Convergence and Robustness Analysis of the Exponential-Type Varying Gain Recurrent Neural Network for Solving Matrix-Type Linear Time-Varying Equation
To solve matrix-type linear time-varying equation more efficiently, a novel exponential-type varying gain recurrent neural network (EVG-RNN) is proposed in this paper. Being distinguished from the traditional fixed-parameter gain recurrent neural network (FG-RNN), the proposed EVG-RNN is derived fro...
Saved in:
Published in | IEEE access Vol. 6; pp. 57160 - 57171 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Piscataway
IEEE
2018
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | To solve matrix-type linear time-varying equation more efficiently, a novel exponential-type varying gain recurrent neural network (EVG-RNN) is proposed in this paper. Being distinguished from the traditional fixed-parameter gain recurrent neural network (FG-RNN), the proposed EVG-RNN is derived from a vector- or matrix-based unbounded error function by a varying-parameter neural dynamic approach. With four different kinds of activation functions, the super-exponential convergence performance of EVG-RNN is proved theoretically in details, of which the error convergence rate is much faster than that of FG-RNN. In addition, mathematics proves that the computation errors of EVG-RNN can converge to zero, and it possesses the capability of restraining external interference. Finally, series of computer simulations verify and illustrate the better performance of convergence and robustness of EVG-RNN than that of FG-RNN and FTZNN when solving the identical linear time-varying equation. |
---|---|
AbstractList | To solve matrix-type linear time-varying equation more efficiently, a novel exponentialtype varying gain recurrent neural network (EVG-RNN) is proposed in this paper. Being distinguished from the traditional fixed-parameter gain recurrent neural network (FG-RNN), the proposed EVG-RNN is derived from a vectoror matrix-based unbounded error function by a varying-parameter neural dynamic approach. With four different kinds of activation functions, the super-exponential convergence performance of EVG-RNN is proved theoretically in details, of which the error convergence rate is much faster than that of FG-RNN. In addition, mathematics proves that the computation errors of EVG-RNN can converge to zero, and it possesses the capability of restraining external interference. Finally, series of computer simulations verify and illustrate the better performance of convergence and robustness of EVG-RNN than that of FG-RNN and FTZNN when solving the identical linear time-varying equation. To solve matrix-type linear time-varying equation more efficiently, a novel exponential-type varying gain recurrent neural network (EVG-RNN) is proposed in this paper. Being distinguished from the traditional fixed-parameter gain recurrent neural network (FG-RNN), the proposed EVG-RNN is derived from a vector- or matrix-based unbounded error function by a varying-parameter neural dynamic approach. With four different kinds of activation functions, the super-exponential convergence performance of EVG-RNN is proved theoretically in details, of which the error convergence rate is much faster than that of FG-RNN. In addition, mathematics proves that the computation errors of EVG-RNN can converge to zero, and it possesses the capability of restraining external interference. Finally, series of computer simulations verify and illustrate the better performance of convergence and robustness of EVG-RNN than that of FG-RNN and FTZNN when solving the identical linear time-varying equation. |
Author | Gan, Min Zheng, Lunan Zhang, Zhijun Fu, Zheng |
Author_xml | – sequence: 1 givenname: Zhijun orcidid: 0000-0002-6859-3426 surname: Zhang fullname: Zhang, Zhijun email: drzhangzhijun@gmail.com organization: School of Automation Science and Engineering, South China University of Technology, Guangzhou, China – sequence: 2 givenname: Zheng surname: Fu fullname: Fu, Zheng organization: School of Electronics and Information, South China University of Technology, Guangzhou, China – sequence: 3 givenname: Lunan orcidid: 0000-0002-7671-6051 surname: Zheng fullname: Zheng, Lunan organization: School of Automation Science and Engineering, South China University of Technology, Guangzhou, China – sequence: 4 givenname: Min surname: Gan fullname: Gan, Min organization: School of Automation Science and Engineering, South China University of Technology, Guangzhou, China |
BookMark | eNpNkd9u0zAUxiM0JMbYE-zGEtcp_hMn9mUVlTGpMGkt3FqOc1xcMruzk7G-CM-LS7YJ3xzr-Pt-58jf--LMBw9FcUXwghAsPy3bdrXZLCgmYkFFw2pSvynOKallyTirz_67vysuU9rjfERu8ea8-NMG_whxB94A0r5Hd6Gb0ughJbT0ejgml1CwaPwJaPV0yJP96PRQbo8HQD90PDq_Q9faeXQHZooxP6NvMEU95DL-DvEXsiGiTRgeT8qveozuaXavnQcd0dbdQ_lCWj1MenTBfyjeWj0kuHyuF8X3z6tt-6Vc317ftMt1aSosxlL0VHJScyI1Nkw2dcNpZxmRVkrZYSpNDZR3pGOSNpo3hmrGWNVbIXGFqWEXxc3M7YPeq0N093kRFbRT_xoh7pSOozMDKI27RnJjedfxSvRENNxIyzOSsrq2OLM-zqxDDA8TpFHtwxTzHyZFK84lw4LJrGKzysSQUgT7OpVgdcpTzXmqU57qOc_suppdDgBeHaLKMQrC_gJaB56a |
CODEN | IAECCG |
CitedBy_id | crossref_primary_10_1016_j_neucom_2022_03_026 crossref_primary_10_1109_TNNLS_2021_3086500 crossref_primary_10_1007_s11063_023_11175_7 crossref_primary_10_1109_TCYB_2022_3225155 crossref_primary_10_1109_TFUZZ_2020_3005272 crossref_primary_10_1016_j_neucom_2019_07_044 crossref_primary_10_1109_TFUZZ_2021_3115969 crossref_primary_10_1109_ACCESS_2019_2938016 crossref_primary_10_1109_ACCESS_2019_2948082 crossref_primary_10_1038_s41598_020_61464_7 |
Cites_doi | 10.1109/ACCESS.2018.2857504 10.1016/j.laa.2003.08.013 10.1109/ACCESS.2017.2730222 10.1109/7.250430 10.1109/TNNLS.2013.2275011 10.1007/s00521-015-1875-2 10.1007/s00521-014-1744-4 10.1109/TAC.2014.2320297 10.1109/TAC.2016.2566880 10.1109/TAC.2014.2346872 10.1109/ACCESS.2017.2647920 10.1109/TII.2017.2724205 10.1017/CBO9780511840371 10.1016/j.neunet.2016.12.002 10.1109/ACCESS.2016.2546544 10.1002/fld.1907 10.1016/j.neunet.2017.11.011 10.1109/TSMC.2017.2656941 10.1109/ACCESS.2016.2594839 10.1109/LCOMM.2015.2514281 10.1088/1751-8113/43/24/245202 10.1109/TNNLS.2014.2342260 10.1109/ACCESS.2015.2479620 10.1016/j.neunet.2012.08.009 10.1109/TMECH.2018.2799724 10.1109/INFCOMW.2016.7562171 10.1007/s00521-011-0692-5 10.1109/TRO.2015.2397771 10.1109/JSYST.2014.2343236 10.1109/ACCESS.2015.2419630 10.1115/1.4023948 10.1109/TCYB.2017.2760883 10.1016/j.eswa.2010.04.007 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2018 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2018 |
DBID | 97E ESBDL RIA RIE AAYXX CITATION 7SC 7SP 7SR 8BQ 8FD JG9 JQ2 L7M L~C L~D DOA |
DOI | 10.1109/ACCESS.2018.2873616 |
DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005-present IEEE Open Access Journals IEEE All-Society Periodicals Package (ASPP) 1998-Present IEEE Electronic Library (IEL) CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts METADEX Technology Research Database Materials Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Directory of Open Access Journals |
DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace METADEX Computer and Information Systems Abstracts Professional |
DatabaseTitleList | Materials Research Database |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: RIE name: IEEE/IET Electronic Library url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 2169-3536 |
EndPage | 57171 |
ExternalDocumentID | oai_doaj_org_article_a0b795cf5bb548d1875c9f5c2a2366f0 10_1109_ACCESS_2018_2873616 8481681 |
Genre | orig-research |
GrantInformation_xml | – fundername: South China University of Technology funderid: 10.13039/501100005015 – fundername: Guangdong Foundation for Distinguished Young Scholars grantid: 2017A030306009 – fundername: National Key R&D Program of China grantid: 2017YFB1002505 – fundername: National Science Foundation grantid: 61603142; 61633010 funderid: 10.13039/100000001 – fundername: Fundamental Research Funds for Central Universities grantid: 2017MS049 – fundername: Science and Technology Program of Guangzhou grantid: 201707010225 – fundername: National Key Basic Research Program of China (973 Program) grantid: 2015CB351703 – fundername: Natural Science Foundation of Guangdong Province grantid: 2014A030312005 funderid: 10.13039/501100003453 |
GroupedDBID | 0R~ 4.4 5VS 6IK 97E AAJGR ABVLG ACGFS ADBBV ALMA_UNASSIGNED_HOLDINGS BCNDV BEFXN BFFAM BGNUA BKEBE BPEOZ EBS EJD ESBDL GROUPED_DOAJ IFIPE IPLJI JAVBF KQ8 M43 M~E O9- OCL OK1 RIA RIE RIG RNS AAYXX CITATION 7SC 7SP 7SR 8BQ 8FD JG9 JQ2 L7M L~C L~D |
ID | FETCH-LOGICAL-c408t-8d29516519a0c3976752bf319f999b029c6e25b1b3927a57c2a3334df890402c3 |
IEDL.DBID | RIE |
ISSN | 2169-3536 |
IngestDate | Tue Oct 22 15:13:21 EDT 2024 Thu Oct 10 20:26:51 EDT 2024 Fri Aug 23 01:48:34 EDT 2024 Wed Jun 26 19:31:11 EDT 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c408t-8d29516519a0c3976752bf319f999b029c6e25b1b3927a57c2a3334df890402c3 |
ORCID | 0000-0002-6859-3426 0000-0002-7671-6051 |
OpenAccessLink | https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/document/8481681 |
PQID | 2455930839 |
PQPubID | 4845423 |
PageCount | 12 |
ParticipantIDs | ieee_primary_8481681 crossref_primary_10_1109_ACCESS_2018_2873616 proquest_journals_2455930839 doaj_primary_oai_doaj_org_article_a0b795cf5bb548d1875c9f5c2a2366f0 |
PublicationCentury | 2000 |
PublicationDate | 20180000 2018-00-00 20180101 2018-01-01 |
PublicationDateYYYYMMDD | 2018-01-01 |
PublicationDate_xml | – year: 2018 text: 20180000 |
PublicationDecade | 2010 |
PublicationPlace | Piscataway |
PublicationPlace_xml | – name: Piscataway |
PublicationTitle | IEEE access |
PublicationTitleAbbrev | Access |
PublicationYear | 2018 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref35 ref13 ref34 ref12 ref37 ref15 ref14 ref33 ref11 ref32 ref10 ref2 ref1 ref39 ref17 ref38 ref19 ref18 wang (ref23) 2015; 111 xiao (ref31) 2017 jin (ref30) 2015; 26 ref24 mia (ref20) 2015; 4 ref22 ref21 shi (ref25) 0 abbas (ref16) 2016 ref28 ref27 zhang (ref36) 0 ref29 ref8 ref7 ref9 ref4 ref3 ref6 ref5 zhang (ref26) 2016 ref40 |
References_xml | – ident: ref9 doi: 10.1109/ACCESS.2018.2857504 – ident: ref37 doi: 10.1016/j.laa.2003.08.013 – ident: ref8 doi: 10.1109/ACCESS.2017.2730222 – ident: ref18 doi: 10.1109/7.250430 – ident: ref39 doi: 10.1109/TNNLS.2013.2275011 – ident: ref35 doi: 10.1007/s00521-015-1875-2 – ident: ref12 doi: 10.1007/s00521-014-1744-4 – ident: ref3 doi: 10.1109/TAC.2014.2320297 – ident: ref27 doi: 10.1109/TAC.2016.2566880 – ident: ref4 doi: 10.1109/TAC.2014.2346872 – ident: ref10 doi: 10.1109/ACCESS.2017.2647920 – ident: ref19 doi: 10.1109/TII.2017.2724205 – ident: ref38 doi: 10.1017/CBO9780511840371 – ident: ref6 doi: 10.1016/j.neunet.2016.12.002 – ident: ref2 doi: 10.1109/ACCESS.2016.2546544 – year: 0 ident: ref36 article-title: A new varying-parameter convergent-differential neural-network for solving time-varying convex QP problem constrained by linear-equality publication-title: IEEE Trans Autom Control contributor: fullname: zhang – start-page: 192 year: 2016 ident: ref16 article-title: Approximate matrix inversion for linear pre-coders in massive MIMO publication-title: Proc IFIP/IEEE Int Conf Very Large Scale Integr Syst Chip contributor: fullname: abbas – ident: ref21 doi: 10.1002/fld.1907 – ident: ref1 doi: 10.1016/j.neunet.2017.11.011 – ident: ref29 doi: 10.1109/TSMC.2017.2656941 – ident: ref7 doi: 10.1109/ACCESS.2016.2594839 – ident: ref17 doi: 10.1109/LCOMM.2015.2514281 – ident: ref40 doi: 10.1088/1751-8113/43/24/245202 – year: 0 ident: ref25 article-title: New discrete-time models of zeroing neural network solving systems of time-variant linear and nonlinear inequalities publication-title: IEEE Trans Syst Man Cybern Syst contributor: fullname: shi – volume: 26 start-page: 1525 year: 2015 ident: ref30 article-title: Discrete-time Zhang neural network for online time-varying nonlinear optimization with application to manipulator motion generation publication-title: IEEE Trans Neural Netw Learn Syst doi: 10.1109/TNNLS.2014.2342260 contributor: fullname: jin – ident: ref5 doi: 10.1109/ACCESS.2015.2479620 – ident: ref24 doi: 10.1016/j.neunet.2012.08.009 – ident: ref34 doi: 10.1109/TMECH.2018.2799724 – ident: ref15 doi: 10.1109/INFCOMW.2016.7562171 – ident: ref28 doi: 10.1007/s00521-011-0692-5 – ident: ref14 doi: 10.1109/TRO.2015.2397771 – ident: ref11 doi: 10.1109/JSYST.2014.2343236 – ident: ref13 doi: 10.1109/ACCESS.2015.2419630 – volume: 4 start-page: 271 year: 2015 ident: ref20 article-title: An algorithm for training multilayer perceptron MLP for image reconstruction using neural network without overfitting publication-title: Int J Sci Technol Res contributor: fullname: mia – start-page: 142 year: 2016 ident: ref26 article-title: Zhang neural network without using time-derivative information for constant and time-varying matrix inversion publication-title: Proc IEEE Int Joint Conf Neural Netw contributor: fullname: zhang – volume: 111 start-page: 780 year: 2015 ident: ref23 article-title: Gradient-based neural network for online solution of Lyapunov matrix equation with li activation function publication-title: Proc Int Conf Innov Inf Technol contributor: fullname: wang – year: 2017 ident: ref31 article-title: A finite-time convergent Zhang neural network and its application to real-time matrix square root finding publication-title: Neural Comput Appl contributor: fullname: xiao – ident: ref22 doi: 10.1115/1.4023948 – ident: ref33 doi: 10.1109/TCYB.2017.2760883 – ident: ref32 doi: 10.1016/j.eswa.2010.04.007 |
SSID | ssj0000816957 |
Score | 2.1949131 |
Snippet | To solve matrix-type linear time-varying equation more efficiently, a novel exponential-type varying gain recurrent neural network (EVG-RNN) is proposed in... To solve matrix-type linear time-varying equation more efficiently, a novel exponentialtype varying gain recurrent neural network (EVG-RNN) is proposed in this... |
SourceID | doaj proquest crossref ieee |
SourceType | Open Website Aggregation Database Publisher |
StartPage | 57160 |
SubjectTerms | Computational modeling computer simulations Convergence Error functions Mathematical analysis Mathematical model Matrix algebra Matrix methods matrix-type linear time-varying equation Neural networks Parameters Real-time systems Recurrent neural networks Robustness Robustness (mathematics) super-exponential convergence |
SummonAdditionalLinks | – databaseName: Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8QwEA7iSQ_iE9cXOXg02ubRJkddVkXQgy-8hTwaEKSr6wr-En-vM01XFjx48dBLm0eTyUy-CZNvCDlUtS9VLTVrZPAMnsigZGRgCEWIMRXc4N3h65vq8kFePamnuVRfGBOW6YHzxJ24wtdGhaS8B3AdS8DXwSQVuOOiqlL21gsz50x1NliXlVF1TzME309Oh0MYEcZy6WPwEkSFGc7ntqKOsb9PsfLLLnebzfkqWelRIj3Nf7dGFpp2nSzPcQdukK8hxot3Vycb6tpIb8f-432KlovOmEboOFEAeHT0-TpuMSzIvTB0POmjm-D1Jnrhnlt6i0fuSNJEkakDur3JoeEU8Cy9G7_gkQO9Rir_z1wb_FfQD4q3R9ispdFb5gzfJA_no_vhJeuTLLAgCz1lOnIAWRUAOVcEBCe14j6BYiaAjh5EFaqGK196AFK1UzVMvBBCxqQN6D8PYosstjCGbUKNkCliTGqQSQatoHZwoXF14YLmpR-Qo9l829fMpWE7H6QwNovHonhsL54BOUOZ_BRFIuzuBSwP2y8P-9fyGJANlOhPI5g9oNLlgOzNJGx7pX23XIJ7JQCTmp3_6HqXLOFw8nnNHlmcTj6afUAwU3_QLdZvOVHt4w priority: 102 providerName: Directory of Open Access Journals |
Title | Convergence and Robustness Analysis of the Exponential-Type Varying Gain Recurrent Neural Network for Solving Matrix-Type Linear Time-Varying Equation |
URI | https://ieeexplore.ieee.org/document/8481681 https://www.proquest.com/docview/2455930839 https://doaj.org/article/a0b795cf5bb548d1875c9f5c2a2366f0 |
Volume | 6 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Nb9QwELVKT3AASkEstJUPHOttYsdxfCyrLVWl7aFQ1JvlTwlRJf3IShU_hN_LTJysKsqBQ6QoihNbz3beTGbeEPJJKldKVTUsVt4xOAKDOwODjVD4EFLBNeYOr87r08vq7EpebZHDTS5MjHEIPotzPB3-5YfOr9FVdoTS7zXmWT9TWudcrY0_BQtIaKlGYaGy0EfHiwWMAaO3mjnYBaLGmuaPPj6DRv9YVOXJTjx8Xk5ekdXUsRxV8nO-7t3c__pLs_F_e_6avBx5Jj3OE2OHbMX2DXnxSH1wl_xeYMT5kHwZqW0Dvejc-r7HvY9OWiW0SxQoIl0-3HQtBhbZa4amK_1u7zBBin6xP1p6gU57lHmiqPUBrz3PweUUGDH92l2j04KusBjAQ24NFjCsMIr5J2x60vI2q46_JZcny2-LUzaWaWC-KpqeNYEDTauBCtrCI71RkrsESzsB-XQAtq8jl650QMWUlcpzK4SoQmo07CDci3dku4UxvCdUiyoFjGr1Vap8I6G1tz5aVVjf8NLNyOGEn7nJahxmsGIKbTLcBuE2I9wz8hkx3tyKUtrDBcDGjCvT2MIpLX2SzoH1Fkow4LxOEnrJRV2nYkZ2Ec_NQ0YoZ2RvmjFmXPb3hldgoAlgtfrDv1t9JM-xg9mHs0e2-7t13AdW07uDwRtwMEzqP1RJ-EE |
link.rule.ids | 315,783,787,799,867,2109,4033,27937,27938,27939,55088 |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Nb9QwELWqcgAOfBXElgI-cKy3iR0n8bGstizQ3UNpUW-WP6WKKiltVqr6Q_i9zMTJqgIOHCJFUZzYerbzZjLzhpAPsrK5rIqahcJZBodncKdnsBEK533MuMLc4eWqXJwVX87l-RbZ3-TChBD64LMwxdP-X75v3RpdZQco_V5invUDibwiZWttPCpYQkLJapAWyjN1cDibwSgwfquegmUgSqxqfu_z06v0D2VV_tqL-w_M0VOyHLuW4kp-TNednbq7P1Qb_7fvz8iTgWnSwzQ1npOt0Lwgj-_pD-6QXzOMOe_TLwM1jacnrV3fdLj70VGthLaRAkmk89urtsHQInPJ0Hil3801pkjRT-aioSfotkehJ4pqH_DaVQovp8CJ6bf2Et0WdInlAG5Ta7CBYY1RzEBh45PmP5Pu-EtydjQ_nS3YUKiBuSKrO1Z7DkStBDJoMocEp5LcRljcEeinBbhdGbi0uQUyVhlZOW6EEIWPtYI9hDvximw3MIbXhCpRRI9xra6IhasltHbGBVNlxtU8txOyP-Knr5Ieh-7tmEzpBLdGuPUA94R8RIw3t6KYdn8BsNHD2tQms5WSLkprwX7zOZhwTkUJveSiLGM2ITuI5-YhA5QTsjfOGD0s_BvNCzDRBPBatfvvVu_Jw8Xp8lgff159fUMeYWeTR2ePbHfX6_AWOE5n3_VT-zeXnfqZ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Convergence+and+Robustness+Analysis+of+the+Exponential-Type+Varying+Gain+Recurrent+Neural+Network+for+Solving+Matrix-Type+Linear+Time-Varying+Equation&rft.jtitle=IEEE+access&rft.au=Zhang%2C+Zhijun&rft.au=Fu%2C+Zheng&rft.au=Zheng%2C+Lunan&rft.au=Gan%2C+Min&rft.date=2018&rft.issn=2169-3536&rft.eissn=2169-3536&rft.volume=6&rft.spage=57160&rft.epage=57171&rft_id=info:doi/10.1109%2FACCESS.2018.2873616&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_ACCESS_2018_2873616 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2169-3536&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2169-3536&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2169-3536&client=summon |