Novel Financial Capital Flow Forecast Framework Using Time Series Theory and Deep Learning: A Case Study Analysis of Yu'e Bao Transaction Data

Appropriate monetary liquidity is important for financial institutions. When institutions lack adequate cash flow for customer redemption, their income will decrease, their reputation will be affected, and they may even go bankrupt. However, the opposite extreme in which more cash is reserved than n...

Full description

Saved in:
Bibliographic Details
Published inIEEE access Vol. 7; pp. 70662 - 70672
Main Authors Yang, Xiaoxian, Mao, Shunyi, Gao, Honghao, Duan, Yucong, Zou, Qiming
Format Journal Article
LanguageEnglish
Published Piscataway IEEE 2019
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Appropriate monetary liquidity is important for financial institutions. When institutions lack adequate cash flow for customer redemption, their income will decrease, their reputation will be affected, and they may even go bankrupt. However, the opposite extreme in which more cash is reserved than needed may result in lost opportunities to make successful investments. This study uses Yu'e Bao transaction data to investigate a method for forecasting financial capital flow. Yu'e Bao, which is a financial product launched by Alibaba, faces the core challenge of maximizing commercial profits to reduce investment risks. Liquidity risk is considered the main factor in Yu'e Bao's investment strategy. First, a linear model called YEB_ARIMA is proposed by determining the autocorrelation (ACF) and partial autocorrelation (PACF) parameters, which are optimized by the grid search method. Second, a deep learning model called YEB_LSTM is introduced to strengthen the expressiveness of the model that yields nonlinear transaction features. Then, a hybrid learning method called YEB_Hybrid is applied to improve the original weak classifiers. This model includes both a linear combination and logistic regression learning. Third, a set of experiments and analyses are conducted based on subscription and redemption datasets to demonstrate that the hybrid model achieves an accuracy of 84.39% and 84.36%, respectively, under a variety of evaluation indexes. Finally, various proposed fund reserve ratios are provided based on capital forecasts.
AbstractList Appropriate monetary liquidity is important for financial institutions. When institutions lack adequate cash flow for customer redemption, their income will decrease, their reputation will be affected, and they may even go bankrupt. However, the opposite extreme in which more cash is reserved than needed may result in lost opportunities to make successful investments. This study uses Yu'e Bao transaction data to investigate a method for forecasting financial capital flow. Yu'e Bao, which is a financial product launched by Alibaba, faces the core challenge of maximizing commercial profits to reduce investment risks. Liquidity risk is considered the main factor in Yu'e Bao's investment strategy. First, a linear model called YEB_ARIMA is proposed by determining the autocorrelation (ACF) and partial autocorrelation (PACF) parameters, which are optimized by the grid search method. Second, a deep learning model called YEB_LSTM is introduced to strengthen the expressiveness of the model that yields nonlinear transaction features. Then, a hybrid learning method called YEB_Hybrid is applied to improve the original weak classifiers. This model includes both a linear combination and logistic regression learning. Third, a set of experiments and analyses are conducted based on subscription and redemption datasets to demonstrate that the hybrid model achieves an accuracy of 84.39% and 84.36%, respectively, under a variety of evaluation indexes. Finally, various proposed fund reserve ratios are provided based on capital forecasts.
Author Duan, Yucong
Mao, Shunyi
Gao, Honghao
Yang, Xiaoxian
Zou, Qiming
Author_xml – sequence: 1
  givenname: Xiaoxian
  surname: Yang
  fullname: Yang, Xiaoxian
  organization: School of Computer and Information Engineering, Shanghai Polytechnic University, Shanghai, China
– sequence: 2
  givenname: Shunyi
  surname: Mao
  fullname: Mao, Shunyi
  email: specialyj@shu.edu.cn
  organization: Computing Center, Shanghai University, Shanghai, China
– sequence: 3
  givenname: Honghao
  orcidid: 0000-0001-6861-9684
  surname: Gao
  fullname: Gao, Honghao
  organization: Computing Center, Shanghai University, Shanghai, China
– sequence: 4
  givenname: Yucong
  orcidid: 0000-0001-8417-892X
  surname: Duan
  fullname: Duan, Yucong
  organization: College of Information Science and Technology, Hainan University, Haikou, China
– sequence: 5
  givenname: Qiming
  surname: Zou
  fullname: Zou, Qiming
  organization: Computing Center, Shanghai University, Shanghai, China
BookMark eNpNUcFu1DAUjFCRKKVf0IslDpx2sWM7sbktaQOVVnDY7YGT9eI8Fy9Ze7GzrfYn-GZSUlW8yzyNZubpad4WZyEGLIorRpeMUf1x1TQ3m82ypEwvS800U_pVcV6ySi-45NXZf_ub4jLnHZ1GTZSsz4s_3-IDDqT1AYL1MJAGDn6csB3iI2ljQgt5JG2CPT7G9IvcZR_uydbvkWwwecxk-xNjOhEIPblGPJA1QgqT6BNZTWl50o3H_kRWAYZT9plER34cPyD5DJFsE4QMdvQxkGsY4V3x2sGQ8fIZL4q79mbbfF2sv3-5bVbrhRVUjQtlHVDbOY11LywqkOCg4rKveuBK29pqSVErqGQHqhKWdqzTUAvBtSx7xy-K2zm3j7Azh-T3kE4mgjf_iJjuDaTR2wFNJbpSK-aUcLVQ0nVdZ6nTpQCgtezVlPV-zjqk-PuIeTS7eEzTt9mUQsqKKyb4pOKzyqaYc0L3cpVR89SjmXs0Tz2a5x4n19Xs8oj44lB1ySnn_C9Z05ty
CODEN IAECCG
CitedBy_id crossref_primary_10_1007_s10796_022_10249_6
crossref_primary_10_1155_2022_1967607
crossref_primary_10_1016_j_psep_2019_11_014
crossref_primary_10_1080_15567036_2022_2143948
crossref_primary_10_1109_ACCESS_2019_2959022
crossref_primary_10_1007_s00779_020_01421_3
crossref_primary_10_1016_j_micpro_2020_103550
crossref_primary_10_3233_IDT_230190
crossref_primary_10_3934_QFE_2021032
Cites_doi 10.1016/j.neucom.2015.12.061
10.1016/j.japwor.2018.03.004
10.1109/CVPR.2017.243
10.1109/TCSS.2018.2865217
10.1155/2017/7356213
10.3390/e19070358
10.1109/INDIN.2017.8104891
10.1137/1.9781611974973.64
10.1109/TSG.2017.2686012
10.4324/9780203792551
10.1007/s11036-019-01241-7
10.1007/s11036-019-01245-3
10.4236/ajibm.2016.69095
10.1145/3110025.3119402
10.1016/j.jksuci.2015.06.002
10.1109/ICIII.2012.6339928
10.1007/s11277-017-5086-2
10.1109/TITS.2017.2711046
10.1109/MCI.2018.2866725
10.1111/mafi.12106
10.1111/jtsa.12264
10.1007/s11269-015-0962-6
10.1007/978-1-4842-3787-8_13
10.1080/03610918.2018.1458138
10.1109/ACCESS.2018.2871475
10.1016/j.ijforecast.2015.12.003
10.1109/TNNLS.2018.2869225
10.1016/j.ejor.2016.06.019
10.1145/3302425.3302457
10.1016/j.ejor.2017.11.054
10.1016/j.apenergy.2017.12.054
10.3934/mcrf.2019003
10.1016/j.jfineco.2017.06.006
10.1109/TNNLS.2016.2514368
10.1080/07474938.2014.975644
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019
DBID 97E
ESBDL
RIA
RIE
AAYXX
CITATION
7SC
7SP
7SR
8BQ
8FD
JG9
JQ2
L7M
L~C
L~D
DOA
DOI 10.1109/ACCESS.2019.2919189
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE Xplore Open Access Journals
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library Online
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
METADEX
Computer and Information Systems Abstracts Professional
DatabaseTitleList Materials Research Database


Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: RIE
  name: IEEE Electronic Library Online
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2169-3536
EndPage 70672
ExternalDocumentID oai_doaj_org_article_64b2981f84f7485fbbbc0f924aa075d8
10_1109_ACCESS_2019_2919189
8723033
Genre orig-research
GrantInformation_xml – fundername: CERNET Innovation Project
  grantid: NGII20170513
– fundername: National Natural Science Foundation of China
  grantid: 61502294
  funderid: 10.13039/501100001809
– fundername: Youth Foundation of Shanghai Polytechnic University
  grantid: EGD18XQD01
GroupedDBID 0R~
4.4
5VS
6IK
97E
AAJGR
ABVLG
ACGFS
ADBBV
ALMA_UNASSIGNED_HOLDINGS
BCNDV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
EJD
ESBDL
GROUPED_DOAJ
IFIPE
IPLJI
JAVBF
KQ8
M43
M~E
O9-
OCL
OK1
RIA
RIE
RIG
RNS
AAYXX
CITATION
7SC
7SP
7SR
8BQ
8FD
JG9
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c408t-8cfa0cbf9e7d4ce8a5afa635d6da389c7c950e98a65ba864c0b1b9a7443952df3
IEDL.DBID RIE
ISSN 2169-3536
IngestDate Tue Oct 22 15:09:18 EDT 2024
Thu Oct 10 16:06:03 EDT 2024
Fri Aug 23 00:50:54 EDT 2024
Wed Jun 26 19:28:10 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c408t-8cfa0cbf9e7d4ce8a5afa635d6da389c7c950e98a65ba864c0b1b9a7443952df3
ORCID 0000-0001-6861-9684
0000-0001-8417-892X
OpenAccessLink https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/document/8723033
PQID 2455638143
PQPubID 4845423
PageCount 11
ParticipantIDs proquest_journals_2455638143
crossref_primary_10_1109_ACCESS_2019_2919189
ieee_primary_8723033
doaj_primary_oai_doaj_org_article_64b2981f84f7485fbbbc0f924aa075d8
PublicationCentury 2000
PublicationDate 20190000
2019-00-00
20190101
2019-01-01
PublicationDateYYYYMMDD 2019-01-01
PublicationDate_xml – year: 2019
  text: 20190000
PublicationDecade 2010
PublicationPlace Piscataway
PublicationPlace_xml – name: Piscataway
PublicationTitle IEEE access
PublicationTitleAbbrev Access
PublicationYear 2019
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref35
ref13
ref34
ref37
ref15
ref36
ref31
ye (ref32) 2015
ref33
ref11
ref10
ref2
ref1
ref17
ref38
ref16
ref19
ref18
ref24
huang (ref25) 2018
ref23
ref26
ref20
ref42
ref41
ref22
ref44
ref21
ref43
brunnermeier (ref30) 2017
paradis (ref14) 2009
ref28
ref27
russell (ref6) 2016
ref29
box (ref12) 2015
ref8
liu (ref4) 2018; 25
ref7
ref9
harvie (ref3) 2016
yang (ref39) 2018
ref5
ref40
References_xml – ident: ref17
  doi: 10.1016/j.neucom.2015.12.061
– ident: ref15
  doi: 10.1016/j.japwor.2018.03.004
– ident: ref24
  doi: 10.1109/CVPR.2017.243
– ident: ref28
  doi: 10.1109/TCSS.2018.2865217
– ident: ref1
  doi: 10.1155/2017/7356213
– ident: ref26
  doi: 10.3390/e19070358
– ident: ref11
  doi: 10.1109/INDIN.2017.8104891
– ident: ref20
  doi: 10.1137/1.9781611974973.64
– ident: ref42
  doi: 10.1109/TSG.2017.2686012
– ident: ref5
  doi: 10.4324/9780203792551
– ident: ref43
  doi: 10.1007/s11036-019-01241-7
– ident: ref2
  doi: 10.1007/s11036-019-01245-3
– start-page: 1
  year: 2015
  ident: ref32
  article-title: Statistical modeling analysis of fund flow of Yu'ebao
  publication-title: Proc 4th Nat College Students Stat Modeling Contest
  contributor:
    fullname: ye
– start-page: 1
  year: 2009
  ident: ref14
  article-title: Moran's autocorrelation coefficient in comparative methods
  contributor:
    fullname: paradis
– ident: ref9
  doi: 10.4236/ajibm.2016.69095
– ident: ref41
  doi: 10.1145/3110025.3119402
– ident: ref21
  doi: 10.1016/j.jksuci.2015.06.002
– ident: ref35
  doi: 10.1109/ICIII.2012.6339928
– ident: ref38
  doi: 10.1007/s11277-017-5086-2
– ident: ref8
  doi: 10.1109/TITS.2017.2711046
– year: 2016
  ident: ref6
  publication-title: Artificial Intelligence A Modern Approach
  contributor:
    fullname: russell
– start-page: 1
  year: 2017
  ident: ref30
  article-title: Feedbacks: Financial markets and economic activity
  contributor:
    fullname: brunnermeier
– volume: 25
  start-page: 1414
  year: 2018
  ident: ref4
  article-title: An empirical study on factors affecting continuance intention of using Yu'e Bao
  publication-title: Tehni?ki Vjesnik
  contributor:
    fullname: liu
– year: 2018
  ident: ref39
  article-title: Can deep learning predict risky retail investors? A case study in financial risk behavior forecasting
  publication-title: arXiv 1812 06175
  contributor:
    fullname: yang
– ident: ref33
  doi: 10.1109/MCI.2018.2866725
– ident: ref19
  doi: 10.1111/mafi.12106
– ident: ref29
  doi: 10.1111/jtsa.12264
– year: 2015
  ident: ref12
  publication-title: Time Series Analysis Forecasting and Control
  contributor:
    fullname: box
– ident: ref13
  doi: 10.1007/s11269-015-0962-6
– ident: ref10
  doi: 10.1007/978-1-4842-3787-8_13
– ident: ref16
  doi: 10.1080/03610918.2018.1458138
– ident: ref44
  doi: 10.1109/ACCESS.2018.2871475
– year: 2016
  ident: ref3
  publication-title: The Causes and Impact of the Asian Financial Crisis
  contributor:
    fullname: harvie
– ident: ref18
  doi: 10.1016/j.ijforecast.2015.12.003
– ident: ref23
  doi: 10.1109/TNNLS.2018.2869225
– ident: ref36
  doi: 10.1016/j.ejor.2016.06.019
– ident: ref40
  doi: 10.1145/3302425.3302457
– start-page: 3271
  year: 2018
  ident: ref25
  article-title: Orthogonal weight normalization: Solution to optimization over multiple dependent stiefel manifolds in deep neural networks
  publication-title: Proc 32nd AAAI Conf Artif Intell
  contributor:
    fullname: huang
– ident: ref22
  doi: 10.1016/j.ejor.2017.11.054
– ident: ref27
  doi: 10.1016/j.apenergy.2017.12.054
– ident: ref37
  doi: 10.3934/mcrf.2019003
– ident: ref34
  doi: 10.1016/j.jfineco.2017.06.006
– ident: ref7
  doi: 10.1109/TNNLS.2016.2514368
– ident: ref31
  doi: 10.1080/07474938.2014.975644
SSID ssj0000816957
Score 2.2742615
Snippet Appropriate monetary liquidity is important for financial institutions. When institutions lack adequate cash flow for customer redemption, their income will...
SourceID doaj
proquest
crossref
ieee
SourceType Open Website
Aggregation Database
Publisher
StartPage 70662
SubjectTerms Analytical models
ARIMA
Autocorrelation
Autoregressive models
Autoregressive processes
big data financial analysis
capital flow prediction
Correlation
Data models
Deep learning
Hidden Markov models
Investment strategy
Liquidity risk
LSTM
Model accuracy
Predictive models
Regression analysis
Statistical analysis
time series
Time series analysis
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LT9wwELaqPdEDaoGq29JqDkhcCORhJ3ZvuwsRQoLTIsHJGr-4oM2KDe2_6G_uOA-6EgcuXBPHiWcm9ow9832MHRlhfETATGzpTcJdkSXSO7JlbkMeCiu8iye61zfl5S2_uhN3W1RfMSeshwfuBXdWcpMrmQXJQ8WlCMYYmwaKGhBptXN9mW-qtoKpbg6WWalENcAM0f2z2WJBI4q5XOo0VxSlRGL3raWoQ-wfKFZezcvdYlN_YruDlwiz_us-sw9-tcc-bmEH7rO_N81v_wj1iJgBC-wIQKB-bP5AZNy0uGmhHpOvoEsOgFjyAXFLzG-gr8sHXDk4934NA9bqwy-YUW8bahexZ2HELYEmwP3zsYc5NrD8zzMO59jiAbutL5aLy2QgV0gsT2WbSBswtSYoXzluvUSBAcn7cKVDcmJsZZVIvZJYCoOy5DY1mVFYcfJgRO5C8YVNVs3Kf2VAMkVjg8o8F5weM7LgFBUJS_YRikpO2ckoZ73uMTR0F3ukSvdq0VEtelDLlM2jLl6aRgDs7gKZhR7MQr9lFlO2HzX50omsKNYqiik7HDWrh591o3MeUdIkeY7f3uPV39lOHE6_T3PIJu3Ts_9BnktrfnZG-g_WC-pc
  priority: 102
  providerName: Directory of Open Access Journals
Title Novel Financial Capital Flow Forecast Framework Using Time Series Theory and Deep Learning: A Case Study Analysis of Yu'e Bao Transaction Data
URI https://ieeexplore.ieee.org/document/8723033
https://www.proquest.com/docview/2455638143
https://doaj.org/article/64b2981f84f7485fbbbc0f924aa075d8
Volume 7
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwELbanuDAqyAWSjUHJC7NNg87sbltt0QVUntqpXKK_BhzoNpUbJZK_RH8ZsaOs1TAgVsU2Y6jb5x8Hs98w9h7IwwGBczM1mgy7qoik-jIlrn1pa-sQBdOdM8v6rMr_vlaXO-wo20uDCLG4DOch8t4lu96uwmusmPZEGGuql222yg15mpt_SmhgIQSTRIWKnJ1vFgu6R1C9Jaal4r2JaGU-4OfT9ToT0VV_voSx99L-5SdTxMbo0q-zTeDmdv7PzQb_3fmz9iTxDNhMRrGc7aDqxfs8QP1wX3286L_gTfQTpobsNSxhAi0N_0dhJqdVq8HaKfwLYjhBRCSRiA41XANY2Y_6JWDU8RbSGqtXz_CgkZbU7ugXguT8gn0Hr5sPiCc6B4uf1cqh1M96Jfsqv10uTzLUnmGzPJcDpm0XufWeIWN4xalFtpr4i-udppokG2sEjkqqWthtKy5zU1hlG44cSBROl-9YnurfoWvGRBG2livCuSCUzcjK077KmHJwnzVyBk7mnDrbkcVji7uXnLVjTB3AeYuwTxjJwHbbdMgoR1vECZdWpFdzU2pZOEl9w2XwhtjbO5pO6o10ShHz9wPOG4HSRDO2MFkKV1a7uuu5EFnTRL3fPPvXm_ZozDB0XdzwPaG7xt8R2xmMIfRC3AYjfkXdOf0kA
link.rule.ids 315,783,787,799,867,2109,4031,27935,27936,27937,55086
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwELZKOQAHXgWxUGAOSFyabbKxE5vbdku0QHdPW6mcLD_GPVBtKjYLEj-C38w4j6UCDtyiyHYcfePk83jmG8beWGExKmAmrkCbcJ9niURPtsxdmITcCfTxRHexLObn_OOFuNhjR7tcGERsg89wHC_bs3xfu210lR3Lkghznt9it4lXy6LL1tp5VGIJCSXKXlooS9XxdDajt4jxW2o8UbQzicXcb_x-WpX-vqzKX9_i9gdTPWCLYWpdXMmX8baxY_fjD9XG_537Q3a_Z5ow7UzjEdvD9WN274b-4AH7uay_4RVUg-oGzExbRASqq_o7xKqdzmwaqIYALmgDDCCmjUB0q-EGutx-MGsPp4jX0Ou1Xr6DKY22oXZRvxYG7ROoA3zevkU4MTWsftcqh1PTmCfsvHq_ms2TvkBD4ngqm0S6YFJng8LSc4fSCBMMMRhfeENEyJVOiRSVNIWwRhbcpTazypScWJCY-JA_Zfvreo3PGBBGxrqgMuSCUzcrc047K-HIxkJeyhE7GnDT150Oh273L6nSHcw6wqx7mEfsJGK7axpFtNsbhInu16QuuJ0omQXJQ8mlCNZalwbakBpDRMrTMw8ijrtBeghH7HCwFN0v-I2e8Ki0Jol9Pv93r9fszny1ONNnH5afXrC7cbKdJ-eQ7Tdft_iSuE1jX7Um_QuY0_bm
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Novel+Financial+Capital+Flow+Forecast+Framework+Using+Time+Series+Theory+and+Deep+Learning%3A+A+Case+Study+Analysis+of+Yu%E2%80%99e+Bao+Transaction+Data&rft.jtitle=IEEE+access&rft.au=Yang%2C+Xiaoxian&rft.au=Mao%2C+Shunyi&rft.au=Gao%2C+Honghao&rft.au=Duan%2C+Yucong&rft.date=2019&rft.issn=2169-3536&rft.eissn=2169-3536&rft.volume=7&rft.spage=70662&rft.epage=70672&rft_id=info:doi/10.1109%2FACCESS.2019.2919189&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_ACCESS_2019_2919189
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2169-3536&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2169-3536&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2169-3536&client=summon