Brain organoids: advances, applications and challenges

Brain organoids are self-assembled three-dimensional aggregates generated from pluripotent stem cells with cell types and cytoarchitectures that resemble the embryonic human brain. As such, they have emerged as novel model systems that can be used to investigate human brain development and disorders...

Full description

Saved in:
Bibliographic Details
Published inDevelopment (Cambridge) Vol. 146; no. 8
Main Authors Qian, Xuyu, Song, Hongjun, Ming, Guo-li
Format Journal Article
LanguageEnglish
Published England The Company of Biologists Ltd 15.04.2019
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Brain organoids are self-assembled three-dimensional aggregates generated from pluripotent stem cells with cell types and cytoarchitectures that resemble the embryonic human brain. As such, they have emerged as novel model systems that can be used to investigate human brain development and disorders. Although brain organoids mimic many key features of early human brain development at molecular, cellular, structural and functional levels, some aspects of brain development, such as the formation of distinct cortical neuronal layers, gyrification, and the establishment of complex neuronal circuitry, are not fully recapitulated. Here, we summarize recent advances in the development of brain organoid methodologies and discuss their applications in disease modeling. In addition, we compare current organoid systems to the embryonic human brain, highlighting features that currently can and cannot be recapitulated, and discuss perspectives for advancing current brain organoid technologies to expand their applications.
AbstractList Brain organoids are self-assembled three-dimensional aggregates generated from pluripotent stem cells with cell types and cytoarchitectures that resemble the embryonic human brain. As such, they have emerged as novel model systems that can be used to investigate human brain development and disorders. Although brain organoids mimic many key features of early human brain development at molecular, cellular, structural and functional levels, some aspects of brain development, such as the formation of distinct cortical neuronal layers, gyrification, and the establishment of complex neuronal circuitry, are not fully recapitulated. Here, we summarize recent advances in the development of brain organoid methodologies and discuss their applications in disease modeling. In addition, we compare current organoid systems to the embryonic human brain, highlighting features that currently can and cannot be recapitulated, and discuss perspectives for advancing current brain organoid technologies to expand their applications.Brain organoids are self-assembled three-dimensional aggregates generated from pluripotent stem cells with cell types and cytoarchitectures that resemble the embryonic human brain. As such, they have emerged as novel model systems that can be used to investigate human brain development and disorders. Although brain organoids mimic many key features of early human brain development at molecular, cellular, structural and functional levels, some aspects of brain development, such as the formation of distinct cortical neuronal layers, gyrification, and the establishment of complex neuronal circuitry, are not fully recapitulated. Here, we summarize recent advances in the development of brain organoid methodologies and discuss their applications in disease modeling. In addition, we compare current organoid systems to the embryonic human brain, highlighting features that currently can and cannot be recapitulated, and discuss perspectives for advancing current brain organoid technologies to expand their applications.
Brain organoids are self-assembled three-dimensional aggregates generated from pluripotent stem cells with cell types and cytoarchitectures that resemble the embryonic human brain. As such, they have emerged as novel model systems that can be used to investigate human brain development and disorders. Although brain organoids mimic many key features of early human brain development at molecular, cellular, structural and functional levels, some aspects of brain development, such as the formation of distinct cortical neuronal layers, gyrification, and the establishment of complex neuronal circuitry, are not fully recapitulated. Here, we summarize recent advances in the development of brain organoid methodologies and discuss their applications in disease modeling. In addition, we compare current organoid systems to the embryonic human brain, highlighting features that currently can and cannot be recapitulated, and discuss perspectives for advancing current brain organoid technologies to expand their applications.
Brain organoids are self-assembled three-dimensional aggregates generated from pluripotent stem cells with cell types and cytoarchitectures that resemble the embryonic human brain. As such, they have emerged as novel model systems that can be used to investigate human brain development and disorders. Although brain organoids mimic many key features of early human brain development at molecular, cellular, structural and functional levels, some aspects of brain development, such as the formation of distinct cortical neuronal layers, gyrification, and the establishment of complex neuronal circuitry, are not fully recapitulated. Here, we summarize recent advances in the development of brain organoid methodologies and discuss their applications in disease modeling. In addition, we compare current organoid systems to the embryonic human brain, highlighting features that currently can and cannot be recapitulated, and discuss perspectives for advancing current brain organoid technologies to expand their applications. Summary: In this Review, we discuss recent advances in the production of brain organoids, highlighting their potential applications as model systems for understanding disease states as well as normal brain development across species.
Author Ming, Guo-li
Qian, Xuyu
Song, Hongjun
AuthorAffiliation 2 Biomedical Engineering Graduate Program , Johns Hopkins University School of Medicine , Baltimore, MD 21205 , USA
1 Department of Neuroscience and Mahoney Institute for Neurosciences , Perelman School for Medicine, University of Pennsylvania , Philadelphia, PA 19104 , USA
6 Department of Psychiatry , Perelman School for Medicine, University of Pennsylvania , Philadelphia, PA 19104 , USA
3 Department of Cell and Developmental Biology , Perelman School for Medicine, University of Pennsylvania , Philadelphia, PA 19104 , USA
5 The Epigenetics Institute, Perelman School for Medicine, University of Pennsylvania , Philadelphia, PA 19104 , USA
4 Institute for Regenerative Medicine, Perelman School for Medicine, University of Pennsylvania , Philadelphia, PA 19104 , USA
AuthorAffiliation_xml – name: 2 Biomedical Engineering Graduate Program , Johns Hopkins University School of Medicine , Baltimore, MD 21205 , USA
– name: 1 Department of Neuroscience and Mahoney Institute for Neurosciences , Perelman School for Medicine, University of Pennsylvania , Philadelphia, PA 19104 , USA
– name: 6 Department of Psychiatry , Perelman School for Medicine, University of Pennsylvania , Philadelphia, PA 19104 , USA
– name: 4 Institute for Regenerative Medicine, Perelman School for Medicine, University of Pennsylvania , Philadelphia, PA 19104 , USA
– name: 5 The Epigenetics Institute, Perelman School for Medicine, University of Pennsylvania , Philadelphia, PA 19104 , USA
– name: 3 Department of Cell and Developmental Biology , Perelman School for Medicine, University of Pennsylvania , Philadelphia, PA 19104 , USA
Author_xml – sequence: 1
  givenname: Xuyu
  surname: Qian
  fullname: Qian, Xuyu
  organization: Department of Neuroscience and Mahoney Institute for Neurosciences, Perelman School for Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA, Biomedical Engineering Graduate Program, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
– sequence: 2
  givenname: Hongjun
  surname: Song
  fullname: Song, Hongjun
  organization: Department of Neuroscience and Mahoney Institute for Neurosciences, Perelman School for Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA, Department of Cell and Developmental Biology, Perelman School for Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA, Institute for Regenerative Medicine, Perelman School for Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA, The Epigenetics Institute, Perelman School for Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
– sequence: 3
  givenname: Guo-li
  orcidid: 0000-0002-2517-6075
  surname: Ming
  fullname: Ming, Guo-li
  organization: Department of Neuroscience and Mahoney Institute for Neurosciences, Perelman School for Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA, Department of Cell and Developmental Biology, Perelman School for Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA, Institute for Regenerative Medicine, Perelman School for Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA, Department of Psychiatry, Perelman School for Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
BackLink https://www.ncbi.nlm.nih.gov/pubmed/30992274$$D View this record in MEDLINE/PubMed
BookMark eNptkc1LxDAQxYOsuOvHxT9AehSxOknTpvEgqPgFghc9h2k6XSPdZG26C_73VldFxdMc5jfvDe9tspEPnhjb5XDEhRTHNS2PeFGAkmtswqVSqeZCj9gEdA4p15qP2WaMzwCQFUptsHEGWguh5IQV5x06n4Ruij64Op4kWC_RW4qHCc7nrbPYu-Bjgr5O7BO2LfkpxW223mAbaedzbrHHq8uHi5v07v769uLsLrUSyj7VoNXwmLQAdVOQzG0pEanMFYiS11neVJSLSnFbNhWqhlARVLUtNZYNyirbYqcr3fmimlFtyfcdtmbeuRl2ryagM7833j2ZaViaIodMl3oQ2P8U6MLLgmJvZi5aalv0FBbRCMFBF1ypd3Tvp9e3yVdYA3CwAmwXYuyo-UY4mPcmzNCEWTUxwPAHtq7_yHL407X_nbwBnMyMag
CitedBy_id crossref_primary_10_1016_j_semcdb_2021_03_011
crossref_primary_10_1007_s12035_023_03836_4
crossref_primary_10_1007_s12264_023_01065_2
crossref_primary_10_3389_fncel_2024_1488691
crossref_primary_10_1038_s41598_020_75813_z
crossref_primary_10_1088_1758_5090_ad867e
crossref_primary_10_3390_mi10100638
crossref_primary_10_1016_j_stem_2019_09_002
crossref_primary_10_7554_eLife_98081_2
crossref_primary_10_3389_fcell_2020_604448
crossref_primary_10_1541_ieejsmas_143_82
crossref_primary_10_1016_j_dr_2024_101184
crossref_primary_10_3389_fncel_2024_1480845
crossref_primary_10_3390_cells11091411
crossref_primary_10_1002_2211_5463_13601
crossref_primary_10_1039_D1LC00737H
crossref_primary_10_1016_j_isci_2021_102063
crossref_primary_10_1089_crispr_2021_0070
crossref_primary_10_1016_j_mattod_2025_02_002
crossref_primary_10_1080_17460441_2024_2373165
crossref_primary_10_3389_ftox_2022_812863
crossref_primary_10_3390_ijms22020924
crossref_primary_10_15283_ijsc21195
crossref_primary_10_3390_biom11050699
crossref_primary_10_1021_acsami_4c22692
crossref_primary_10_3390_microorganisms8111637
crossref_primary_10_3390_cells14020070
crossref_primary_10_1016_j_envpol_2024_124934
crossref_primary_10_1088_1741_2552_ac3e02
crossref_primary_10_1021_acs_chemrev_2c00212
crossref_primary_10_3390_mi12040441
crossref_primary_10_1080_01480545_2022_2066114
crossref_primary_10_1016_j_jmb_2021_167243
crossref_primary_10_1155_2021_5511630
crossref_primary_10_51335_organoid_2024_4_e12
crossref_primary_10_1002_btm2_10296
crossref_primary_10_1186_s40478_020_01077_3
crossref_primary_10_1016_j_scitotenv_2022_157047
crossref_primary_10_1002_adfm_202002931
crossref_primary_10_1111_cpr_13201
crossref_primary_10_1186_s13229_020_00334_5
crossref_primary_10_1002_ibra_12139
crossref_primary_10_1016_j_jare_2023_01_006
crossref_primary_10_3389_fncom_2020_588224
crossref_primary_10_1002_anbr_202400052
crossref_primary_10_3390_gels8060379
crossref_primary_10_1016_j_brainres_2020_147028
crossref_primary_10_1038_s41398_023_02510_6
crossref_primary_10_1016_j_stemcr_2020_05_006
crossref_primary_10_3389_fbioe_2025_1515340
crossref_primary_10_3390_ijms25147750
crossref_primary_10_3389_fnins_2022_1031075
crossref_primary_10_1021_acsbiomaterials_0c01365
crossref_primary_10_1039_D1LC00603G
crossref_primary_10_1017_S0963180123000543
crossref_primary_10_3389_fmolb_2021_686410
crossref_primary_10_3390_ijms25020993
crossref_primary_10_3389_fbioe_2022_1048731
crossref_primary_10_3390_membranes11020112
crossref_primary_10_1038_s41420_022_00958_x
crossref_primary_10_3389_fnmol_2022_858582
crossref_primary_10_1186_s13619_024_00219_5
crossref_primary_10_1002_adhm_202302745
crossref_primary_10_1038_s41582_022_00723_9
crossref_primary_10_3233_JAD_231184
crossref_primary_10_1016_j_mtbio_2023_100741
crossref_primary_10_1096_fj_202000372R
crossref_primary_10_1016_j_bioactmat_2024_05_043
crossref_primary_10_1016_j_neuron_2019_08_028
crossref_primary_10_3390_cells13100792
crossref_primary_10_1021_acs_nanolett_3c02570
crossref_primary_10_1093_burnst_tkae070
crossref_primary_10_1111_jnc_15908
crossref_primary_10_51335_organoid_2022_2_e7
crossref_primary_10_3390_cells11010106
crossref_primary_10_1021_acs_estlett_4c00154
crossref_primary_10_51335_organoid_2022_2_e8
crossref_primary_10_15283_ijsc21157
crossref_primary_10_3389_fnins_2020_593248
crossref_primary_10_1063_5_0043014
crossref_primary_10_1038_s41419_020_03002_x
crossref_primary_10_1177_10738584211015136
crossref_primary_10_3390_ijms22041692
crossref_primary_10_1038_s41467_021_27464_5
crossref_primary_10_1038_s41598_021_85129_1
crossref_primary_10_1016_j_celrep_2024_115068
crossref_primary_10_1254_fpj_21003
crossref_primary_10_1038_s41578_021_00279_y
crossref_primary_10_3390_pharmaceutics15051369
crossref_primary_10_1016_j_jmb_2021_167165
crossref_primary_10_3389_fnmol_2024_1459877
crossref_primary_10_33920_med_01_2501_02
crossref_primary_10_1128_jvi_01122_22
crossref_primary_10_1016_j_cell_2023_04_022
crossref_primary_10_3390_cancers15041253
crossref_primary_10_54537_tusebdergisi_1213712
crossref_primary_10_1038_s41586_021_03343_3
crossref_primary_10_1002_dneu_22828
crossref_primary_10_1007_s43657_021_00015_0
crossref_primary_10_1016_j_tics_2021_01_005
crossref_primary_10_1017_erm_2022_40
crossref_primary_10_1016_j_stem_2022_09_010
crossref_primary_10_1063_5_0048837
crossref_primary_10_1038_s41380_022_01708_2
crossref_primary_10_2174_1389201020666191129103730
crossref_primary_10_1126_sciadv_adj4735
crossref_primary_10_1038_s41587_024_02128_z
crossref_primary_10_1016_j_biopsych_2022_12_017
crossref_primary_10_1016_j_ecoenv_2024_116876
crossref_primary_10_1155_2022_7264649
crossref_primary_10_1016_j_biopsych_2022_12_015
crossref_primary_10_1016_j_ymgme_2022_04_005
crossref_primary_10_1016_j_isci_2021_103438
crossref_primary_10_1038_s41514_021_00070_x
crossref_primary_10_1177_20417314241286092
crossref_primary_10_1101_cshperspect_a035709
crossref_primary_10_1016_j_dmpk_2024_101031
crossref_primary_10_3389_frai_2024_1376042
crossref_primary_10_1016_j_dmpk_2024_101036
crossref_primary_10_1021_acschemneuro_1c00201
crossref_primary_10_1021_acsnano_4c10525
crossref_primary_10_3389_fncel_2023_1308479
crossref_primary_10_1038_s41564_024_01657_2
crossref_primary_10_3390_ijms22062962
crossref_primary_10_1080_10408444_2020_1756219
crossref_primary_10_3389_fcell_2024_1478549
crossref_primary_10_5483_BMBRep_2024_0077
crossref_primary_10_1016_j_expneurol_2024_115110
crossref_primary_10_1038_s41586_023_06713_1
crossref_primary_10_4103_1673_5374_390972
crossref_primary_10_5483_BMBRep_2023_0222
crossref_primary_10_3390_ijms21197113
crossref_primary_10_1038_s41536_021_00135_1
crossref_primary_10_3389_fnins_2024_1360482
crossref_primary_10_1016_j_conb_2023_102698
crossref_primary_10_1002_bit_28606
crossref_primary_10_3390_medicina57060532
crossref_primary_10_3390_organoids2010002
crossref_primary_10_3389_fphar_2025_1563198
crossref_primary_10_3389_fimmu_2023_1172262
crossref_primary_10_1016_j_reprotox_2025_108862
crossref_primary_10_1155_2019_2149812
crossref_primary_10_1016_j_cpt_2023_10_005
crossref_primary_10_1186_s13287_023_03341_4
crossref_primary_10_1242_dev_200439
crossref_primary_10_1021_acsbiomaterials_4c01383
crossref_primary_10_3389_fcell_2020_00220
crossref_primary_10_1007_s00604_023_06165_4
crossref_primary_10_1016_j_schres_2022_06_028
crossref_primary_10_3389_fcimb_2023_1129451
crossref_primary_10_1038_s41467_023_43141_1
crossref_primary_10_23838_pfm_2024_00086
crossref_primary_10_1186_s13010_022_00119_z
crossref_primary_10_3389_fcell_2021_591017
crossref_primary_10_1186_s13567_021_00931_z
crossref_primary_10_1007_s43188_025_00279_y
crossref_primary_10_1016_j_neuint_2021_105012
crossref_primary_10_1080_14789450_2020_1723419
crossref_primary_10_4103_NRR_NRR_D_23_00928
crossref_primary_10_3389_fncel_2019_00361
crossref_primary_10_3390_bioengineering10040449
crossref_primary_10_1038_s41583_021_00496_y
crossref_primary_10_1038_s41418_020_0566_4
crossref_primary_10_3390_organoids4010001
crossref_primary_10_3390_ijms23073877
crossref_primary_10_3389_fphar_2020_00396
crossref_primary_10_3390_genes13040639
crossref_primary_10_54097_vhxbb234
crossref_primary_10_3389_fimmu_2022_826091
crossref_primary_10_1038_s41536_022_00246_3
crossref_primary_10_1038_s41583_020_0263_9
crossref_primary_10_1016_j_mcn_2023_103876
crossref_primary_10_1007_s12551_019_00590_7
crossref_primary_10_1016_j_bbcan_2024_189235
crossref_primary_10_51335_organoid_2022_2_e21
crossref_primary_10_3389_fphy_2022_1100090
crossref_primary_10_1016_j_cobme_2020_02_002
crossref_primary_10_1016_j_neuint_2021_105039
crossref_primary_10_3389_fsci_2023_1017235
crossref_primary_10_1186_s13073_020_00733_6
crossref_primary_10_1002_admt_202400645
crossref_primary_10_1038_s41564_023_01405_y
crossref_primary_10_51335_organoid_2021_1_e11
crossref_primary_10_1002_med_21922
crossref_primary_10_1038_s41467_023_44675_0
crossref_primary_10_37285_ijpsn_2024_17_1_8
crossref_primary_10_3389_fcell_2020_00797
crossref_primary_10_1038_s42003_023_04547_1
crossref_primary_10_1016_j_cej_2024_150368
crossref_primary_10_3389_fncel_2024_1335849
crossref_primary_10_1007_s12015_021_10254_3
crossref_primary_10_1038_s41582_021_00612_7
crossref_primary_10_1016_j_neuroimage_2021_117779
crossref_primary_10_34133_bmef_0065
crossref_primary_10_1002_adhm_202302456
crossref_primary_10_1186_s40035_024_00446_5
crossref_primary_10_51335_organoid_2022_2_e25
crossref_primary_10_3390_organoids1020011
crossref_primary_10_7554_eLife_98081
crossref_primary_10_1088_2516_1091_acce12
crossref_primary_10_1016_j_semcdb_2020_05_023
crossref_primary_10_1016_j_semcdb_2020_05_026
crossref_primary_10_1016_j_ymthe_2021_01_001
crossref_primary_10_1016_j_envpol_2024_125232
crossref_primary_10_1146_annurev_bioeng_082120_042814
crossref_primary_10_1103_PRXLife_2_043014
crossref_primary_10_1016_j_semcdb_2020_05_013
crossref_primary_10_1088_1758_5090_ad1b1e
crossref_primary_10_3389_fneur_2023_1213969
crossref_primary_10_1016_j_addr_2024_115344
crossref_primary_10_1038_s42003_021_02910_8
crossref_primary_10_3389_fmolb_2020_00224
crossref_primary_10_1091_mbc_E19_04_0211
crossref_primary_10_1016_j_celrep_2024_113883
crossref_primary_10_1038_s41593_021_00906_5
crossref_primary_10_1016_j_tibtech_2023_10_008
crossref_primary_10_1002_jnr_25123
crossref_primary_10_3390_ijms241310762
crossref_primary_10_3390_pharmaceutics16040443
crossref_primary_10_1016_j_neuron_2020_08_029
crossref_primary_10_1016_j_biocel_2024_106617
crossref_primary_10_1007_s11019_022_10082_3
crossref_primary_10_1155_2022_2150680
crossref_primary_10_1039_D3LC00294B
crossref_primary_10_1016_j_bbi_2022_04_007
crossref_primary_10_3390_brainsci12050552
crossref_primary_10_7554_eLife_98096
crossref_primary_10_1016_j_stemcr_2022_04_003
crossref_primary_10_1109_TNSRE_2022_3150325
crossref_primary_10_1016_j_tibtech_2022_07_011
crossref_primary_10_3390_ijms24043113
crossref_primary_10_1016_j_stem_2021_04_006
crossref_primary_10_4103_NRR_NRR_D_24_00901
crossref_primary_10_1016_j_expneurol_2023_114386
crossref_primary_10_2174_1386207325666220408091206
crossref_primary_10_14791_btrt_2022_0037
crossref_primary_10_1016_j_stem_2020_02_002
crossref_primary_10_1093_oons_kvae007
crossref_primary_10_3390_pharmaceutics14112301
crossref_primary_10_1016_j_hlife_2025_02_002
crossref_primary_10_3390_biomedicines9040440
crossref_primary_10_1002_SMMD_20230028
crossref_primary_10_1111_ejn_16651
crossref_primary_10_1038_s41586_024_08172_8
crossref_primary_10_3389_fnmol_2022_818696
crossref_primary_10_3389_fnmol_2022_840265
crossref_primary_10_3389_fncel_2024_1403734
crossref_primary_10_1177_09636897241303271
crossref_primary_10_1016_j_neuron_2020_09_018
crossref_primary_10_1038_s41598_022_16369_y
crossref_primary_10_1038_s41582_021_00578_6
crossref_primary_10_1038_s41592_024_02384_6
crossref_primary_10_1002_stem_3156
crossref_primary_10_1016_j_jpha_2023_04_003
crossref_primary_10_1016_j_csbj_2020_09_008
crossref_primary_10_12688_molpsychol_17553_1
crossref_primary_10_3390_biomedicines11051261
crossref_primary_10_1186_s13619_022_00150_7
crossref_primary_10_3389_fcell_2023_1332901
crossref_primary_10_1007_s13365_021_01049_w
crossref_primary_10_3390_cells10123422
crossref_primary_10_1177_24725552211024547
crossref_primary_10_1007_s00018_023_04951_0
crossref_primary_10_1093_lifemedi_lnad027
crossref_primary_10_1016_j_stem_2024_10_016
crossref_primary_10_1038_s41596_024_01029_4
crossref_primary_10_3390_ijms231911527
crossref_primary_10_1093_mam_ozae119
crossref_primary_10_1038_s41586_022_05219_6
crossref_primary_10_1186_s13229_020_00370_1
crossref_primary_10_1016_j_crmeth_2024_100777
crossref_primary_10_1177_1073858420960112
crossref_primary_10_1016_j_isci_2020_101485
crossref_primary_10_1016_j_xpro_2022_101860
crossref_primary_10_3389_fnsyn_2019_00033
crossref_primary_10_3389_fmed_2021_574047
crossref_primary_10_1089_scd_2020_0069
crossref_primary_10_1016_j_expneurol_2021_113619
crossref_primary_10_1001_jamapsychiatry_2020_0196
crossref_primary_10_4103_1673_5374_369100
crossref_primary_10_1186_s13619_021_00103_6
crossref_primary_10_3389_fonc_2020_604121
crossref_primary_10_3390_cells11142135
crossref_primary_10_1007_s13770_020_00250_y
crossref_primary_10_3390_ijms25126522
crossref_primary_10_1016_j_brainres_2019_146427
crossref_primary_10_1016_j_isci_2020_101770
crossref_primary_10_1038_s41380_024_02728_w
crossref_primary_10_1002_admi_202101297
crossref_primary_10_3390_biom13020260
crossref_primary_10_1002_stem_3368
crossref_primary_10_3390_ijms25042392
crossref_primary_10_1089_ten_tec_2020_0337
crossref_primary_10_1360_SSV_2021_0098
crossref_primary_10_5483_BMBRep_2022_55_5_043
crossref_primary_10_1186_s13058_024_01865_y
crossref_primary_10_3390_molecules25051150
crossref_primary_10_1002_mco2_735
crossref_primary_10_3389_fphar_2020_00407
crossref_primary_10_1016_j_tice_2025_102831
crossref_primary_10_1016_j_devcel_2022_09_011
crossref_primary_10_3389_fnins_2024_1522652
crossref_primary_10_1002_advs_202400847
crossref_primary_10_1093_jmcb_mjaa013
crossref_primary_10_1016_j_stem_2023_01_004
crossref_primary_10_1093_jmcb_mjaa012
crossref_primary_10_3390_jfb13030146
crossref_primary_10_1007_s11481_019_09880_z
crossref_primary_10_1016_j_stem_2025_02_010
crossref_primary_10_1002_adhm_202303180
crossref_primary_10_1016_j_stem_2025_02_011
crossref_primary_10_1186_s12974_019_1614_1
crossref_primary_10_3389_frai_2023_1307613
crossref_primary_10_15283_ijsc24056
crossref_primary_10_1039_D4AY01205D
crossref_primary_10_1038_s41380_024_02487_8
crossref_primary_10_1042_BST20230341
crossref_primary_10_1186_s13287_021_02369_8
crossref_primary_10_3389_fcell_2020_579659
crossref_primary_10_1016_j_bcp_2023_115679
crossref_primary_10_1038_s41380_020_00999_7
crossref_primary_10_1038_s41684_019_0465_9
crossref_primary_10_1016_j_isci_2022_104580
crossref_primary_10_3390_organoids2040017
crossref_primary_10_1016_j_lfs_2024_122610
crossref_primary_10_2174_1570159X21666230817085811
crossref_primary_10_3389_fnagi_2021_643889
crossref_primary_10_3390_cells9051301
crossref_primary_10_3390_ijms22031203
crossref_primary_10_1039_D4BM00317A
crossref_primary_10_1016_j_scr_2020_101870
crossref_primary_10_1007_s44272_024_00012_0
crossref_primary_10_1016_j_drudis_2019_11_010
crossref_primary_10_3389_fncel_2024_1435619
crossref_primary_10_3390_pharmaceutics13050704
crossref_primary_10_3390_ma14133664
crossref_primary_10_1016_j_neuron_2022_06_004
crossref_primary_10_2139_ssrn_3867731
crossref_primary_10_3390_pathogens10111510
crossref_primary_10_1016_j_neuron_2022_10_004
crossref_primary_10_1016_j_brain_2022_100062
crossref_primary_10_1063_5_0035610
crossref_primary_10_1002_aur_70005
crossref_primary_10_1016_j_biopsych_2023_01_004
crossref_primary_10_1128_mBio_00680_21
crossref_primary_10_1002_mabi_202100191
crossref_primary_10_1016_j_jneumeth_2019_108533
crossref_primary_10_1021_envhealth_3c00199
crossref_primary_10_1038_s12276_021_00587_x
crossref_primary_10_3389_fnins_2024_1498801
crossref_primary_10_1177_20417314221147113
crossref_primary_10_1186_s41021_021_00214_1
crossref_primary_10_3390_biology10080740
crossref_primary_10_3390_v14030634
crossref_primary_10_3390_biom13010025
crossref_primary_10_1016_j_scitotenv_2021_149043
crossref_primary_10_1002_mco2_70020
crossref_primary_10_1038_s41378_024_00817_y
crossref_primary_10_3390_cells11111725
crossref_primary_10_1016_j_bcp_2022_115080
crossref_primary_10_3389_fnins_2021_668857
crossref_primary_10_3389_fnmol_2019_00277
crossref_primary_10_1016_j_conb_2025_103011
crossref_primary_10_1134_S1062360420040074
crossref_primary_10_59717_j_xinn_med_2024_100076
crossref_primary_10_12688_molpsychol_17557_1
crossref_primary_10_1016_j_conb_2022_102536
crossref_primary_10_3389_fcell_2021_709824
crossref_primary_10_1038_s41598_020_73177_y
crossref_primary_10_3389_fnagi_2024_1435445
crossref_primary_10_1134_S1062360421030061
crossref_primary_10_1038_s41598_022_20096_9
crossref_primary_10_1016_j_cej_2021_130427
crossref_primary_10_1186_s12974_023_02919_2
crossref_primary_10_3390_biomedicines12040877
crossref_primary_10_1093_brain_awae281
crossref_primary_10_3390_ijms232113116
crossref_primary_10_3389_fncel_2020_602946
crossref_primary_10_1016_j_molmed_2023_05_007
crossref_primary_10_1152_ajplung_00311_2020
crossref_primary_10_3389_fphys_2021_621970
crossref_primary_10_1177_0271678X231152023
crossref_primary_10_1016_j_ecoenv_2022_113429
crossref_primary_10_1016_j_cell_2023_12_012
crossref_primary_10_3390_ijms25158540
crossref_primary_10_1002_brx2_70002
crossref_primary_10_1016_j_biopsych_2023_01_012
crossref_primary_10_1002_anbr_202100097
crossref_primary_10_1093_hmg_ddab223
crossref_primary_10_1016_j_neures_2021_08_002
crossref_primary_10_1002_smll_202306451
crossref_primary_10_1038_s41587_024_02157_8
crossref_primary_10_1186_s43556_023_00165_9
crossref_primary_10_15252_embj_2022111118
crossref_primary_10_3389_fnins_2020_622137
crossref_primary_10_1016_j_stem_2021_11_005
crossref_primary_10_1186_s13287_023_03302_x
crossref_primary_10_1016_j_expneurol_2023_114461
crossref_primary_10_1155_2021_9477332
crossref_primary_10_3390_ijms21020482
crossref_primary_10_3389_fimmu_2025_1538920
crossref_primary_10_3389_fnmol_2023_1173433
crossref_primary_10_1111_nan_12650
Cites_doi 0.1016/j.cell.2017.04.012
10.1016/j.celrep.2017.03.047
10.1038/nature25032
10.1038/nmeth.4304
10.1093/cercor/bhq125
10.1126/science.1112070
10.1038/ncb3632
10.1126/science.1074192
10.1038/cr.2016.68
10.1038/s41592-018-0255-0
10.1038/nature22047
10.1016/j.stem.2013.04.009
10.1126/science.aaa9101
10.1038/ncomms14167
10.1038/nrn2151
10.1038/s41592-018-0081-4
10.1016/j.celrep.2014.12.051
10.1038/nprot.2017.152
10.1016/j.stem.2016.12.007
10.1038/nm.4184
10.1186/s13195-017-0268-4
10.1016/j.stem.2016.04.014
10.1073/pnas.1209076110
10.1016/j.stem.2018.05.024
10.1016/j.neuron.2016.09.005
10.1523/JNEUROSCI.5249-10.2011
10.1038/s41598-018-20436-8
10.1016/j.cell.2006.07.024
10.1016/j.neuron.2017.03.042
10.1016/j.neuron.2007.10.010
10.1136/jnnp-2015-312036
10.1002/cne.24130
10.1016/j.stem.2015.05.004
10.1371/journal.pone.0161969
10.1126/science.aaf6116
10.1093/cercor/bhn078
10.1016/j.cell.2012.02.052
10.1016/j.tins.2013.01.006
10.1523/JNEUROSCI.1106-17.2017
10.1038/ncomms9896
10.1016/j.stem.2013.11.006
10.1016/j.stem.2008.09.002
10.1038/nbt.4127
10.1016/j.stemcr.2017.03.010
10.7554/eLife.18683
10.1016/j.cell.2015.09.004
10.1016/j.cell.2017.06.036
10.1073/pnas.1520760112
10.1126/science.278.5337.474
10.1016/j.celrep.2016.12.001
10.1126/science.aaa1975
10.1016/j.cell.2013.03.027
10.1016/j.cell.2018.03.067
10.1038/nature12517
10.14573/altex.1609122
10.1016/j.tins.2009.01.007
10.1007/s13238-017-0479-2
10.1126/science.aap8809
10.1016/j.stem.2017.07.014
10.1093/cercor/bhq219
10.1523/JNEUROSCI.12-11-04565.1992
10.1097/WNR.0000000000001014
10.1016/j.cell.2007.11.019
10.1038/nrn2252
10.1016/j.stem.2016.07.005
10.1038/ncomms10351
10.1038/nm.4233
10.1016/j.cell.2016.04.032
10.1038/nature20168
10.1038/nn.3536
10.1016/j.celrep.2018.03.105
10.1523/JNEUROSCI.5128-10.2011
10.1073/pnas.1424440112
10.1038/nbt.3906
10.1016/j.cell.2011.06.030
10.1007/s12035-016-0274-8
10.1038/nature00779
10.1242/dev.140707
10.3389/fnhum.2013.00424
10.1016/j.celrep.2016.09.062
10.1186/gb-2006-7-1-202
10.1038/nature25980
10.1016/j.stemcr.2014.09.020
10.1016/j.stem.2018.03.009
10.1126/science.aad2029
10.1001/jamapediatrics.2016.3982
10.1016/j.stem.2017.07.007
10.1038/nn.3541
10.1038/nprot.2014.158
10.1038/s41592-018-0070-7
10.1038/s41380-018-0229-8
10.1073/pnas.1315710110
10.1016/j.stem.2016.11.017
10.1038/nmeth.3415
10.1038/nature13800
10.1016/j.stem.2017.06.017
10.1038/srep03594
10.1158/0008-5472.CAN-15-2402
10.1242/dev.172049
10.1016/j.neuron.2017.07.035
10.1016/j.jneumeth.2009.03.016
10.1093/cercor/bhq245
10.1242/dev.106914
10.1016/j.stem.2016.03.003
10.1038/nature18296
10.1056/NEJMsr1604338
10.1053/j.gastro.2011.07.050
10.1016/j.jmbbm.2013.02.018
10.1056/NEJMoa1307491
10.1177/1535370217694100
10.1016/j.celrep.2017.09.047
10.1126/science.1244392
10.1038/nature08845
10.1002/dvdy.24662
10.3389/fnins.2018.00031
10.1126/science.282.5391.1145
10.1093/cercor/bhw384
10.1002/stem.408
10.1038/nprot.2013.143
10.1016/j.neuron.2017.10.010
10.1016/j.stem.2016.11.014
10.1101/gad.298216.117
10.1038/nature07935
10.1038/nature22330
10.1016/S1473-3099(16)00095-5
10.1016/j.cell.2015.06.034
10.1038/s41567-018-0046-7
10.1016/j.celrep.2014.11.026
10.1093/nar/gkw765
10.1016/j.cell.2018.03.051
10.1038/s41598-018-25603-5
10.1038/nrn2719
10.15252/embj.201593679
10.1126/science.aar6343
ContentType Journal Article
Copyright 2019. Published by The Company of Biologists Ltd.
2019. Published by The Company of Biologists Ltd 2019
Copyright_xml – notice: 2019. Published by The Company of Biologists Ltd.
– notice: 2019. Published by The Company of Biologists Ltd 2019
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
DOI 10.1242/dev.166074
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
CrossRef
MEDLINE

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Zoology
Biology
EISSN 1477-9129
ExternalDocumentID PMC6503989
30992274
10_1242_dev_166074
Genre Review
Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NINDS NIH HHS
  grantid: R35 NS116843
– fundername: NIMH NIH HHS
  grantid: U19 MH106434
– fundername: NINDS NIH HHS
  grantid: P01 NS097206
– fundername: NINDS NIH HHS
  grantid: R35 NS097370
– fundername: NIAID NIH HHS
  grantid: U19 AI131130
– fundername: NIMH NIH HHS
  grantid: R01 MH105128
– fundername: NINDS NIH HHS
  grantid: R37 NS047344
– fundername: ;
– fundername: ;
  grantid: R37NS047344; P01NS097206; U19MH106434; R01MH105128; R35NS097370; U19AI131130
– fundername: ;
  grantid: 575050
GroupedDBID ---
-DZ
-ET
-~X
.55
0R~
18M
2WC
34G
39C
4.4
53G
5GY
5RE
5VS
85S
AAFWJ
AAYXX
ABZEH
ACGFS
ACMFV
ACPRK
ACREN
ADBBV
ADFRT
ADVGF
AENEX
AFFNX
AGGIJ
ALMA_UNASSIGNED_HOLDINGS
AMTXH
BAWUL
BTFSW
CITATION
CS3
DIK
DU5
E3Z
EBS
EJD
F5P
F9R
GX1
H13
HZ~
INIJC
KQ8
O9-
OK1
P2P
R.V
RCB
RHI
SJN
TR2
TWZ
UPT
W8F
WH7
WOQ
X7M
XSW
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
ID FETCH-LOGICAL-c408t-90976604c00df6e45c84aae8570281d35fbe52b71c8fba7fea7e0bdc89a8fa4b3
ISSN 0950-1991
1477-9129
IngestDate Thu Aug 21 14:34:15 EDT 2025
Fri Jul 11 11:23:33 EDT 2025
Thu Apr 03 07:04:31 EDT 2025
Thu Apr 24 23:12:49 EDT 2025
Tue Jul 01 00:45:14 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 8
Keywords Neuroscience
Brain organoids
Stem cell
Language English
License http://www.biologists.com/user-licence-1-1
2019. Published by The Company of Biologists Ltd.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c408t-90976604c00df6e45c84aae8570281d35fbe52b71c8fba7fea7e0bdc89a8fa4b3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
ObjectType-Review-3
content type line 23
ORCID 0000-0002-2517-6075
PMID 30992274
PQID 2210961779
PQPubID 23479
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_6503989
proquest_miscellaneous_2210961779
pubmed_primary_30992274
crossref_primary_10_1242_dev_166074
crossref_citationtrail_10_1242_dev_166074
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2019-04-15
PublicationDateYYYYMMDD 2019-04-15
PublicationDate_xml – month: 04
  year: 2019
  text: 2019-04-15
  day: 15
PublicationDecade 2010
PublicationPlace England
PublicationPlace_xml – name: England
PublicationTitle Development (Cambridge)
PublicationTitleAlternate Development
PublicationYear 2019
Publisher The Company of Biologists Ltd
Publisher_xml – name: The Company of Biologists Ltd
References Zhang (2021042512422247700_DEV166074C131) 2016; 44
Sasai (2021042512422247700_DEV166074C104) 2013; 12
Ming (2021042512422247700_DEV166074C65) 2016; 19
Pamies (2021042512422247700_DEV166074C82) 2017; 34
Petanjek (2021042512422247700_DEV166074C85) 2009; 19
Kronenberg (2021042512422247700_DEV166074C48) 2018; 360
Iefremova (2021042512422247700_DEV166074C39) 2017; 19
Sloan (2021042512422247700_DEV166074C107) 2017; 95
Cruz-Acuña (2021042512422247700_DEV166074C21) 2017; 19
Del Toro (2021042512422247700_DEV166074C26) 2017; 169
Lancaster (2021042512422247700_DEV166074C51) 2017; 35
Mansour (2021042512422247700_DEV166074C61) 2018; 36
Borghese (2021042512422247700_DEV166074C10) 2010; 28
Nzou (2021042512422247700_DEV166074C76) 2018; 8
Workman (2021042512422247700_DEV166074C121) 2017; 23
Karzbrun (2021042512422247700_DEV166074C47) 2018; 14
Fiddes (2021042512422247700_DEV166074C30) 2018; 173
Lancaster (2021042512422247700_DEV166074C49) 2014; 9
Eiraku (2021042512422247700_DEV166074C28) 2008; 3
Bayly (2021042512422247700_DEV166074C6) 2014; 29
Radonjic (2021042512422247700_DEV166074C93) 2014; 9
Zeng (2021042512422247700_DEV166074C130) 2012; 149
Sur (2021042512422247700_DEV166074C113) 2005; 310
Ding (2021042512422247700_DEV166074C27) 2017; 525
Pollen (2021042512422247700_DEV166074C88) 2015; 163
Arber (2021042512422247700_DEV166074C3) 2017; 9
Zhong (2021042512422247700_DEV166074C132) 2018; 555
Qian (2021042512422247700_DEV166074C91) 2018; 13
Pasca (2021042512422247700_DEV166074C83) 2018; 553
Florio (2021042512422247700_DEV166074C31) 2015; 347
Takahashi (2021042512422247700_DEV166074C115) 2006; 126
Meinhardt (2021042512422247700_DEV166074C63) 2014; 3
Miller (2021042512422247700_DEV166074C64) 2013; 13
Ogawa (2021042512422247700_DEV166074C77) 2018; 23
Lewitus (2021042512422247700_DEV166074C53) 2013; 7
Qian (2021042512422247700_DEV166074C89) 2016; 165
Cugola (2021042512422247700_DEV166074C22) 2016; 534
Nowakowski (2021042512422247700_DEV166074C75) 2017; 358
Li (2021042512422247700_DEV166074C55) 2017; 8
Sousa (2021042512422247700_DEV166074C108) 2017; 170
Rambani (2021042512422247700_DEV166074C98) 2009; 180
Pasca (2021042512422247700_DEV166074C84) 2015; 12
Yoon (2021042512422247700_DEV166074C127) 2019; 16
Takahashi (2021042512422247700_DEV166074C116) 2007; 131
Gjorevski (2021042512422247700_DEV166074C34) 2016; 539
Nguyen (2021042512422247700_DEV166074C73) 2016; 26
De Clercq (2021042512422247700_DEV166074C25) 2018; 28
Ip (2021042512422247700_DEV166074C40) 2011; 21
Studer (2021042512422247700_DEV166074C111) 2015; 16
Bian (2021042512422247700_DEV166074C8) 2018; 15
Lewitus (2021042512422247700_DEV166074C54) 2016; 351
Sakaguchi (2021042512422247700_DEV166074C103) 2015; 6
Borrell (2021042512422247700_DEV166074C11) 2018; 38
Ozair (2021042512422247700_DEV166074C80) 2018; 23
Gonzalez (2021042512422247700_DEV166074C35) 2018; 23
Letinic (2021042512422247700_DEV166074C52) 2002; 417
Jeong (2021042512422247700_DEV166074C43) 2018; 12
Muguruma (2021042512422247700_DEV166074C71) 2015; 10
Choi (2021042512422247700_DEV166074C19) 2014; 515
Wen (2021042512422247700_DEV166074C120) 2017; 31
Pham (2021042512422247700_DEV166074C86) 2018; 29
Quadrato (2021042512422247700_DEV166074C92) 2017; 545
Birey (2021042512422247700_DEV166074C9) 2017; 15
Danjo (2021042512422247700_DEV166074C24) 2011; 31
Sato (2021042512422247700_DEV166074C106) 2011; 141
Yu (2021042512422247700_DEV166074C128) 2011; 31
Molyneaux (2021042512422247700_DEV166074C66) 2007; 8
Rakic (2021042512422247700_DEV166074C97) 2009; 32
Monzel (2021042512422247700_DEV166074C67) 2017; 8
Chenn (2021042512422247700_DEV166074C18) 2002; 297
Zilles (2021042512422247700_DEV166074C134) 2013; 36
Mota (2021042512422247700_DEV166074C70) 2015; 349
Raja (2021042512422247700_DEV166074C94) 2016; 11
Garcez (2021042512422247700_DEV166074C33) 2016; 352
Nowakowski (2021042512422247700_DEV166074C74) 2016; 91
Yoon (2021042512422247700_DEV166074C126) 2017; 21
Jo (2021042512422247700_DEV166074C44) 2016; 19
Dang (2021042512422247700_DEV166074C23) 2016; 19
Zhou (2021042512422247700_DEV166074C133) 2017; 21
Anderson (2021042512422247700_DEV166074C2) 1997; 278
Nakagawa (2021042512422247700_DEV166074C72) 2014; 4
Hubert (2021042512422247700_DEV166074C38) 2016; 76
Saito (2021042512422247700_DEV166074C102) 2011; 21
Gabriel (2021042512422247700_DEV166074C32) 2016; 35
Rakic (2021042512422247700_DEV166074C96) 2009; 10
Elsen (2021042512422247700_DEV166074C29) 2013; 110
Rajamani (2021042512422247700_DEV166074C95) 2018; 22
Sato (2021042512422247700_DEV166074C105) 2009; 459
Watanabe (2021042512422247700_DEV166074C119) 2017; 21
Lancaster (2021042512422247700_DEV166074C50) 2013; 501
Madhavan (2021042512422247700_DEV166074C60) 2018; 15
Stoner (2021042512422247700_DEV166074C110) 2014; 370
Lui (2021042512422247700_DEV166074C57) 2011; 146
Phan (2021042512422247700_DEV166074C87) 2017; 242
Chambers (2021042512422247700_DEV166074C16) 2006; 7
Hansen (2021042512422247700_DEV166074C37) 2013; 16
Otani (2021042512422247700_DEV166074C79) 2016; 18
O'Leary (2021042512422247700_DEV166074C78) 2007; 56
Xiao (2021042512422247700_DEV166074C123) 2016; 87
Li (2021042512422247700_DEV166074C56) 2017; 20
Qian (2021042512422247700_DEV166074C90) 2017; 144
Ye (2021042512422247700_DEV166074C125) 2017; 96
Xu (2021042512422247700_DEV166074C124) 2016; 22
Ozone (2021042512422247700_DEV166074C81) 2016; 7
Zembrzycki (2021042512422247700_DEV166074C129) 2015; 112
Bagley (2021042512422247700_DEV166074C5) 2017; 14
Bershteyn (2021042512422247700_DEV166074C7) 2017; 20
Moore (2021042512422247700_DEV166074C68) 2017; 171
Choi (2021042512422247700_DEV166074C20) 2017; 54
Subramanian (2021042512422247700_DEV166074C112) 2017; 8
Kadoshima (2021042512422247700_DEV166074C46) 2013; 110
Reynolds (2021042512422247700_DEV166074C101) 1992; 12
Luo (2021042512422247700_DEV166074C58) 2016; 17
Ran (2021042512422247700_DEV166074C99) 2013; 8
Abud (2021042512422247700_DEV166074C1) 2017; 94
Suzuki (2021042512422247700_DEV166074C114) 2018; 173
Chen (2021042512422247700_DEV166074C17) 2018; 248
Stahl (2021042512422247700_DEV166074C109) 2013; 153
Mariani (2021042512422247700_DEV166074C62) 2015; 162
Thomson (2021042512422247700_DEV166074C117) 1998; 282
Ma (2021042512422247700_DEV166074C59) 2013; 16
Bystron (2021042512422247700_DEV166074C12) 2008; 9
Calvet (2021042512422247700_DEV166074C13) 2016; 16
Jabaudon (2021042512422247700_DEV166074C41) 2018; 145
Camp (2021042512422247700_DEV166074C14) 2015; 112
Caronia-Brown (2021042512422247700_DEV166074C15) 2014; 141
Hansen (2021042512422247700_DEV166074C36) 2010; 464
Rasmussen (2021042512422247700_DEV166074C100) 2016; 374
Bae (2021042512422247700_DEV166074C4) 2014; 343
Xiang (2021042512422247700_DEV166074C122) 2017; 21
Jakovcevski (2021042512422247700_DEV166074C42) 2011; 21
Jorfi (2021042512422247700_DEV166074C45) 2018; 8
Mora-Bermudez (2021042512422247700_DEV166074C69) 2016; 5
Vera (2021042512422247700_DEV166074C118) 2016; 17
References_xml – volume: 169
  start-page: 621
  year: 2017
  ident: 2021042512422247700_DEV166074C26
  article-title: Regulation of cerebral cortex folding by controlling neuronal migration via FLRT adhesion molecules
  publication-title: Cell
  doi: 0.1016/j.cell.2017.04.012
– volume: 19
  start-page: 50
  year: 2017
  ident: 2021042512422247700_DEV166074C39
  article-title: An Organoid-based model of cortical development identifies non-cell-autonomous defects in Wnt signaling contributing to miller-dieker syndrome
  publication-title: Cell Rep.
  doi: 10.1016/j.celrep.2017.03.047
– volume: 553
  start-page: 437
  year: 2018
  ident: 2021042512422247700_DEV166074C83
  article-title: The rise of three-dimensional human brain cultures
  publication-title: Nature
  doi: 10.1038/nature25032
– volume: 14
  start-page: 743
  year: 2017
  ident: 2021042512422247700_DEV166074C5
  article-title: Fused cerebral organoids model interactions between brain regions
  publication-title: Nat. Methods
  doi: 10.1038/nmeth.4304
– volume: 21
  start-page: 588
  year: 2011
  ident: 2021042512422247700_DEV166074C102
  article-title: Neocortical layer formation of human developing brains and lissencephalies: consideration of layer-specific marker expression
  publication-title: Cereb. Cortex
  doi: 10.1093/cercor/bhq125
– volume: 310
  start-page: 805
  year: 2005
  ident: 2021042512422247700_DEV166074C113
  article-title: Patterning and plasticity of the cerebral cortex
  publication-title: Science
  doi: 10.1126/science.1112070
– volume: 19
  start-page: 1326
  year: 2017
  ident: 2021042512422247700_DEV166074C21
  article-title: Synthetic hydrogels for human intestinal organoid generation and colonic wound repair
  publication-title: Nat. Cell Biol.
  doi: 10.1038/ncb3632
– volume: 297
  start-page: 365
  year: 2002
  ident: 2021042512422247700_DEV166074C18
  article-title: Regulation of cerebral cortical size by control of cell cycle exit in neural precursors
  publication-title: Science
  doi: 10.1126/science.1074192
– volume: 26
  start-page: 753
  year: 2016
  ident: 2021042512422247700_DEV166074C73
  article-title: Neural stem cells attacked by Zika virus
  publication-title: Cell Res.
  doi: 10.1038/cr.2016.68
– volume: 16
  start-page: 75
  year: 2019
  ident: 2021042512422247700_DEV166074C127
  article-title: Reliability of human cortical organoid generation
  publication-title: Nat. Methods
  doi: 10.1038/s41592-018-0255-0
– volume: 545
  start-page: 48
  year: 2017
  ident: 2021042512422247700_DEV166074C92
  article-title: Cell diversity and network dynamics in photosensitive human brain organoids
  publication-title: Nature
  doi: 10.1038/nature22047
– volume: 12
  start-page: 520
  year: 2013
  ident: 2021042512422247700_DEV166074C104
  article-title: Next-generation regenerative medicine: organogenesis from stem cells in 3D culture
  publication-title: Cell Stem Cell
  doi: 10.1016/j.stem.2013.04.009
– volume: 349
  start-page: 74
  year: 2015
  ident: 2021042512422247700_DEV166074C70
  article-title: Brain structure. Cortical folding scales universally with surface area and thickness, not number of neurons
  publication-title: . Science
  doi: 10.1126/science.aaa9101
– volume: 8
  start-page: 14167
  year: 2017
  ident: 2021042512422247700_DEV166074C112
  article-title: Dynamic behaviour of human neuroepithelial cells in the developing forebrain
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms14167
– volume: 8
  start-page: 427
  year: 2007
  ident: 2021042512422247700_DEV166074C66
  article-title: Neuronal subtype specification in the cerebral cortex
  publication-title: Nat. Rev. Neurosci.
  doi: 10.1038/nrn2151
– volume: 15
  start-page: 700
  year: 2018
  ident: 2021042512422247700_DEV166074C60
  article-title: Induction of myelinating oligodendrocytes in human cortical spheroids
  publication-title: Nat. Methods
  doi: 10.1038/s41592-018-0081-4
– volume: 10
  start-page: 537
  year: 2015
  ident: 2021042512422247700_DEV166074C71
  article-title: Self-organization of polarized cerebellar tissue in 3D culture of human pluripotent stem cells
  publication-title: Cell Rep.
  doi: 10.1016/j.celrep.2014.12.051
– volume: 13
  start-page: 565
  year: 2018
  ident: 2021042512422247700_DEV166074C91
  article-title: Generation of human brain region-specific organoids using a miniaturized spinning bioreactor
  publication-title: Nat. Protoc.
  doi: 10.1038/nprot.2017.152
– volume: 20
  start-page: 435
  year: 2017
  ident: 2021042512422247700_DEV166074C7
  article-title: Human iPSC-derived cerebral organoids model cellular features of lissencephaly and reveal prolonged mitosis of outer radial glia
  publication-title: Cell Stem Cell
  doi: 10.1016/j.stem.2016.12.007
– volume: 22
  start-page: 1101
  year: 2016
  ident: 2021042512422247700_DEV166074C124
  article-title: Identification of small-molecule inhibitors of Zika virus infection and induced neural cell death via a drug repurposing screen
  publication-title: Nat. Med.
  doi: 10.1038/nm.4184
– volume: 9
  start-page: 42
  year: 2017
  ident: 2021042512422247700_DEV166074C3
  article-title: Stem cell models of Alzheimer's disease: progress and challenges
  publication-title: Alzheimers Res. Ther.
  doi: 10.1186/s13195-017-0268-4
– volume: 19
  start-page: 258
  year: 2016
  ident: 2021042512422247700_DEV166074C23
  article-title: Zika virus depletes neural progenitors in human cerebral organoids through activation of the innate immune receptor TLR3
  publication-title: Cell Stem Cell
  doi: 10.1016/j.stem.2016.04.014
– volume: 110
  start-page: 4081
  year: 2013
  ident: 2021042512422247700_DEV166074C29
  article-title: The protomap is propagated to cortical plate neurons through an Eomes-dependent intermediate map
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.1209076110
– volume: 23
  start-page: 60
  year: 2018
  ident: 2021042512422247700_DEV166074C80
  article-title: hPSC Modeling reveals that fate selection of cortical deep projection neurons occurs in the subplate
  publication-title: Cell Stem Cell
  doi: 10.1016/j.stem.2018.05.024
– volume: 91
  start-page: 1219
  year: 2016
  ident: 2021042512422247700_DEV166074C74
  article-title: Transformation of the radial glia scaffold demarcates two stages of human cerebral cortex development
  publication-title: Neuron
  doi: 10.1016/j.neuron.2016.09.005
– volume: 31
  start-page: 2413
  year: 2011
  ident: 2021042512422247700_DEV166074C128
  article-title: Dorsal radial glial cells have the potential to generate cortical interneurons in human but not in mouse brain
  publication-title: J. Neurosci.
  doi: 10.1523/JNEUROSCI.5249-10.2011
– volume: 8
  start-page: 2450
  year: 2018
  ident: 2021042512422247700_DEV166074C45
  article-title: Human neurospheroid arrays for in vitro studies of Alzheimer's disease
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-018-20436-8
– volume: 126
  start-page: 663
  year: 2006
  ident: 2021042512422247700_DEV166074C115
  article-title: Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors
  publication-title: Cell
  doi: 10.1016/j.cell.2006.07.024
– volume: 94
  start-page: 278
  year: 2017
  ident: 2021042512422247700_DEV166074C1
  article-title: iPSC-Derived human microglia-like cells to study neurological diseases
  publication-title: Neuron
  doi: 10.1016/j.neuron.2017.03.042
– volume: 56
  start-page: 252
  year: 2007
  ident: 2021042512422247700_DEV166074C78
  article-title: Area patterning of the mammalian cortex
  publication-title: Neuron
  doi: 10.1016/j.neuron.2007.10.010
– volume: 87
  start-page: 697
  year: 2016
  ident: 2021042512422247700_DEV166074C123
  article-title: Induced pluripotent stem cells in Parkinson's disease: scientific and clinical challenges
  publication-title: J. Neurol. Neurosurg. Psychiatry
  doi: 10.1136/jnnp-2015-312036
– volume: 525
  start-page: 407
  year: 2017
  ident: 2021042512422247700_DEV166074C27
  article-title: Comprehensive cellular-resolution atlas of the adult human brain
  publication-title: J. Comp. Neurol.
  doi: 10.1002/cne.24130
– volume: 16
  start-page: 591
  year: 2015
  ident: 2021042512422247700_DEV166074C111
  article-title: Programming and reprogramming cellular age in the era of induced pluripotency
  publication-title: Cell Stem Cell
  doi: 10.1016/j.stem.2015.05.004
– volume: 11
  start-page: e0161969
  year: 2016
  ident: 2021042512422247700_DEV166074C94
  article-title: Self-organizing 3D human neural tissue derived from induced pluripotent stem cells recapitulate Alzheimer's disease phenotypes
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0161969
– volume: 352
  start-page: 816
  year: 2016
  ident: 2021042512422247700_DEV166074C33
  article-title: Zika virus impairs growth in human neurospheres and brain organoids
  publication-title: Science
  doi: 10.1126/science.aaf6116
– volume: 19
  start-page: 249
  year: 2009
  ident: 2021042512422247700_DEV166074C85
  article-title: Origins of cortical GABAergic neurons in the cynomolgus monkey
  publication-title: Cereb. Cortex
  doi: 10.1093/cercor/bhn078
– volume: 149
  start-page: 483
  year: 2012
  ident: 2021042512422247700_DEV166074C130
  article-title: Large-scale cellular-resolution gene profiling in human neocortex reveals species-specific molecular signatures
  publication-title: Cell
  doi: 10.1016/j.cell.2012.02.052
– volume: 36
  start-page: 275
  year: 2013
  ident: 2021042512422247700_DEV166074C134
  article-title: Development of cortical folding during evolution and ontogeny
  publication-title: Trends Neurosci.
  doi: 10.1016/j.tins.2013.01.006
– volume: 38
  start-page: 776
  year: 2018
  ident: 2021042512422247700_DEV166074C11
  article-title: How cells fold the cerebral cortex
  publication-title: J. Neurosci.
  doi: 10.1523/JNEUROSCI.1106-17.2017
– volume: 6
  start-page: 8896
  year: 2015
  ident: 2021042512422247700_DEV166074C103
  article-title: Generation of functional hippocampal neurons from self-organizing human embryonic stem cell-derived dorsomedial telencephalic tissue
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms9896
– volume: 13
  start-page: 691
  year: 2013
  ident: 2021042512422247700_DEV166074C64
  article-title: Human iPSC-based modeling of late-onset disease via progerin-induced aging
  publication-title: Cell Stem Cell
  doi: 10.1016/j.stem.2013.11.006
– volume: 3
  start-page: 519
  year: 2008
  ident: 2021042512422247700_DEV166074C28
  article-title: Self-organized formation of polarized cortical tissues from ESCs and its active manipulation by extrinsic signals
  publication-title: Cell Stem Cell
  doi: 10.1016/j.stem.2008.09.002
– volume: 36
  start-page: 432
  year: 2018
  ident: 2021042512422247700_DEV166074C61
  article-title: An in vivo model of functional and vascularized human brain organoids
  publication-title: Nat. Biotechnol.
  doi: 10.1038/nbt.4127
– volume: 8
  start-page: 1144
  year: 2017
  ident: 2021042512422247700_DEV166074C67
  article-title: Derivation of human midbrain-specific organoids from neuroepithelial stem cells
  publication-title: Stem Cell Rep.
  doi: 10.1016/j.stemcr.2017.03.010
– volume: 5
  start-page: e18683
  year: 2016
  ident: 2021042512422247700_DEV166074C69
  article-title: Differences and similarities between human and chimpanzee neural progenitors during cerebral cortex development
  publication-title: Elife
  doi: 10.7554/eLife.18683
– volume: 163
  start-page: 55
  year: 2015
  ident: 2021042512422247700_DEV166074C88
  article-title: Molecular identity of human outer radial glia during cortical development
  publication-title: Cell
  doi: 10.1016/j.cell.2015.09.004
– volume: 170
  start-page: 226
  year: 2017
  ident: 2021042512422247700_DEV166074C108
  article-title: Evolution of the human nervous system function, structure, and development
  publication-title: Cell
  doi: 10.1016/j.cell.2017.06.036
– volume: 112
  start-page: 15672
  year: 2015
  ident: 2021042512422247700_DEV166074C14
  article-title: Human cerebral organoids recapitulate gene expression programs of fetal neocortex development
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.1520760112
– volume: 278
  start-page: 474
  year: 1997
  ident: 2021042512422247700_DEV166074C2
  article-title: Interneuron migration from basal forebrain to neocortex: dependence on Dlx genes
  publication-title: Science
  doi: 10.1126/science.278.5337.474
– volume: 17
  start-page: 3369
  year: 2016
  ident: 2021042512422247700_DEV166074C58
  article-title: Cerebral organoids recapitulate epigenomic signatures of the human fetal brain
  publication-title: Cell Rep.
  doi: 10.1016/j.celrep.2016.12.001
– volume: 347
  start-page: 1465
  year: 2015
  ident: 2021042512422247700_DEV166074C31
  article-title: Human-specific gene ARHGAP11B promotes basal progenitor amplification and neocortex expansion
  publication-title: Science
  doi: 10.1126/science.aaa1975
– volume: 153
  start-page: 535
  year: 2013
  ident: 2021042512422247700_DEV166074C109
  article-title: Trnp1 regulates expansion and folding of the mammalian cerebral cortex by control of radial glial fate
  publication-title: Cell
  doi: 10.1016/j.cell.2013.03.027
– volume: 173
  start-page: 1370
  year: 2018
  ident: 2021042512422247700_DEV166074C114
  article-title: Human-specific NOTCH2NL genes expand cortical neurogenesis through Delta/Notch regulation
  publication-title: Cell
  doi: 10.1016/j.cell.2018.03.067
– volume: 501
  start-page: 373
  year: 2013
  ident: 2021042512422247700_DEV166074C50
  article-title: Cerebral organoids model human brain development and microcephaly
  publication-title: Nature
  doi: 10.1038/nature12517
– volume: 34
  start-page: 362
  year: 2017
  ident: 2021042512422247700_DEV166074C82
  article-title: A human brain microphysiological system derived from induced pluripotent stem cells to study neurological diseases and toxicity
  publication-title: ALTEX
  doi: 10.14573/altex.1609122
– volume: 32
  start-page: 291
  year: 2009
  ident: 2021042512422247700_DEV166074C97
  article-title: Decision by division: making cortical maps
  publication-title: Trends Neurosci.
  doi: 10.1016/j.tins.2009.01.007
– volume: 8
  start-page: 823
  year: 2017
  ident: 2021042512422247700_DEV166074C55
  article-title: Recapitulating cortical development with organoid culture in vitro and modeling abnormal spindle-like (ASPM related primary) microcephaly disease
  publication-title: Protein Cell
  doi: 10.1007/s13238-017-0479-2
– volume: 358
  start-page: 1318
  year: 2017
  ident: 2021042512422247700_DEV166074C75
  article-title: Spatiotemporal gene expression trajectories reveal developmental hierarchies of the human cortex
  publication-title: Science
  doi: 10.1126/science.aap8809
– volume: 21
  start-page: 349
  year: 2017
  ident: 2021042512422247700_DEV166074C126
  article-title: Zika-virus-encoded NS2A disrupts mammalian cortical neurogenesis by degrading adherens junction proteins
  publication-title: Cell Stem Cell
  doi: 10.1016/j.stem.2017.07.014
– volume: 21
  start-page: 1395
  year: 2011
  ident: 2021042512422247700_DEV166074C40
  article-title: The corticofugal neuron-associated genes ROBO1, SRGAP1, and CTIP2 exhibit an anterior to posterior gradient of expression in early fetal human neocortex development
  publication-title: Cereb. Cortex
  doi: 10.1093/cercor/bhq219
– volume: 12
  start-page: 4565
  year: 1992
  ident: 2021042512422247700_DEV166074C101
  article-title: A multipotent EGF-responsive striatal embryonic progenitor cell produces neurons and astrocytes
  publication-title: J. Neurosci.
  doi: 10.1523/JNEUROSCI.12-11-04565.1992
– volume: 29
  start-page: 588
  year: 2018
  ident: 2021042512422247700_DEV166074C86
  article-title: Generation of human vascularized brain organoids
  publication-title: Neuroreport
  doi: 10.1097/WNR.0000000000001014
– volume: 131
  start-page: 861
  year: 2007
  ident: 2021042512422247700_DEV166074C116
  article-title: Induction of pluripotent stem cells from adult human fibroblasts by defined factors
  publication-title: Cell
  doi: 10.1016/j.cell.2007.11.019
– volume: 9
  start-page: 110
  year: 2008
  ident: 2021042512422247700_DEV166074C12
  article-title: Development of the human cerebral cortex: boulder committee revisited
  publication-title: Nat. Rev. Neurosci.
  doi: 10.1038/nrn2252
– volume: 19
  start-page: 248
  year: 2016
  ident: 2021042512422247700_DEV166074C44
  article-title: Midbrain-like organoids from human pluripotent stem cells contain functional dopaminergic and neuromelanin-producing neurons
  publication-title: Cell Stem Cell
  doi: 10.1016/j.stem.2016.07.005
– volume: 7
  start-page: 10351
  year: 2016
  ident: 2021042512422247700_DEV166074C81
  article-title: Functional anterior pituitary generated in self-organizing culture of human embryonic stem cells
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms10351
– volume: 23
  start-page: 49
  year: 2017
  ident: 2021042512422247700_DEV166074C121
  article-title: Engineered human pluripotent-stem-cell-derived intestinal tissues with a functional enteric nervous system
  publication-title: Nat. Med.
  doi: 10.1038/nm.4233
– volume: 165
  start-page: 1238
  year: 2016
  ident: 2021042512422247700_DEV166074C89
  article-title: Brain-region-specific organoids using mini-bioreactors for modeling ZIKV exposure
  publication-title: Cell
  doi: 10.1016/j.cell.2016.04.032
– volume: 539
  start-page: 560
  year: 2016
  ident: 2021042512422247700_DEV166074C34
  article-title: Designer matrices for intestinal stem cell and organoid culture
  publication-title: Nature
  doi: 10.1038/nature20168
– volume: 16
  start-page: 1588
  year: 2013
  ident: 2021042512422247700_DEV166074C59
  article-title: Subcortical origins of human and monkey neocortical interneurons
  publication-title: Nat. Neurosci.
  doi: 10.1038/nn.3536
– volume: 23
  start-page: 1220
  year: 2018
  ident: 2021042512422247700_DEV166074C77
  article-title: Glioblastoma model using human cerebral organoids
  publication-title: Cell Rep.
  doi: 10.1016/j.celrep.2018.03.105
– volume: 31
  start-page: 1919
  year: 2011
  ident: 2021042512422247700_DEV166074C24
  article-title: Subregional specification of embryonic stem cell-derived ventral telencephalic tissues by timed and combinatory treatment with extrinsic signals
  publication-title: J. Neurosci.
  doi: 10.1523/JNEUROSCI.5128-10.2011
– volume: 112
  start-page: 6736
  year: 2015
  ident: 2021042512422247700_DEV166074C129
  article-title: Postmitotic regulation of sensory area patterning in the mammalian neocortex by Lhx2
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.1424440112
– volume: 35
  start-page: 659
  year: 2017
  ident: 2021042512422247700_DEV166074C51
  article-title: Guided self-organization and cortical plate formation in human brain organoids
  publication-title: Nat. Biotechnol.
  doi: 10.1038/nbt.3906
– volume: 146
  start-page: 18
  year: 2011
  ident: 2021042512422247700_DEV166074C57
  article-title: Development and evolution of the human neocortex
  publication-title: Cell
  doi: 10.1016/j.cell.2011.06.030
– volume: 54
  start-page: 7789
  year: 2017
  ident: 2021042512422247700_DEV166074C20
  article-title: Modeling of autism using organoid technology
  publication-title: Mol. Neurobiol.
  doi: 10.1007/s12035-016-0274-8
– volume: 417
  start-page: 645
  year: 2002
  ident: 2021042512422247700_DEV166074C52
  article-title: Origin of GABAergic neurons in the human neocortex
  publication-title: Nature
  doi: 10.1038/nature00779
– volume: 144
  start-page: 952
  year: 2017
  ident: 2021042512422247700_DEV166074C90
  article-title: Using brain organoids to understand Zika virus-induced microcephaly
  publication-title: Development
  doi: 10.1242/dev.140707
– volume: 7
  start-page: 424
  year: 2013
  ident: 2021042512422247700_DEV166074C53
  article-title: Conical expansion of the outer subventricular zone and the role of neocortical folding in evolution and development
  publication-title: Front. Hum. Neurosci.
  doi: 10.3389/fnhum.2013.00424
– volume: 17
  start-page: 1184
  year: 2016
  ident: 2021042512422247700_DEV166074C118
  article-title: Generating late-onset human iPSC-based disease models by inducing neuronal age-related phenotypes through telomerase manipulation
  publication-title: Cell Rep.
  doi: 10.1016/j.celrep.2016.09.062
– volume: 7
  start-page: 202
  year: 2006
  ident: 2021042512422247700_DEV166074C16
  article-title: Functional genomics of early cortex patterning
  publication-title: Genome Biol.
  doi: 10.1186/gb-2006-7-1-202
– volume: 555
  start-page: 524
  year: 2018
  ident: 2021042512422247700_DEV166074C132
  article-title: A single-cell RNA-seq survey of the developmental landscape of the human prefrontal cortex
  publication-title: Nature
  doi: 10.1038/nature25980
– volume: 3
  start-page: 987
  year: 2014
  ident: 2021042512422247700_DEV166074C63
  article-title: 3D reconstitution of the patterned neural tube from embryonic stem cells
  publication-title: Stem Cell Rep.
  doi: 10.1016/j.stemcr.2014.09.020
– volume: 22
  start-page: 698
  year: 2018
  ident: 2021042512422247700_DEV166074C95
  article-title: Super-obese patient-derived iPSC hypothalamic neurons exhibit obesogenic signatures and hormone responses
  publication-title: Cell Stem Cell
  doi: 10.1016/j.stem.2018.03.009
– volume: 351
  start-page: 825
  year: 2016
  ident: 2021042512422247700_DEV166074C54
  article-title: Comment on “Cortical folding scales universally with surface area and thickness, not number of neurons”
  publication-title: Science
  doi: 10.1126/science.aad2029
– volume: 171
  start-page: 288
  year: 2017
  ident: 2021042512422247700_DEV166074C68
  article-title: Characterizing the pattern of anomalies in congenital Zika syndrome for pediatric clinicians
  publication-title: JAMA Pediatr
  doi: 10.1001/jamapediatrics.2016.3982
– volume: 21
  start-page: 383
  year: 2017
  ident: 2021042512422247700_DEV166074C122
  article-title: Fusion of regionally specified hPSC-derived organoids models human brain development and interneuron migration
  publication-title: Cell Stem Cell
  doi: 10.1016/j.stem.2017.07.007
– volume: 16
  start-page: 1576
  year: 2013
  ident: 2021042512422247700_DEV166074C37
  article-title: Non-epithelial stem cells and cortical interneuron production in the human ganglionic eminences
  publication-title: Nat. Neurosci.
  doi: 10.1038/nn.3541
– volume: 9
  start-page: 2329
  year: 2014
  ident: 2021042512422247700_DEV166074C49
  article-title: Generation of cerebral organoids from human pluripotent stem cells
  publication-title: Nat. Protoc.
  doi: 10.1038/nprot.2014.158
– volume: 15
  start-page: 631
  year: 2018
  ident: 2021042512422247700_DEV166074C8
  article-title: Genetically engineered cerebral organoids model brain tumor formation
  publication-title: Nat. Methods
  doi: 10.1038/s41592-018-0070-7
– volume: 23
  start-page: 2363
  year: 2018
  ident: 2021042512422247700_DEV166074C35
  article-title: Modeling amyloid beta and tau pathology in human cerebral organoids
  publication-title: Mol. Psychiatry
  doi: 10.1038/s41380-018-0229-8
– volume: 110
  start-page: 20284
  year: 2013
  ident: 2021042512422247700_DEV166074C46
  article-title: Self-organization of axial polarity, inside-out layer pattern, and species-specific progenitor dynamics in human ES cell-derived neocortex
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.1315710110
– volume: 20
  start-page: 385
  year: 2017
  ident: 2021042512422247700_DEV166074C56
  article-title: Induction of expansion and folding in human cerebral organoids
  publication-title: Cell Stem Cell
  doi: 10.1016/j.stem.2016.11.017
– volume: 12
  start-page: 671
  year: 2015
  ident: 2021042512422247700_DEV166074C84
  article-title: Functional cortical neurons and astrocytes from human pluripotent stem cells in 3D culture
  publication-title: Nat. Methods
  doi: 10.1038/nmeth.3415
– volume: 515
  start-page: 274
  year: 2014
  ident: 2021042512422247700_DEV166074C19
  article-title: A three-dimensional human neural cell culture model of Alzheimer's disease
  publication-title: Nature
  doi: 10.1038/nature13800
– volume: 21
  start-page: 274
  year: 2017
  ident: 2021042512422247700_DEV166074C133
  article-title: High-content screening in hPSC-neural progenitors identifies drug candidates that inhibit Zika virus infection in fetal-like organoids and adult brain
  publication-title: Cell Stem Cell
  doi: 10.1016/j.stem.2017.06.017
– volume: 4
  start-page: 3594
  year: 2014
  ident: 2021042512422247700_DEV166074C72
  article-title: A novel efficient feeder-free culture system for the derivation of human induced pluripotent stem cells
  publication-title: Sci. Rep.
  doi: 10.1038/srep03594
– volume: 76
  start-page: 2465
  year: 2016
  ident: 2021042512422247700_DEV166074C38
  article-title: A three-dimensional organoid culture system derived from human glioblastomas recapitulates the hypoxic gradients and cancer stem cell heterogeneity of tumors found in vivo
  publication-title: Cancer Res.
  doi: 10.1158/0008-5472.CAN-15-2402
– volume: 145
  start-page: dev172049
  year: 2018
  ident: 2021042512422247700_DEV166074C41
  article-title: Exploring landscapes of brain morphogenesis with organoids
  publication-title: Development
  doi: 10.1242/dev.172049
– volume: 95
  start-page: 779
  year: 2017
  ident: 2021042512422247700_DEV166074C107
  article-title: Human astrocyte maturation captured in 3D cerebral cortical spheroids derived from pluripotent stem cells
  publication-title: Neuron
  doi: 10.1016/j.neuron.2017.07.035
– volume: 180
  start-page: 243
  year: 2009
  ident: 2021042512422247700_DEV166074C98
  article-title: Culturing thick brain slices: an interstitial 3D microperfusion system for enhanced viability
  publication-title: J. Neurosci. Methods
  doi: 10.1016/j.jneumeth.2009.03.016
– volume: 21
  start-page: 1771
  year: 2011
  ident: 2021042512422247700_DEV166074C42
  article-title: Multiple origins of human neocortical interneurons are supported by distinct expression of transcription factors
  publication-title: Cereb. Cortex
  doi: 10.1093/cercor/bhq245
– volume: 141
  start-page: 2855
  year: 2014
  ident: 2021042512422247700_DEV166074C15
  article-title: The cortical hem regulates the size and patterning of neocortex
  publication-title: Development
  doi: 10.1242/dev.106914
– volume: 18
  start-page: 467
  year: 2016
  ident: 2021042512422247700_DEV166074C79
  article-title: 2D and 3D stem cell models of primate cortical development identify species-specific differences in progenitor behavior contributing to brain size
  publication-title: Cell Stem Cell
  doi: 10.1016/j.stem.2016.03.003
– volume: 534
  start-page: 267
  year: 2016
  ident: 2021042512422247700_DEV166074C22
  article-title: The Brazilian Zika virus strain causes birth defects in experimental models
  publication-title: Nature
  doi: 10.1038/nature18296
– volume: 374
  start-page: 1981
  year: 2016
  ident: 2021042512422247700_DEV166074C100
  article-title: Zika virus and birth defects--reviewing the evidence for causality
  publication-title: N. Engl. J. Med.
  doi: 10.1056/NEJMsr1604338
– volume: 141
  start-page: 1762
  year: 2011
  ident: 2021042512422247700_DEV166074C106
  article-title: Long-term expansion of epithelial organoids from human colon, adenoma, adenocarcinoma, and Barrett's epithelium
  publication-title: Gastroenterology
  doi: 10.1053/j.gastro.2011.07.050
– volume: 29
  start-page: 568
  year: 2014
  ident: 2021042512422247700_DEV166074C6
  article-title: Mechanical forces in cerebral cortical folding: a review of measurements and models
  publication-title: J. Mech. Behav. Biomed. Mater
  doi: 10.1016/j.jmbbm.2013.02.018
– volume: 370
  start-page: 1209
  year: 2014
  ident: 2021042512422247700_DEV166074C110
  article-title: Patches of disorganization in the neocortex of children with autism
  publication-title: N. Engl. J. Med.
  doi: 10.1056/NEJMoa1307491
– volume: 242
  start-page: 1669
  year: 2017
  ident: 2021042512422247700_DEV166074C87
  article-title: Blood-brain barrier-on-a-chip: Microphysiological systems that capture the complexity of the blood-central nervous system interface
  publication-title: Exp. Biol. Med. (Maywood)
  doi: 10.1177/1535370217694100
– volume: 21
  start-page: 517
  year: 2017
  ident: 2021042512422247700_DEV166074C119
  article-title: Self-Organized cerebral organoids with human-specific features predict effective drugs to combat Zika virus infection
  publication-title: Cell Rep.
  doi: 10.1016/j.celrep.2017.09.047
– volume: 343
  start-page: 764
  year: 2014
  ident: 2021042512422247700_DEV166074C4
  article-title: Evolutionarily dynamic alternative splicing of GPR56 regulates regional cerebral cortical patterning
  publication-title: Science
  doi: 10.1126/science.1244392
– volume: 464
  start-page: 554
  year: 2010
  ident: 2021042512422247700_DEV166074C36
  article-title: Neurogenic radial glia in the outer subventricular zone of human neocortex
  publication-title: Nature
  doi: 10.1038/nature08845
– volume: 248
  start-page: 53
  year: 2018
  ident: 2021042512422247700_DEV166074C17
  article-title: Applications of human brain organoids to clinical problems
  publication-title: Dev. Dyn.
  doi: 10.1002/dvdy.24662
– volume: 12
  start-page: 31
  year: 2018
  ident: 2021042512422247700_DEV166074C43
  article-title: Exploring the complexity of cortical development using single-cell transcriptomics
  publication-title: Front. Neurosci.
  doi: 10.3389/fnins.2018.00031
– volume: 282
  start-page: 1145
  year: 1998
  ident: 2021042512422247700_DEV166074C117
  article-title: Embryonic stem cell lines derived from human blastocysts
  publication-title: Science
  doi: 10.1126/science.282.5391.1145
– volume: 28
  start-page: 493
  year: 2018
  ident: 2021042512422247700_DEV166074C25
  article-title: DMRT5 together with DMRT3 directly controls hippocampus development and neocortical area map formation
  publication-title: Cereb. Cortex
  doi: 10.1093/cercor/bhw384
– volume: 28
  start-page: 955
  year: 2010
  ident: 2021042512422247700_DEV166074C10
  article-title: Inhibition of notch signaling in human embryonic stem cell-derived neural stem cells delays G1/S phase transition and accelerates neuronal differentiation in vitro and in vivo
  publication-title: Stem Cells
  doi: 10.1002/stem.408
– volume: 8
  start-page: 2281
  year: 2013
  ident: 2021042512422247700_DEV166074C99
  article-title: Genome engineering using the CRISPR-Cas9 system
  publication-title: Nat. Protoc.
  doi: 10.1038/nprot.2013.143
– volume: 96
  start-page: 1041
  year: 2017
  ident: 2021042512422247700_DEV166074C125
  article-title: DISC1 Regulates neurogenesis via modulating kinetochore attachment of Ndel1/Nde1 during Mitosis
  publication-title: Neuron
  doi: 10.1016/j.neuron.2017.10.010
– volume: 19
  start-page: 690
  year: 2016
  ident: 2021042512422247700_DEV166074C65
  article-title: Advances in Zika virus research: stem cell models, challenges, and opportunities
  publication-title: Cell Stem Cell
  doi: 10.1016/j.stem.2016.11.014
– volume: 31
  start-page: 849
  year: 2017
  ident: 2021042512422247700_DEV166074C120
  article-title: How does Zika virus cause microcephaly?
  publication-title: Genes Dev.
  doi: 10.1101/gad.298216.117
– volume: 459
  start-page: 262
  year: 2009
  ident: 2021042512422247700_DEV166074C105
  article-title: Single Lgr5 stem cells build crypt-villus structures in vitro without a mesenchymal niche
  publication-title: Nature
  doi: 10.1038/nature07935
– volume: 15
  start-page: 631
  year: 2017
  ident: 2021042512422247700_DEV166074C9
  article-title: Assembly of functionally integrated human forebrain spheroids
  publication-title: Nature
  doi: 10.1038/nature22330
– volume: 16
  start-page: 653
  year: 2016
  ident: 2021042512422247700_DEV166074C13
  article-title: Detection and sequencing of Zika virus from amniotic fluid of fetuses with microcephaly in Brazil: a case study
  publication-title: Lancet Infect. Dis.
  doi: 10.1016/S1473-3099(16)00095-5
– volume: 162
  start-page: 375
  year: 2015
  ident: 2021042512422247700_DEV166074C62
  article-title: FOXG1-dependent dysregulation of GABA/glutamate neuron differentiation in autism spectrum disorders
  publication-title: Cell
  doi: 10.1016/j.cell.2015.06.034
– volume: 14
  start-page: 515
  year: 2018
  ident: 2021042512422247700_DEV166074C47
  article-title: Human brain organoids on a chip reveal the physics of folding
  publication-title: Nat. Phys.
  doi: 10.1038/s41567-018-0046-7
– volume: 9
  start-page: 2139
  year: 2014
  ident: 2021042512422247700_DEV166074C93
  article-title: Diversity of cortical interneurons in primates: the role of the dorsal proliferative niche
  publication-title: Cell Rep.
  doi: 10.1016/j.celrep.2014.11.026
– volume: 44
  start-page: 8610
  year: 2016
  ident: 2021042512422247700_DEV166074C131
  article-title: Molecular signatures associated with ZIKV exposure in human cortical neural progenitors
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkw765
– volume: 173
  start-page: 1356
  year: 2018
  ident: 2021042512422247700_DEV166074C30
  article-title: Human-specific NOTCH2NL genes affect notch signaling and cortical neurogenesis
  publication-title: Cell
  doi: 10.1016/j.cell.2018.03.051
– volume: 8
  start-page: 7413
  year: 2018
  ident: 2021042512422247700_DEV166074C76
  article-title: Human cortex spheroid with a functional blood brain barrier for high-throughput neurotoxicity screening and disease modeling
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-018-25603-5
– volume: 10
  start-page: 724
  year: 2009
  ident: 2021042512422247700_DEV166074C96
  article-title: Evolution of the neocortex: a perspective from developmental biology
  publication-title: Nat. Rev. Neurosci.
  doi: 10.1038/nrn2719
– volume: 35
  start-page: 803
  year: 2016
  ident: 2021042512422247700_DEV166074C32
  article-title: CPAP promotes timely cilium disassembly to maintain neural progenitor pool
  publication-title: EMBO J.
  doi: 10.15252/embj.201593679
– volume: 360
  start-page: eaar6343
  year: 2018
  ident: 2021042512422247700_DEV166074C48
  article-title: High-resolution comparative analysis of great ape genomes
  publication-title: Science
  doi: 10.1126/science.aar6343
SSID ssj0003677
Score 2.6904192
SecondaryResourceType review_article
Snippet Brain organoids are self-assembled three-dimensional aggregates generated from pluripotent stem cells with cell types and cytoarchitectures that resemble the...
SourceID pubmedcentral
proquest
pubmed
crossref
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
SubjectTerms Animals
Brain - cytology
Brain - metabolism
Brain - pathology
Humans
Models, Biological
Organoids - cytology
Organoids - metabolism
Organoids - pathology
Review
Title Brain organoids: advances, applications and challenges
URI https://www.ncbi.nlm.nih.gov/pubmed/30992274
https://www.proquest.com/docview/2210961779
https://pubmed.ncbi.nlm.nih.gov/PMC6503989
Volume 146
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLZgCLQXNMZlhYGC4AWJDCd2Emdv41pARULapIqXyI4dUTQliDVI49dzju246daHwUtauXES-Tt1zv0j5Dns-TypDY-lyHXMdcZiJbSJZYbE1ixhhcSI7uxLPj3hn-bZfKB399UlS3VQ_9lYV_I_qMIY4IpVsv-AbLgoDMB3wBeOgDAcr4Txa-R3cMRM3ULb5DYf07fojIPTrn5tYE45G-uko7whG9MdqrhGToKvC-cnnffnffDJ-GTeKXz-6IOMzTxJyoe-i08XY6dCYuMjrqwyeAcp5qA42I3bGzlGexN_72Hz9A5EJyVi46YMWgCspDa_D5I8p46UZ73z9YU3UsgTRAsFZlcwt3Jzr5MbKRgEyFXx9uPn8M5lueXYDI_tG9HC3Fer-66rHpfsiYtpsSM943iH3PYGQnTk0L5Drpl2l9x0lKHnu-TWzCdDwOC3zg7eJbkVhCgIwmE0iMHLaCwEEQhBtBKCe-Tk_bvjN9PYE2LENadiGZcUlMec8ppS3eSGZ7XgUhrkKEjB7mBZo0yWqiKpRaNk0RhZGKp0LUopGskVu0-22q41eyQSjShzAFNrbEAlqJKUGoZ10xo1-mZCXgxrVdW-WzySlpxWlzGZkGfh3J-uR8rGs54OS17BFoZxKdmarj-r0jRB4qGiKCfkgYMgXIdRbJyMs4s1cMIJ2B59_Zd28d22SQfbg5WifHilp3tEtlf_g32ytfzVm8egbi7VEytpfwHWCn5s
linkProvider Flying Publisher
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Brain+organoids%3A+advances%2C+applications+and+challenges&rft.jtitle=Development+%28Cambridge%29&rft.au=Qian%2C+Xuyu&rft.au=Song%2C+Hongjun&rft.au=Ming%2C+Guo-li&rft.date=2019-04-15&rft.issn=0950-1991&rft.eissn=1477-9129&rft.volume=146&rft.issue=8&rft_id=info:doi/10.1242%2Fdev.166074&rft.externalDBID=n%2Fa&rft.externalDocID=10_1242_dev_166074
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0950-1991&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0950-1991&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0950-1991&client=summon