Deep-Ensemble and Multifaceted Behavioral Malware Variant Detection Model

Every day, hundreds of thousands of new malware programs are developed and spread worldwide in cyberspace. Most of these malware programs are malware variants such as polymorphic and metamorphic malware, which are created from older versions of malware and able to change their structures and functio...

Full description

Saved in:
Bibliographic Details
Published inIEEE access Vol. 10; pp. 42762 - 42777
Main Authors Al-Hashmi, Asma A., Ghaleb, Fuad A., Al-Marghilani, A., Yahya, Abdulsamad E., Ebad, Shouki A., M.S., Muhammad Saqib, Darem, Abdulbasit A.
Format Journal Article
LanguageEnglish
Published Piscataway IEEE 2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Every day, hundreds of thousands of new malware programs are developed and spread worldwide in cyberspace. Most of these malware programs are malware variants such as polymorphic and metamorphic malware, which are created from older versions of malware and able to change their structures and function flows to circumvent security solutions. The accuracy of malware variant detection is a crucial challenge. Many existing malware variant detections use static features extracted from the physical structure of malware file, such as opcodes and function flows. Unfortunately, the static features are subject to obfuscation and code shelling using simple obfuscation techniques. Although a malware variant can change its structure and function flows, it is widely believed that the malware variant cannot hide its malicious behavioral patterns during the runtime. Accordingly, dynamic, or behavioral analysis-based features were suggested by many studies to detect malware variants accurately. However, most of these studies are solely dependent on application-programmable interface calls (or API calls), which is not enough to accurately distinguish between malware and benign due to API-based obfuscation techniques. Therefore, a malware variant detection model that combines different behavioral activities can improve detection accuracy while reducing the false-negative rate. To this end, this study proposed a Deep-Ensemble and Multifaceted Behavioral Malware Variant Detection Model using Sequential Deep Learning and Extreme Gradient Boosting Techniques. Different behavioral features were extracted from the dynamic analysis environment. Then, a feature extraction algorithm that can automatically extract effective representative patterns has been designed and developed to extract the hidden representative features of the malware variants using a sequential deep learning model. These features have been fed into a developed extreme gradient boosting-based classifier for decision making. Extensive experiments have been carried out to validate the proposed scheme. The results were compared to the other related techniques in the field. The results show that the proposed model is reliable, as it improves the detection rate while reducing the false-negative rate.
AbstractList Every day, hundreds of thousands of new malware programs are developed and spread worldwide in cyberspace. Most of these malware programs are malware variants such as polymorphic and metamorphic malware, which are created from older versions of malware and able to change their structures and function flows to circumvent security solutions. The accuracy of malware variant detection is a crucial challenge. Many existing malware variant detections use static features extracted from the physical structure of malware file, such as opcodes and function flows. Unfortunately, the static features are subject to obfuscation and code shelling using simple obfuscation techniques. Although a malware variant can change its structure and function flows, it is widely believed that the malware variant cannot hide its malicious behavioral patterns during the runtime. Accordingly, dynamic, or behavioral analysis-based features were suggested by many studies to detect malware variants accurately. However, most of these studies are solely dependent on application-programmable interface calls (or API calls), which is not enough to accurately distinguish between malware and benign due to API-based obfuscation techniques. Therefore, a malware variant detection model that combines different behavioral activities can improve detection accuracy while reducing the false-negative rate. To this end, this study proposed a Deep-Ensemble and Multifaceted Behavioral Malware Variant Detection Model using Sequential Deep Learning and Extreme Gradient Boosting Techniques. Different behavioral features were extracted from the dynamic analysis environment. Then, a feature extraction algorithm that can automatically extract effective representative patterns has been designed and developed to extract the hidden representative features of the malware variants using a sequential deep learning model. These features have been fed into a developed extreme gradient boosting-based classifier for decision making. Extensive experiments have been carried out to validate the proposed scheme. The results were compared to the other related techniques in the field. The results show that the proposed model is reliable, as it improves the detection rate while reducing the false-negative rate.
Author Darem, Abdulbasit A.
Al-Hashmi, Asma A.
Ghaleb, Fuad A.
Al-Marghilani, A.
Ebad, Shouki A.
M.S., Muhammad Saqib
Yahya, Abdulsamad E.
Author_xml – sequence: 1
  givenname: Asma A.
  orcidid: 0000-0001-7871-7069
  surname: Al-Hashmi
  fullname: Al-Hashmi, Asma A.
  email: asma.alhashmi@nbu.edu.sa
  organization: Department of Computer Science, Northern Border University, Arar, Saudi Arabia
– sequence: 2
  givenname: Fuad A.
  orcidid: 0000-0002-1468-0655
  surname: Ghaleb
  fullname: Ghaleb, Fuad A.
  organization: School of Computing, University Teknologi Malaysia (UTM), Johor Bahru, Johor, Malaysia
– sequence: 3
  givenname: A.
  surname: Al-Marghilani
  fullname: Al-Marghilani, A.
  organization: College of Computer Science & Information Technology, Northern Border University, Arar, Saudi Arabia
– sequence: 4
  givenname: Abdulsamad E.
  surname: Yahya
  fullname: Yahya, Abdulsamad E.
  organization: College of Computer Science & Information Technology, Northern Border University, Arar, Saudi Arabia
– sequence: 5
  givenname: Shouki A.
  surname: Ebad
  fullname: Ebad, Shouki A.
  organization: Department of Computer Science, Northern Border University, Arar, Saudi Arabia
– sequence: 6
  givenname: Muhammad Saqib
  surname: M.S.
  fullname: M.S., Muhammad Saqib
  organization: Department of Computer Science, Northern Border University, Arar, Saudi Arabia
– sequence: 7
  givenname: Abdulbasit A.
  orcidid: 0000-0002-5650-1838
  surname: Darem
  fullname: Darem, Abdulbasit A.
  organization: Department of Computer Science, Northern Border University, Arar, Saudi Arabia
BookMark eNqFUUtv2zAMFoYWWJf2F_RiYGdnetiSdezSdAuQoIc-rgIt0ZsCx8pkZUP__ZQ5KIZeygsJ4nsQ_D6RsyEMSMg1o3PGqP5ys1gsHx7mnHI-F0w2SlcfyAVnUpeiFvLsv_kjuRrHLc3V5FWtLsjqFnFfLocRd22PBQyu2Bz65DuwmNAVX_En_PYhQl9soP8DEYtniB6GVNxmgE0-DMUmOOwvyXkH_YhXpz4jT3fLx8X3cn3_bbW4WZe2ok0qG-ioAA1tnQeg4BzjymkqK8GhqrREa2Wn0OnOKce5o9gJYJYrK2twtZiR1aTrAmzNPvodxBcTwJt_ixB_GIjJ2x4NMt5pyVrbCFkpxVvgXCgFFNuWZqOs9XnS2sfw64BjMttwiEM-33BZ51dWqqYZJSaUjWEcI3avroyaYwRmisAcIzCnCDJLv2FZn-D4rxTB9-9wryeuR8RXN60kFQ0XfwH1MJX8
CODEN IAECCG
CitedBy_id crossref_primary_10_1109_ACCESS_2024_3486094
crossref_primary_10_1109_ACCESS_2024_3491185
crossref_primary_10_3390_computers11110160
crossref_primary_10_32604_cmc_2023_041038
crossref_primary_10_3390_math11132944
crossref_primary_10_3390_math11020416
crossref_primary_10_32604_cmc_2024_048036
crossref_primary_10_1109_ACCESS_2024_3376682
crossref_primary_10_1016_j_engappai_2023_106030
Cites_doi 10.1016/j.jnca.2020.102753
10.1145/2490428.2490454
10.1016/j.future.2018.07.052
10.1155/2019/1043794
10.1109/ACCESS.2020.3019282
10.1016/j.cose.2019.101682
10.1109/SP.2012.14
10.1049/iet-ifs.2018.5268
10.1016/j.engappai.2016.12.016
10.1109/TIFS.2018.2806891
10.1109/AsiaJCIS.2019.00-10
10.1109/TR.2019.2924677
10.18517/ijaseit.8.4-2.6827
10.1631/FITEE.1601325
10.1016/j.cosrev.2019.01.002
10.1109/ACCESS.2020.3012674
10.1145/3073559
10.1002/sec.869
10.1016/j.cose.2019.02.007
10.1155/2019/9629381
10.1109/TPAMI.2004.75
10.1109/TII.2018.2822680
10.1016/j.jpdc.2020.03.012
10.1016/j.procs.2019.09.358
10.1016/j.cose.2019.04.005
10.1109/TIFS.2016.2646641
10.1109/ACCESS.2021.3093366
10.1016/j.future.2020.10.002
10.1016/j.eswa.2018.06.012
10.1109/ACCESS.2018.2835654
10.1016/j.csi.2020.103443
10.1145/1774088.1774303
10.1145/2568225.2568301
10.1109/ACCESS.2021.3094517
10.1016/j.jnca.2019.102526
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022
DBID 97E
ESBDL
RIA
RIE
AAYXX
CITATION
7SC
7SP
7SR
8BQ
8FD
JG9
JQ2
L7M
L~C
L~D
DOA
DOI 10.1109/ACCESS.2022.3168794
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE Xplore Open Access Journals
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DOAJ Open Access Full Text
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
METADEX
Computer and Information Systems Abstracts Professional
DatabaseTitleList
Materials Research Database

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2169-3536
EndPage 42777
ExternalDocumentID oai_doaj_org_article_e12f961bc8364772ba22377a0ebb06ec
10_1109_ACCESS_2022_3168794
9760382
Genre orig-research
GrantInformation_xml – fundername: Deputyship for Research and Innovation, Ministry of Education, Saudi Arabia
  grantid: 1385
GroupedDBID 0R~
4.4
5VS
6IK
97E
AAJGR
ABAZT
ABVLG
ACGFS
ADBBV
AGSQL
ALMA_UNASSIGNED_HOLDINGS
BCNDV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
EJD
ESBDL
GROUPED_DOAJ
IPLJI
JAVBF
KQ8
M43
M~E
O9-
OCL
OK1
RIA
RIE
RNS
AAYXX
CITATION
RIG
7SC
7SP
7SR
8BQ
8FD
JG9
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c408t-8af03a9ab5af0a0add127d906432a4496ecc6f7ed9fd7d22d0ef3a1c27c65ad53
IEDL.DBID RIE
ISSN 2169-3536
IngestDate Wed Aug 27 01:25:24 EDT 2025
Mon Jun 30 06:31:29 EDT 2025
Thu Apr 24 23:06:38 EDT 2025
Tue Jul 01 04:21:06 EDT 2025
Wed Aug 27 02:40:28 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Language English
License https://creativecommons.org/licenses/by/4.0/legalcode
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c408t-8af03a9ab5af0a0add127d906432a4496ecc6f7ed9fd7d22d0ef3a1c27c65ad53
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-5650-1838
0000-0002-1468-0655
0000-0001-7871-7069
OpenAccessLink https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/document/9760382
PQID 2656874750
PQPubID 4845423
PageCount 16
ParticipantIDs doaj_primary_oai_doaj_org_article_e12f961bc8364772ba22377a0ebb06ec
proquest_journals_2656874750
crossref_citationtrail_10_1109_ACCESS_2022_3168794
ieee_primary_9760382
crossref_primary_10_1109_ACCESS_2022_3168794
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20220000
2022-00-00
20220101
2022-01-01
PublicationDateYYYYMMDD 2022-01-01
PublicationDate_xml – year: 2022
  text: 20220000
PublicationDecade 2020
PublicationPlace Piscataway
PublicationPlace_xml – name: Piscataway
PublicationTitle IEEE access
PublicationTitleAbbrev Access
PublicationYear 2022
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref35
ref12
ref34
ref15
ref37
ref14
ref31
ref30
ref11
ref33
ref10
ref32
ref2
ref17
ref39
ref16
ref38
ref19
ref18
Kang (ref5) 2020; 16
ref24
ref23
ref26
ref25
ref20
ref22
ref21
ref28
ref27
ref29
ref8
ref7
(ref1) 2020
ref9
ref4
ref3
Sikorski (ref36) 2012
Lonas (ref6) 2018
References_xml – ident: ref9
  doi: 10.1016/j.jnca.2020.102753
– ident: ref20
  doi: 10.1145/2490428.2490454
– ident: ref38
  doi: 10.1016/j.future.2018.07.052
– volume-title: Malware Statistics and Trends Report
  year: 2020
  ident: ref1
– ident: ref26
  doi: 10.1155/2019/1043794
– ident: ref7
  doi: 10.1109/ACCESS.2020.3019282
– ident: ref14
  doi: 10.1016/j.cose.2019.101682
– ident: ref29
  doi: 10.1109/SP.2012.14
– ident: ref17
  doi: 10.1049/iet-ifs.2018.5268
– ident: ref19
  doi: 10.1016/j.engappai.2016.12.016
– ident: ref32
  doi: 10.1109/TIFS.2018.2806891
– ident: ref22
  doi: 10.1109/AsiaJCIS.2019.00-10
– volume-title: Practical Malware Analysis the Hands-On Guide to Dissecting Malicious Software
  year: 2012
  ident: ref36
– ident: ref3
  doi: 10.1109/TR.2019.2924677
– ident: ref23
  doi: 10.18517/ijaseit.8.4-2.6827
– ident: ref31
  doi: 10.1631/FITEE.1601325
– ident: ref18
  doi: 10.1016/j.cosrev.2019.01.002
– volume-title: Threat Report, in Webroot Smarter Cybersecurity
  year: 2018
  ident: ref6
– ident: ref34
  doi: 10.1109/ACCESS.2020.3012674
– ident: ref35
  doi: 10.1145/3073559
– ident: ref24
  doi: 10.1002/sec.869
– ident: ref28
  doi: 10.1016/j.cose.2019.02.007
– ident: ref30
  doi: 10.1155/2019/9629381
– ident: ref33
  doi: 10.1109/TPAMI.2004.75
– ident: ref16
  doi: 10.1109/TII.2018.2822680
– ident: ref11
  doi: 10.1016/j.jpdc.2020.03.012
– ident: ref15
  doi: 10.1016/j.procs.2019.09.358
– ident: ref4
  doi: 10.1016/j.cose.2019.04.005
– ident: ref2
  doi: 10.1109/TIFS.2016.2646641
– volume: 16
  start-page: 882
  issue: 4
  year: 2020
  ident: ref5
  article-title: A study on variant malware detection techniques using static and dynamic features
  publication-title: J. Inf. Process. Syst.
– ident: ref25
  doi: 10.1109/ACCESS.2021.3093366
– ident: ref8
  doi: 10.1016/j.future.2020.10.002
– ident: ref12
  doi: 10.1016/j.eswa.2018.06.012
– ident: ref13
  doi: 10.1109/ACCESS.2018.2835654
– ident: ref10
  doi: 10.1016/j.csi.2020.103443
– ident: ref21
  doi: 10.1145/1774088.1774303
– ident: ref27
  doi: 10.1145/2568225.2568301
– ident: ref37
  doi: 10.1109/ACCESS.2021.3094517
– ident: ref39
  doi: 10.1016/j.jnca.2019.102526
SSID ssj0000816957
Score 2.3255017
Snippet Every day, hundreds of thousands of new malware programs are developed and spread worldwide in cyberspace. Most of these malware programs are malware variants...
SourceID doaj
proquest
crossref
ieee
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 42762
SubjectTerms Algorithms
Boosting
Cybersecurity
Decision making
deep ensemble learning
Deep learning
Feature extraction
Heuristic algorithms
Internet
Machine learning
Malware
Malware detection
malware variants
multifaceted behavioral features
Security
sequential deep learning
Static analysis
SummonAdditionalLinks – databaseName: DOAJ Open Access Full Text
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07T8MwELYQEwyIpygU5IGRgOM4sT22hQqQygSIzTq_phIQLeLvc07SqggJFrYoch7-7nwPy_cdIWdc2SKAYFkMLGYCpZxpxVwGEsAV2juQqVB4cl_dPIq75_J5pdVXOhPW0gO3wF2GnEdd5dapxHQuuQV0aFICC9ayKrhkfdHnrSRTjQ1WeaVL2dEM5UxfDkYjnBEmhJxfpGZNUotvrqhh7O9arPywy42zGW-TrS5KpIP273bIWqh3yeYKd-Aeub0K4S27rmfhxU4DhdrTppg2gsM42NPhsv6eTmD6Ce-BPmFejEDSqzBvDmDVNHVCm-6Tx_H1w-gm6_oiZE4wNc8URFaABlviBTC0UDmXXqfggoMQGlFxVZTB6-il59yzEAvIHZeuKsGXxQFZr1_rcEhowaByUSMamJlEJiyPtlAi-hIXP-RVj_AFRMZ1pOGpd8XUNMkD06bF1SRcTYdrj5wvH3prOTN-Hz5M2C-HJsLr5gaqgenUwPylBj2ylyS3fAlGWaxQvEf6C0mabnHODMcYVmEaVbKj__j0MdlI02n3Zfpkff7-EU4wUpnb00YpvwA_V-J3
  priority: 102
  providerName: Directory of Open Access Journals
Title Deep-Ensemble and Multifaceted Behavioral Malware Variant Detection Model
URI https://ieeexplore.ieee.org/document/9760382
https://www.proquest.com/docview/2656874750
https://doaj.org/article/e12f961bc8364772ba22377a0ebb06ec
Volume 10
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3PTxQxFG6Qkx4EROMikh48Mkun86PTIywQMFlPYrg1r-3rxXUgMBsT_3pfO92JqDHemsl00vZrX9_X6fseYx9kZyuEWhQBRShqQrnQnXAFKABXae9AxUDh5af26qb-eNvcbrHjKRYGEdPlM5zHYvqX7-_cOh6VndDWKaqODO4zIm5jrNZ0nhITSOhGZWGhUuiT08WC-kAUUMp5TM-kdP1k80ka_Tmpyh-WOG0vlztsuWnYeKvk63w92Ln78Ztm4_-2fJe9zH4mPx0nxh7bwv4Ve_GL-uA-uz5HvC8u-kf8ZlfIofc8heMGcORJe342RfDzJay-wwPyL8SsCQp-jkO6wtXzmEtt9ZrdXF58XlwVObNC4WrRDUUHQVSgwTZUAEE2rpTK6-ieSKhr3RKwbVDodfDKS-kFhgpKJ5VrG_BN9YZt93c9vmW8EtC6oGl0idsEUVsZbNXVwTdkPqBsZ0xuhty4LDses1-sTKIfQpsRJxNxMhmnGTueKt2Pqhv_fv0sYjm9GiWz0wPCwOQVaLCUQbeldV2UzFfSAnlGSoFAawV1eMb2I27TRzJkM3a4mRkmL-9HI8kL7oiINeLg77XeseexgeNZzSHbHh7W-J68l8EeJdZ_lCbvT-Db7PA
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT9wwELYQPbQ99EWrbqHgQ49kcRwnjo-wgJaW5QQVN2tsjy9sA4KsKvXXM06yUV-qerMiO7L92fOwPd8w9knWrkBQIosoYqYI5czUwmegAXxhggedAoUXF9X8Sn2-Lq832P4YC4OI3eMznKZid5cfbv0qHZUdkOoURU0C9wnp_VL20VrjiUpKIWFKPVAL5cIcHM5mNApyAqWcpgRN2qhf1E_H0j-kVflDFncK5vQlW6y71r8ruZmuWjf1P35jbfzfvr9iLwZLkx_2S-M128DmDXv-E__gFjs7RrzLTpoH_OaWyKEJvAvIjeDJlg78aIzh5wtYfod75F_JtyYw-DG23SOuhqdsasu37Or05HI2z4bcCplXom6zGqIowIArqQCCpFwudTDJQJGglKkI2ipqDCYGHaQMAmMBuZfaVyWEsnjHNpvbBt8zXgiofDQ0u-TdRKGcjK6oVQwlCRDIqwmT6ym3fiAeT_kvlrZzQISxPU424WQHnCZsf2x01_Nu_Lv6UcJyrJpIs7sPhIEd9qDFXEZT5c7XiTRfSwdkG2kNAp0TNOAJ20q4jT8ZIJuwnfXKsMMGf7CS7OCaXLFSfPh7qz32dH65OLfnZxdfttmz1Nn-5GaHbbb3K_xItkzrdrsl_AjObO9F
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Deep-Ensemble+and+Multifaceted+Behavioral+Malware+Variant+Detection+Model&rft.jtitle=IEEE+access&rft.au=Al-Hashmi%2C+Asma+A.&rft.au=Ghaleb%2C+Fuad+A.&rft.au=Al-Marghilani%2C+A.&rft.au=Yahya%2C+Abdulsamad+E.&rft.date=2022&rft.pub=IEEE&rft.eissn=2169-3536&rft.volume=10&rft.spage=42762&rft.epage=42777&rft_id=info:doi/10.1109%2FACCESS.2022.3168794&rft.externalDocID=9760382
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2169-3536&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2169-3536&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2169-3536&client=summon