_s41598_020_73177_y crossref_primary_10_3389_fnagi_2024_1435445 crossref_primary_10_1134_S1062360421030061 crossref_primary_10_1038_s41598_022_20096_9 crossref_primary_10_1016_j_cej_2021_130427 crossref_primary_10_1186_s12974_023_02919_2 crossref_primary_10_3390_biomedicines12040877 crossref_primary_10_1093_brain_awae281 crossref_primary_10_3390_ijms232113116 crossref_primary_10_3389_fncel_2020_602946 crossref_primary_10_1016_j_molmed_2023_05_007 crossref_primary_10_1152_ajplung_00311_2020 crossref_primary_10_3389_fphys_2021_621970 crossref_primary_10_1177_0271678X231152023 crossref_primary_10_1016_j_ecoenv_2022_113429 crossref_primary_10_1016_j_cell_2023_12_012 crossref_primary_10_3390_ijms25158540 crossref_primary_10_1002_brx2_70002 crossref_primary_10_1016_j_biopsych_2023_01_012 crossref_primary_10_1002_anbr_202100097 crossref_primary_10_1093_hmg_ddab223 crossref_primary_10_1016_j_neures_2021_08_002 crossref_primary_10_1002_smll_202306451 crossref_primary_10_1038_s41587_024_02157_8 crossref_primary_10_1186_s43556_023_00165_9 crossref_primary_10_15252_embj_2022111118 crossref_primary_10_3389_fnins_2020_622137 crossref_primary_10_1016_j_stem_2021_11_005 crossref_primary_10_1186_s13287_023_03302_x crossref_primary_10_1016_j_expneurol_2023_114461 crossref_primary_10_1155_2021_9477332 crossref_primary_10_3390_ijms21020482 crossref_primary_10_3389_fimmu_2025_1538920 crossref_primary_10_3389_fnmol_2023_1173433 crossref_primary_10_1111_nan_12650 |
Cites_doi | 0.1016/j.cell.2017.04.012 10.1016/j.celrep.2017.03.047 10.1038/nature25032 10.1038/nmeth.4304 10.1093/cercor/bhq125 10.1126/science.1112070 10.1038/ncb3632 10.1126/science.1074192 10.1038/cr.2016.68 10.1038/s41592-018-0255-0 10.1038/nature22047 10.1016/j.stem.2013.04.009 10.1126/science.aaa9101 10.1038/ncomms14167 10.1038/nrn2151 10.1038/s41592-018-0081-4 10.1016/j.celrep.2014.12.051 10.1038/nprot.2017.152 10.1016/j.stem.2016.12.007 10.1038/nm.4184 10.1186/s13195-017-0268-4 10.1016/j.stem.2016.04.014 10.1073/pnas.1209076110 10.1016/j.stem.2018.05.024 10.1016/j.neuron.2016.09.005 10.1523/JNEUROSCI.5249-10.2011 10.1038/s41598-018-20436-8 10.1016/j.cell.2006.07.024 10.1016/j.neuron.2017.03.042 10.1016/j.neuron.2007.10.010 10.1136/jnnp-2015-312036 10.1002/cne.24130 10.1016/j.stem.2015.05.004 10.1371/journal.pone.0161969 10.1126/science.aaf6116 10.1093/cercor/bhn078 10.1016/j.cell.2012.02.052 10.1016/j.tins.2013.01.006 10.1523/JNEUROSCI.1106-17.2017 10.1038/ncomms9896 10.1016/j.stem.2013.11.006 10.1016/j.stem.2008.09.002 10.1038/nbt.4127 10.1016/j.stemcr.2017.03.010 10.7554/eLife.18683 10.1016/j.cell.2015.09.004 10.1016/j.cell.2017.06.036 10.1073/pnas.1520760112 10.1126/science.278.5337.474 10.1016/j.celrep.2016.12.001 10.1126/science.aaa1975 10.1016/j.cell.2013.03.027 10.1016/j.cell.2018.03.067 10.1038/nature12517 10.14573/altex.1609122 10.1016/j.tins.2009.01.007 10.1007/s13238-017-0479-2 10.1126/science.aap8809 10.1016/j.stem.2017.07.014 10.1093/cercor/bhq219 10.1523/JNEUROSCI.12-11-04565.1992 10.1097/WNR.0000000000001014 10.1016/j.cell.2007.11.019 10.1038/nrn2252 10.1016/j.stem.2016.07.005 10.1038/ncomms10351 10.1038/nm.4233 10.1016/j.cell.2016.04.032 10.1038/nature20168 10.1038/nn.3536 10.1016/j.celrep.2018.03.105 10.1523/JNEUROSCI.5128-10.2011 10.1073/pnas.1424440112 10.1038/nbt.3906 10.1016/j.cell.2011.06.030 10.1007/s12035-016-0274-8 10.1038/nature00779 10.1242/dev.140707 10.3389/fnhum.2013.00424 10.1016/j.celrep.2016.09.062 10.1186/gb-2006-7-1-202 10.1038/nature25980 10.1016/j.stemcr.2014.09.020 10.1016/j.stem.2018.03.009 10.1126/science.aad2029 10.1001/jamapediatrics.2016.3982 10.1016/j.stem.2017.07.007 10.1038/nn.3541 10.1038/nprot.2014.158 10.1038/s41592-018-0070-7 10.1038/s41380-018-0229-8 10.1073/pnas.1315710110 10.1016/j.stem.2016.11.017 10.1038/nmeth.3415 10.1038/nature13800 10.1016/j.stem.2017.06.017 10.1038/srep03594 10.1158/0008-5472.CAN-15-2402 10.1242/dev.172049 10.1016/j.neuron.2017.07.035 10.1016/j.jneumeth.2009.03.016 10.1093/cercor/bhq245 10.1242/dev.106914 10.1016/j.stem.2016.03.003 10.1038/nature18296 10.1056/NEJMsr1604338 10.1053/j.gastro.2011.07.050 10.1016/j.jmbbm.2013.02.018 10.1056/NEJMoa1307491 10.1177/1535370217694100 10.1016/j.celrep.2017.09.047 10.1126/science.1244392 10.1038/nature08845 10.1002/dvdy.24662 10.3389/fnins.2018.00031 10.1126/science.282.5391.1145 10.1093/cercor/bhw384 10.1002/stem.408 10.1038/nprot.2013.143 10.1016/j.neuron.2017.10.010 10.1016/j.stem.2016.11.014 10.1101/gad.298216.117 10.1038/nature07935 10.1038/nature22330 10.1016/S1473-3099(16)00095-5 10.1016/j.cell.2015.06.034 10.1038/s41567-018-0046-7 10.1016/j.celrep.2014.11.026 10.1093/nar/gkw765 10.1016/j.cell.2018.03.051 10.1038/s41598-018-25603-5 10.1038/nrn2719 10.15252/embj.201593679 10.1126/science.aar6343 |
ContentType | Journal Article |
Copyright | 2019. Published by The Company of Biologists Ltd. 2019. Published by The Company of Biologists Ltd 2019 |
Copyright_xml | – notice: 2019. Published by The Company of Biologists Ltd. – notice: 2019. Published by The Company of Biologists Ltd 2019 |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 5PM |
DOI | 10.1242/dev.166074 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic CrossRef MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine Zoology Biology |
EISSN | 1477-9129 |
ExternalDocumentID | PMC6503989 30992274 10_1242_dev_166074 |
Genre | Review Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural |
GrantInformation_xml | – fundername: NINDS NIH HHS grantid: R35 NS116843 – fundername: NIMH NIH HHS grantid: U19 MH106434 – fundername: NINDS NIH HHS grantid: P01 NS097206 – fundername: NINDS NIH HHS grantid: R35 NS097370 – fundername: NIAID NIH HHS grantid: U19 AI131130 – fundername: NIMH NIH HHS grantid: R01 MH105128 – fundername: NINDS NIH HHS grantid: R37 NS047344 – fundername: ; – fundername: ; grantid: R37NS047344; P01NS097206; U19MH106434; R01MH105128; R35NS097370; U19AI131130 – fundername: ; grantid: 575050 |
GroupedDBID | --- -DZ -ET -~X .55 0R~ 18M 2WC 34G 39C 4.4 53G 5GY 5RE 5VS 85S AAFWJ AAYXX ABZEH ACGFS ACMFV ACPRK ACREN ADBBV ADFRT ADVGF AENEX AFFNX AGGIJ ALMA_UNASSIGNED_HOLDINGS AMTXH BAWUL BTFSW CITATION CS3 DIK DU5 E3Z EBS EJD F5P F9R GX1 H13 HZ~ INIJC KQ8 O9- OK1 P2P R.V RCB RHI SJN TR2 TWZ UPT W8F WH7 WOQ X7M XSW CGR CUY CVF ECM EIF NPM 7X8 5PM |
ID | FETCH-LOGICAL-c408t-90976604c00df6e45c84aae8570281d35fbe52b71c8fba7fea7e0bdc89a8fa4b3 |
ISSN | 0950-1991 1477-9129 |
IngestDate | Thu Aug 21 14:34:15 EDT 2025 Fri Jul 11 11:23:33 EDT 2025 Thu Apr 03 07:04:31 EDT 2025 Thu Apr 24 23:12:49 EDT 2025 Tue Jul 01 00:45:14 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 8 |
Keywords | Neuroscience Brain organoids Stem cell |
Language | English |
License | http://www.biologists.com/user-licence-1-1 2019. Published by The Company of Biologists Ltd. |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c408t-90976604c00df6e45c84aae8570281d35fbe52b71c8fba7fea7e0bdc89a8fa4b3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 ObjectType-Review-3 content type line 23 |
ORCID | 0000-0002-2517-6075 |
PMID | 30992274 |
PQID | 2210961779 |
PQPubID | 23479 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_6503989 proquest_miscellaneous_2210961779 pubmed_primary_30992274 crossref_primary_10_1242_dev_166074 crossref_citationtrail_10_1242_dev_166074 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2019-04-15 |
PublicationDateYYYYMMDD | 2019-04-15 |
PublicationDate_xml | – month: 04 year: 2019 text: 2019-04-15 day: 15 |
PublicationDecade | 2010 |
PublicationPlace | England |
PublicationPlace_xml | – name: England |
PublicationTitle | Development (Cambridge) |
PublicationTitleAlternate | Development |
PublicationYear | 2019 |
Publisher | The Company of Biologists Ltd |
Publisher_xml | – name: The Company of Biologists Ltd |
References | Zhang (2021042512422247700_DEV166074C131) 2016; 44 Sasai (2021042512422247700_DEV166074C104) 2013; 12 Ming (2021042512422247700_DEV166074C65) 2016; 19 Pamies (2021042512422247700_DEV166074C82) 2017; 34 Petanjek (2021042512422247700_DEV166074C85) 2009; 19 Kronenberg (2021042512422247700_DEV166074C48) 2018; 360 Iefremova (2021042512422247700_DEV166074C39) 2017; 19 Sloan (2021042512422247700_DEV166074C107) 2017; 95 Cruz-Acuña (2021042512422247700_DEV166074C21) 2017; 19 Del Toro (2021042512422247700_DEV166074C26) 2017; 169 Lancaster (2021042512422247700_DEV166074C51) 2017; 35 Mansour (2021042512422247700_DEV166074C61) 2018; 36 Borghese (2021042512422247700_DEV166074C10) 2010; 28 Nzou (2021042512422247700_DEV166074C76) 2018; 8 Workman (2021042512422247700_DEV166074C121) 2017; 23 Karzbrun (2021042512422247700_DEV166074C47) 2018; 14 Fiddes (2021042512422247700_DEV166074C30) 2018; 173 Lancaster (2021042512422247700_DEV166074C49) 2014; 9 Eiraku (2021042512422247700_DEV166074C28) 2008; 3 Bayly (2021042512422247700_DEV166074C6) 2014; 29 Radonjic (2021042512422247700_DEV166074C93) 2014; 9 Zeng (2021042512422247700_DEV166074C130) 2012; 149 Sur (2021042512422247700_DEV166074C113) 2005; 310 Ding (2021042512422247700_DEV166074C27) 2017; 525 Pollen (2021042512422247700_DEV166074C88) 2015; 163 Arber (2021042512422247700_DEV166074C3) 2017; 9 Zhong (2021042512422247700_DEV166074C132) 2018; 555 Qian (2021042512422247700_DEV166074C91) 2018; 13 Pasca (2021042512422247700_DEV166074C83) 2018; 553 Florio (2021042512422247700_DEV166074C31) 2015; 347 Takahashi (2021042512422247700_DEV166074C115) 2006; 126 Meinhardt (2021042512422247700_DEV166074C63) 2014; 3 Miller (2021042512422247700_DEV166074C64) 2013; 13 Ogawa (2021042512422247700_DEV166074C77) 2018; 23 Lewitus (2021042512422247700_DEV166074C53) 2013; 7 Qian (2021042512422247700_DEV166074C89) 2016; 165 Cugola (2021042512422247700_DEV166074C22) 2016; 534 Nowakowski (2021042512422247700_DEV166074C75) 2017; 358 Li (2021042512422247700_DEV166074C55) 2017; 8 Sousa (2021042512422247700_DEV166074C108) 2017; 170 Rambani (2021042512422247700_DEV166074C98) 2009; 180 Pasca (2021042512422247700_DEV166074C84) 2015; 12 Yoon (2021042512422247700_DEV166074C127) 2019; 16 Takahashi (2021042512422247700_DEV166074C116) 2007; 131 Gjorevski (2021042512422247700_DEV166074C34) 2016; 539 Nguyen (2021042512422247700_DEV166074C73) 2016; 26 De Clercq (2021042512422247700_DEV166074C25) 2018; 28 Ip (2021042512422247700_DEV166074C40) 2011; 21 Studer (2021042512422247700_DEV166074C111) 2015; 16 Bian (2021042512422247700_DEV166074C8) 2018; 15 Lewitus (2021042512422247700_DEV166074C54) 2016; 351 Sakaguchi (2021042512422247700_DEV166074C103) 2015; 6 Borrell (2021042512422247700_DEV166074C11) 2018; 38 Ozair (2021042512422247700_DEV166074C80) 2018; 23 Gonzalez (2021042512422247700_DEV166074C35) 2018; 23 Letinic (2021042512422247700_DEV166074C52) 2002; 417 Jeong (2021042512422247700_DEV166074C43) 2018; 12 Muguruma (2021042512422247700_DEV166074C71) 2015; 10 Choi (2021042512422247700_DEV166074C19) 2014; 515 Wen (2021042512422247700_DEV166074C120) 2017; 31 Pham (2021042512422247700_DEV166074C86) 2018; 29 Quadrato (2021042512422247700_DEV166074C92) 2017; 545 Birey (2021042512422247700_DEV166074C9) 2017; 15 Danjo (2021042512422247700_DEV166074C24) 2011; 31 Sato (2021042512422247700_DEV166074C106) 2011; 141 Yu (2021042512422247700_DEV166074C128) 2011; 31 Molyneaux (2021042512422247700_DEV166074C66) 2007; 8 Rakic (2021042512422247700_DEV166074C97) 2009; 32 Monzel (2021042512422247700_DEV166074C67) 2017; 8 Chenn (2021042512422247700_DEV166074C18) 2002; 297 Zilles (2021042512422247700_DEV166074C134) 2013; 36 Mota (2021042512422247700_DEV166074C70) 2015; 349 Raja (2021042512422247700_DEV166074C94) 2016; 11 Garcez (2021042512422247700_DEV166074C33) 2016; 352 Nowakowski (2021042512422247700_DEV166074C74) 2016; 91 Yoon (2021042512422247700_DEV166074C126) 2017; 21 Jo (2021042512422247700_DEV166074C44) 2016; 19 Dang (2021042512422247700_DEV166074C23) 2016; 19 Zhou (2021042512422247700_DEV166074C133) 2017; 21 Anderson (2021042512422247700_DEV166074C2) 1997; 278 Nakagawa (2021042512422247700_DEV166074C72) 2014; 4 Hubert (2021042512422247700_DEV166074C38) 2016; 76 Saito (2021042512422247700_DEV166074C102) 2011; 21 Gabriel (2021042512422247700_DEV166074C32) 2016; 35 Rakic (2021042512422247700_DEV166074C96) 2009; 10 Elsen (2021042512422247700_DEV166074C29) 2013; 110 Rajamani (2021042512422247700_DEV166074C95) 2018; 22 Sato (2021042512422247700_DEV166074C105) 2009; 459 Watanabe (2021042512422247700_DEV166074C119) 2017; 21 Lancaster (2021042512422247700_DEV166074C50) 2013; 501 Madhavan (2021042512422247700_DEV166074C60) 2018; 15 Stoner (2021042512422247700_DEV166074C110) 2014; 370 Lui (2021042512422247700_DEV166074C57) 2011; 146 Phan (2021042512422247700_DEV166074C87) 2017; 242 Chambers (2021042512422247700_DEV166074C16) 2006; 7 Hansen (2021042512422247700_DEV166074C37) 2013; 16 Otani (2021042512422247700_DEV166074C79) 2016; 18 O'Leary (2021042512422247700_DEV166074C78) 2007; 56 Xiao (2021042512422247700_DEV166074C123) 2016; 87 Li (2021042512422247700_DEV166074C56) 2017; 20 Qian (2021042512422247700_DEV166074C90) 2017; 144 Ye (2021042512422247700_DEV166074C125) 2017; 96 Xu (2021042512422247700_DEV166074C124) 2016; 22 Ozone (2021042512422247700_DEV166074C81) 2016; 7 Zembrzycki (2021042512422247700_DEV166074C129) 2015; 112 Bagley (2021042512422247700_DEV166074C5) 2017; 14 Bershteyn (2021042512422247700_DEV166074C7) 2017; 20 Moore (2021042512422247700_DEV166074C68) 2017; 171 Choi (2021042512422247700_DEV166074C20) 2017; 54 Subramanian (2021042512422247700_DEV166074C112) 2017; 8 Kadoshima (2021042512422247700_DEV166074C46) 2013; 110 Reynolds (2021042512422247700_DEV166074C101) 1992; 12 Luo (2021042512422247700_DEV166074C58) 2016; 17 Ran (2021042512422247700_DEV166074C99) 2013; 8 Abud (2021042512422247700_DEV166074C1) 2017; 94 Suzuki (2021042512422247700_DEV166074C114) 2018; 173 Chen (2021042512422247700_DEV166074C17) 2018; 248 Stahl (2021042512422247700_DEV166074C109) 2013; 153 Mariani (2021042512422247700_DEV166074C62) 2015; 162 Thomson (2021042512422247700_DEV166074C117) 1998; 282 Ma (2021042512422247700_DEV166074C59) 2013; 16 Bystron (2021042512422247700_DEV166074C12) 2008; 9 Calvet (2021042512422247700_DEV166074C13) 2016; 16 Jabaudon (2021042512422247700_DEV166074C41) 2018; 145 Camp (2021042512422247700_DEV166074C14) 2015; 112 Caronia-Brown (2021042512422247700_DEV166074C15) 2014; 141 Hansen (2021042512422247700_DEV166074C36) 2010; 464 Rasmussen (2021042512422247700_DEV166074C100) 2016; 374 Bae (2021042512422247700_DEV166074C4) 2014; 343 Xiang (2021042512422247700_DEV166074C122) 2017; 21 Jakovcevski (2021042512422247700_DEV166074C42) 2011; 21 Jorfi (2021042512422247700_DEV166074C45) 2018; 8 Mora-Bermudez (2021042512422247700_DEV166074C69) 2016; 5 Vera (2021042512422247700_DEV166074C118) 2016; 17 |
References_xml | – volume: 169 start-page: 621 year: 2017 ident: 2021042512422247700_DEV166074C26 article-title: Regulation of cerebral cortex folding by controlling neuronal migration via FLRT adhesion molecules publication-title: Cell doi: 0.1016/j.cell.2017.04.012 – volume: 19 start-page: 50 year: 2017 ident: 2021042512422247700_DEV166074C39 article-title: An Organoid-based model of cortical development identifies non-cell-autonomous defects in Wnt signaling contributing to miller-dieker syndrome publication-title: Cell Rep. doi: 10.1016/j.celrep.2017.03.047 – volume: 553 start-page: 437 year: 2018 ident: 2021042512422247700_DEV166074C83 article-title: The rise of three-dimensional human brain cultures publication-title: Nature doi: 10.1038/nature25032 – volume: 14 start-page: 743 year: 2017 ident: 2021042512422247700_DEV166074C5 article-title: Fused cerebral organoids model interactions between brain regions publication-title: Nat. Methods doi: 10.1038/nmeth.4304 – volume: 21 start-page: 588 year: 2011 ident: 2021042512422247700_DEV166074C102 article-title: Neocortical layer formation of human developing brains and lissencephalies: consideration of layer-specific marker expression publication-title: Cereb. Cortex doi: 10.1093/cercor/bhq125 – volume: 310 start-page: 805 year: 2005 ident: 2021042512422247700_DEV166074C113 article-title: Patterning and plasticity of the cerebral cortex publication-title: Science doi: 10.1126/science.1112070 – volume: 19 start-page: 1326 year: 2017 ident: 2021042512422247700_DEV166074C21 article-title: Synthetic hydrogels for human intestinal organoid generation and colonic wound repair publication-title: Nat. Cell Biol. doi: 10.1038/ncb3632 – volume: 297 start-page: 365 year: 2002 ident: 2021042512422247700_DEV166074C18 article-title: Regulation of cerebral cortical size by control of cell cycle exit in neural precursors publication-title: Science doi: 10.1126/science.1074192 – volume: 26 start-page: 753 year: 2016 ident: 2021042512422247700_DEV166074C73 article-title: Neural stem cells attacked by Zika virus publication-title: Cell Res. doi: 10.1038/cr.2016.68 – volume: 16 start-page: 75 year: 2019 ident: 2021042512422247700_DEV166074C127 article-title: Reliability of human cortical organoid generation publication-title: Nat. Methods doi: 10.1038/s41592-018-0255-0 – volume: 545 start-page: 48 year: 2017 ident: 2021042512422247700_DEV166074C92 article-title: Cell diversity and network dynamics in photosensitive human brain organoids publication-title: Nature doi: 10.1038/nature22047 – volume: 12 start-page: 520 year: 2013 ident: 2021042512422247700_DEV166074C104 article-title: Next-generation regenerative medicine: organogenesis from stem cells in 3D culture publication-title: Cell Stem Cell doi: 10.1016/j.stem.2013.04.009 – volume: 349 start-page: 74 year: 2015 ident: 2021042512422247700_DEV166074C70 article-title: Brain structure. Cortical folding scales universally with surface area and thickness, not number of neurons publication-title: . Science doi: 10.1126/science.aaa9101 – volume: 8 start-page: 14167 year: 2017 ident: 2021042512422247700_DEV166074C112 article-title: Dynamic behaviour of human neuroepithelial cells in the developing forebrain publication-title: Nat. Commun. doi: 10.1038/ncomms14167 – volume: 8 start-page: 427 year: 2007 ident: 2021042512422247700_DEV166074C66 article-title: Neuronal subtype specification in the cerebral cortex publication-title: Nat. Rev. Neurosci. doi: 10.1038/nrn2151 – volume: 15 start-page: 700 year: 2018 ident: 2021042512422247700_DEV166074C60 article-title: Induction of myelinating oligodendrocytes in human cortical spheroids publication-title: Nat. Methods doi: 10.1038/s41592-018-0081-4 – volume: 10 start-page: 537 year: 2015 ident: 2021042512422247700_DEV166074C71 article-title: Self-organization of polarized cerebellar tissue in 3D culture of human pluripotent stem cells publication-title: Cell Rep. doi: 10.1016/j.celrep.2014.12.051 – volume: 13 start-page: 565 year: 2018 ident: 2021042512422247700_DEV166074C91 article-title: Generation of human brain region-specific organoids using a miniaturized spinning bioreactor publication-title: Nat. Protoc. doi: 10.1038/nprot.2017.152 – volume: 20 start-page: 435 year: 2017 ident: 2021042512422247700_DEV166074C7 article-title: Human iPSC-derived cerebral organoids model cellular features of lissencephaly and reveal prolonged mitosis of outer radial glia publication-title: Cell Stem Cell doi: 10.1016/j.stem.2016.12.007 – volume: 22 start-page: 1101 year: 2016 ident: 2021042512422247700_DEV166074C124 article-title: Identification of small-molecule inhibitors of Zika virus infection and induced neural cell death via a drug repurposing screen publication-title: Nat. Med. doi: 10.1038/nm.4184 – volume: 9 start-page: 42 year: 2017 ident: 2021042512422247700_DEV166074C3 article-title: Stem cell models of Alzheimer's disease: progress and challenges publication-title: Alzheimers Res. Ther. doi: 10.1186/s13195-017-0268-4 – volume: 19 start-page: 258 year: 2016 ident: 2021042512422247700_DEV166074C23 article-title: Zika virus depletes neural progenitors in human cerebral organoids through activation of the innate immune receptor TLR3 publication-title: Cell Stem Cell doi: 10.1016/j.stem.2016.04.014 – volume: 110 start-page: 4081 year: 2013 ident: 2021042512422247700_DEV166074C29 article-title: The protomap is propagated to cortical plate neurons through an Eomes-dependent intermediate map publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.1209076110 – volume: 23 start-page: 60 year: 2018 ident: 2021042512422247700_DEV166074C80 article-title: hPSC Modeling reveals that fate selection of cortical deep projection neurons occurs in the subplate publication-title: Cell Stem Cell doi: 10.1016/j.stem.2018.05.024 – volume: 91 start-page: 1219 year: 2016 ident: 2021042512422247700_DEV166074C74 article-title: Transformation of the radial glia scaffold demarcates two stages of human cerebral cortex development publication-title: Neuron doi: 10.1016/j.neuron.2016.09.005 – volume: 31 start-page: 2413 year: 2011 ident: 2021042512422247700_DEV166074C128 article-title: Dorsal radial glial cells have the potential to generate cortical interneurons in human but not in mouse brain publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.5249-10.2011 – volume: 8 start-page: 2450 year: 2018 ident: 2021042512422247700_DEV166074C45 article-title: Human neurospheroid arrays for in vitro studies of Alzheimer's disease publication-title: Sci. Rep. doi: 10.1038/s41598-018-20436-8 – volume: 126 start-page: 663 year: 2006 ident: 2021042512422247700_DEV166074C115 article-title: Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors publication-title: Cell doi: 10.1016/j.cell.2006.07.024 – volume: 94 start-page: 278 year: 2017 ident: 2021042512422247700_DEV166074C1 article-title: iPSC-Derived human microglia-like cells to study neurological diseases publication-title: Neuron doi: 10.1016/j.neuron.2017.03.042 – volume: 56 start-page: 252 year: 2007 ident: 2021042512422247700_DEV166074C78 article-title: Area patterning of the mammalian cortex publication-title: Neuron doi: 10.1016/j.neuron.2007.10.010 – volume: 87 start-page: 697 year: 2016 ident: 2021042512422247700_DEV166074C123 article-title: Induced pluripotent stem cells in Parkinson's disease: scientific and clinical challenges publication-title: J. Neurol. Neurosurg. Psychiatry doi: 10.1136/jnnp-2015-312036 – volume: 525 start-page: 407 year: 2017 ident: 2021042512422247700_DEV166074C27 article-title: Comprehensive cellular-resolution atlas of the adult human brain publication-title: J. Comp. Neurol. doi: 10.1002/cne.24130 – volume: 16 start-page: 591 year: 2015 ident: 2021042512422247700_DEV166074C111 article-title: Programming and reprogramming cellular age in the era of induced pluripotency publication-title: Cell Stem Cell doi: 10.1016/j.stem.2015.05.004 – volume: 11 start-page: e0161969 year: 2016 ident: 2021042512422247700_DEV166074C94 article-title: Self-organizing 3D human neural tissue derived from induced pluripotent stem cells recapitulate Alzheimer's disease phenotypes publication-title: PLoS ONE doi: 10.1371/journal.pone.0161969 – volume: 352 start-page: 816 year: 2016 ident: 2021042512422247700_DEV166074C33 article-title: Zika virus impairs growth in human neurospheres and brain organoids publication-title: Science doi: 10.1126/science.aaf6116 – volume: 19 start-page: 249 year: 2009 ident: 2021042512422247700_DEV166074C85 article-title: Origins of cortical GABAergic neurons in the cynomolgus monkey publication-title: Cereb. Cortex doi: 10.1093/cercor/bhn078 – volume: 149 start-page: 483 year: 2012 ident: 2021042512422247700_DEV166074C130 article-title: Large-scale cellular-resolution gene profiling in human neocortex reveals species-specific molecular signatures publication-title: Cell doi: 10.1016/j.cell.2012.02.052 – volume: 36 start-page: 275 year: 2013 ident: 2021042512422247700_DEV166074C134 article-title: Development of cortical folding during evolution and ontogeny publication-title: Trends Neurosci. doi: 10.1016/j.tins.2013.01.006 – volume: 38 start-page: 776 year: 2018 ident: 2021042512422247700_DEV166074C11 article-title: How cells fold the cerebral cortex publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.1106-17.2017 – volume: 6 start-page: 8896 year: 2015 ident: 2021042512422247700_DEV166074C103 article-title: Generation of functional hippocampal neurons from self-organizing human embryonic stem cell-derived dorsomedial telencephalic tissue publication-title: Nat. Commun. doi: 10.1038/ncomms9896 – volume: 13 start-page: 691 year: 2013 ident: 2021042512422247700_DEV166074C64 article-title: Human iPSC-based modeling of late-onset disease via progerin-induced aging publication-title: Cell Stem Cell doi: 10.1016/j.stem.2013.11.006 – volume: 3 start-page: 519 year: 2008 ident: 2021042512422247700_DEV166074C28 article-title: Self-organized formation of polarized cortical tissues from ESCs and its active manipulation by extrinsic signals publication-title: Cell Stem Cell doi: 10.1016/j.stem.2008.09.002 – volume: 36 start-page: 432 year: 2018 ident: 2021042512422247700_DEV166074C61 article-title: An in vivo model of functional and vascularized human brain organoids publication-title: Nat. Biotechnol. doi: 10.1038/nbt.4127 – volume: 8 start-page: 1144 year: 2017 ident: 2021042512422247700_DEV166074C67 article-title: Derivation of human midbrain-specific organoids from neuroepithelial stem cells publication-title: Stem Cell Rep. doi: 10.1016/j.stemcr.2017.03.010 – volume: 5 start-page: e18683 year: 2016 ident: 2021042512422247700_DEV166074C69 article-title: Differences and similarities between human and chimpanzee neural progenitors during cerebral cortex development publication-title: Elife doi: 10.7554/eLife.18683 – volume: 163 start-page: 55 year: 2015 ident: 2021042512422247700_DEV166074C88 article-title: Molecular identity of human outer radial glia during cortical development publication-title: Cell doi: 10.1016/j.cell.2015.09.004 – volume: 170 start-page: 226 year: 2017 ident: 2021042512422247700_DEV166074C108 article-title: Evolution of the human nervous system function, structure, and development publication-title: Cell doi: 10.1016/j.cell.2017.06.036 – volume: 112 start-page: 15672 year: 2015 ident: 2021042512422247700_DEV166074C14 article-title: Human cerebral organoids recapitulate gene expression programs of fetal neocortex development publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.1520760112 – volume: 278 start-page: 474 year: 1997 ident: 2021042512422247700_DEV166074C2 article-title: Interneuron migration from basal forebrain to neocortex: dependence on Dlx genes publication-title: Science doi: 10.1126/science.278.5337.474 – volume: 17 start-page: 3369 year: 2016 ident: 2021042512422247700_DEV166074C58 article-title: Cerebral organoids recapitulate epigenomic signatures of the human fetal brain publication-title: Cell Rep. doi: 10.1016/j.celrep.2016.12.001 – volume: 347 start-page: 1465 year: 2015 ident: 2021042512422247700_DEV166074C31 article-title: Human-specific gene ARHGAP11B promotes basal progenitor amplification and neocortex expansion publication-title: Science doi: 10.1126/science.aaa1975 – volume: 153 start-page: 535 year: 2013 ident: 2021042512422247700_DEV166074C109 article-title: Trnp1 regulates expansion and folding of the mammalian cerebral cortex by control of radial glial fate publication-title: Cell doi: 10.1016/j.cell.2013.03.027 – volume: 173 start-page: 1370 year: 2018 ident: 2021042512422247700_DEV166074C114 article-title: Human-specific NOTCH2NL genes expand cortical neurogenesis through Delta/Notch regulation publication-title: Cell doi: 10.1016/j.cell.2018.03.067 – volume: 501 start-page: 373 year: 2013 ident: 2021042512422247700_DEV166074C50 article-title: Cerebral organoids model human brain development and microcephaly publication-title: Nature doi: 10.1038/nature12517 – volume: 34 start-page: 362 year: 2017 ident: 2021042512422247700_DEV166074C82 article-title: A human brain microphysiological system derived from induced pluripotent stem cells to study neurological diseases and toxicity publication-title: ALTEX doi: 10.14573/altex.1609122 – volume: 32 start-page: 291 year: 2009 ident: 2021042512422247700_DEV166074C97 article-title: Decision by division: making cortical maps publication-title: Trends Neurosci. doi: 10.1016/j.tins.2009.01.007 – volume: 8 start-page: 823 year: 2017 ident: 2021042512422247700_DEV166074C55 article-title: Recapitulating cortical development with organoid culture in vitro and modeling abnormal spindle-like (ASPM related primary) microcephaly disease publication-title: Protein Cell doi: 10.1007/s13238-017-0479-2 – volume: 358 start-page: 1318 year: 2017 ident: 2021042512422247700_DEV166074C75 article-title: Spatiotemporal gene expression trajectories reveal developmental hierarchies of the human cortex publication-title: Science doi: 10.1126/science.aap8809 – volume: 21 start-page: 349 year: 2017 ident: 2021042512422247700_DEV166074C126 article-title: Zika-virus-encoded NS2A disrupts mammalian cortical neurogenesis by degrading adherens junction proteins publication-title: Cell Stem Cell doi: 10.1016/j.stem.2017.07.014 – volume: 21 start-page: 1395 year: 2011 ident: 2021042512422247700_DEV166074C40 article-title: The corticofugal neuron-associated genes ROBO1, SRGAP1, and CTIP2 exhibit an anterior to posterior gradient of expression in early fetal human neocortex development publication-title: Cereb. Cortex doi: 10.1093/cercor/bhq219 – volume: 12 start-page: 4565 year: 1992 ident: 2021042512422247700_DEV166074C101 article-title: A multipotent EGF-responsive striatal embryonic progenitor cell produces neurons and astrocytes publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.12-11-04565.1992 – volume: 29 start-page: 588 year: 2018 ident: 2021042512422247700_DEV166074C86 article-title: Generation of human vascularized brain organoids publication-title: Neuroreport doi: 10.1097/WNR.0000000000001014 – volume: 131 start-page: 861 year: 2007 ident: 2021042512422247700_DEV166074C116 article-title: Induction of pluripotent stem cells from adult human fibroblasts by defined factors publication-title: Cell doi: 10.1016/j.cell.2007.11.019 – volume: 9 start-page: 110 year: 2008 ident: 2021042512422247700_DEV166074C12 article-title: Development of the human cerebral cortex: boulder committee revisited publication-title: Nat. Rev. Neurosci. doi: 10.1038/nrn2252 – volume: 19 start-page: 248 year: 2016 ident: 2021042512422247700_DEV166074C44 article-title: Midbrain-like organoids from human pluripotent stem cells contain functional dopaminergic and neuromelanin-producing neurons publication-title: Cell Stem Cell doi: 10.1016/j.stem.2016.07.005 – volume: 7 start-page: 10351 year: 2016 ident: 2021042512422247700_DEV166074C81 article-title: Functional anterior pituitary generated in self-organizing culture of human embryonic stem cells publication-title: Nat. Commun. doi: 10.1038/ncomms10351 – volume: 23 start-page: 49 year: 2017 ident: 2021042512422247700_DEV166074C121 article-title: Engineered human pluripotent-stem-cell-derived intestinal tissues with a functional enteric nervous system publication-title: Nat. Med. doi: 10.1038/nm.4233 – volume: 165 start-page: 1238 year: 2016 ident: 2021042512422247700_DEV166074C89 article-title: Brain-region-specific organoids using mini-bioreactors for modeling ZIKV exposure publication-title: Cell doi: 10.1016/j.cell.2016.04.032 – volume: 539 start-page: 560 year: 2016 ident: 2021042512422247700_DEV166074C34 article-title: Designer matrices for intestinal stem cell and organoid culture publication-title: Nature doi: 10.1038/nature20168 – volume: 16 start-page: 1588 year: 2013 ident: 2021042512422247700_DEV166074C59 article-title: Subcortical origins of human and monkey neocortical interneurons publication-title: Nat. Neurosci. doi: 10.1038/nn.3536 – volume: 23 start-page: 1220 year: 2018 ident: 2021042512422247700_DEV166074C77 article-title: Glioblastoma model using human cerebral organoids publication-title: Cell Rep. doi: 10.1016/j.celrep.2018.03.105 – volume: 31 start-page: 1919 year: 2011 ident: 2021042512422247700_DEV166074C24 article-title: Subregional specification of embryonic stem cell-derived ventral telencephalic tissues by timed and combinatory treatment with extrinsic signals publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.5128-10.2011 – volume: 112 start-page: 6736 year: 2015 ident: 2021042512422247700_DEV166074C129 article-title: Postmitotic regulation of sensory area patterning in the mammalian neocortex by Lhx2 publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.1424440112 – volume: 35 start-page: 659 year: 2017 ident: 2021042512422247700_DEV166074C51 article-title: Guided self-organization and cortical plate formation in human brain organoids publication-title: Nat. Biotechnol. doi: 10.1038/nbt.3906 – volume: 146 start-page: 18 year: 2011 ident: 2021042512422247700_DEV166074C57 article-title: Development and evolution of the human neocortex publication-title: Cell doi: 10.1016/j.cell.2011.06.030 – volume: 54 start-page: 7789 year: 2017 ident: 2021042512422247700_DEV166074C20 article-title: Modeling of autism using organoid technology publication-title: Mol. Neurobiol. doi: 10.1007/s12035-016-0274-8 – volume: 417 start-page: 645 year: 2002 ident: 2021042512422247700_DEV166074C52 article-title: Origin of GABAergic neurons in the human neocortex publication-title: Nature doi: 10.1038/nature00779 – volume: 144 start-page: 952 year: 2017 ident: 2021042512422247700_DEV166074C90 article-title: Using brain organoids to understand Zika virus-induced microcephaly publication-title: Development doi: 10.1242/dev.140707 – volume: 7 start-page: 424 year: 2013 ident: 2021042512422247700_DEV166074C53 article-title: Conical expansion of the outer subventricular zone and the role of neocortical folding in evolution and development publication-title: Front. Hum. Neurosci. doi: 10.3389/fnhum.2013.00424 – volume: 17 start-page: 1184 year: 2016 ident: 2021042512422247700_DEV166074C118 article-title: Generating late-onset human iPSC-based disease models by inducing neuronal age-related phenotypes through telomerase manipulation publication-title: Cell Rep. doi: 10.1016/j.celrep.2016.09.062 – volume: 7 start-page: 202 year: 2006 ident: 2021042512422247700_DEV166074C16 article-title: Functional genomics of early cortex patterning publication-title: Genome Biol. doi: 10.1186/gb-2006-7-1-202 – volume: 555 start-page: 524 year: 2018 ident: 2021042512422247700_DEV166074C132 article-title: A single-cell RNA-seq survey of the developmental landscape of the human prefrontal cortex publication-title: Nature doi: 10.1038/nature25980 – volume: 3 start-page: 987 year: 2014 ident: 2021042512422247700_DEV166074C63 article-title: 3D reconstitution of the patterned neural tube from embryonic stem cells publication-title: Stem Cell Rep. doi: 10.1016/j.stemcr.2014.09.020 – volume: 22 start-page: 698 year: 2018 ident: 2021042512422247700_DEV166074C95 article-title: Super-obese patient-derived iPSC hypothalamic neurons exhibit obesogenic signatures and hormone responses publication-title: Cell Stem Cell doi: 10.1016/j.stem.2018.03.009 – volume: 351 start-page: 825 year: 2016 ident: 2021042512422247700_DEV166074C54 article-title: Comment on “Cortical folding scales universally with surface area and thickness, not number of neurons” publication-title: Science doi: 10.1126/science.aad2029 – volume: 171 start-page: 288 year: 2017 ident: 2021042512422247700_DEV166074C68 article-title: Characterizing the pattern of anomalies in congenital Zika syndrome for pediatric clinicians publication-title: JAMA Pediatr doi: 10.1001/jamapediatrics.2016.3982 – volume: 21 start-page: 383 year: 2017 ident: 2021042512422247700_DEV166074C122 article-title: Fusion of regionally specified hPSC-derived organoids models human brain development and interneuron migration publication-title: Cell Stem Cell doi: 10.1016/j.stem.2017.07.007 – volume: 16 start-page: 1576 year: 2013 ident: 2021042512422247700_DEV166074C37 article-title: Non-epithelial stem cells and cortical interneuron production in the human ganglionic eminences publication-title: Nat. Neurosci. doi: 10.1038/nn.3541 – volume: 9 start-page: 2329 year: 2014 ident: 2021042512422247700_DEV166074C49 article-title: Generation of cerebral organoids from human pluripotent stem cells publication-title: Nat. Protoc. doi: 10.1038/nprot.2014.158 – volume: 15 start-page: 631 year: 2018 ident: 2021042512422247700_DEV166074C8 article-title: Genetically engineered cerebral organoids model brain tumor formation publication-title: Nat. Methods doi: 10.1038/s41592-018-0070-7 – volume: 23 start-page: 2363 year: 2018 ident: 2021042512422247700_DEV166074C35 article-title: Modeling amyloid beta and tau pathology in human cerebral organoids publication-title: Mol. Psychiatry doi: 10.1038/s41380-018-0229-8 – volume: 110 start-page: 20284 year: 2013 ident: 2021042512422247700_DEV166074C46 article-title: Self-organization of axial polarity, inside-out layer pattern, and species-specific progenitor dynamics in human ES cell-derived neocortex publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.1315710110 – volume: 20 start-page: 385 year: 2017 ident: 2021042512422247700_DEV166074C56 article-title: Induction of expansion and folding in human cerebral organoids publication-title: Cell Stem Cell doi: 10.1016/j.stem.2016.11.017 – volume: 12 start-page: 671 year: 2015 ident: 2021042512422247700_DEV166074C84 article-title: Functional cortical neurons and astrocytes from human pluripotent stem cells in 3D culture publication-title: Nat. Methods doi: 10.1038/nmeth.3415 – volume: 515 start-page: 274 year: 2014 ident: 2021042512422247700_DEV166074C19 article-title: A three-dimensional human neural cell culture model of Alzheimer's disease publication-title: Nature doi: 10.1038/nature13800 – volume: 21 start-page: 274 year: 2017 ident: 2021042512422247700_DEV166074C133 article-title: High-content screening in hPSC-neural progenitors identifies drug candidates that inhibit Zika virus infection in fetal-like organoids and adult brain publication-title: Cell Stem Cell doi: 10.1016/j.stem.2017.06.017 – volume: 4 start-page: 3594 year: 2014 ident: 2021042512422247700_DEV166074C72 article-title: A novel efficient feeder-free culture system for the derivation of human induced pluripotent stem cells publication-title: Sci. Rep. doi: 10.1038/srep03594 – volume: 76 start-page: 2465 year: 2016 ident: 2021042512422247700_DEV166074C38 article-title: A three-dimensional organoid culture system derived from human glioblastomas recapitulates the hypoxic gradients and cancer stem cell heterogeneity of tumors found in vivo publication-title: Cancer Res. doi: 10.1158/0008-5472.CAN-15-2402 – volume: 145 start-page: dev172049 year: 2018 ident: 2021042512422247700_DEV166074C41 article-title: Exploring landscapes of brain morphogenesis with organoids publication-title: Development doi: 10.1242/dev.172049 – volume: 95 start-page: 779 year: 2017 ident: 2021042512422247700_DEV166074C107 article-title: Human astrocyte maturation captured in 3D cerebral cortical spheroids derived from pluripotent stem cells publication-title: Neuron doi: 10.1016/j.neuron.2017.07.035 – volume: 180 start-page: 243 year: 2009 ident: 2021042512422247700_DEV166074C98 article-title: Culturing thick brain slices: an interstitial 3D microperfusion system for enhanced viability publication-title: J. Neurosci. Methods doi: 10.1016/j.jneumeth.2009.03.016 – volume: 21 start-page: 1771 year: 2011 ident: 2021042512422247700_DEV166074C42 article-title: Multiple origins of human neocortical interneurons are supported by distinct expression of transcription factors publication-title: Cereb. Cortex doi: 10.1093/cercor/bhq245 – volume: 141 start-page: 2855 year: 2014 ident: 2021042512422247700_DEV166074C15 article-title: The cortical hem regulates the size and patterning of neocortex publication-title: Development doi: 10.1242/dev.106914 – volume: 18 start-page: 467 year: 2016 ident: 2021042512422247700_DEV166074C79 article-title: 2D and 3D stem cell models of primate cortical development identify species-specific differences in progenitor behavior contributing to brain size publication-title: Cell Stem Cell doi: 10.1016/j.stem.2016.03.003 – volume: 534 start-page: 267 year: 2016 ident: 2021042512422247700_DEV166074C22 article-title: The Brazilian Zika virus strain causes birth defects in experimental models publication-title: Nature doi: 10.1038/nature18296 – volume: 374 start-page: 1981 year: 2016 ident: 2021042512422247700_DEV166074C100 article-title: Zika virus and birth defects--reviewing the evidence for causality publication-title: N. Engl. J. Med. doi: 10.1056/NEJMsr1604338 – volume: 141 start-page: 1762 year: 2011 ident: 2021042512422247700_DEV166074C106 article-title: Long-term expansion of epithelial organoids from human colon, adenoma, adenocarcinoma, and Barrett's epithelium publication-title: Gastroenterology doi: 10.1053/j.gastro.2011.07.050 – volume: 29 start-page: 568 year: 2014 ident: 2021042512422247700_DEV166074C6 article-title: Mechanical forces in cerebral cortical folding: a review of measurements and models publication-title: J. Mech. Behav. Biomed. Mater doi: 10.1016/j.jmbbm.2013.02.018 – volume: 370 start-page: 1209 year: 2014 ident: 2021042512422247700_DEV166074C110 article-title: Patches of disorganization in the neocortex of children with autism publication-title: N. Engl. J. Med. doi: 10.1056/NEJMoa1307491 – volume: 242 start-page: 1669 year: 2017 ident: 2021042512422247700_DEV166074C87 article-title: Blood-brain barrier-on-a-chip: Microphysiological systems that capture the complexity of the blood-central nervous system interface publication-title: Exp. Biol. Med. (Maywood) doi: 10.1177/1535370217694100 – volume: 21 start-page: 517 year: 2017 ident: 2021042512422247700_DEV166074C119 article-title: Self-Organized cerebral organoids with human-specific features predict effective drugs to combat Zika virus infection publication-title: Cell Rep. doi: 10.1016/j.celrep.2017.09.047 – volume: 343 start-page: 764 year: 2014 ident: 2021042512422247700_DEV166074C4 article-title: Evolutionarily dynamic alternative splicing of GPR56 regulates regional cerebral cortical patterning publication-title: Science doi: 10.1126/science.1244392 – volume: 464 start-page: 554 year: 2010 ident: 2021042512422247700_DEV166074C36 article-title: Neurogenic radial glia in the outer subventricular zone of human neocortex publication-title: Nature doi: 10.1038/nature08845 – volume: 248 start-page: 53 year: 2018 ident: 2021042512422247700_DEV166074C17 article-title: Applications of human brain organoids to clinical problems publication-title: Dev. Dyn. doi: 10.1002/dvdy.24662 – volume: 12 start-page: 31 year: 2018 ident: 2021042512422247700_DEV166074C43 article-title: Exploring the complexity of cortical development using single-cell transcriptomics publication-title: Front. Neurosci. doi: 10.3389/fnins.2018.00031 – volume: 282 start-page: 1145 year: 1998 ident: 2021042512422247700_DEV166074C117 article-title: Embryonic stem cell lines derived from human blastocysts publication-title: Science doi: 10.1126/science.282.5391.1145 – volume: 28 start-page: 493 year: 2018 ident: 2021042512422247700_DEV166074C25 article-title: DMRT5 together with DMRT3 directly controls hippocampus development and neocortical area map formation publication-title: Cereb. Cortex doi: 10.1093/cercor/bhw384 – volume: 28 start-page: 955 year: 2010 ident: 2021042512422247700_DEV166074C10 article-title: Inhibition of notch signaling in human embryonic stem cell-derived neural stem cells delays G1/S phase transition and accelerates neuronal differentiation in vitro and in vivo publication-title: Stem Cells doi: 10.1002/stem.408 – volume: 8 start-page: 2281 year: 2013 ident: 2021042512422247700_DEV166074C99 article-title: Genome engineering using the CRISPR-Cas9 system publication-title: Nat. Protoc. doi: 10.1038/nprot.2013.143 – volume: 96 start-page: 1041 year: 2017 ident: 2021042512422247700_DEV166074C125 article-title: DISC1 Regulates neurogenesis via modulating kinetochore attachment of Ndel1/Nde1 during Mitosis publication-title: Neuron doi: 10.1016/j.neuron.2017.10.010 – volume: 19 start-page: 690 year: 2016 ident: 2021042512422247700_DEV166074C65 article-title: Advances in Zika virus research: stem cell models, challenges, and opportunities publication-title: Cell Stem Cell doi: 10.1016/j.stem.2016.11.014 – volume: 31 start-page: 849 year: 2017 ident: 2021042512422247700_DEV166074C120 article-title: How does Zika virus cause microcephaly? publication-title: Genes Dev. doi: 10.1101/gad.298216.117 – volume: 459 start-page: 262 year: 2009 ident: 2021042512422247700_DEV166074C105 article-title: Single Lgr5 stem cells build crypt-villus structures in vitro without a mesenchymal niche publication-title: Nature doi: 10.1038/nature07935 – volume: 15 start-page: 631 year: 2017 ident: 2021042512422247700_DEV166074C9 article-title: Assembly of functionally integrated human forebrain spheroids publication-title: Nature doi: 10.1038/nature22330 – volume: 16 start-page: 653 year: 2016 ident: 2021042512422247700_DEV166074C13 article-title: Detection and sequencing of Zika virus from amniotic fluid of fetuses with microcephaly in Brazil: a case study publication-title: Lancet Infect. Dis. doi: 10.1016/S1473-3099(16)00095-5 – volume: 162 start-page: 375 year: 2015 ident: 2021042512422247700_DEV166074C62 article-title: FOXG1-dependent dysregulation of GABA/glutamate neuron differentiation in autism spectrum disorders publication-title: Cell doi: 10.1016/j.cell.2015.06.034 – volume: 14 start-page: 515 year: 2018 ident: 2021042512422247700_DEV166074C47 article-title: Human brain organoids on a chip reveal the physics of folding publication-title: Nat. Phys. doi: 10.1038/s41567-018-0046-7 – volume: 9 start-page: 2139 year: 2014 ident: 2021042512422247700_DEV166074C93 article-title: Diversity of cortical interneurons in primates: the role of the dorsal proliferative niche publication-title: Cell Rep. doi: 10.1016/j.celrep.2014.11.026 – volume: 44 start-page: 8610 year: 2016 ident: 2021042512422247700_DEV166074C131 article-title: Molecular signatures associated with ZIKV exposure in human cortical neural progenitors publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkw765 – volume: 173 start-page: 1356 year: 2018 ident: 2021042512422247700_DEV166074C30 article-title: Human-specific NOTCH2NL genes affect notch signaling and cortical neurogenesis publication-title: Cell doi: 10.1016/j.cell.2018.03.051 – volume: 8 start-page: 7413 year: 2018 ident: 2021042512422247700_DEV166074C76 article-title: Human cortex spheroid with a functional blood brain barrier for high-throughput neurotoxicity screening and disease modeling publication-title: Sci. Rep. doi: 10.1038/s41598-018-25603-5 – volume: 10 start-page: 724 year: 2009 ident: 2021042512422247700_DEV166074C96 article-title: Evolution of the neocortex: a perspective from developmental biology publication-title: Nat. Rev. Neurosci. doi: 10.1038/nrn2719 – volume: 35 start-page: 803 year: 2016 ident: 2021042512422247700_DEV166074C32 article-title: CPAP promotes timely cilium disassembly to maintain neural progenitor pool publication-title: EMBO J. doi: 10.15252/embj.201593679 – volume: 360 start-page: eaar6343 year: 2018 ident: 2021042512422247700_DEV166074C48 article-title: High-resolution comparative analysis of great ape genomes publication-title: Science doi: 10.1126/science.aar6343 |
SSID | ssj0003677 |
Score | 2.6904192 |
SecondaryResourceType | review_article |
Snippet | Brain organoids are self-assembled three-dimensional aggregates generated from pluripotent stem cells with cell types and cytoarchitectures that resemble the... |
SourceID | pubmedcentral proquest pubmed crossref |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source |
SubjectTerms | Animals Brain - cytology Brain - metabolism Brain - pathology Humans Models, Biological Organoids - cytology Organoids - metabolism Organoids - pathology Review |
Title | Brain organoids: advances, applications and challenges |
URI | https://www.ncbi.nlm.nih.gov/pubmed/30992274 https://www.proquest.com/docview/2210961779 https://pubmed.ncbi.nlm.nih.gov/PMC6503989 |
Volume | 146 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLZgCLQXNMZlhYGC4AWJDCd2Emdv41pARULapIqXyI4dUTQliDVI49dzju246daHwUtauXES-Tt1zv0j5Dns-TypDY-lyHXMdcZiJbSJZYbE1ixhhcSI7uxLPj3hn-bZfKB399UlS3VQ_9lYV_I_qMIY4IpVsv-AbLgoDMB3wBeOgDAcr4Txa-R3cMRM3ULb5DYf07fojIPTrn5tYE45G-uko7whG9MdqrhGToKvC-cnnffnffDJ-GTeKXz-6IOMzTxJyoe-i08XY6dCYuMjrqwyeAcp5qA42I3bGzlGexN_72Hz9A5EJyVi46YMWgCspDa_D5I8p46UZ73z9YU3UsgTRAsFZlcwt3Jzr5MbKRgEyFXx9uPn8M5lueXYDI_tG9HC3Fer-66rHpfsiYtpsSM943iH3PYGQnTk0L5Drpl2l9x0lKHnu-TWzCdDwOC3zg7eJbkVhCgIwmE0iMHLaCwEEQhBtBKCe-Tk_bvjN9PYE2LENadiGZcUlMec8ppS3eSGZ7XgUhrkKEjB7mBZo0yWqiKpRaNk0RhZGKp0LUopGskVu0-22q41eyQSjShzAFNrbEAlqJKUGoZ10xo1-mZCXgxrVdW-WzySlpxWlzGZkGfh3J-uR8rGs54OS17BFoZxKdmarj-r0jRB4qGiKCfkgYMgXIdRbJyMs4s1cMIJ2B59_Zd28d22SQfbg5WifHilp3tEtlf_g32ytfzVm8egbi7VEytpfwHWCn5s |
linkProvider | Flying Publisher |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Brain+organoids%3A+advances%2C+applications+and+challenges&rft.jtitle=Development+%28Cambridge%29&rft.au=Qian%2C+Xuyu&rft.au=Song%2C+Hongjun&rft.au=Ming%2C+Guo-li&rft.date=2019-04-15&rft.issn=0950-1991&rft.eissn=1477-9129&rft.volume=146&rft.issue=8&rft_id=info:doi/10.1242%2Fdev.166074&rft.externalDBID=n%2Fa&rft.externalDocID=10_1242_dev_166074 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0950-1991&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0950-1991&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0950-1991&client=summon |