Convergence and Robustness Analysis of the Exponential-Type Varying Gain Recurrent Neural Network for Solving Matrix-Type Linear Time-Varying Equation

To solve matrix-type linear time-varying equation more efficiently, a novel exponential-type varying gain recurrent neural network (EVG-RNN) is proposed in this paper. Being distinguished from the traditional fixed-parameter gain recurrent neural network (FG-RNN), the proposed EVG-RNN is derived fro...

Full description

Saved in:
Bibliographic Details
Published inIEEE access Vol. 6; pp. 57160 - 57171
Main Authors Zhang, Zhijun, Fu, Zheng, Zheng, Lunan, Gan, Min
Format Journal Article
LanguageEnglish
Published Piscataway IEEE 2018
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract To solve matrix-type linear time-varying equation more efficiently, a novel exponential-type varying gain recurrent neural network (EVG-RNN) is proposed in this paper. Being distinguished from the traditional fixed-parameter gain recurrent neural network (FG-RNN), the proposed EVG-RNN is derived from a vector- or matrix-based unbounded error function by a varying-parameter neural dynamic approach. With four different kinds of activation functions, the super-exponential convergence performance of EVG-RNN is proved theoretically in details, of which the error convergence rate is much faster than that of FG-RNN. In addition, mathematics proves that the computation errors of EVG-RNN can converge to zero, and it possesses the capability of restraining external interference. Finally, series of computer simulations verify and illustrate the better performance of convergence and robustness of EVG-RNN than that of FG-RNN and FTZNN when solving the identical linear time-varying equation.
AbstractList To solve matrix-type linear time-varying equation more efficiently, a novel exponentialtype varying gain recurrent neural network (EVG-RNN) is proposed in this paper. Being distinguished from the traditional fixed-parameter gain recurrent neural network (FG-RNN), the proposed EVG-RNN is derived from a vectoror matrix-based unbounded error function by a varying-parameter neural dynamic approach. With four different kinds of activation functions, the super-exponential convergence performance of EVG-RNN is proved theoretically in details, of which the error convergence rate is much faster than that of FG-RNN. In addition, mathematics proves that the computation errors of EVG-RNN can converge to zero, and it possesses the capability of restraining external interference. Finally, series of computer simulations verify and illustrate the better performance of convergence and robustness of EVG-RNN than that of FG-RNN and FTZNN when solving the identical linear time-varying equation.
To solve matrix-type linear time-varying equation more efficiently, a novel exponential-type varying gain recurrent neural network (EVG-RNN) is proposed in this paper. Being distinguished from the traditional fixed-parameter gain recurrent neural network (FG-RNN), the proposed EVG-RNN is derived from a vector- or matrix-based unbounded error function by a varying-parameter neural dynamic approach. With four different kinds of activation functions, the super-exponential convergence performance of EVG-RNN is proved theoretically in details, of which the error convergence rate is much faster than that of FG-RNN. In addition, mathematics proves that the computation errors of EVG-RNN can converge to zero, and it possesses the capability of restraining external interference. Finally, series of computer simulations verify and illustrate the better performance of convergence and robustness of EVG-RNN than that of FG-RNN and FTZNN when solving the identical linear time-varying equation.
Author Gan, Min
Zheng, Lunan
Zhang, Zhijun
Fu, Zheng
Author_xml – sequence: 1
  givenname: Zhijun
  orcidid: 0000-0002-6859-3426
  surname: Zhang
  fullname: Zhang, Zhijun
  email: drzhangzhijun@gmail.com
  organization: School of Automation Science and Engineering, South China University of Technology, Guangzhou, China
– sequence: 2
  givenname: Zheng
  surname: Fu
  fullname: Fu, Zheng
  organization: School of Electronics and Information, South China University of Technology, Guangzhou, China
– sequence: 3
  givenname: Lunan
  orcidid: 0000-0002-7671-6051
  surname: Zheng
  fullname: Zheng, Lunan
  organization: School of Automation Science and Engineering, South China University of Technology, Guangzhou, China
– sequence: 4
  givenname: Min
  surname: Gan
  fullname: Gan, Min
  organization: School of Automation Science and Engineering, South China University of Technology, Guangzhou, China
BookMark eNpNkd9u0zAUxiM0JMbYE-zGEtcp_hMn9mUVlTGpMGkt3FqOc1xcMruzk7G-CM-LS7YJ3xzr-Pt-58jf--LMBw9FcUXwghAsPy3bdrXZLCgmYkFFw2pSvynOKallyTirz_67vysuU9rjfERu8ea8-NMG_whxB94A0r5Hd6Gb0ughJbT0ejgml1CwaPwJaPV0yJP96PRQbo8HQD90PDq_Q9faeXQHZooxP6NvMEU95DL-DvEXsiGiTRgeT8qveozuaXavnQcd0dbdQ_lCWj1MenTBfyjeWj0kuHyuF8X3z6tt-6Vc317ftMt1aSosxlL0VHJScyI1Nkw2dcNpZxmRVkrZYSpNDZR3pGOSNpo3hmrGWNVbIXGFqWEXxc3M7YPeq0N093kRFbRT_xoh7pSOozMDKI27RnJjedfxSvRENNxIyzOSsrq2OLM-zqxDDA8TpFHtwxTzHyZFK84lw4LJrGKzysSQUgT7OpVgdcpTzXmqU57qOc_suppdDgBeHaLKMQrC_gJaB56a
CODEN IAECCG
CitedBy_id crossref_primary_10_1016_j_neucom_2022_03_026
crossref_primary_10_1109_TNNLS_2021_3086500
crossref_primary_10_1007_s11063_023_11175_7
crossref_primary_10_1109_TCYB_2022_3225155
crossref_primary_10_1109_TFUZZ_2020_3005272
crossref_primary_10_1016_j_neucom_2019_07_044
crossref_primary_10_1109_TFUZZ_2021_3115969
crossref_primary_10_1109_ACCESS_2019_2938016
crossref_primary_10_1109_ACCESS_2019_2948082
crossref_primary_10_1038_s41598_020_61464_7
Cites_doi 10.1109/ACCESS.2018.2857504
10.1016/j.laa.2003.08.013
10.1109/ACCESS.2017.2730222
10.1109/7.250430
10.1109/TNNLS.2013.2275011
10.1007/s00521-015-1875-2
10.1007/s00521-014-1744-4
10.1109/TAC.2014.2320297
10.1109/TAC.2016.2566880
10.1109/TAC.2014.2346872
10.1109/ACCESS.2017.2647920
10.1109/TII.2017.2724205
10.1017/CBO9780511840371
10.1016/j.neunet.2016.12.002
10.1109/ACCESS.2016.2546544
10.1002/fld.1907
10.1016/j.neunet.2017.11.011
10.1109/TSMC.2017.2656941
10.1109/ACCESS.2016.2594839
10.1109/LCOMM.2015.2514281
10.1088/1751-8113/43/24/245202
10.1109/TNNLS.2014.2342260
10.1109/ACCESS.2015.2479620
10.1016/j.neunet.2012.08.009
10.1109/TMECH.2018.2799724
10.1109/INFCOMW.2016.7562171
10.1007/s00521-011-0692-5
10.1109/TRO.2015.2397771
10.1109/JSYST.2014.2343236
10.1109/ACCESS.2015.2419630
10.1115/1.4023948
10.1109/TCYB.2017.2760883
10.1016/j.eswa.2010.04.007
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2018
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2018
DBID 97E
ESBDL
RIA
RIE
AAYXX
CITATION
7SC
7SP
7SR
8BQ
8FD
JG9
JQ2
L7M
L~C
L~D
DOA
DOI 10.1109/ACCESS.2018.2873616
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005-present
IEEE Open Access Journals
IEEE All-Society Periodicals Package (ASPP) 1998-Present
IEEE Electronic Library (IEL)
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Directory of Open Access Journals
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
METADEX
Computer and Information Systems Abstracts Professional
DatabaseTitleList

Materials Research Database
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: RIE
  name: IEEE/IET Electronic Library
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2169-3536
EndPage 57171
ExternalDocumentID oai_doaj_org_article_a0b795cf5bb548d1875c9f5c2a2366f0
10_1109_ACCESS_2018_2873616
8481681
Genre orig-research
GrantInformation_xml – fundername: South China University of Technology
  funderid: 10.13039/501100005015
– fundername: Guangdong Foundation for Distinguished Young Scholars
  grantid: 2017A030306009
– fundername: National Key R&D Program of China
  grantid: 2017YFB1002505
– fundername: National Science Foundation
  grantid: 61603142; 61633010
  funderid: 10.13039/100000001
– fundername: Fundamental Research Funds for Central Universities
  grantid: 2017MS049
– fundername: Science and Technology Program of Guangzhou
  grantid: 201707010225
– fundername: National Key Basic Research Program of China (973 Program)
  grantid: 2015CB351703
– fundername: Natural Science Foundation of Guangdong Province
  grantid: 2014A030312005
  funderid: 10.13039/501100003453
GroupedDBID 0R~
4.4
5VS
6IK
97E
AAJGR
ABVLG
ACGFS
ADBBV
ALMA_UNASSIGNED_HOLDINGS
BCNDV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
EJD
ESBDL
GROUPED_DOAJ
IFIPE
IPLJI
JAVBF
KQ8
M43
M~E
O9-
OCL
OK1
RIA
RIE
RIG
RNS
AAYXX
CITATION
7SC
7SP
7SR
8BQ
8FD
JG9
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c408t-8d29516519a0c3976752bf319f999b029c6e25b1b3927a57c2a3334df890402c3
IEDL.DBID RIE
ISSN 2169-3536
IngestDate Tue Oct 22 15:13:21 EDT 2024
Thu Oct 10 20:26:51 EDT 2024
Fri Aug 23 01:48:34 EDT 2024
Wed Jun 26 19:31:11 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c408t-8d29516519a0c3976752bf319f999b029c6e25b1b3927a57c2a3334df890402c3
ORCID 0000-0002-6859-3426
0000-0002-7671-6051
OpenAccessLink https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/document/8481681
PQID 2455930839
PQPubID 4845423
PageCount 12
ParticipantIDs ieee_primary_8481681
crossref_primary_10_1109_ACCESS_2018_2873616
proquest_journals_2455930839
doaj_primary_oai_doaj_org_article_a0b795cf5bb548d1875c9f5c2a2366f0
PublicationCentury 2000
PublicationDate 20180000
2018-00-00
20180101
2018-01-01
PublicationDateYYYYMMDD 2018-01-01
PublicationDate_xml – year: 2018
  text: 20180000
PublicationDecade 2010
PublicationPlace Piscataway
PublicationPlace_xml – name: Piscataway
PublicationTitle IEEE access
PublicationTitleAbbrev Access
PublicationYear 2018
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref35
ref13
ref34
ref12
ref37
ref15
ref14
ref33
ref11
ref32
ref10
ref2
ref1
ref39
ref17
ref38
ref19
ref18
wang (ref23) 2015; 111
xiao (ref31) 2017
jin (ref30) 2015; 26
ref24
mia (ref20) 2015; 4
ref22
ref21
shi (ref25) 0
abbas (ref16) 2016
ref28
ref27
zhang (ref36) 0
ref29
ref8
ref7
ref9
ref4
ref3
ref6
ref5
zhang (ref26) 2016
ref40
References_xml – ident: ref9
  doi: 10.1109/ACCESS.2018.2857504
– ident: ref37
  doi: 10.1016/j.laa.2003.08.013
– ident: ref8
  doi: 10.1109/ACCESS.2017.2730222
– ident: ref18
  doi: 10.1109/7.250430
– ident: ref39
  doi: 10.1109/TNNLS.2013.2275011
– ident: ref35
  doi: 10.1007/s00521-015-1875-2
– ident: ref12
  doi: 10.1007/s00521-014-1744-4
– ident: ref3
  doi: 10.1109/TAC.2014.2320297
– ident: ref27
  doi: 10.1109/TAC.2016.2566880
– ident: ref4
  doi: 10.1109/TAC.2014.2346872
– ident: ref10
  doi: 10.1109/ACCESS.2017.2647920
– ident: ref19
  doi: 10.1109/TII.2017.2724205
– ident: ref38
  doi: 10.1017/CBO9780511840371
– ident: ref6
  doi: 10.1016/j.neunet.2016.12.002
– ident: ref2
  doi: 10.1109/ACCESS.2016.2546544
– year: 0
  ident: ref36
  article-title: A new varying-parameter convergent-differential neural-network for solving time-varying convex QP problem constrained by linear-equality
  publication-title: IEEE Trans Autom Control
  contributor:
    fullname: zhang
– start-page: 192
  year: 2016
  ident: ref16
  article-title: Approximate matrix inversion for linear pre-coders in massive MIMO
  publication-title: Proc IFIP/IEEE Int Conf Very Large Scale Integr Syst Chip
  contributor:
    fullname: abbas
– ident: ref21
  doi: 10.1002/fld.1907
– ident: ref1
  doi: 10.1016/j.neunet.2017.11.011
– ident: ref29
  doi: 10.1109/TSMC.2017.2656941
– ident: ref7
  doi: 10.1109/ACCESS.2016.2594839
– ident: ref17
  doi: 10.1109/LCOMM.2015.2514281
– ident: ref40
  doi: 10.1088/1751-8113/43/24/245202
– year: 0
  ident: ref25
  article-title: New discrete-time models of zeroing neural network solving systems of time-variant linear and nonlinear inequalities
  publication-title: IEEE Trans Syst Man Cybern Syst
  contributor:
    fullname: shi
– volume: 26
  start-page: 1525
  year: 2015
  ident: ref30
  article-title: Discrete-time Zhang neural network for online time-varying nonlinear optimization with application to manipulator motion generation
  publication-title: IEEE Trans Neural Netw Learn Syst
  doi: 10.1109/TNNLS.2014.2342260
  contributor:
    fullname: jin
– ident: ref5
  doi: 10.1109/ACCESS.2015.2479620
– ident: ref24
  doi: 10.1016/j.neunet.2012.08.009
– ident: ref34
  doi: 10.1109/TMECH.2018.2799724
– ident: ref15
  doi: 10.1109/INFCOMW.2016.7562171
– ident: ref28
  doi: 10.1007/s00521-011-0692-5
– ident: ref14
  doi: 10.1109/TRO.2015.2397771
– ident: ref11
  doi: 10.1109/JSYST.2014.2343236
– ident: ref13
  doi: 10.1109/ACCESS.2015.2419630
– volume: 4
  start-page: 271
  year: 2015
  ident: ref20
  article-title: An algorithm for training multilayer perceptron MLP for image reconstruction using neural network without overfitting
  publication-title: Int J Sci Technol Res
  contributor:
    fullname: mia
– start-page: 142
  year: 2016
  ident: ref26
  article-title: Zhang neural network without using time-derivative information for constant and time-varying matrix inversion
  publication-title: Proc IEEE Int Joint Conf Neural Netw
  contributor:
    fullname: zhang
– volume: 111
  start-page: 780
  year: 2015
  ident: ref23
  article-title: Gradient-based neural network for online solution of Lyapunov matrix equation with li activation function
  publication-title: Proc Int Conf Innov Inf Technol
  contributor:
    fullname: wang
– year: 2017
  ident: ref31
  article-title: A finite-time convergent Zhang neural network and its application to real-time matrix square root finding
  publication-title: Neural Comput Appl
  contributor:
    fullname: xiao
– ident: ref22
  doi: 10.1115/1.4023948
– ident: ref33
  doi: 10.1109/TCYB.2017.2760883
– ident: ref32
  doi: 10.1016/j.eswa.2010.04.007
SSID ssj0000816957
Score 2.1949131
Snippet To solve matrix-type linear time-varying equation more efficiently, a novel exponential-type varying gain recurrent neural network (EVG-RNN) is proposed in...
To solve matrix-type linear time-varying equation more efficiently, a novel exponentialtype varying gain recurrent neural network (EVG-RNN) is proposed in this...
SourceID doaj
proquest
crossref
ieee
SourceType Open Website
Aggregation Database
Publisher
StartPage 57160
SubjectTerms Computational modeling
computer simulations
Convergence
Error functions
Mathematical analysis
Mathematical model
Matrix algebra
Matrix methods
matrix-type linear time-varying equation
Neural networks
Parameters
Real-time systems
Recurrent neural networks
Robustness
Robustness (mathematics)
super-exponential convergence
SummonAdditionalLinks – databaseName: Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8QwEA7iSQ_iE9cXOXg02ubRJkddVkXQgy-8hTwaEKSr6wr-En-vM01XFjx48dBLm0eTyUy-CZNvCDlUtS9VLTVrZPAMnsigZGRgCEWIMRXc4N3h65vq8kFePamnuVRfGBOW6YHzxJ24wtdGhaS8B3AdS8DXwSQVuOOiqlL21gsz50x1NliXlVF1TzME309Oh0MYEcZy6WPwEkSFGc7ntqKOsb9PsfLLLnebzfkqWelRIj3Nf7dGFpp2nSzPcQdukK8hxot3Vycb6tpIb8f-432KlovOmEboOFEAeHT0-TpuMSzIvTB0POmjm-D1Jnrhnlt6i0fuSNJEkakDur3JoeEU8Cy9G7_gkQO9Rir_z1wb_FfQD4q3R9ispdFb5gzfJA_no_vhJeuTLLAgCz1lOnIAWRUAOVcEBCe14j6BYiaAjh5EFaqGK196AFK1UzVMvBBCxqQN6D8PYosstjCGbUKNkCliTGqQSQatoHZwoXF14YLmpR-Qo9l829fMpWE7H6QwNovHonhsL54BOUOZ_BRFIuzuBSwP2y8P-9fyGJANlOhPI5g9oNLlgOzNJGx7pX23XIJ7JQCTmp3_6HqXLOFw8nnNHlmcTj6afUAwU3_QLdZvOVHt4w
  priority: 102
  providerName: Directory of Open Access Journals
Title Convergence and Robustness Analysis of the Exponential-Type Varying Gain Recurrent Neural Network for Solving Matrix-Type Linear Time-Varying Equation
URI https://ieeexplore.ieee.org/document/8481681
https://www.proquest.com/docview/2455930839
https://doaj.org/article/a0b795cf5bb548d1875c9f5c2a2366f0
Volume 6
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Nb9QwELVKT3AASkEstJUPHOttYsdxfCyrLVWl7aFQ1JvlTwlRJf3IShU_hN_LTJysKsqBQ6QoihNbz3beTGbeEPJJKldKVTUsVt4xOAKDOwODjVD4EFLBNeYOr87r08vq7EpebZHDTS5MjHEIPotzPB3-5YfOr9FVdoTS7zXmWT9TWudcrY0_BQtIaKlGYaGy0EfHiwWMAaO3mjnYBaLGmuaPPj6DRv9YVOXJTjx8Xk5ekdXUsRxV8nO-7t3c__pLs_F_e_6avBx5Jj3OE2OHbMX2DXnxSH1wl_xeYMT5kHwZqW0Dvejc-r7HvY9OWiW0SxQoIl0-3HQtBhbZa4amK_1u7zBBin6xP1p6gU57lHmiqPUBrz3PweUUGDH92l2j04KusBjAQ24NFjCsMIr5J2x60vI2q46_JZcny2-LUzaWaWC-KpqeNYEDTauBCtrCI71RkrsESzsB-XQAtq8jl650QMWUlcpzK4SoQmo07CDci3dku4UxvCdUiyoFjGr1Vap8I6G1tz5aVVjf8NLNyOGEn7nJahxmsGIKbTLcBuE2I9wz8hkx3tyKUtrDBcDGjCvT2MIpLX2SzoH1Fkow4LxOEnrJRV2nYkZ2Ec_NQ0YoZ2RvmjFmXPb3hldgoAlgtfrDv1t9JM-xg9mHs0e2-7t13AdW07uDwRtwMEzqP1RJ-EE
link.rule.ids 315,783,787,799,867,2109,4033,27937,27938,27939,55088
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Nb9QwELWqcgAOfBXElgI-cKy3iR0n8bGstizQ3UNpUW-WP6WKKiltVqr6Q_i9zMTJqgIOHCJFUZzYerbzZjLzhpAPsrK5rIqahcJZBodncKdnsBEK533MuMLc4eWqXJwVX87l-RbZ3-TChBD64LMwxdP-X75v3RpdZQco_V5invUDibwiZWttPCpYQkLJapAWyjN1cDibwSgwfquegmUgSqxqfu_z06v0D2VV_tqL-w_M0VOyHLuW4kp-TNednbq7P1Qb_7fvz8iTgWnSwzQ1npOt0Lwgj-_pD-6QXzOMOe_TLwM1jacnrV3fdLj70VGthLaRAkmk89urtsHQInPJ0Hil3801pkjRT-aioSfotkehJ4pqH_DaVQovp8CJ6bf2Et0WdInlAG5Ta7CBYY1RzEBh45PmP5Pu-EtydjQ_nS3YUKiBuSKrO1Z7DkStBDJoMocEp5LcRljcEeinBbhdGbi0uQUyVhlZOW6EEIWPtYI9hDvximw3MIbXhCpRRI9xra6IhasltHbGBVNlxtU8txOyP-Knr5Ieh-7tmEzpBLdGuPUA94R8RIw3t6KYdn8BsNHD2tQms5WSLkprwX7zOZhwTkUJveSiLGM2ITuI5-YhA5QTsjfOGD0s_BvNCzDRBPBatfvvVu_Jw8Xp8lgff159fUMeYWeTR2ePbHfX6_AWOE5n3_VT-zeXnfqZ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Convergence+and+Robustness+Analysis+of+the+Exponential-Type+Varying+Gain+Recurrent+Neural+Network+for+Solving+Matrix-Type+Linear+Time-Varying+Equation&rft.jtitle=IEEE+access&rft.au=Zhang%2C+Zhijun&rft.au=Fu%2C+Zheng&rft.au=Zheng%2C+Lunan&rft.au=Gan%2C+Min&rft.date=2018&rft.issn=2169-3536&rft.eissn=2169-3536&rft.volume=6&rft.spage=57160&rft.epage=57171&rft_id=info:doi/10.1109%2FACCESS.2018.2873616&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_ACCESS_2018_2873616
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2169-3536&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2169-3536&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2169-3536&client=summon