Novel Financial Capital Flow Forecast Framework Using Time Series Theory and Deep Learning: A Case Study Analysis of Yu'e Bao Transaction Data
Appropriate monetary liquidity is important for financial institutions. When institutions lack adequate cash flow for customer redemption, their income will decrease, their reputation will be affected, and they may even go bankrupt. However, the opposite extreme in which more cash is reserved than n...
Saved in:
Published in | IEEE access Vol. 7; pp. 70662 - 70672 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Piscataway
IEEE
2019
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Appropriate monetary liquidity is important for financial institutions. When institutions lack adequate cash flow for customer redemption, their income will decrease, their reputation will be affected, and they may even go bankrupt. However, the opposite extreme in which more cash is reserved than needed may result in lost opportunities to make successful investments. This study uses Yu'e Bao transaction data to investigate a method for forecasting financial capital flow. Yu'e Bao, which is a financial product launched by Alibaba, faces the core challenge of maximizing commercial profits to reduce investment risks. Liquidity risk is considered the main factor in Yu'e Bao's investment strategy. First, a linear model called YEB_ARIMA is proposed by determining the autocorrelation (ACF) and partial autocorrelation (PACF) parameters, which are optimized by the grid search method. Second, a deep learning model called YEB_LSTM is introduced to strengthen the expressiveness of the model that yields nonlinear transaction features. Then, a hybrid learning method called YEB_Hybrid is applied to improve the original weak classifiers. This model includes both a linear combination and logistic regression learning. Third, a set of experiments and analyses are conducted based on subscription and redemption datasets to demonstrate that the hybrid model achieves an accuracy of 84.39% and 84.36%, respectively, under a variety of evaluation indexes. Finally, various proposed fund reserve ratios are provided based on capital forecasts. |
---|---|
AbstractList | Appropriate monetary liquidity is important for financial institutions. When institutions lack adequate cash flow for customer redemption, their income will decrease, their reputation will be affected, and they may even go bankrupt. However, the opposite extreme in which more cash is reserved than needed may result in lost opportunities to make successful investments. This study uses Yu'e Bao transaction data to investigate a method for forecasting financial capital flow. Yu'e Bao, which is a financial product launched by Alibaba, faces the core challenge of maximizing commercial profits to reduce investment risks. Liquidity risk is considered the main factor in Yu'e Bao's investment strategy. First, a linear model called YEB_ARIMA is proposed by determining the autocorrelation (ACF) and partial autocorrelation (PACF) parameters, which are optimized by the grid search method. Second, a deep learning model called YEB_LSTM is introduced to strengthen the expressiveness of the model that yields nonlinear transaction features. Then, a hybrid learning method called YEB_Hybrid is applied to improve the original weak classifiers. This model includes both a linear combination and logistic regression learning. Third, a set of experiments and analyses are conducted based on subscription and redemption datasets to demonstrate that the hybrid model achieves an accuracy of 84.39% and 84.36%, respectively, under a variety of evaluation indexes. Finally, various proposed fund reserve ratios are provided based on capital forecasts. |
Author | Duan, Yucong Mao, Shunyi Gao, Honghao Yang, Xiaoxian Zou, Qiming |
Author_xml | – sequence: 1 givenname: Xiaoxian surname: Yang fullname: Yang, Xiaoxian organization: School of Computer and Information Engineering, Shanghai Polytechnic University, Shanghai, China – sequence: 2 givenname: Shunyi surname: Mao fullname: Mao, Shunyi email: specialyj@shu.edu.cn organization: Computing Center, Shanghai University, Shanghai, China – sequence: 3 givenname: Honghao orcidid: 0000-0001-6861-9684 surname: Gao fullname: Gao, Honghao organization: Computing Center, Shanghai University, Shanghai, China – sequence: 4 givenname: Yucong orcidid: 0000-0001-8417-892X surname: Duan fullname: Duan, Yucong organization: College of Information Science and Technology, Hainan University, Haikou, China – sequence: 5 givenname: Qiming surname: Zou fullname: Zou, Qiming organization: Computing Center, Shanghai University, Shanghai, China |
BookMark | eNpNUcFu1DAUjFCRKKVf0IslDpx2sWM7sbktaQOVVnDY7YGT9eI8Fy9Ze7GzrfYn-GZSUlW8yzyNZubpad4WZyEGLIorRpeMUf1x1TQ3m82ypEwvS800U_pVcV6ySi-45NXZf_ub4jLnHZ1GTZSsz4s_3-IDDqT1AYL1MJAGDn6csB3iI2ljQgt5JG2CPT7G9IvcZR_uydbvkWwwecxk-xNjOhEIPblGPJA1QgqT6BNZTWl50o3H_kRWAYZT9plER34cPyD5DJFsE4QMdvQxkGsY4V3x2sGQ8fIZL4q79mbbfF2sv3-5bVbrhRVUjQtlHVDbOY11LywqkOCg4rKveuBK29pqSVErqGQHqhKWdqzTUAvBtSx7xy-K2zm3j7Azh-T3kE4mgjf_iJjuDaTR2wFNJbpSK-aUcLVQ0nVdZ6nTpQCgtezVlPV-zjqk-PuIeTS7eEzTt9mUQsqKKyb4pOKzyqaYc0L3cpVR89SjmXs0Tz2a5x4n19Xs8oj44lB1ySnn_C9Z05ty |
CODEN | IAECCG |
CitedBy_id | crossref_primary_10_1007_s10796_022_10249_6 crossref_primary_10_1155_2022_1967607 crossref_primary_10_1016_j_psep_2019_11_014 crossref_primary_10_1080_15567036_2022_2143948 crossref_primary_10_1109_ACCESS_2019_2959022 crossref_primary_10_1007_s00779_020_01421_3 crossref_primary_10_1016_j_micpro_2020_103550 crossref_primary_10_3233_IDT_230190 crossref_primary_10_3934_QFE_2021032 |
Cites_doi | 10.1016/j.neucom.2015.12.061 10.1016/j.japwor.2018.03.004 10.1109/CVPR.2017.243 10.1109/TCSS.2018.2865217 10.1155/2017/7356213 10.3390/e19070358 10.1109/INDIN.2017.8104891 10.1137/1.9781611974973.64 10.1109/TSG.2017.2686012 10.4324/9780203792551 10.1007/s11036-019-01241-7 10.1007/s11036-019-01245-3 10.4236/ajibm.2016.69095 10.1145/3110025.3119402 10.1016/j.jksuci.2015.06.002 10.1109/ICIII.2012.6339928 10.1007/s11277-017-5086-2 10.1109/TITS.2017.2711046 10.1109/MCI.2018.2866725 10.1111/mafi.12106 10.1111/jtsa.12264 10.1007/s11269-015-0962-6 10.1007/978-1-4842-3787-8_13 10.1080/03610918.2018.1458138 10.1109/ACCESS.2018.2871475 10.1016/j.ijforecast.2015.12.003 10.1109/TNNLS.2018.2869225 10.1016/j.ejor.2016.06.019 10.1145/3302425.3302457 10.1016/j.ejor.2017.11.054 10.1016/j.apenergy.2017.12.054 10.3934/mcrf.2019003 10.1016/j.jfineco.2017.06.006 10.1109/TNNLS.2016.2514368 10.1080/07474938.2014.975644 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019 |
DBID | 97E ESBDL RIA RIE AAYXX CITATION 7SC 7SP 7SR 8BQ 8FD JG9 JQ2 L7M L~C L~D DOA |
DOI | 10.1109/ACCESS.2019.2919189 |
DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE Xplore Open Access Journals IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library Online CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts METADEX Technology Research Database Materials Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace METADEX Computer and Information Systems Abstracts Professional |
DatabaseTitleList | Materials Research Database |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: RIE name: IEEE Electronic Library Online url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 2169-3536 |
EndPage | 70672 |
ExternalDocumentID | oai_doaj_org_article_64b2981f84f7485fbbbc0f924aa075d8 10_1109_ACCESS_2019_2919189 8723033 |
Genre | orig-research |
GrantInformation_xml | – fundername: CERNET Innovation Project grantid: NGII20170513 – fundername: National Natural Science Foundation of China grantid: 61502294 funderid: 10.13039/501100001809 – fundername: Youth Foundation of Shanghai Polytechnic University grantid: EGD18XQD01 |
GroupedDBID | 0R~ 4.4 5VS 6IK 97E AAJGR ABVLG ACGFS ADBBV ALMA_UNASSIGNED_HOLDINGS BCNDV BEFXN BFFAM BGNUA BKEBE BPEOZ EBS EJD ESBDL GROUPED_DOAJ IFIPE IPLJI JAVBF KQ8 M43 M~E O9- OCL OK1 RIA RIE RIG RNS AAYXX CITATION 7SC 7SP 7SR 8BQ 8FD JG9 JQ2 L7M L~C L~D |
ID | FETCH-LOGICAL-c408t-8cfa0cbf9e7d4ce8a5afa635d6da389c7c950e98a65ba864c0b1b9a7443952df3 |
IEDL.DBID | RIE |
ISSN | 2169-3536 |
IngestDate | Tue Oct 22 15:09:18 EDT 2024 Thu Oct 10 16:06:03 EDT 2024 Fri Aug 23 00:50:54 EDT 2024 Wed Jun 26 19:28:10 EDT 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c408t-8cfa0cbf9e7d4ce8a5afa635d6da389c7c950e98a65ba864c0b1b9a7443952df3 |
ORCID | 0000-0001-6861-9684 0000-0001-8417-892X |
OpenAccessLink | https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/document/8723033 |
PQID | 2455638143 |
PQPubID | 4845423 |
PageCount | 11 |
ParticipantIDs | proquest_journals_2455638143 crossref_primary_10_1109_ACCESS_2019_2919189 ieee_primary_8723033 doaj_primary_oai_doaj_org_article_64b2981f84f7485fbbbc0f924aa075d8 |
PublicationCentury | 2000 |
PublicationDate | 20190000 2019-00-00 20190101 2019-01-01 |
PublicationDateYYYYMMDD | 2019-01-01 |
PublicationDate_xml | – year: 2019 text: 20190000 |
PublicationDecade | 2010 |
PublicationPlace | Piscataway |
PublicationPlace_xml | – name: Piscataway |
PublicationTitle | IEEE access |
PublicationTitleAbbrev | Access |
PublicationYear | 2019 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref35 ref13 ref34 ref37 ref15 ref36 ref31 ye (ref32) 2015 ref33 ref11 ref10 ref2 ref1 ref17 ref38 ref16 ref19 ref18 ref24 huang (ref25) 2018 ref23 ref26 ref20 ref42 ref41 ref22 ref44 ref21 ref43 brunnermeier (ref30) 2017 paradis (ref14) 2009 ref28 ref27 russell (ref6) 2016 ref29 box (ref12) 2015 ref8 liu (ref4) 2018; 25 ref7 ref9 harvie (ref3) 2016 yang (ref39) 2018 ref5 ref40 |
References_xml | – ident: ref17 doi: 10.1016/j.neucom.2015.12.061 – ident: ref15 doi: 10.1016/j.japwor.2018.03.004 – ident: ref24 doi: 10.1109/CVPR.2017.243 – ident: ref28 doi: 10.1109/TCSS.2018.2865217 – ident: ref1 doi: 10.1155/2017/7356213 – ident: ref26 doi: 10.3390/e19070358 – ident: ref11 doi: 10.1109/INDIN.2017.8104891 – ident: ref20 doi: 10.1137/1.9781611974973.64 – ident: ref42 doi: 10.1109/TSG.2017.2686012 – ident: ref5 doi: 10.4324/9780203792551 – ident: ref43 doi: 10.1007/s11036-019-01241-7 – ident: ref2 doi: 10.1007/s11036-019-01245-3 – start-page: 1 year: 2015 ident: ref32 article-title: Statistical modeling analysis of fund flow of Yu'ebao publication-title: Proc 4th Nat College Students Stat Modeling Contest contributor: fullname: ye – start-page: 1 year: 2009 ident: ref14 article-title: Moran's autocorrelation coefficient in comparative methods contributor: fullname: paradis – ident: ref9 doi: 10.4236/ajibm.2016.69095 – ident: ref41 doi: 10.1145/3110025.3119402 – ident: ref21 doi: 10.1016/j.jksuci.2015.06.002 – ident: ref35 doi: 10.1109/ICIII.2012.6339928 – ident: ref38 doi: 10.1007/s11277-017-5086-2 – ident: ref8 doi: 10.1109/TITS.2017.2711046 – year: 2016 ident: ref6 publication-title: Artificial Intelligence A Modern Approach contributor: fullname: russell – start-page: 1 year: 2017 ident: ref30 article-title: Feedbacks: Financial markets and economic activity contributor: fullname: brunnermeier – volume: 25 start-page: 1414 year: 2018 ident: ref4 article-title: An empirical study on factors affecting continuance intention of using Yu'e Bao publication-title: Tehni?ki Vjesnik contributor: fullname: liu – year: 2018 ident: ref39 article-title: Can deep learning predict risky retail investors? A case study in financial risk behavior forecasting publication-title: arXiv 1812 06175 contributor: fullname: yang – ident: ref33 doi: 10.1109/MCI.2018.2866725 – ident: ref19 doi: 10.1111/mafi.12106 – ident: ref29 doi: 10.1111/jtsa.12264 – year: 2015 ident: ref12 publication-title: Time Series Analysis Forecasting and Control contributor: fullname: box – ident: ref13 doi: 10.1007/s11269-015-0962-6 – ident: ref10 doi: 10.1007/978-1-4842-3787-8_13 – ident: ref16 doi: 10.1080/03610918.2018.1458138 – ident: ref44 doi: 10.1109/ACCESS.2018.2871475 – year: 2016 ident: ref3 publication-title: The Causes and Impact of the Asian Financial Crisis contributor: fullname: harvie – ident: ref18 doi: 10.1016/j.ijforecast.2015.12.003 – ident: ref23 doi: 10.1109/TNNLS.2018.2869225 – ident: ref36 doi: 10.1016/j.ejor.2016.06.019 – ident: ref40 doi: 10.1145/3302425.3302457 – start-page: 3271 year: 2018 ident: ref25 article-title: Orthogonal weight normalization: Solution to optimization over multiple dependent stiefel manifolds in deep neural networks publication-title: Proc 32nd AAAI Conf Artif Intell contributor: fullname: huang – ident: ref22 doi: 10.1016/j.ejor.2017.11.054 – ident: ref27 doi: 10.1016/j.apenergy.2017.12.054 – ident: ref37 doi: 10.3934/mcrf.2019003 – ident: ref34 doi: 10.1016/j.jfineco.2017.06.006 – ident: ref7 doi: 10.1109/TNNLS.2016.2514368 – ident: ref31 doi: 10.1080/07474938.2014.975644 |
SSID | ssj0000816957 |
Score | 2.2742615 |
Snippet | Appropriate monetary liquidity is important for financial institutions. When institutions lack adequate cash flow for customer redemption, their income will... |
SourceID | doaj proquest crossref ieee |
SourceType | Open Website Aggregation Database Publisher |
StartPage | 70662 |
SubjectTerms | Analytical models ARIMA Autocorrelation Autoregressive models Autoregressive processes big data financial analysis capital flow prediction Correlation Data models Deep learning Hidden Markov models Investment strategy Liquidity risk LSTM Model accuracy Predictive models Regression analysis Statistical analysis time series Time series analysis |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LT9wwELaqPdEDaoGq29JqDkhcCORhJ3ZvuwsRQoLTIsHJGr-4oM2KDe2_6G_uOA-6EgcuXBPHiWcm9ow9832MHRlhfETATGzpTcJdkSXSO7JlbkMeCiu8iye61zfl5S2_uhN3W1RfMSeshwfuBXdWcpMrmQXJQ8WlCMYYmwaKGhBptXN9mW-qtoKpbg6WWalENcAM0f2z2WJBI4q5XOo0VxSlRGL3raWoQ-wfKFZezcvdYlN_YruDlwiz_us-sw9-tcc-bmEH7rO_N81v_wj1iJgBC-wIQKB-bP5AZNy0uGmhHpOvoEsOgFjyAXFLzG-gr8sHXDk4934NA9bqwy-YUW8bahexZ2HELYEmwP3zsYc5NrD8zzMO59jiAbutL5aLy2QgV0gsT2WbSBswtSYoXzluvUSBAcn7cKVDcmJsZZVIvZJYCoOy5DY1mVFYcfJgRO5C8YVNVs3Kf2VAMkVjg8o8F5weM7LgFBUJS_YRikpO2ckoZ73uMTR0F3ukSvdq0VEtelDLlM2jLl6aRgDs7gKZhR7MQr9lFlO2HzX50omsKNYqiik7HDWrh591o3MeUdIkeY7f3uPV39lOHE6_T3PIJu3Ts_9BnktrfnZG-g_WC-pc priority: 102 providerName: Directory of Open Access Journals |
Title | Novel Financial Capital Flow Forecast Framework Using Time Series Theory and Deep Learning: A Case Study Analysis of Yu'e Bao Transaction Data |
URI | https://ieeexplore.ieee.org/document/8723033 https://www.proquest.com/docview/2455638143 https://doaj.org/article/64b2981f84f7485fbbbc0f924aa075d8 |
Volume | 7 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwELbanuDAqyAWSjUHJC7NNg87sbltt0QVUntqpXKK_BhzoNpUbJZK_RH8ZsaOs1TAgVsU2Y6jb5x8Hs98w9h7IwwGBczM1mgy7qoik-jIlrn1pa-sQBdOdM8v6rMr_vlaXO-wo20uDCLG4DOch8t4lu96uwmusmPZEGGuql222yg15mpt_SmhgIQSTRIWKnJ1vFgu6R1C9Jaal4r2JaGU-4OfT9ToT0VV_voSx99L-5SdTxMbo0q-zTeDmdv7PzQb_3fmz9iTxDNhMRrGc7aDqxfs8QP1wX3286L_gTfQTpobsNSxhAi0N_0dhJqdVq8HaKfwLYjhBRCSRiA41XANY2Y_6JWDU8RbSGqtXz_CgkZbU7ugXguT8gn0Hr5sPiCc6B4uf1cqh1M96Jfsqv10uTzLUnmGzPJcDpm0XufWeIWN4xalFtpr4i-udppokG2sEjkqqWthtKy5zU1hlG44cSBROl-9YnurfoWvGRBG2livCuSCUzcjK077KmHJwnzVyBk7mnDrbkcVji7uXnLVjTB3AeYuwTxjJwHbbdMgoR1vECZdWpFdzU2pZOEl9w2XwhtjbO5pO6o10ShHz9wPOG4HSRDO2MFkKV1a7uuu5EFnTRL3fPPvXm_ZozDB0XdzwPaG7xt8R2xmMIfRC3AYjfkXdOf0kA |
link.rule.ids | 315,783,787,799,867,2109,4031,27935,27936,27937,55086 |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwELZKOQAHXgWxUGAOSFyabbKxE5vbdku0QHdPW6mcLD_GPVBtKjYLEj-C38w4j6UCDtyiyHYcfePk83jmG8beWGExKmAmrkCbcJ9niURPtsxdmITcCfTxRHexLObn_OOFuNhjR7tcGERsg89wHC_bs3xfu210lR3Lkghznt9it4lXy6LL1tp5VGIJCSXKXlooS9XxdDajt4jxW2o8UbQzicXcb_x-WpX-vqzKX9_i9gdTPWCLYWpdXMmX8baxY_fjD9XG_537Q3a_Z5ow7UzjEdvD9WN274b-4AH7uay_4RVUg-oGzExbRASqq_o7xKqdzmwaqIYALmgDDCCmjUB0q-EGutx-MGsPp4jX0Ou1Xr6DKY22oXZRvxYG7ROoA3zevkU4MTWsftcqh1PTmCfsvHq_ms2TvkBD4ngqm0S6YFJng8LSc4fSCBMMMRhfeENEyJVOiRSVNIWwRhbcpTazypScWJCY-JA_Zfvreo3PGBBGxrqgMuSCUzcrc047K-HIxkJeyhE7GnDT150Oh273L6nSHcw6wqx7mEfsJGK7axpFtNsbhInu16QuuJ0omQXJQ8mlCNZalwbakBpDRMrTMw8ijrtBeghH7HCwFN0v-I2e8Ki0Jol9Pv93r9fszny1ONNnH5afXrC7cbKdJ-eQ7Tdft_iSuE1jX7Um_QuY0_bm |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Novel+Financial+Capital+Flow+Forecast+Framework+Using+Time+Series+Theory+and+Deep+Learning%3A+A+Case+Study+Analysis+of+Yu%E2%80%99e+Bao+Transaction+Data&rft.jtitle=IEEE+access&rft.au=Yang%2C+Xiaoxian&rft.au=Mao%2C+Shunyi&rft.au=Gao%2C+Honghao&rft.au=Duan%2C+Yucong&rft.date=2019&rft.issn=2169-3536&rft.eissn=2169-3536&rft.volume=7&rft.spage=70662&rft.epage=70672&rft_id=info:doi/10.1109%2FACCESS.2019.2919189&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_ACCESS_2019_2919189 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2169-3536&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2169-3536&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2169-3536&client=summon |