The microplastisphere: Biodegradable microplastics addition alters soil microbial community structure and function

Plastics accumulating in the environment, especially microplastics (defined as particles <5 mm), can lead to a range of problems and potential loss of ecosystem services. Polyhydroxyalkanoates (PHAs) are biodegradable plastics used in mulch films, and in packaging material to minimize plastic was...

Full description

Saved in:
Bibliographic Details
Published inSoil biology & biochemistry Vol. 156; p. 108211
Main Authors Zhou, Jie, Gui, Heng, Banfield, Callum C., Wen, Yuan, Zang, Huadong, Dippold, Michaela A., Charlton, Adam, Jones, Davey L.
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 01.05.2021
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Plastics accumulating in the environment, especially microplastics (defined as particles <5 mm), can lead to a range of problems and potential loss of ecosystem services. Polyhydroxyalkanoates (PHAs) are biodegradable plastics used in mulch films, and in packaging material to minimize plastic waste and to reduce soil pollution. Little is known, however, about the effect of microbioplastics on soil-plant interactions, especially soil microbial community structure and functioning in agroecosystems. For the first time, we combined zymography (to localize enzyme activity hotspots) with substrate-induced growth respiration to investigate the effect of PHAs addition on soil microbial community structure, growth, and exoenzyme kinetics in the microplastisphere (i.e. interface between soil and microplastic particles) compared to the rhizosphere and bulk soil. We used a common PHAs biopolymer, poly (3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) and showed that PHBV was readily used by the microbial community as a source of carbon (C) resulting in an increased specific microbial growth rate and a more active microbial biomass in the microplastisphere in comparison to the bulk soil. Higher β-glucosidase and leucine aminopeptidase activities (0.6–5.0 times higher Vmax) and lower enzyme affinities (1.5–2.0 times higher Km) were also detected in the microplastisphere relative to the rhizosphere. Furthermore, the PHBV addition changed the soil bacterial community at different taxonomical levels and increased the alpha diversity, as well as the relative abundance of Acidobacteria and Verrucomicrobia phyla, compared to the untreated soils. Overall, PHBV addition created soil hotspots where C and nutrient turnover is greatly enhanced, mainly driven by the accelerated microbial biomass and activity. In conclusion, microbioplastics have the potential to alter soil ecological functioning and biogeochemical cycling (e.g., SOM decomposition). [Display omitted] •Microplastisphere (soil-MPs interface) is localized and visualized by zymography.•MPs stimulates microbial turnover and nutrient efficiency in microplastisphere.•MPs increases soil enzyme activity and shifts bacterial community to K-strategy.•MPs have the potential to alter soil functioning and biogeochemical cycling.
AbstractList Plastics accumulating in the environment, especially microplastics (defined as particles <5 mm), can lead to a range of problems and potential loss of ecosystem services. Polyhydroxyalkanoates (PHAs) are biodegradable plastics used in mulch films, and in packaging material to minimize plastic waste and to reduce soil pollution. Little is known, however, about the effect of microbioplastics on soil-plant interactions, especially soil microbial community structure and functioning in agroecosystems. For the first time, we combined zymography (to localize enzyme activity hotspots) with substrate-induced growth respiration to investigate the effect of PHAs addition on soil microbial community structure, growth, and exoenzyme kinetics in the microplastisphere (i.e. interface between soil and microplastic particles) compared to the rhizosphere and bulk soil. We used a common PHAs biopolymer, poly (3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) and showed that PHBV was readily used by the microbial community as a source of carbon (C) resulting in an increased specific microbial growth rate and a more active microbial biomass in the microplastisphere in comparison to the bulk soil. Higher β-glucosidase and leucine aminopeptidase activities (0.6–5.0 times higher Vₘₐₓ) and lower enzyme affinities (1.5–2.0 times higher Kₘ) were also detected in the microplastisphere relative to the rhizosphere. Furthermore, the PHBV addition changed the soil bacterial community at different taxonomical levels and increased the alpha diversity, as well as the relative abundance of Acidobacteria and Verrucomicrobia phyla, compared to the untreated soils. Overall, PHBV addition created soil hotspots where C and nutrient turnover is greatly enhanced, mainly driven by the accelerated microbial biomass and activity. In conclusion, microbioplastics have the potential to alter soil ecological functioning and biogeochemical cycling (e.g., SOM decomposition).
Plastics accumulating in the environment, especially microplastics (defined as particles <5 mm), can lead to a range of problems and potential loss of ecosystem services. Polyhydroxyalkanoates (PHAs) are biodegradable plastics used in mulch films, and in packaging material to minimize plastic waste and to reduce soil pollution. Little is known, however, about the effect of microbioplastics on soil-plant interactions, especially soil microbial community structure and functioning in agroecosystems. For the first time, we combined zymography (to localize enzyme activity hotspots) with substrate-induced growth respiration to investigate the effect of PHAs addition on soil microbial community structure, growth, and exoenzyme kinetics in the microplastisphere (i.e. interface between soil and microplastic particles) compared to the rhizosphere and bulk soil. We used a common PHAs biopolymer, poly (3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) and showed that PHBV was readily used by the microbial community as a source of carbon (C) resulting in an increased specific microbial growth rate and a more active microbial biomass in the microplastisphere in comparison to the bulk soil. Higher β-glucosidase and leucine aminopeptidase activities (0.6–5.0 times higher Vmax) and lower enzyme affinities (1.5–2.0 times higher Km) were also detected in the microplastisphere relative to the rhizosphere. Furthermore, the PHBV addition changed the soil bacterial community at different taxonomical levels and increased the alpha diversity, as well as the relative abundance of Acidobacteria and Verrucomicrobia phyla, compared to the untreated soils. Overall, PHBV addition created soil hotspots where C and nutrient turnover is greatly enhanced, mainly driven by the accelerated microbial biomass and activity. In conclusion, microbioplastics have the potential to alter soil ecological functioning and biogeochemical cycling (e.g., SOM decomposition). [Display omitted] •Microplastisphere (soil-MPs interface) is localized and visualized by zymography.•MPs stimulates microbial turnover and nutrient efficiency in microplastisphere.•MPs increases soil enzyme activity and shifts bacterial community to K-strategy.•MPs have the potential to alter soil functioning and biogeochemical cycling.
ArticleNumber 108211
Author Zhou, Jie
Charlton, Adam
Jones, Davey L.
Zang, Huadong
Dippold, Michaela A.
Wen, Yuan
Banfield, Callum C.
Gui, Heng
Author_xml – sequence: 1
  givenname: Jie
  surname: Zhou
  fullname: Zhou, Jie
  organization: College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
– sequence: 2
  givenname: Heng
  surname: Gui
  fullname: Gui, Heng
  organization: CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Science, Kunming, China
– sequence: 3
  givenname: Callum C.
  surname: Banfield
  fullname: Banfield, Callum C.
  organization: Biogeochemistry of Agroecosystems, Department of Crop Sciences, University of Goettingen, Goettingen, Germany
– sequence: 4
  givenname: Yuan
  surname: Wen
  fullname: Wen, Yuan
  organization: College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
– sequence: 5
  givenname: Huadong
  surname: Zang
  fullname: Zang, Huadong
  email: zanghuadong@cau.edu.cn
  organization: College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
– sequence: 6
  givenname: Michaela A.
  surname: Dippold
  fullname: Dippold, Michaela A.
  organization: Biogeochemistry of Agroecosystems, Department of Crop Sciences, University of Goettingen, Goettingen, Germany
– sequence: 7
  givenname: Adam
  surname: Charlton
  fullname: Charlton, Adam
  organization: BioComposites Centre, Bangor University, Bangor, Gwynedd, LL57 2UW, UK
– sequence: 8
  givenname: Davey L.
  orcidid: 0000-0002-1482-4209
  surname: Jones
  fullname: Jones, Davey L.
  organization: School of Natural Sciences, Bangor University, Bangor, Gwynedd, LL57 2UW, UK
BookMark eNqFkMFq3TAQRUVJoS9pP6GgZTd-lWQ7lttFSEOaFALdpGshj0bNPGTrVZIL-fvYOJtkk5VguGdG95yykylOyNhnKfZSyPOvh32OFAaKeyWUXGZaSfmO7aTu-qpulD5hOyFqXYlOdh_Yac4HIYRqZb1j6f4B-UiQ4jHYXCgfHzDhN_6DosO_yTo7hBcByNw6R4XixG0omDJfr2-RgWzgEMdxnqg88lzSDGVOyO3kuJ8nWLGP7L23IeOn5_eM_fl5fX91W939vvl1dXlXQSN0qfQg-76TKBpn67rrnRYDNl5q8J3r1PIxAeeDr1UDPQxeoFcILXhU2olm6XvGvmx7jyn-mzEXM1IGDMFOGOdsVNsuF0Sn1RJtt-jSIeeE3hwTjTY9GinM6tgczLNjszo2m-OF-_6KAyp2LVmSpfAmfbHRuFj4T5hMBsIJ0FFCKMZFemPDEyV3oZ8
CitedBy_id crossref_primary_10_3389_fmicb_2024_1458470
crossref_primary_10_1038_s44296_024_00012_0
crossref_primary_10_1016_j_biortech_2021_126265
crossref_primary_10_1016_j_ecoenv_2024_115946
crossref_primary_10_1016_j_scitotenv_2024_174276
crossref_primary_10_1007_s11270_024_07731_z
crossref_primary_10_1016_j_jhazmat_2025_137891
crossref_primary_10_1016_j_apsoil_2022_104714
crossref_primary_10_1016_j_apsoil_2022_104716
crossref_primary_10_1016_j_pedsph_2025_03_010
crossref_primary_10_1002_ldr_5239
crossref_primary_10_1111_ejss_13446
crossref_primary_10_3389_fenvs_2022_855292
crossref_primary_10_1016_j_jhazmat_2025_137301
crossref_primary_10_1016_j_watres_2022_118191
crossref_primary_10_1016_j_scitotenv_2024_176342
crossref_primary_10_1016_j_chemosphere_2024_142361
crossref_primary_10_1016_j_envint_2022_107158
crossref_primary_10_1016_j_jclepro_2024_144473
crossref_primary_10_1016_j_emcon_2024_100368
crossref_primary_10_1016_j_jhazmat_2022_130055
crossref_primary_10_1017_plc_2024_5
crossref_primary_10_1016_j_apsoil_2024_105343
crossref_primary_10_1021_acs_est_3c01538
crossref_primary_10_3390_soilsystems7040110
crossref_primary_10_1016_j_envpol_2024_123986
crossref_primary_10_1016_j_scitotenv_2023_169749
crossref_primary_10_1002_ldr_4243
crossref_primary_10_1111_pce_14413
crossref_primary_10_1016_j_scitotenv_2023_165025
crossref_primary_10_3390_su17031093
crossref_primary_10_1007_s00374_023_01781_x
crossref_primary_10_1016_j_jhazmat_2024_135080
crossref_primary_10_1007_s10653_024_01974_9
crossref_primary_10_1016_j_eja_2025_127532
crossref_primary_10_3390_agriculture14081235
crossref_primary_10_1007_s10532_025_10115_7
crossref_primary_10_1016_j_jhazmat_2024_136053
crossref_primary_10_1016_j_jhazmat_2022_129294
crossref_primary_10_1016_j_tplants_2024_11_018
crossref_primary_10_1016_j_chemosphere_2022_137559
crossref_primary_10_1016_j_envint_2024_108938
crossref_primary_10_1016_j_algal_2022_102848
crossref_primary_10_1016_j_jhazmat_2022_129057
crossref_primary_10_3390_ijms232415976
crossref_primary_10_1016_j_jenvman_2023_119377
crossref_primary_10_1016_j_jece_2023_111287
crossref_primary_10_1016_j_jhazmat_2025_137850
crossref_primary_10_1007_s11104_025_07293_x
crossref_primary_10_1016_j_envpol_2023_123000
crossref_primary_10_1016_j_chemosphere_2023_138737
crossref_primary_10_1016_j_jece_2022_108832
crossref_primary_10_1016_j_scitotenv_2022_158311
crossref_primary_10_1007_s44169_023_00057_7
crossref_primary_10_1007_s41742_023_00558_2
crossref_primary_10_3390_soilsystems8030092
crossref_primary_10_1126_science_adk9505
crossref_primary_10_1016_j_jssas_2024_07_001
crossref_primary_10_1016_j_envres_2024_120344
crossref_primary_10_1016_j_coesh_2022_100361
crossref_primary_10_1016_j_scitotenv_2024_176386
crossref_primary_10_1016_j_soilbio_2023_108989
crossref_primary_10_1016_j_jhazmat_2024_134294
crossref_primary_10_2139_ssrn_3989491
crossref_primary_10_1021_acs_jafc_4c04206
crossref_primary_10_1016_j_jhazmat_2023_132971
crossref_primary_10_1016_j_jhazmat_2024_135028
crossref_primary_10_1016_j_seh_2023_100002
crossref_primary_10_1016_j_chemosphere_2022_136042
crossref_primary_10_3390_app14114643
crossref_primary_10_1111_plb_13612
crossref_primary_10_1039_D4VA00311J
crossref_primary_10_1021_acs_est_2c06258
crossref_primary_10_1016_j_scitotenv_2025_178703
crossref_primary_10_1016_j_watres_2023_120581
crossref_primary_10_3390_su141912872
crossref_primary_10_1016_j_envres_2024_119012
crossref_primary_10_1016_j_aquatox_2023_106771
crossref_primary_10_1186_s40538_021_00269_w
crossref_primary_10_1016_j_jhazmat_2024_136379
crossref_primary_10_1016_j_jhazmat_2025_137889
crossref_primary_10_1016_j_envres_2025_120782
crossref_primary_10_1016_j_scitotenv_2022_158222
crossref_primary_10_1016_j_chemosphere_2023_138504
crossref_primary_10_1016_j_scitotenv_2022_157016
crossref_primary_10_1007_s11270_024_07033_4
crossref_primary_10_1186_s13765_024_00959_7
crossref_primary_10_1016_j_scitotenv_2023_167352
crossref_primary_10_1016_j_chemosphere_2024_141300
crossref_primary_10_3390_polym14142801
crossref_primary_10_1016_j_biteb_2024_101989
crossref_primary_10_1016_j_scitotenv_2023_164112
crossref_primary_10_1016_j_jclepro_2023_136979
crossref_primary_10_1016_j_jhazmat_2022_130102
crossref_primary_10_1016_j_jhazmat_2023_130868
crossref_primary_10_1007_s10661_024_12721_z
crossref_primary_10_1016_j_apsoil_2024_105651
crossref_primary_10_1016_j_scitotenv_2021_151960
crossref_primary_10_1016_j_geoderma_2022_116083
crossref_primary_10_1016_j_scitotenv_2024_174328
crossref_primary_10_3389_fpls_2024_1411073
crossref_primary_10_1016_j_jece_2024_114582
crossref_primary_10_1016_j_envpol_2023_121092
crossref_primary_10_1016_j_still_2021_105260
crossref_primary_10_1016_j_apsoil_2025_105911
crossref_primary_10_3390_agriculture15050565
crossref_primary_10_1016_j_cej_2024_153681
crossref_primary_10_1038_s41396_021_01103_9
crossref_primary_10_1016_j_gsd_2023_100962
crossref_primary_10_1016_j_soilbio_2023_108940
crossref_primary_10_1021_acs_est_3c02133
crossref_primary_10_1166_jbmb_2023_2294
crossref_primary_10_1007_s00128_022_03659_4
crossref_primary_10_3390_su16229749
crossref_primary_10_1016_j_envpol_2023_123061
crossref_primary_10_1111_gcb_17415
crossref_primary_10_1016_j_envpol_2022_119718
crossref_primary_10_3389_fpls_2023_1283852
crossref_primary_10_1021_acs_estlett_2c00585
crossref_primary_10_1039_D3GC03214K
crossref_primary_10_1007_s11356_024_34491_4
crossref_primary_10_1016_j_fcr_2023_108854
crossref_primary_10_1016_j_scitotenv_2022_158892
crossref_primary_10_1016_j_jhazmat_2022_128353
crossref_primary_10_1016_j_csbj_2022_03_041
crossref_primary_10_1016_j_jhazmat_2022_129218
crossref_primary_10_1016_j_envpol_2022_119608
crossref_primary_10_1016_j_jhazmat_2024_134152
crossref_primary_10_1016_j_jhazmat_2025_137841
crossref_primary_10_1016_j_jhazmat_2024_134032
crossref_primary_10_1128_aem_00721_22
crossref_primary_10_1007_s11270_022_05837_w
crossref_primary_10_1016_j_envint_2022_107244
crossref_primary_10_1016_j_scitotenv_2024_176658
crossref_primary_10_1016_j_jhazmat_2024_134581
crossref_primary_10_1016_j_jhazmat_2024_135550
crossref_primary_10_3389_fmicb_2024_1513890
crossref_primary_10_1021_acs_est_3c07850
crossref_primary_10_1016_j_soilbio_2022_108850
crossref_primary_10_1007_s11270_024_07297_w
crossref_primary_10_1016_j_soilbio_2025_109781
crossref_primary_10_1111_gcbb_12990
crossref_primary_10_1016_j_jhazmat_2023_130825
crossref_primary_10_1016_j_jclepro_2021_127816
crossref_primary_10_1016_j_scitotenv_2024_177755
crossref_primary_10_1016_j_jhazmat_2022_128589
crossref_primary_10_1042_ETLS20220015
crossref_primary_10_3390_toxics12070473
crossref_primary_10_1038_s41598_024_54838_8
crossref_primary_10_1016_j_scitotenv_2024_174484
crossref_primary_10_1007_s42452_022_05206_6
crossref_primary_10_3390_ijerph22010045
crossref_primary_10_1002_jeq2_20264
crossref_primary_10_1016_j_jhazmat_2024_134578
crossref_primary_10_1007_s13762_024_06061_1
crossref_primary_10_1016_j_soisec_2024_100151
crossref_primary_10_1016_j_envres_2021_111938
crossref_primary_10_1016_j_scitotenv_2022_157635
crossref_primary_10_1111_1365_2664_14777
crossref_primary_10_1016_j_scitotenv_2023_163293
crossref_primary_10_3390_nano11112935
crossref_primary_10_1016_j_resconrec_2024_107754
crossref_primary_10_1016_j_scitotenv_2024_176875
crossref_primary_10_1016_j_trac_2023_117391
crossref_primary_10_1016_j_apsoil_2023_105269
crossref_primary_10_1016_j_apsoil_2024_105302
crossref_primary_10_2139_ssrn_3987683
crossref_primary_10_1016_j_jclepro_2024_142527
crossref_primary_10_1016_j_ecoenv_2023_115129
crossref_primary_10_1016_j_ecz_2024_100008
crossref_primary_10_1016_j_jhazmat_2024_136423
crossref_primary_10_1021_acs_est_3c06864
crossref_primary_10_1016_j_jhazmat_2021_127062
crossref_primary_10_1016_j_chemosphere_2024_142107
crossref_primary_10_1016_j_scitotenv_2021_147444
crossref_primary_10_1016_j_scitotenv_2024_174466
crossref_primary_10_1016_j_scitotenv_2024_176522
crossref_primary_10_1016_j_envpol_2024_124367
crossref_primary_10_1016_j_envpol_2025_125871
crossref_primary_10_1016_j_jhazmat_2025_137803
crossref_primary_10_1016_j_jhazmat_2024_136533
crossref_primary_10_1016_j_jhazmat_2024_135443
crossref_primary_10_1016_j_envpol_2022_119892
crossref_primary_10_1016_j_chemosphere_2022_135573
crossref_primary_10_1016_j_jhazmat_2022_129770
crossref_primary_10_1016_j_jhazmat_2022_129507
crossref_primary_10_1016_j_eti_2022_102408
crossref_primary_10_1007_s00449_022_02715_x
crossref_primary_10_1016_j_jhazmat_2023_133290
crossref_primary_10_1080_00380768_2024_2439393
crossref_primary_10_1016_j_jenvman_2025_124925
crossref_primary_10_1016_j_scitotenv_2023_166935
crossref_primary_10_1016_j_jhazmat_2024_133459
crossref_primary_10_1021_acs_est_3c04023
crossref_primary_10_3390_plants13010083
crossref_primary_10_1016_j_scitotenv_2022_157820
crossref_primary_10_1111_geb_13672
crossref_primary_10_1016_j_jhazmat_2021_127282
crossref_primary_10_1016_j_jhazmat_2022_128891
crossref_primary_10_1016_j_jhazmat_2024_136727
crossref_primary_10_3389_fenvs_2023_1241939
crossref_primary_10_1016_j_jhazmat_2021_128126
crossref_primary_10_1016_j_jenvman_2024_122212
crossref_primary_10_1186_s40538_022_00345_9
crossref_primary_10_1016_j_indcrop_2024_120437
crossref_primary_10_48130_VR_2023_0018
crossref_primary_10_1016_j_envres_2025_121098
crossref_primary_10_1016_j_jhazmat_2024_135867
crossref_primary_10_1016_j_catena_2023_107381
crossref_primary_10_1007_s42773_024_00413_3
crossref_primary_10_1016_j_scitotenv_2022_155619
crossref_primary_10_1093_ismejo_wrad017
crossref_primary_10_1016_j_scitotenv_2024_172874
crossref_primary_10_2139_ssrn_4075806
crossref_primary_10_1016_j_envadv_2024_100494
crossref_primary_10_1016_j_jenvman_2022_115473
crossref_primary_10_1007_s42729_024_01752_7
crossref_primary_10_1360_SST_2024_0057
crossref_primary_10_1016_j_fcr_2024_109706
crossref_primary_10_1016_j_jhazmat_2023_133279
crossref_primary_10_3390_toxics13030143
crossref_primary_10_3390_plants13243483
crossref_primary_10_33409_tbbbd_997807
crossref_primary_10_1016_j_soilbio_2024_109480
crossref_primary_10_1016_j_envres_2025_120903
crossref_primary_10_1016_j_envres_2024_119979
crossref_primary_10_3389_fmicb_2023_1258606
crossref_primary_10_1021_acs_est_4c09242
crossref_primary_10_1016_j_eng_2023_02_007
crossref_primary_10_1016_j_envpol_2022_120556
crossref_primary_10_19047_0136_1694_2023_115_87_106
crossref_primary_10_1016_j_envpol_2022_120796
crossref_primary_10_1016_j_jhazmat_2024_135763
crossref_primary_10_1016_j_jhazmat_2024_136733
crossref_primary_10_1016_j_watres_2022_118733
crossref_primary_10_1073_pnas_2413245121
crossref_primary_10_1016_j_ecoenv_2024_116380
crossref_primary_10_1016_j_jhazmat_2022_129610
crossref_primary_10_1016_j_jhazmat_2024_134439
crossref_primary_10_1016_j_jhazmat_2024_135528
crossref_primary_10_3390_agriculture12101553
crossref_primary_10_1016_j_jhazmat_2025_137173
crossref_primary_10_1016_j_chemosphere_2023_139262
crossref_primary_10_1016_j_apsoil_2023_105202
crossref_primary_10_1016_j_envint_2025_109309
crossref_primary_10_1016_j_jhazmat_2022_129700
crossref_primary_10_1016_j_soilbio_2024_109425
crossref_primary_10_1016_j_fmre_2022_08_009
crossref_primary_10_1016_j_jhazmat_2023_131076
crossref_primary_10_1016_j_scitotenv_2023_166855
crossref_primary_10_1016_j_geoderma_2023_116679
crossref_primary_10_1016_j_jhazmat_2021_127364
crossref_primary_10_1016_j_polymdegradstab_2025_111182
crossref_primary_10_1016_j_soilbio_2023_109264
crossref_primary_10_1016_j_envres_2024_119806
crossref_primary_10_1016_j_scitotenv_2024_175614
crossref_primary_10_1080_15226514_2023_2275152
crossref_primary_10_1016_j_jhazmat_2022_129959
crossref_primary_10_1016_j_cej_2023_144003
crossref_primary_10_1016_j_ecoenv_2024_116683
crossref_primary_10_1016_j_scitotenv_2024_171252
crossref_primary_10_1016_j_jhazmat_2022_128503
crossref_primary_10_1016_j_apsoil_2024_105851
crossref_primary_10_1038_s41598_023_37438_w
crossref_primary_10_1016_j_jclepro_2024_141845
crossref_primary_10_1039_D2EW00423B
crossref_primary_10_1016_j_scitotenv_2023_166959
crossref_primary_10_1007_s00128_021_03429_8
crossref_primary_10_1016_j_jhazmat_2024_134735
crossref_primary_10_1007_s00374_022_01638_9
crossref_primary_10_1016_j_soilbio_2024_109653
crossref_primary_10_1007_s11356_024_33847_0
crossref_primary_10_1007_s10653_025_02416_w
crossref_primary_10_1016_j_chemosphere_2024_141880
crossref_primary_10_1128_aem_01161_24
crossref_primary_10_1016_j_envpol_2024_124197
crossref_primary_10_1016_j_scitotenv_2024_175940
crossref_primary_10_1016_j_watres_2025_123414
crossref_primary_10_1007_s11104_023_06287_x
crossref_primary_10_1016_j_chemosphere_2023_139280
crossref_primary_10_1007_s00374_022_01659_4
crossref_primary_10_1016_j_jhazmat_2023_132024
crossref_primary_10_1016_j_soilbio_2023_109006
crossref_primary_10_1111_sum_13055
crossref_primary_10_1016_j_jhazmat_2023_132142
crossref_primary_10_1016_j_jhazmat_2023_132269
crossref_primary_10_1016_j_jenvman_2023_117529
crossref_primary_10_1016_j_chemosphere_2024_141771
crossref_primary_10_1016_j_chemosphere_2024_141773
crossref_primary_10_3390_microplastics1010007
crossref_primary_10_1016_j_biortech_2022_128253
crossref_primary_10_1016_j_scitotenv_2024_173891
crossref_primary_10_1016_j_envres_2024_118960
crossref_primary_10_1016_j_scitotenv_2024_171350
crossref_primary_10_3389_fmicb_2021_785737
crossref_primary_10_1016_j_envpol_2022_120357
crossref_primary_10_1016_j_envpol_2023_122833
crossref_primary_10_1016_j_soilbio_2023_109257
crossref_primary_10_1016_j_envpol_2022_119374
crossref_primary_10_1007_s10661_022_10654_z
crossref_primary_10_1016_j_envres_2024_120558
crossref_primary_10_1016_j_apsoil_2022_104794
crossref_primary_10_1002_jpln_202200062
crossref_primary_10_1016_j_eti_2022_102487
crossref_primary_10_3390_toxics12120909
crossref_primary_10_1016_j_eehl_2023_07_004
crossref_primary_10_1016_j_agee_2022_108023
crossref_primary_10_1016_j_ecoenv_2023_114618
crossref_primary_10_1039_D4EN01197J
crossref_primary_10_1016_j_scitotenv_2023_161642
crossref_primary_10_1016_j_soilbio_2023_109105
crossref_primary_10_1016_j_scitotenv_2023_162854
crossref_primary_10_1016_j_jhazmat_2024_134702
crossref_primary_10_1093_etojnl_vgaf021
crossref_primary_10_1016_j_jhazmat_2022_128826
crossref_primary_10_1016_j_jclepro_2024_140835
crossref_primary_10_1016_j_envpol_2022_120183
crossref_primary_10_1016_j_ecoenv_2023_115807
crossref_primary_10_1016_j_ijbiomac_2023_124608
crossref_primary_10_1007_s42832_022_0138_2
crossref_primary_10_1016_j_scitotenv_2024_172933
crossref_primary_10_1021_acs_est_2c01970
crossref_primary_10_1016_j_jhazmat_2024_133726
crossref_primary_10_1016_j_apsoil_2022_104694
crossref_primary_10_1007_s41742_024_00588_4
crossref_primary_10_1016_j_scitotenv_2024_176273
crossref_primary_10_1007_s11104_022_05554_7
crossref_primary_10_1016_j_giant_2024_100288
crossref_primary_10_1002_ldr_5290
crossref_primary_10_1016_j_envpol_2022_119046
crossref_primary_10_1007_s10311_025_01823_w
crossref_primary_10_1016_j_jhazmat_2022_128801
crossref_primary_10_1016_j_heliyon_2023_e13296
crossref_primary_10_1016_j_jhazmat_2021_127531
crossref_primary_10_1186_s40068_024_00367_2
crossref_primary_10_1016_j_envint_2024_108781
crossref_primary_10_1016_j_envpol_2022_120167
crossref_primary_10_1016_j_envint_2024_108546
crossref_primary_10_1016_j_jenvman_2024_121429
crossref_primary_10_1080_20964129_2022_2133638
crossref_primary_10_1007_s11356_022_21474_6
crossref_primary_10_1016_j_soilbio_2023_109212
crossref_primary_10_3390_pr10102128
crossref_primary_10_1016_j_scitotenv_2024_172915
crossref_primary_10_1016_j_jclepro_2023_139535
crossref_primary_10_3390_microorganisms13020259
crossref_primary_10_1007_s00449_024_03059_4
crossref_primary_10_1007_s11356_023_29640_0
crossref_primary_10_1016_j_scienta_2024_113214
crossref_primary_10_1016_j_scitotenv_2023_169048
crossref_primary_10_1016_j_ecoenv_2024_117248
crossref_primary_10_1016_j_jhazmat_2025_137698
crossref_primary_10_1016_j_biortech_2022_128401
crossref_primary_10_1016_j_envres_2024_118673
crossref_primary_10_1016_j_jhazmat_2023_132326
crossref_primary_10_1016_j_jhazmat_2024_133934
crossref_primary_10_1016_j_trac_2022_116882
crossref_primary_10_3390_agriculture14010157
crossref_primary_10_1007_s10532_024_10092_3
crossref_primary_10_1016_j_scitotenv_2022_161207
crossref_primary_10_1016_j_envpol_2023_121571
crossref_primary_10_1002_advs_202409585
crossref_primary_10_1016_j_apsoil_2022_104649
crossref_primary_10_1016_j_scitotenv_2023_162885
crossref_primary_10_1002_ldr_5026
crossref_primary_10_1007_s11368_023_03479_x
crossref_primary_10_1016_j_jhazmat_2023_131483
crossref_primary_10_1016_j_jhazmat_2021_127750
crossref_primary_10_1016_j_scitotenv_2022_154848
crossref_primary_10_1016_j_envint_2023_108035
crossref_primary_10_1016_j_envint_2023_108393
crossref_primary_10_1016_j_envres_2024_118574
crossref_primary_10_1007_s00128_022_03566_8
crossref_primary_10_3390_agriculture14050734
crossref_primary_10_1016_j_scitotenv_2023_161420
crossref_primary_10_1021_acssuschemeng_1c08672
crossref_primary_10_2139_ssrn_4142257
crossref_primary_10_1016_j_scitotenv_2024_172949
crossref_primary_10_1016_j_scitotenv_2024_170541
crossref_primary_10_1016_j_scitotenv_2024_173930
crossref_primary_10_48130_CAS_2021_0008
crossref_primary_10_1016_j_chemosphere_2023_140420
crossref_primary_10_1016_j_scitotenv_2023_163823
crossref_primary_10_1016_j_jhazmat_2023_131341
crossref_primary_10_1002_ldr_5245
crossref_primary_10_1007_s13762_024_05656_y
crossref_primary_10_1016_j_jhazmat_2023_132318
crossref_primary_10_4236_as_2024_1510059
crossref_primary_10_1016_j_mtnano_2023_100438
Cites_doi 10.1002/rcm.8407
10.1093/femsec/fix006
10.4067/S0718-58392014000100015
10.1146/annurev.micro.56.012302.160838
10.3390/polym8070262
10.1021/es302011r
10.1021/acs.est.9b01339
10.1016/j.geoderma.2019.04.023
10.1007/s10533-006-9065-z
10.1016/j.soilbio.2016.02.020
10.1016/j.soilbio.2015.10.019
10.1016/j.soilbio.2017.05.006
10.1016/j.soilbio.2020.107852
10.1371/journal.pone.0157778
10.3144/expresspolymlett.2014.82
10.3390/polym10070732
10.1093/femsle/fnv165
10.1007/s11104-009-9925-0
10.1016/j.scitotenv.2016.01.153
10.1016/j.soilbio.2011.03.017
10.1021/es9014458
10.1007/s11104-019-03995-1
10.1016/j.scitotenv.2018.07.229
10.1111/gcbb.12485
10.1021/acs.est.9b02293
10.1002/aic.11274
10.1016/j.jhazmat.2019.121711
10.1186/s12866-014-0285-4
10.1126/science.aar7734
10.1016/j.envpol.2019.112983
10.1016/j.soilbio.2020.108069
10.1021/acs.est.9b03304
10.1128/AEM.00062-07
10.1021/acs.est.6b00816
10.1093/nar/gks1219
10.1002/anie.201805766
10.1016/j.soilbio.2019.107641
10.1021/es401288x
10.1111/j.1574-6968.1992.tb05854.x
10.1007/s00253-018-9153-8
10.1021/acs.est.8b05208
10.1128/AEM.02224-17
10.1016/j.soilbio.2010.06.002
10.1016/j.soilbio.2020.107926
10.1016/0038-0717(93)90124-T
10.1038/ismej.2011.5
10.1093/bioinformatics/btr381
10.1016/j.scitotenv.2019.134722
10.1016/j.chemosphere.2008.06.064
10.1126/sciadv.aap8060
10.1078/0176-1617-00525
10.1093/femsec/fiv044
10.1186/s12302-015-0069-y
10.1016/j.soilbio.2015.01.025
10.1016/j.soilbio.2020.107872
10.1007/s00248-016-0852-3
10.1016/j.apsoil.2016.07.021
10.1016/S0038-0717(00)00114-0
10.1016/j.scitotenv.2020.139393
10.1016/S0038-0717(01)00079-7
10.1016/j.soilbio.2009.08.013
10.1111/j.1365-2486.2009.02006.x
10.1021/acs.est.6b06042
10.1016/j.jclepro.2020.121179
10.1128/JB.186.21.7243-7253.2004
10.1126/science.1260352
10.1016/j.scitotenv.2019.135634
10.1007/s00374-017-1194-0
10.1126/science.297.5582.803
10.1007/BF01457653
10.1038/ismej.2013.104
10.1016/j.soilbio.2010.04.003
10.1016/S0169-409X(01)00218-6
10.1016/j.soilbio.2010.08.018
ContentType Journal Article
Copyright 2021
Copyright_xml – notice: 2021
DBID AAYXX
CITATION
7S9
L.6
DOI 10.1016/j.soilbio.2021.108211
DatabaseName CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList AGRICOLA

DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
Agriculture
EISSN 1879-3428
ExternalDocumentID 10_1016_j_soilbio_2021_108211
S0038071721000833
GroupedDBID --K
--M
-~X
.~1
0R~
123
1B1
1RT
1~.
1~5
4.4
457
4G.
53G
5VS
7-5
71M
8P~
9JM
AABNK
AABVA
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALCJ
AALRI
AAOAW
AAQFI
AAQXK
AATLK
AAXUO
ABEFU
ABFNM
ABFYP
ABGRD
ABGSF
ABJNI
ABLST
ABMAC
ABUDA
ABXDB
ABYKQ
ACDAQ
ACGFS
ACIUM
ACRLP
ADBBV
ADEZE
ADMUD
ADQTV
ADUVX
AEBSH
AEHWI
AEKER
AENEX
AEQOU
AFKWA
AFTJW
AFXIZ
AGHFR
AGRDE
AGUBO
AGYEJ
AHEUO
AHHHB
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
AKIFW
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLECG
BLXMC
CBWCG
CNWQP
CS3
DOVZS
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HLV
HLW
HMA
HMC
HMG
HVGLF
HZ~
IHE
J1W
K-O
KCYFY
KOM
LW9
LX3
LY3
LY9
M41
MO0
N9A
NHB
O-L
O9-
OAUVE
OHT
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SAB
SBG
SCU
SDF
SDG
SDP
SEN
SEP
SES
SEW
SIN
SPCBC
SSA
SSJ
SSU
SSZ
T5K
TN5
TWZ
WUQ
XPP
Y6R
ZMT
~02
~G-
~KM
AAHBH
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEGFY
AEIPS
AEUPX
AFJKZ
AFPUW
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
7S9
EFKBS
L.6
ID FETCH-LOGICAL-c408t-8b19971e04da3379d80be4f18cf7d72dab0c6bf324c9cbf0ef2ec5cfe28d04003
IEDL.DBID .~1
ISSN 0038-0717
IngestDate Tue Aug 05 10:42:52 EDT 2025
Tue Jul 01 03:20:04 EDT 2025
Thu Apr 24 23:02:03 EDT 2025
Fri Feb 23 02:43:48 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Soil organic matter
Microbial growth
Enzyme activity
Microplastic pollution
C turnover
Sequencing
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c408t-8b19971e04da3379d80be4f18cf7d72dab0c6bf324c9cbf0ef2ec5cfe28d04003
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-1482-4209
PQID 2551990782
PQPubID 24069
ParticipantIDs proquest_miscellaneous_2551990782
crossref_primary_10_1016_j_soilbio_2021_108211
crossref_citationtrail_10_1016_j_soilbio_2021_108211
elsevier_sciencedirect_doi_10_1016_j_soilbio_2021_108211
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate May 2021
2021-05-00
20210501
PublicationDateYYYYMMDD 2021-05-01
PublicationDate_xml – month: 05
  year: 2021
  text: May 2021
PublicationDecade 2020
PublicationTitle Soil biology & biochemistry
PublicationYear 2021
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Zimmermann, Dierkes, Ternes, Volker, Wagner (bib76) 2019; 53
Ho, Di Lonardo, Bodelier (bib80) 2017; 93
Martinez-Tobon, Gul, Elias, Sauvageau (bib38) 2018; 102
Wang, Garrity, Tiedje, Cole (bib63) 2007; 73
Zettler, Mincer, Amaral-Zettler (bib74) 2013; 47
Jiang, Chen, Zheng (bib28) 2009; 43
Blagodatskaya, Blagodatsky, Dorodnikov, Kuzyakov (bib3) 2010; 16
Wen, Zang, Ma, Evans, Chadwick, Jones (bib65) 2019; 349
Rochman (bib54) 2018; 360
Razavi, Zarebanadkouki, Blagodatskaya, Kuzyakov (bib51) 2016; 96
Wen, Freeman, Ma, Evans, Chadwick, Zang, Jones (bib66) 2020; 262
Handrick, Reinhardt, Kimmig, Jendrossek (bib18) 2004; 186
Quast, Pruesse, Yilmaz, Gerken, Schweer, Yarza, Peplies, Glöckner (bib50) 2013; 41
Vargas-Gastelum, Romero-Olivares, Escalante, Rocha-Olivares, Brizuela, Riquelme (bib61) 2015; 91
Zhou, Zang, Loeppmann, Gube, Kuzyakov, Pausch (bib78) 2020; 140
Edgar, Haas, Clemente, Quince, Knight (bib10) 2011; 27
Volova, Prudnikova, Vinogradova, Syrvacheva, Shishatskaya (bib62) 2017; 73
German, Weintraub, Grandy, Lauber, Rinkes, Allison (bib15) 2011; 43
Nguyen, Guckert (bib44) 2001; 33
Qi, Ossowicki, Yang, Huerta Lwanga, Dini-Andreote, Geissen, Garbeva (bib49) 2020; 387
Sander (bib56) 2019; 53
Song, Razavi, Ludwig, Zamanian, Zang, Kuzyakov, Dippold, Gunina (bib59) 2020; 735
Steinmetz, Wollmann, Schaefer, Buchmann, David, Troger, Munoz, Fror, Schaumann (bib60) 2016; 550
Zang, Xiao, Wang, Ling, Wu, Ge, Kuzyakov (bib71) 2019; 445
Lopez-Hernandez, Lavelle, Niño (bib36) 1993; 25
Jan, Roberts, Tonheim, Jones (bib24) 2009; 41
Moorhead, Sinsabaugh, Hill, Weintraub (bib42) 2016; 93
Kuzyakov, Blagodatskaya (bib32) 2015; 83
Boots, Russell, Green (bib4) 2019; 53
Sintim, Flury (bib58) 2017; 51
Weithmann, Möller, Löder, Piehl, Laforsch, Freitag (bib64) 2018; 4
Zecchin, Mueller, Seifert, Stingl, Anantharaman, von Bergen, Cavalca, Pester (bib73) 2018; 84
Kuzyakov (bib31) 2010; 42
Rivera-Briso, Serrano-Aroca (bib53) 2018; 10
Zang, Zhou, Marshall, Chadwick, Wen, Jones (bib72) 2020; 148
Hoang, Maranguit, Kuzyakov, Razavi (bib20) 2020; 147
Jendrossek, Knoke, Habibian, Steinbüchel, Schlegel (bib26) 1993; 1
Zhang, Kuzyakov, Zang, Dippold, Shi, Spielvogel, Razavi (bib75) 2020
Zinn, Witholt, Egli (bib79) 2001; 253
Zang, Blagodatskaya, Wen, Xu, Kuzyakov (bib69) 2018; 10
Fei, Huang, Zhang, Tong, Wen, Xia, Wang, Luo, Barceló (bib11) 2020; 707
Liu, Razavi, Su, Maharjan, Zarebanadkouki, Blagodatskaya, Kuzyakov (bib34) 2017; 112
Zhou, Wen, Shi, Marshall, Kuzyakov, Blagodatskaya, Zang (bib77) 2020; 152
de Souza Machado, Lau, Kloas, Bergmann, Bachelier, Faltin, Becker, Görlich, Rillig (bib8) 2019; 53
Jambeck, Geyer, Wilcox, Siegler, Perryman, Andrady, Narayan, Law (bib23) 2015; 347
Jacquel, Lo, Wu, Wei, Wang (bib22) 2007; 53
Shen, Shaw (bib57) 2015; 362
Jenkins, Rushton, Lanyon, Whiteley, Waite, Brookes, Kemmitt, Evershed, O'Donnell (bib27) 2010; 42
Zang, Blagodatskaya, Wang, Xu, Kuzyakov (bib68) 2017; 53
Lammirato, Miltner, Wick, Kästner (bib33) 2010; 42
Bugnicourt, Cinelli, Lazzeri, Alvarez (bib5) 2014; 8
Duis, Coors (bib9) 2016; 28
Mason-Jones, Banfield, Dippold (bib37) 2019; 33
Xia, Zhang, Zeng, Feng, Weng, Lin (bib67) 2011; 5
Huang, Zhao, Wang, Zhang, Jia, Qin (bib21) 2019; 254
Haider, Völker, Kramm, Landfester, Wurm (bib17) 2019; 58
Rillig (bib52) 2012; 46
Jendrossek, Handrick (bib25) 2002; 56
Cleveland, Nemergut, Schmidt, Townsend (bib6) 2007; 82
Qi, Yang, Pelaez, Lwanga, Beriot, Gertsen, Garbeva, Geissen (bib48) 2018; 645
Allison, Weintraub, Gartner, Waldrop (bib1) 2011
Gross, Kalra (bib16) 2002; 297
Jones, Nguyen, Finlay (bib29) 2009; 32
Barnard, Osborne, Firestone (bib2) 2013; 7
Garrison, Murawski, Quirino (bib13) 2016; 8
Napathorn (bib43) 2014; 14
Lucas, Bienaime, Belloy, Queneudec, Silvestre, Nava-Saucedo (bib35) 2008; 73
Marx, Wood, Jarvis (bib40) 2001; 33
Matavulj, Molitoris (bib39) 1992; 103
Qi, Jones, Li, Liu, Yan (bib47) 2020; 703
Saarma, Tarkka, Itavaara, Fagerstedt (bib55) 2003; 160
Obruca, Sedlacek, Krzyzanek, Mravec, Hrubanova, Samek, Kucera, Benesova, Marova (bib45) 2016; 11
Zang, Wang, Kuzyakov (bib70) 2016; 108
Fuller, Gautam (bib12) 2016; 50
Kujur, Patel (bib30) 2013; 74
Sander (10.1016/j.soilbio.2021.108211_bib56) 2019; 53
Allison (10.1016/j.soilbio.2021.108211_bib1) 2011
Steinmetz (10.1016/j.soilbio.2021.108211_bib60) 2016; 550
Zecchin (10.1016/j.soilbio.2021.108211_bib73) 2018; 84
Vargas-Gastelum (10.1016/j.soilbio.2021.108211_bib61) 2015; 91
Napathorn (10.1016/j.soilbio.2021.108211_bib43) 2014; 14
Zang (10.1016/j.soilbio.2021.108211_bib68) 2017; 53
Kuzyakov (10.1016/j.soilbio.2021.108211_bib32) 2015; 83
Ho (10.1016/j.soilbio.2021.108211_bib80) 2017; 93
Gross (10.1016/j.soilbio.2021.108211_bib16) 2002; 297
Weithmann (10.1016/j.soilbio.2021.108211_bib64) 2018; 4
Huang (10.1016/j.soilbio.2021.108211_bib21) 2019; 254
Cleveland (10.1016/j.soilbio.2021.108211_bib6) 2007; 82
Jendrossek (10.1016/j.soilbio.2021.108211_bib25) 2002; 56
Saarma (10.1016/j.soilbio.2021.108211_bib55) 2003; 160
Obruca (10.1016/j.soilbio.2021.108211_bib45) 2016; 11
Wen (10.1016/j.soilbio.2021.108211_bib65) 2019; 349
Zettler (10.1016/j.soilbio.2021.108211_bib74) 2013; 47
Edgar (10.1016/j.soilbio.2021.108211_bib10) 2011; 27
Liu (10.1016/j.soilbio.2021.108211_bib34) 2017; 112
Razavi (10.1016/j.soilbio.2021.108211_bib51) 2016; 96
Volova (10.1016/j.soilbio.2021.108211_bib62) 2017; 73
Garrison (10.1016/j.soilbio.2021.108211_bib13) 2016; 8
Handrick (10.1016/j.soilbio.2021.108211_bib18) 2004; 186
Qi (10.1016/j.soilbio.2021.108211_bib49) 2020; 387
Wen (10.1016/j.soilbio.2021.108211_bib66) 2020; 262
Zhou (10.1016/j.soilbio.2021.108211_bib78) 2020; 140
Blagodatskaya (10.1016/j.soilbio.2021.108211_bib3) 2010; 16
Kuzyakov (10.1016/j.soilbio.2021.108211_bib31) 2010; 42
Haider (10.1016/j.soilbio.2021.108211_bib17) 2019; 58
Rochman (10.1016/j.soilbio.2021.108211_bib54) 2018; 360
Zhou (10.1016/j.soilbio.2021.108211_bib77) 2020; 152
Shen (10.1016/j.soilbio.2021.108211_bib57) 2015; 362
Matavulj (10.1016/j.soilbio.2021.108211_bib39) 1992; 103
Fuller (10.1016/j.soilbio.2021.108211_bib12) 2016; 50
Lucas (10.1016/j.soilbio.2021.108211_bib35) 2008; 73
Wang (10.1016/j.soilbio.2021.108211_bib63) 2007; 73
Barnard (10.1016/j.soilbio.2021.108211_bib2) 2013; 7
Rillig (10.1016/j.soilbio.2021.108211_bib52) 2012; 46
Xia (10.1016/j.soilbio.2021.108211_bib67) 2011; 5
Fei (10.1016/j.soilbio.2021.108211_bib11) 2020; 707
Marx (10.1016/j.soilbio.2021.108211_bib40) 2001; 33
Quast (10.1016/j.soilbio.2021.108211_bib50) 2013; 41
Boots (10.1016/j.soilbio.2021.108211_bib4) 2019; 53
Rivera-Briso (10.1016/j.soilbio.2021.108211_bib53) 2018; 10
Martinez-Tobon (10.1016/j.soilbio.2021.108211_bib38) 2018; 102
Zhang (10.1016/j.soilbio.2021.108211_bib75) 2020
Zimmermann (10.1016/j.soilbio.2021.108211_bib76) 2019; 53
Jan (10.1016/j.soilbio.2021.108211_bib24) 2009; 41
Qi (10.1016/j.soilbio.2021.108211_bib47) 2020; 703
Lammirato (10.1016/j.soilbio.2021.108211_bib33) 2010; 42
German (10.1016/j.soilbio.2021.108211_bib15) 2011; 43
Jiang (10.1016/j.soilbio.2021.108211_bib28) 2009; 43
Song (10.1016/j.soilbio.2021.108211_bib59) 2020; 735
Duis (10.1016/j.soilbio.2021.108211_bib9) 2016; 28
Mason-Jones (10.1016/j.soilbio.2021.108211_bib37) 2019; 33
Zang (10.1016/j.soilbio.2021.108211_bib69) 2018; 10
de Souza Machado (10.1016/j.soilbio.2021.108211_bib8) 2019; 53
Sintim (10.1016/j.soilbio.2021.108211_bib58) 2017; 51
Zang (10.1016/j.soilbio.2021.108211_bib70) 2016; 108
Hoang (10.1016/j.soilbio.2021.108211_bib20) 2020; 147
Jambeck (10.1016/j.soilbio.2021.108211_bib23) 2015; 347
Kujur (10.1016/j.soilbio.2021.108211_bib30) 2013; 74
Jenkins (10.1016/j.soilbio.2021.108211_bib27) 2010; 42
Zang (10.1016/j.soilbio.2021.108211_bib71) 2019; 445
Zang (10.1016/j.soilbio.2021.108211_bib72) 2020; 148
Jendrossek (10.1016/j.soilbio.2021.108211_bib26) 1993; 1
Nguyen (10.1016/j.soilbio.2021.108211_bib44) 2001; 33
Zinn (10.1016/j.soilbio.2021.108211_bib79) 2001; 253
Jones (10.1016/j.soilbio.2021.108211_bib29) 2009; 32
Jacquel (10.1016/j.soilbio.2021.108211_bib22) 2007; 53
Qi (10.1016/j.soilbio.2021.108211_bib48) 2018; 645
Bugnicourt (10.1016/j.soilbio.2021.108211_bib5) 2014; 8
Moorhead (10.1016/j.soilbio.2021.108211_bib42) 2016; 93
Lopez-Hernandez (10.1016/j.soilbio.2021.108211_bib36) 1993; 25
References_xml – volume: 93
  start-page: fix006
  year: 2017
  ident: bib80
  article-title: Revisiting life strategy concepts in environmental microbial ecology
  publication-title: FEMS Microbiology Ecology
– volume: 96
  start-page: 229
  year: 2016
  end-page: 237
  ident: bib51
  article-title: Rhizosphere shape of lentil and maize: spatial distribution of enzyme activities
  publication-title: Soil Biology and Biochemistry
– volume: 103
  start-page: 323
  year: 1992
  end-page: 331
  ident: bib39
  article-title: Fungal degradation of polyhydroxyalkanoates and a semiquantitative assay for screening their degradation by terrestrial fungi
  publication-title: FEMS Microbiology Letters
– volume: 253
  start-page: 5
  year: 2001
  end-page: 21
  ident: bib79
  article-title: Occurrence, synthesis and medical application of bacterial polyhydroxyalkanoate
  publication-title: Advanced Drug Delivery Reviews
– volume: 27
  start-page: 2194
  year: 2011
  end-page: 2200
  ident: bib10
  article-title: UCHIME improves sensitivity and speed of chimera detection
  publication-title: Bioinformatics
– volume: 93
  start-page: 1
  year: 2016
  end-page: 7
  ident: bib42
  article-title: Vector analysis of ecoenzyme activities reveal constraints on coupled C, N and P dynamics
  publication-title: Soil Biology and Biochemistry
– volume: 147
  start-page: 107852
  year: 2020
  ident: bib20
  article-title: Accelerated microbial activity, turnover and efficiency in the drilosphere is depth dependent
  publication-title: Soil Biology and Biochemistry
– volume: 33
  start-page: 53
  year: 2001
  end-page: 60
  ident: bib44
  article-title: Short-term utilisation of
  publication-title: Soil Biology and Biochemistry
– volume: 73
  start-page: 353
  year: 2017
  end-page: 367
  ident: bib62
  article-title: Microbial degradation of polyhydroxyalkanoates with different chemical compositions and their biodegradability
  publication-title: Microbial Ecology
– volume: 108
  start-page: 47
  year: 2016
  end-page: 53
  ident: bib70
  article-title: N fertilization decreases soil organic matter decomposition in the rhizosphere
  publication-title: Applied Soil Ecology
– volume: 25
  start-page: 789
  year: 1993
  end-page: 792
  ident: bib36
  article-title: Phosphorus transformations in two P-sorption contrasting tropical soils during transit through
  publication-title: Soil Biology and Biochemistry
– volume: 33
  start-page: 795
  year: 2019
  end-page: 802
  ident: bib37
  article-title: Compound-specific
  publication-title: Rapid Communications in Mass Spectrometry
– volume: 297
  start-page: 803
  year: 2002
  end-page: 807
  ident: bib16
  article-title: Biodegradable polymers for the environment
  publication-title: Science
– volume: 14
  start-page: 285
  year: 2014
  ident: bib43
  article-title: Biocompatibilities and biodegradation of poly(3-hydroxybutyrate-co-3-hydroxyvalerate)s produced by a model metabolic reaction-based system
  publication-title: BMC Microbiology
– volume: 160
  start-page: 1001
  year: 2003
  end-page: 1010
  ident: bib55
  article-title: Heat shock protein synthesis is induced by diethyl phthalate but not by di(2-ethylhexyl) phthalate in radish (
  publication-title: Journal of Plant Physiology
– volume: 73
  start-page: 5261
  year: 2007
  end-page: 5267
  ident: bib63
  article-title: Naive Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy
  publication-title: Applied and Environmental Microbiology
– volume: 645
  start-page: 1048
  year: 2018
  end-page: 1056
  ident: bib48
  article-title: Macro- and micro- plastics in soil-plant system: effects of plastic mulch film residues on wheat (
  publication-title: The Science of the Total Environment
– volume: 42
  year: 2010
  ident: bib27
  article-title: Taxon-specific responses of soil bacteria to the addition of low level C inputs
  publication-title: Soil Biology and Biochemistry
– volume: 8
  start-page: 791
  year: 2014
  end-page: 808
  ident: bib5
  article-title: Polyhydroxyalkanoate (PHA): review of synthesis, characteristics, processing and potential applications in packaging
  publication-title: Express Polymer Letters
– volume: 140
  start-page: 107641
  year: 2020
  ident: bib78
  article-title: Arbuscular mycorrhiza enhances rhizodeposition and reduces the rhizosphere priming effect on the decomposition of soil organic matter
  publication-title: Soil Biology and Biochemistry
– start-page: 229
  year: 2011
  end-page: 244
  ident: bib1
  article-title: Evolutionary economic principles as regulators of soil enzyme production and ecosystem function
  publication-title: Soil Enzymology
– volume: 735
  start-page: 139393
  year: 2020
  ident: bib59
  article-title: Combined biochar and nitrogen application stimulates enzyme activity and root plasticity
  publication-title: The Science of the Total Environment
– volume: 347
  start-page: 768
  year: 2015
  end-page: 771
  ident: bib23
  article-title: Plastic waste inputs from land into the ocean
  publication-title: Science
– volume: 703
  start-page: 134722
  year: 2020
  ident: bib47
  article-title: Behavior of microplastics and plastic film residues in the soil environment: a critical review
  publication-title: The Science of the Total Environment
– volume: 43
  start-page: 1387
  year: 2011
  end-page: 1397
  ident: bib15
  article-title: Optimization of hydrolytic and oxidative enzyme methods for ecosystem studies
  publication-title: Soil Biology and Biochemistry
– volume: 387
  start-page: 121711
  year: 2020
  ident: bib49
  article-title: Effects of plastic mulch film residues on wheat rhizosphere and soil properties
  publication-title: Journal of Hazardous Materials
– volume: 152
  start-page: 108069
  year: 2020
  ident: bib77
  article-title: Strong priming of soil organic matter induced by frequent input of labile carbon
  publication-title: Soil Biology and Biochemistry
– volume: 102
  start-page: 8049
  year: 2018
  end-page: 8067
  ident: bib38
  article-title: Polyhydroxybutyrate (PHB) biodegradation using bacterial strains with demonstrated and predicted PHB depolymerase activity
  publication-title: Applied Microbiology and Biotechnology
– volume: 254
  start-page: 112983
  year: 2019
  ident: bib21
  article-title: LDPE microplastics films alter microbial community composition and enzymatic activities in soil
  publication-title: Environmental Pollution
– volume: 82
  start-page: 229
  year: 2007
  end-page: 240
  ident: bib6
  article-title: Increases in soil respiration following labile carbon additions linked to rapid shifts in soil microbial community composition
  publication-title: Biogeochemistry
– volume: 262
  start-page: 121179
  year: 2020
  ident: bib66
  article-title: Raising the groundwater table in the non-growing season can reduce greenhouse gas emissions and maintain crop productivity in cultivated fen peats
  publication-title: Journal of Cleaner Production
– volume: 56
  start-page: 403
  year: 2002
  end-page: 432
  ident: bib25
  article-title: Microbial degradation of polyhydroxyalkanoates
  publication-title: Annual Review of Microbiology
– volume: 53
  start-page: 2304
  year: 2019
  end-page: 2315
  ident: bib56
  article-title: Biodegradation of polymeric mulch films in agricultural soils: concepts, knowledge gaps, and future research directions
  publication-title: Environmental Science and Technology
– volume: 43
  start-page: 7734
  year: 2009
  end-page: 7741
  ident: bib28
  article-title: Efficient polyhydroxyalkanoates production from a waste-activated sludge alkaline fermentation liquid by activated sludge submitted to the aerobic feeding and discharge process
  publication-title: Environmental Science and Technology
– volume: 112
  start-page: 100
  year: 2017
  end-page: 109
  ident: bib34
  article-title: Spatio-temporal patterns of enzyme activities after manure application reflect mechanisms of niche differentiation between plants and microorganisms
  publication-title: Soil Biology and Biochemistry
– volume: 362
  year: 2015
  ident: bib57
  article-title: A membrane transporter required for 3-hydroxybutyrate uptake during the early sporulation stage in
  publication-title: FEMS Microbiology Letters
– volume: 41
  start-page: 2272
  year: 2009
  end-page: 2282
  ident: bib24
  article-title: Protein breakdown represents a major bottleneck in nitrogen cycling in grassland soils
  publication-title: Soil Biology and Biochemistry
– volume: 7
  start-page: 2229
  year: 2013
  end-page: 2241
  ident: bib2
  article-title: Responses of soil bacterial and fungal communities to extreme desiccation and rewetting
  publication-title: The ISME Journal
– volume: 148
  start-page: 107926
  year: 2020
  ident: bib72
  article-title: Microplastics in the agroecosystem: are they an emerging threat to the plant-soil system?
  publication-title: Soil Biology and Biochemistry
– volume: 11
  year: 2016
  ident: bib45
  article-title: Accumulation of poly(3-hydroxybutyrate) helps bacterial cells to survive freezing
  publication-title: PloS One
– volume: 28
  start-page: 2
  year: 2016
  end-page: 8
  ident: bib9
  article-title: Microplastics in the aquatic and terrestrial environment: sources (with a specific focus on personal care products), fate and effects
  publication-title: Environmental Sciences Europe
– volume: 10
  start-page: 732
  year: 2018
  ident: bib53
  article-title: Poly(3-hydroxybutyrate-co-3-hydroxyvalerate): enhancement strategies for advanced applications
  publication-title: Polymers
– volume: 707
  start-page: 135634
  year: 2020
  ident: bib11
  article-title: Response of soil enzyme activities and bacterial communities to the accumulation of microplastics in an acid cropped soil
  publication-title: The Science of the Total Environment
– volume: 8
  start-page: 262
  year: 2016
  ident: bib13
  article-title: Bio-based polymers with potential for biodegradability
  publication-title: Polymers
– volume: 84
  year: 2018
  ident: bib73
  article-title: Rice paddy Nitrospirae carry and express genes related to sulfate respiration: proposal of the new genus “
  publication-title: Applied and Environmental Microbiology
– volume: 53
  start-page: 11467
  year: 2019
  end-page: 11477
  ident: bib76
  article-title: Benchmarking the in vitro toxicity and chemical composition of plastic consumer products
  publication-title: Environmental Science and Technology
– volume: 83
  start-page: 184
  year: 2015
  end-page: 199
  ident: bib32
  article-title: Microbial hotspots and hot moments in soil: concept & review
  publication-title: Soil Biology and Biochemistry
– volume: 53
  start-page: 2704
  year: 2007
  end-page: 2714
  ident: bib22
  article-title: Solubility of polyhydroxyalkanoates by experiment and thermodynamic correlations
  publication-title: AIChE Journal
– volume: 42
  start-page: 1363
  year: 2010
  end-page: 1371
  ident: bib31
  article-title: Priming effects: interactions between living and dead organic matter
  publication-title: Soil Biology and Biochemistry
– volume: 51
  start-page: 1068
  year: 2017
  end-page: 1069
  ident: bib58
  article-title: Is biodegradable plastic mulch the solution to agriculture's plastic problem?
  publication-title: Environmental Science and Technology
– volume: 4
  start-page: 8060
  year: 2018
  ident: bib64
  article-title: Organic fertilizer as a vehicle for the entry of microplastic into the environment
  publication-title: Science Advances
– volume: 74
  start-page: 96
  year: 2013
  end-page: 104
  ident: bib30
  article-title: Kinetics of soil enzyme activities under different ecosystems: an index of soil quality
  publication-title: Chilean Journal of Agricultural Research
– volume: 16
  start-page: 836
  year: 2010
  end-page: 848
  ident: bib3
  article-title: Elevated atmospheric CO
  publication-title: Global Change Biology
– volume: 50
  start-page: 5774
  year: 2016
  end-page: 5780
  ident: bib12
  article-title: Procedure for measuring microplastics using pressurized fluid extraction
  publication-title: Environmental Science and Technology
– volume: 73
  start-page: 429
  year: 2008
  end-page: 442
  ident: bib35
  article-title: Polymer biodegradation: mechanisms and estimation techniques
  publication-title: Chemosphere
– volume: 349
  start-page: 107
  year: 2019
  end-page: 113
  ident: bib65
  article-title: Is the ‘enzyme latch’ or ‘iron gate’ the key to protecting soil organic carbon in peatlands?
  publication-title: Geoderma
– volume: 5
  start-page: 1226
  year: 2011
  end-page: 1236
  ident: bib67
  article-title: Autotrophic growth of nitrifying community in an agricultural soil
  publication-title: The ISME Journal
– volume: 33
  start-page: 1633
  year: 2001
  end-page: 1640
  ident: bib40
  article-title: A fluorimetric assay for the study of enzyme diversity in soils
  publication-title: Soil Biology and Biochemistry
– volume: 91
  year: 2015
  ident: bib61
  article-title: Impact of seasonal changes on fungal diversity of a semi-arid ecosystem revealed by 454 pyrosequencing
  publication-title: FEMS Microbiology Ecology
– volume: 53
  start-page: 6044
  year: 2019
  end-page: 6052
  ident: bib8
  article-title: Microplastics can change soil properties and affect plant performance
  publication-title: Environmental Science and Technology
– volume: 1
  start-page: 53
  year: 1993
  end-page: 63
  ident: bib26
  article-title: Degradation of poly(3-hydroxybutyrate), PHB, by bacteria and purification of a novel PHB depolymerase from
  publication-title: Journal of Environmental Polymer Degradation
– volume: 445
  start-page: 113
  year: 2019
  end-page: 123
  ident: bib71
  article-title: Allocation of assimilated carbon in paddies depending on rice age, chase period and N fertilization: experiment with
  publication-title: Plant and Soil
– volume: 53
  start-page: 11496
  year: 2019
  end-page: 11506
  ident: bib4
  article-title: Effects of microplastics in soil ecosystems: above and below ground
  publication-title: Environmental Science and Technology
– volume: 46
  start-page: 6453
  year: 2012
  end-page: 6454
  ident: bib52
  article-title: Microplastic in terrestrial ecosystems and the soil?
  publication-title: Environmental Science and Technology
– volume: 58
  start-page: 50
  year: 2019
  end-page: 62
  ident: bib17
  article-title: Plastics of the Future? The impact of biodegradable polymers on the environment and on society
  publication-title: Angewandte Chemie
– volume: 32
  start-page: 5
  year: 2009
  end-page: 33
  ident: bib29
  article-title: Carbon flow in the rhizosphere: carbon trading at the soil-root interface
  publication-title: Plant and Soil
– volume: 550
  start-page: 690
  year: 2016
  end-page: 705
  ident: bib60
  article-title: Plastic mulching in agriculture. Trading short-term agronomic benefits for -term soil degradation?
  publication-title: The Science of the Total Environment
– volume: 53
  start-page: 419
  year: 2017
  end-page: 429
  ident: bib68
  article-title: Nitrogen fertilization increases rhizodeposit incorporation into microbial biomass and reduces soil organic matter losses
  publication-title: Biology and Fertility of Soils
– volume: 42
  start-page: 2203
  year: 2010
  end-page: 2210
  ident: bib33
  article-title: Hydrolysis of cellobiose by β-glucosidase in the presence of soil minerals - interactions at solid - liquid interfaces and effects on enzyme activity levels
  publication-title: Soil Biology and Biochemistry
– volume: 360
  start-page: 28
  year: 2018
  end-page: 29
  ident: bib54
  article-title: Microplastics research-from sink to source
  publication-title: Science
– start-page: 107872
  year: 2020
  ident: bib75
  article-title: Rhizosphere hotspots: root hairs and warming control microbial efficiency, carbon utilization and energy production
  publication-title: Soil Biology and Biochemistry
– volume: 41
  start-page: 590
  year: 2013
  end-page: 596
  ident: bib50
  article-title: The SILVA ribosomal RNA gene database project: improved data processing and web-based tools
  publication-title: Nucleic Acids Research
– volume: 47
  start-page: 7137
  year: 2013
  end-page: 7146
  ident: bib74
  article-title: Life in the “plastisphere”: microbial communities on plastic marine debris
  publication-title: Environmental Science and Technology
– volume: 186
  start-page: 7243
  year: 2004
  end-page: 7253
  ident: bib18
  article-title: The “intracellular” poly(3-hydroxybutyrate) (PHB) depolymerase of
  publication-title: Journal of Bacteriology
– volume: 10
  start-page: 262
  year: 2018
  end-page: 271
  ident: bib69
  article-title: Carbon sequestration and turnover in soil under the energy crop Miscanthus: repeated
  publication-title: Global Change Biology Bioenergy
– volume: 33
  start-page: 795
  year: 2019
  ident: 10.1016/j.soilbio.2021.108211_bib37
  article-title: Compound-specific 13C stable isotope probing confirms synthesis of polyhydroxybutyrate by soil bacteria
  publication-title: Rapid Communications in Mass Spectrometry
  doi: 10.1002/rcm.8407
– start-page: 229
  year: 2011
  ident: 10.1016/j.soilbio.2021.108211_bib1
  article-title: Evolutionary economic principles as regulators of soil enzyme production and ecosystem function
– volume: 93
  start-page: fix006
  year: 2017
  ident: 10.1016/j.soilbio.2021.108211_bib80
  article-title: Revisiting life strategy concepts in environmental microbial ecology
  publication-title: FEMS Microbiology Ecology
  doi: 10.1093/femsec/fix006
– volume: 74
  start-page: 96
  year: 2013
  ident: 10.1016/j.soilbio.2021.108211_bib30
  article-title: Kinetics of soil enzyme activities under different ecosystems: an index of soil quality
  publication-title: Chilean Journal of Agricultural Research
  doi: 10.4067/S0718-58392014000100015
– volume: 56
  start-page: 403
  year: 2002
  ident: 10.1016/j.soilbio.2021.108211_bib25
  article-title: Microbial degradation of polyhydroxyalkanoates
  publication-title: Annual Review of Microbiology
  doi: 10.1146/annurev.micro.56.012302.160838
– volume: 8
  start-page: 262
  year: 2016
  ident: 10.1016/j.soilbio.2021.108211_bib13
  article-title: Bio-based polymers with potential for biodegradability
  publication-title: Polymers
  doi: 10.3390/polym8070262
– volume: 46
  start-page: 6453
  year: 2012
  ident: 10.1016/j.soilbio.2021.108211_bib52
  article-title: Microplastic in terrestrial ecosystems and the soil?
  publication-title: Environmental Science and Technology
  doi: 10.1021/es302011r
– volume: 53
  start-page: 6044
  year: 2019
  ident: 10.1016/j.soilbio.2021.108211_bib8
  article-title: Microplastics can change soil properties and affect plant performance
  publication-title: Environmental Science and Technology
  doi: 10.1021/acs.est.9b01339
– volume: 349
  start-page: 107
  year: 2019
  ident: 10.1016/j.soilbio.2021.108211_bib65
  article-title: Is the ‘enzyme latch’ or ‘iron gate’ the key to protecting soil organic carbon in peatlands?
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2019.04.023
– volume: 82
  start-page: 229
  year: 2007
  ident: 10.1016/j.soilbio.2021.108211_bib6
  article-title: Increases in soil respiration following labile carbon additions linked to rapid shifts in soil microbial community composition
  publication-title: Biogeochemistry
  doi: 10.1007/s10533-006-9065-z
– volume: 96
  start-page: 229
  year: 2016
  ident: 10.1016/j.soilbio.2021.108211_bib51
  article-title: Rhizosphere shape of lentil and maize: spatial distribution of enzyme activities
  publication-title: Soil Biology and Biochemistry
  doi: 10.1016/j.soilbio.2016.02.020
– volume: 93
  start-page: 1
  year: 2016
  ident: 10.1016/j.soilbio.2021.108211_bib42
  article-title: Vector analysis of ecoenzyme activities reveal constraints on coupled C, N and P dynamics
  publication-title: Soil Biology and Biochemistry
  doi: 10.1016/j.soilbio.2015.10.019
– volume: 112
  start-page: 100
  year: 2017
  ident: 10.1016/j.soilbio.2021.108211_bib34
  article-title: Spatio-temporal patterns of enzyme activities after manure application reflect mechanisms of niche differentiation between plants and microorganisms
  publication-title: Soil Biology and Biochemistry
  doi: 10.1016/j.soilbio.2017.05.006
– volume: 147
  start-page: 107852
  year: 2020
  ident: 10.1016/j.soilbio.2021.108211_bib20
  article-title: Accelerated microbial activity, turnover and efficiency in the drilosphere is depth dependent
  publication-title: Soil Biology and Biochemistry
  doi: 10.1016/j.soilbio.2020.107852
– volume: 11
  year: 2016
  ident: 10.1016/j.soilbio.2021.108211_bib45
  article-title: Accumulation of poly(3-hydroxybutyrate) helps bacterial cells to survive freezing
  publication-title: PloS One
  doi: 10.1371/journal.pone.0157778
– volume: 8
  start-page: 791
  year: 2014
  ident: 10.1016/j.soilbio.2021.108211_bib5
  article-title: Polyhydroxyalkanoate (PHA): review of synthesis, characteristics, processing and potential applications in packaging
  publication-title: Express Polymer Letters
  doi: 10.3144/expresspolymlett.2014.82
– volume: 10
  start-page: 732
  year: 2018
  ident: 10.1016/j.soilbio.2021.108211_bib53
  article-title: Poly(3-hydroxybutyrate-co-3-hydroxyvalerate): enhancement strategies for advanced applications
  publication-title: Polymers
  doi: 10.3390/polym10070732
– volume: 362
  year: 2015
  ident: 10.1016/j.soilbio.2021.108211_bib57
  article-title: A membrane transporter required for 3-hydroxybutyrate uptake during the early sporulation stage in Bacillus subtilis
  publication-title: FEMS Microbiology Letters
  doi: 10.1093/femsle/fnv165
– volume: 32
  start-page: 5
  year: 2009
  ident: 10.1016/j.soilbio.2021.108211_bib29
  article-title: Carbon flow in the rhizosphere: carbon trading at the soil-root interface
  publication-title: Plant and Soil
  doi: 10.1007/s11104-009-9925-0
– volume: 550
  start-page: 690
  year: 2016
  ident: 10.1016/j.soilbio.2021.108211_bib60
  article-title: Plastic mulching in agriculture. Trading short-term agronomic benefits for -term soil degradation?
  publication-title: The Science of the Total Environment
  doi: 10.1016/j.scitotenv.2016.01.153
– volume: 43
  start-page: 1387
  year: 2011
  ident: 10.1016/j.soilbio.2021.108211_bib15
  article-title: Optimization of hydrolytic and oxidative enzyme methods for ecosystem studies
  publication-title: Soil Biology and Biochemistry
  doi: 10.1016/j.soilbio.2011.03.017
– volume: 43
  start-page: 7734
  year: 2009
  ident: 10.1016/j.soilbio.2021.108211_bib28
  article-title: Efficient polyhydroxyalkanoates production from a waste-activated sludge alkaline fermentation liquid by activated sludge submitted to the aerobic feeding and discharge process
  publication-title: Environmental Science and Technology
  doi: 10.1021/es9014458
– volume: 445
  start-page: 113
  year: 2019
  ident: 10.1016/j.soilbio.2021.108211_bib71
  article-title: Allocation of assimilated carbon in paddies depending on rice age, chase period and N fertilization: experiment with 13CO2 labelling and literature synthesis
  publication-title: Plant and Soil
  doi: 10.1007/s11104-019-03995-1
– volume: 645
  start-page: 1048
  year: 2018
  ident: 10.1016/j.soilbio.2021.108211_bib48
  article-title: Macro- and micro- plastics in soil-plant system: effects of plastic mulch film residues on wheat (Triticum aestivum) growth
  publication-title: The Science of the Total Environment
  doi: 10.1016/j.scitotenv.2018.07.229
– volume: 10
  start-page: 262
  year: 2018
  ident: 10.1016/j.soilbio.2021.108211_bib69
  article-title: Carbon sequestration and turnover in soil under the energy crop Miscanthus: repeated 13C natural abundance approach and literature synthesis
  publication-title: Global Change Biology Bioenergy
  doi: 10.1111/gcbb.12485
– volume: 53
  start-page: 11467
  year: 2019
  ident: 10.1016/j.soilbio.2021.108211_bib76
  article-title: Benchmarking the in vitro toxicity and chemical composition of plastic consumer products
  publication-title: Environmental Science and Technology
  doi: 10.1021/acs.est.9b02293
– volume: 53
  start-page: 2704
  year: 2007
  ident: 10.1016/j.soilbio.2021.108211_bib22
  article-title: Solubility of polyhydroxyalkanoates by experiment and thermodynamic correlations
  publication-title: AIChE Journal
  doi: 10.1002/aic.11274
– volume: 387
  start-page: 121711
  year: 2020
  ident: 10.1016/j.soilbio.2021.108211_bib49
  article-title: Effects of plastic mulch film residues on wheat rhizosphere and soil properties
  publication-title: Journal of Hazardous Materials
  doi: 10.1016/j.jhazmat.2019.121711
– volume: 14
  start-page: 285
  year: 2014
  ident: 10.1016/j.soilbio.2021.108211_bib43
  article-title: Biocompatibilities and biodegradation of poly(3-hydroxybutyrate-co-3-hydroxyvalerate)s produced by a model metabolic reaction-based system
  publication-title: BMC Microbiology
  doi: 10.1186/s12866-014-0285-4
– volume: 360
  start-page: 28
  year: 2018
  ident: 10.1016/j.soilbio.2021.108211_bib54
  article-title: Microplastics research-from sink to source
  publication-title: Science
  doi: 10.1126/science.aar7734
– volume: 254
  start-page: 112983
  year: 2019
  ident: 10.1016/j.soilbio.2021.108211_bib21
  article-title: LDPE microplastics films alter microbial community composition and enzymatic activities in soil
  publication-title: Environmental Pollution
  doi: 10.1016/j.envpol.2019.112983
– volume: 152
  start-page: 108069
  year: 2020
  ident: 10.1016/j.soilbio.2021.108211_bib77
  article-title: Strong priming of soil organic matter induced by frequent input of labile carbon
  publication-title: Soil Biology and Biochemistry
  doi: 10.1016/j.soilbio.2020.108069
– volume: 53
  start-page: 11496
  year: 2019
  ident: 10.1016/j.soilbio.2021.108211_bib4
  article-title: Effects of microplastics in soil ecosystems: above and below ground
  publication-title: Environmental Science and Technology
  doi: 10.1021/acs.est.9b03304
– volume: 73
  start-page: 5261
  year: 2007
  ident: 10.1016/j.soilbio.2021.108211_bib63
  article-title: Naive Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy
  publication-title: Applied and Environmental Microbiology
  doi: 10.1128/AEM.00062-07
– volume: 50
  start-page: 5774
  year: 2016
  ident: 10.1016/j.soilbio.2021.108211_bib12
  article-title: Procedure for measuring microplastics using pressurized fluid extraction
  publication-title: Environmental Science and Technology
  doi: 10.1021/acs.est.6b00816
– volume: 41
  start-page: 590
  year: 2013
  ident: 10.1016/j.soilbio.2021.108211_bib50
  article-title: The SILVA ribosomal RNA gene database project: improved data processing and web-based tools
  publication-title: Nucleic Acids Research
  doi: 10.1093/nar/gks1219
– volume: 58
  start-page: 50
  year: 2019
  ident: 10.1016/j.soilbio.2021.108211_bib17
  article-title: Plastics of the Future? The impact of biodegradable polymers on the environment and on society
  publication-title: Angewandte Chemie
  doi: 10.1002/anie.201805766
– volume: 140
  start-page: 107641
  year: 2020
  ident: 10.1016/j.soilbio.2021.108211_bib78
  article-title: Arbuscular mycorrhiza enhances rhizodeposition and reduces the rhizosphere priming effect on the decomposition of soil organic matter
  publication-title: Soil Biology and Biochemistry
  doi: 10.1016/j.soilbio.2019.107641
– volume: 47
  start-page: 7137
  year: 2013
  ident: 10.1016/j.soilbio.2021.108211_bib74
  article-title: Life in the “plastisphere”: microbial communities on plastic marine debris
  publication-title: Environmental Science and Technology
  doi: 10.1021/es401288x
– volume: 103
  start-page: 323
  year: 1992
  ident: 10.1016/j.soilbio.2021.108211_bib39
  article-title: Fungal degradation of polyhydroxyalkanoates and a semiquantitative assay for screening their degradation by terrestrial fungi
  publication-title: FEMS Microbiology Letters
  doi: 10.1111/j.1574-6968.1992.tb05854.x
– volume: 102
  start-page: 8049
  year: 2018
  ident: 10.1016/j.soilbio.2021.108211_bib38
  article-title: Polyhydroxybutyrate (PHB) biodegradation using bacterial strains with demonstrated and predicted PHB depolymerase activity
  publication-title: Applied Microbiology and Biotechnology
  doi: 10.1007/s00253-018-9153-8
– volume: 53
  start-page: 2304
  year: 2019
  ident: 10.1016/j.soilbio.2021.108211_bib56
  article-title: Biodegradation of polymeric mulch films in agricultural soils: concepts, knowledge gaps, and future research directions
  publication-title: Environmental Science and Technology
  doi: 10.1021/acs.est.8b05208
– volume: 84
  year: 2018
  ident: 10.1016/j.soilbio.2021.108211_bib73
  article-title: Rice paddy Nitrospirae carry and express genes related to sulfate respiration: proposal of the new genus “Candidatus Sulfobium”
  publication-title: Applied and Environmental Microbiology
  doi: 10.1128/AEM.02224-17
– volume: 42
  year: 2010
  ident: 10.1016/j.soilbio.2021.108211_bib27
  article-title: Taxon-specific responses of soil bacteria to the addition of low level C inputs
  publication-title: Soil Biology and Biochemistry
  doi: 10.1016/j.soilbio.2010.06.002
– volume: 148
  start-page: 107926
  year: 2020
  ident: 10.1016/j.soilbio.2021.108211_bib72
  article-title: Microplastics in the agroecosystem: are they an emerging threat to the plant-soil system?
  publication-title: Soil Biology and Biochemistry
  doi: 10.1016/j.soilbio.2020.107926
– volume: 25
  start-page: 789
  year: 1993
  ident: 10.1016/j.soilbio.2021.108211_bib36
  article-title: Phosphorus transformations in two P-sorption contrasting tropical soils during transit through Pontoscolex corethrurus (Glossoscolecidae: Oligochaeta)
  publication-title: Soil Biology and Biochemistry
  doi: 10.1016/0038-0717(93)90124-T
– volume: 5
  start-page: 1226
  year: 2011
  ident: 10.1016/j.soilbio.2021.108211_bib67
  article-title: Autotrophic growth of nitrifying community in an agricultural soil
  publication-title: The ISME Journal
  doi: 10.1038/ismej.2011.5
– volume: 27
  start-page: 2194
  year: 2011
  ident: 10.1016/j.soilbio.2021.108211_bib10
  article-title: UCHIME improves sensitivity and speed of chimera detection
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btr381
– volume: 703
  start-page: 134722
  year: 2020
  ident: 10.1016/j.soilbio.2021.108211_bib47
  article-title: Behavior of microplastics and plastic film residues in the soil environment: a critical review
  publication-title: The Science of the Total Environment
  doi: 10.1016/j.scitotenv.2019.134722
– volume: 73
  start-page: 429
  year: 2008
  ident: 10.1016/j.soilbio.2021.108211_bib35
  article-title: Polymer biodegradation: mechanisms and estimation techniques
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2008.06.064
– volume: 4
  start-page: 8060
  year: 2018
  ident: 10.1016/j.soilbio.2021.108211_bib64
  article-title: Organic fertilizer as a vehicle for the entry of microplastic into the environment
  publication-title: Science Advances
  doi: 10.1126/sciadv.aap8060
– volume: 160
  start-page: 1001
  year: 2003
  ident: 10.1016/j.soilbio.2021.108211_bib55
  article-title: Heat shock protein synthesis is induced by diethyl phthalate but not by di(2-ethylhexyl) phthalate in radish (Raphanus sativus)
  publication-title: Journal of Plant Physiology
  doi: 10.1078/0176-1617-00525
– volume: 91
  year: 2015
  ident: 10.1016/j.soilbio.2021.108211_bib61
  article-title: Impact of seasonal changes on fungal diversity of a semi-arid ecosystem revealed by 454 pyrosequencing
  publication-title: FEMS Microbiology Ecology
  doi: 10.1093/femsec/fiv044
– volume: 28
  start-page: 2
  year: 2016
  ident: 10.1016/j.soilbio.2021.108211_bib9
  article-title: Microplastics in the aquatic and terrestrial environment: sources (with a specific focus on personal care products), fate and effects
  publication-title: Environmental Sciences Europe
  doi: 10.1186/s12302-015-0069-y
– volume: 83
  start-page: 184
  year: 2015
  ident: 10.1016/j.soilbio.2021.108211_bib32
  article-title: Microbial hotspots and hot moments in soil: concept & review
  publication-title: Soil Biology and Biochemistry
  doi: 10.1016/j.soilbio.2015.01.025
– start-page: 107872
  year: 2020
  ident: 10.1016/j.soilbio.2021.108211_bib75
  article-title: Rhizosphere hotspots: root hairs and warming control microbial efficiency, carbon utilization and energy production
  publication-title: Soil Biology and Biochemistry
  doi: 10.1016/j.soilbio.2020.107872
– volume: 73
  start-page: 353
  year: 2017
  ident: 10.1016/j.soilbio.2021.108211_bib62
  article-title: Microbial degradation of polyhydroxyalkanoates with different chemical compositions and their biodegradability
  publication-title: Microbial Ecology
  doi: 10.1007/s00248-016-0852-3
– volume: 108
  start-page: 47
  year: 2016
  ident: 10.1016/j.soilbio.2021.108211_bib70
  article-title: N fertilization decreases soil organic matter decomposition in the rhizosphere
  publication-title: Applied Soil Ecology
  doi: 10.1016/j.apsoil.2016.07.021
– volume: 33
  start-page: 53
  year: 2001
  ident: 10.1016/j.soilbio.2021.108211_bib44
  article-title: Short-term utilisation of 14C-glucose by soil microorganisms in relation to carbon availability
  publication-title: Soil Biology and Biochemistry
  doi: 10.1016/S0038-0717(00)00114-0
– volume: 735
  start-page: 139393
  year: 2020
  ident: 10.1016/j.soilbio.2021.108211_bib59
  article-title: Combined biochar and nitrogen application stimulates enzyme activity and root plasticity
  publication-title: The Science of the Total Environment
  doi: 10.1016/j.scitotenv.2020.139393
– volume: 33
  start-page: 1633
  year: 2001
  ident: 10.1016/j.soilbio.2021.108211_bib40
  article-title: A fluorimetric assay for the study of enzyme diversity in soils
  publication-title: Soil Biology and Biochemistry
  doi: 10.1016/S0038-0717(01)00079-7
– volume: 41
  start-page: 2272
  year: 2009
  ident: 10.1016/j.soilbio.2021.108211_bib24
  article-title: Protein breakdown represents a major bottleneck in nitrogen cycling in grassland soils
  publication-title: Soil Biology and Biochemistry
  doi: 10.1016/j.soilbio.2009.08.013
– volume: 16
  start-page: 836
  year: 2010
  ident: 10.1016/j.soilbio.2021.108211_bib3
  article-title: Elevated atmospheric CO2 increases microbial growth rates in soil: results of three CO2 enrichment experiments
  publication-title: Global Change Biology
  doi: 10.1111/j.1365-2486.2009.02006.x
– volume: 51
  start-page: 1068
  year: 2017
  ident: 10.1016/j.soilbio.2021.108211_bib58
  article-title: Is biodegradable plastic mulch the solution to agriculture's plastic problem?
  publication-title: Environmental Science and Technology
  doi: 10.1021/acs.est.6b06042
– volume: 262
  start-page: 121179
  year: 2020
  ident: 10.1016/j.soilbio.2021.108211_bib66
  article-title: Raising the groundwater table in the non-growing season can reduce greenhouse gas emissions and maintain crop productivity in cultivated fen peats
  publication-title: Journal of Cleaner Production
  doi: 10.1016/j.jclepro.2020.121179
– volume: 186
  start-page: 7243
  year: 2004
  ident: 10.1016/j.soilbio.2021.108211_bib18
  article-title: The “intracellular” poly(3-hydroxybutyrate) (PHB) depolymerase of Rhodospirillum rubrum is a periplasm-located protein with specificity for native PHB and with structural similarity to extracellular PHB depolymerases
  publication-title: Journal of Bacteriology
  doi: 10.1128/JB.186.21.7243-7253.2004
– volume: 347
  start-page: 768
  year: 2015
  ident: 10.1016/j.soilbio.2021.108211_bib23
  article-title: Plastic waste inputs from land into the ocean
  publication-title: Science
  doi: 10.1126/science.1260352
– volume: 707
  start-page: 135634
  year: 2020
  ident: 10.1016/j.soilbio.2021.108211_bib11
  article-title: Response of soil enzyme activities and bacterial communities to the accumulation of microplastics in an acid cropped soil
  publication-title: The Science of the Total Environment
  doi: 10.1016/j.scitotenv.2019.135634
– volume: 53
  start-page: 419
  year: 2017
  ident: 10.1016/j.soilbio.2021.108211_bib68
  article-title: Nitrogen fertilization increases rhizodeposit incorporation into microbial biomass and reduces soil organic matter losses
  publication-title: Biology and Fertility of Soils
  doi: 10.1007/s00374-017-1194-0
– volume: 297
  start-page: 803
  year: 2002
  ident: 10.1016/j.soilbio.2021.108211_bib16
  article-title: Biodegradable polymers for the environment
  publication-title: Science
  doi: 10.1126/science.297.5582.803
– volume: 1
  start-page: 53
  year: 1993
  ident: 10.1016/j.soilbio.2021.108211_bib26
  article-title: Degradation of poly(3-hydroxybutyrate), PHB, by bacteria and purification of a novel PHB depolymerase from Comamonas sp
  publication-title: Journal of Environmental Polymer Degradation
  doi: 10.1007/BF01457653
– volume: 7
  start-page: 2229
  year: 2013
  ident: 10.1016/j.soilbio.2021.108211_bib2
  article-title: Responses of soil bacterial and fungal communities to extreme desiccation and rewetting
  publication-title: The ISME Journal
  doi: 10.1038/ismej.2013.104
– volume: 42
  start-page: 1363
  year: 2010
  ident: 10.1016/j.soilbio.2021.108211_bib31
  article-title: Priming effects: interactions between living and dead organic matter
  publication-title: Soil Biology and Biochemistry
  doi: 10.1016/j.soilbio.2010.04.003
– volume: 253
  start-page: 5
  year: 2001
  ident: 10.1016/j.soilbio.2021.108211_bib79
  article-title: Occurrence, synthesis and medical application of bacterial polyhydroxyalkanoate
  publication-title: Advanced Drug Delivery Reviews
  doi: 10.1016/S0169-409X(01)00218-6
– volume: 42
  start-page: 2203
  year: 2010
  ident: 10.1016/j.soilbio.2021.108211_bib33
  article-title: Hydrolysis of cellobiose by β-glucosidase in the presence of soil minerals - interactions at solid - liquid interfaces and effects on enzyme activity levels
  publication-title: Soil Biology and Biochemistry
  doi: 10.1016/j.soilbio.2010.08.018
SSID ssj0002513
Score 2.7130344
Snippet Plastics accumulating in the environment, especially microplastics (defined as particles <5 mm), can lead to a range of problems and potential loss of...
Plastics accumulating in the environment, especially microplastics (defined as particles <5 mm), can lead to a range of problems and potential loss of...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 108211
SubjectTerms Acidobacteria
agroecosystems
biodegradability
C turnover
carbon
community structure
Enzyme activity
extracellular enzymes
leucyl aminopeptidase
microbial biomass
microbial communities
Microbial growth
Microplastic pollution
microplastics
mulches
polyhydroxyalkanoates
rhizosphere
Sequencing
soil
soil bacteria
soil biology
Soil organic matter
soil pollution
species diversity
Verrucomicrobia
wastes
Title The microplastisphere: Biodegradable microplastics addition alters soil microbial community structure and function
URI https://dx.doi.org/10.1016/j.soilbio.2021.108211
https://www.proquest.com/docview/2551990782
Volume 156
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3PS8MwFA5DD-pBdCrOHyOC1279kbaZtzkcU3EnBW-h-SUV7cY2D178232vTZ0KMvDYkrQhX_reK_m-L4Sc855SzCrpJboXe8xGscd1BoDEVtsMMn6UoN75bpyMHtjNY_zYIINaC4O0Shf7q5heRmt3p-tmszvNc9T4olk6_sKUhQQ6fjKW4irvfCxpHpC_nfEuR7FOulTxdJ_RL_dF5qgBDANk24VB8Fd--hWpy_Qz3CHbrm6k_Wpou6RhiibZ6j_NnHeGaZKNQX142x6ZAfz0Fcl2UyiPF_kc3QPMBb3MJxrtITQqpr43UHOK1CKEiZY76HOKw66aoKqEqkpKsninlecsvJNmhaaYGbHbPnkYXt0PRp47XsFTzOcLj0skmQTGZzqLorSnuS8NswFXNtVpCAPxVSItVFyqp6T1jQ2NipU1Idf46UcHZK2YFOaQUGaC1DcQq6QNWZJJSHlJAOEryxIb85S3CKsnVSjnPY5HYLyImmT2LBwWArEQFRYt0vnqNq3MN1Z14DVi4scqEpAgVnU9qxEWgBVum2SFmbzNBfx0wURhKXX0_8cfk028qqiSJ2QNgDKnUM4sZLtcr22y3r--HY0_AcC0-Iw
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV25TsQwEB1xFECBOMWNkWjD5nASLx2sQMtZgURnxRcKguyKXQoavp2ZxOGSEBJt4kksP3tmLM97BtgXXa250yrITDcNuEvSQJgCAUmdcQVG_CQjvvPVdda_5ed36d0E9FouDJVVet_f-PTaW_snHT-anWFZEseXxNJpC1MnEskkTHNcvnSNwcHbZ50HBnCvvCuIrZN_0ng6DySY-6hKIgHGEZXbxVH0W4D64arr-HO6APM-cWRHTd8WYcJWSzB3dP_sxTPsEsz02tvbluEZ8WdPVG03xPx4XI5IPsAesuNyYEgfwhBl6msDPWJUW0Q4sfoIfcSo200TopUw3XBJxq-sEZ3Ff7KiMoxCI5mtwO3pyU2vH_j7FQLNQzEOhKIqk8iG3BRJkneNCJXlLhLa5SaPsSOhzpTDlEt3tXKhdbHVqXY2FobWfrIKU9WgsmvAuI3y0KKzUi7mWaEw5mUR-q-iyFwqcrEOvB1Uqb34ON2B8SjbKrMH6bGQhIVssFiHgw-zYaO-8ZeBaBGT36aRxAjxl-lei7BErOjcpKjs4GUkcdeFA0W51Mb_P78LM_2bq0t5eXZ9sQmz9Kapm9yCKQTNbmNuM1Y79dx9B2c_-ho
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+microplastisphere%3A+Biodegradable+microplastics+addition+alters+soil+microbial+community+structure+and+function&rft.jtitle=Soil+biology+%26+biochemistry&rft.au=Zhou%2C+Jie&rft.au=Gui%2C+Heng&rft.au=Banfield%2C+Callum+C&rft.au=Wen%2C+Yuan&rft.date=2021-05-01&rft.issn=0038-0717&rft.volume=156+p.108211-&rft_id=info:doi/10.1016%2Fj.soilbio.2021.108211&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0038-0717&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0038-0717&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0038-0717&client=summon