Text Sentiment Orientation Analysis Based on Multi-Channel CNN and Bidirectional GRU With Attention Mechanism
Convolutional Neural Network(CNN) and Recurrent Neural Network(RNN) have been widely used in the field of text sentiment analysis and have achieved good results. However, there is an anteroposterior dependency between texts, although CNN can extract local information between consecutive words of a s...
Saved in:
Published in | IEEE access Vol. 8; pp. 134964 - 134975 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Piscataway
IEEE
2020
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Convolutional Neural Network(CNN) and Recurrent Neural Network(RNN) have been widely used in the field of text sentiment analysis and have achieved good results. However, there is an anteroposterior dependency between texts, although CNN can extract local information between consecutive words of a sentence, it ignores the contextual semantic information between words. Bidirectional GRU can make up for the shortcomings that CNN can't extract contextual semantic information of long text, but it can't extract the local features of the text as well as CNN. Therefore, we propose a multi-channel model that combines the CNN and the bidirectional gated recurrent unit network with attention mechanism (MC-AttCNN-AttBiGRU). The model can pay attention to the words that are important to the sentiment polarity classification in the sentence through the attention mechanism and combine the advantages of CNN to extract local features of text and bidirectional GRU to extract contextual semantic information of long text, which improves the text feature extraction ability of the model. The experimental results on the IMDB dataset and Yelp 2015 dataset show that the proposed model can extract more rich text features than other baseline models, and can achieve better results than other baseline models. |
---|---|
AbstractList | Convolutional Neural Network(CNN) and Recurrent Neural Network(RNN) have been widely used in the field of text sentiment analysis and have achieved good results. However, there is an anteroposterior dependency between texts, although CNN can extract local information between consecutive words of a sentence, it ignores the contextual semantic information between words. Bidirectional GRU can make up for the shortcomings that CNN can't extract contextual semantic information of long text, but it can't extract the local features of the text as well as CNN. Therefore, we propose a multi-channel model that combines the CNN and the bidirectional gated recurrent unit network with attention mechanism (MC-AttCNN-AttBiGRU). The model can pay attention to the words that are important to the sentiment polarity classification in the sentence through the attention mechanism and combine the advantages of CNN to extract local features of text and bidirectional GRU to extract contextual semantic information of long text, which improves the text feature extraction ability of the model. The experimental results on the IMDB dataset and Yelp 2015 dataset show that the proposed model can extract more rich text features than other baseline models, and can achieve better results than other baseline models. |
Author | Zhang, Guanghe Cheng, Yan Xiang, Guoxiong Zhong, Linhui Tang, Tianwei Yao, Leibo |
Author_xml | – sequence: 1 givenname: Yan orcidid: 0000-0002-0160-7213 surname: Cheng fullname: Cheng, Yan email: chyan88888@jxnu.edu.cn organization: School of Computer Information Engineering, Jiangxi Normal University, Nanchang, China – sequence: 2 givenname: Leibo orcidid: 0000-0002-9094-5379 surname: Yao fullname: Yao, Leibo email: yaoleibo_jxnu@163.com organization: School of Computer Information Engineering, Jiangxi Normal University, Nanchang, China – sequence: 3 givenname: Guoxiong surname: Xiang fullname: Xiang, Guoxiong email: 1529159315@qq.com organization: School of Communication, Jiangxi Normal University, Nanchang, China – sequence: 4 givenname: Guanghe surname: Zhang fullname: Zhang, Guanghe organization: School of Computer Information Engineering, Jiangxi Normal University, Nanchang, China – sequence: 5 givenname: Tianwei orcidid: 0000-0002-7849-8270 surname: Tang fullname: Tang, Tianwei organization: Center of Management Decision Evaluation Research, Jiangxi Normal University, Nanchang, China – sequence: 6 givenname: Linhui surname: Zhong fullname: Zhong, Linhui organization: School of Computer Information Engineering, Jiangxi Normal University, Nanchang, China |
BookMark | eNqFkU1P3DAQhq2KSlDKL-Biqeds_RHHznGJKEXiQ2JBHK2JMyleZRNqe6Xy7-sQhKpe8MEzejXPO7LfL-RgnEYk5JSzFees_r5umvPNZiWYYCvJmDJCfiJHgld1IZWsDv7pD8lJjFuWj8mS0kdkd49_Et3gmPwuX_Q2-Fwg-Wmk6xGGl-gjPYOIHc3K9X5IvmieYBxxoM3NDYWxo2e-8wHdzMBAL-4e6KNPT3Sd0mw7Y-gy4uPuK_ncwxDx5K0ek4cf5_fNz-Lq9uKyWV8VrmQmFcbUrC5b6VrQArhwqkI0PeMduLJtoXJMoWudbEultK4kMjDoRI_IeAsoj8nl4ttNsLXPwe8gvNgJvH0VpvDLQkjeDWg16Eo557KTKruqr02XJc419B3rmM5e3xav5zD93mNMdjvtQ35ptKJUZVVyJWWeksuUC1OMAfv3rZzZOSa7xGTnmOxbTJmq_6OcXz4_BfDDB-zpwnpEfN9Wc6FNLeVf8RqiyQ |
CODEN | IAECCG |
CitedBy_id | crossref_primary_10_1016_j_knosys_2022_109701 crossref_primary_10_3390_electronics13132509 crossref_primary_10_1007_s11042_023_17565_2 crossref_primary_10_1007_s41060_025_00714_1 crossref_primary_10_1007_s10489_024_05954_5 crossref_primary_10_1016_j_cose_2024_103780 crossref_primary_10_3390_su15097213 crossref_primary_10_1016_j_asoc_2024_111571 crossref_primary_10_1016_j_ipm_2022_102929 crossref_primary_10_1016_j_engappai_2024_108470 crossref_primary_10_3389_fpsyg_2024_1321582 crossref_primary_10_1016_j_cose_2022_102607 crossref_primary_10_1093_bib_bbad303 crossref_primary_10_1109_ACCESS_2023_3281889 crossref_primary_10_4018_IJTHI_313927 crossref_primary_10_17694_bajece_887339 crossref_primary_10_1016_j_cie_2023_109693 crossref_primary_10_1002_sim_10148 crossref_primary_10_1007_s13042_024_02184_6 crossref_primary_10_1007_s10462_022_10144_1 crossref_primary_10_1016_j_neucom_2022_08_076 crossref_primary_10_3390_technologies12110222 crossref_primary_10_1016_j_bspc_2025_107576 crossref_primary_10_1007_s11042_022_13155_w crossref_primary_10_3390_app142210420 crossref_primary_10_1007_s10462_021_09973_3 crossref_primary_10_1016_j_inffus_2024_102712 crossref_primary_10_1016_j_neucom_2025_129862 crossref_primary_10_7717_peerj_cs_2592 crossref_primary_10_3233_JIFS_237391 crossref_primary_10_1108_DTA_05_2024_0472 crossref_primary_10_3389_fnbot_2022_897402 crossref_primary_10_3389_fpsyg_2021_661235 crossref_primary_10_1145_3462442 crossref_primary_10_3390_info14020090 crossref_primary_10_3389_fpsyg_2022_948721 crossref_primary_10_1108_IJICC_06_2021_0109 crossref_primary_10_12677_CSA_2022_129218 crossref_primary_10_1007_s10489_022_03910_9 crossref_primary_10_3390_diagnostics13122092 crossref_primary_10_3390_electronics13020453 crossref_primary_10_1007_s11042_023_17347_w crossref_primary_10_54097_jceim_v11i1_9474 crossref_primary_10_1016_j_procs_2022_09_473 crossref_primary_10_3390_s23218975 crossref_primary_10_1016_j_jneumeth_2022_109593 crossref_primary_10_1145_3708987 crossref_primary_10_1016_j_jksuci_2023_101571 crossref_primary_10_1016_j_jss_2023_111667 crossref_primary_10_1080_12460125_2024_2440024 |
Cites_doi | 10.1145/3132847.3133037 10.18653/v1/W17-5227 10.3115/1218955.1218990 10.1017/CBO9781139084789 10.18653/v1/D16-1058 10.1145/3316615.3316673 10.1561/1500000011 10.3115/v1/P14-1062 10.18653/v1/D16-1103 10.1109/IJCNN.2019.8852406 10.18653/v1/D15-1168 10.1007/978-94-007-1757-2_11 10.1109/MIS.2016.31 10.1145/1014052.1014073 10.1007/978-3-319-93417-4_48 10.1016/j.neucom.2018.04.045 10.3115/v1/D14-1179 10.1109/ACCESS.2019.2954590 10.1007/s42979-020-0076-y 10.18653/v1/D15-1167 10.1142/9789812774675 10.3115/v1/P15-1130 10.18653/v1/N16-1174 10.1109/ICENCO.2018.8636124 10.1109/ICALIP.2018.8455328 10.18653/v1/S17-2134 10.3115/v1/D14-1181 10.24963/ijcai.2017/568 10.3115/1219840.1219855 10.18653/v1/P16-1123 10.1109/WI.2018.00-13 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020 |
DBID | 97E ESBDL RIA RIE AAYXX CITATION 7SC 7SP 7SR 8BQ 8FD JG9 JQ2 L7M L~C L~D DOA |
DOI | 10.1109/ACCESS.2020.3005823 |
DatabaseName | IEEE Xplore (IEEE) IEEE Xplore Open Access Journals (WRLC) IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts METADEX Technology Research Database Materials Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace METADEX Computer and Information Systems Abstracts Professional |
DatabaseTitleList | Materials Research Database |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 2169-3536 |
EndPage | 134975 |
ExternalDocumentID | oai_doaj_org_article_7a765ccc45554d6f98d7a7117afd0d07 10_1109_ACCESS_2020_3005823 9127893 |
Genre | orig-research |
GrantInformation_xml | – fundername: National Natural Science Foundation of China grantid: 61967011 funderid: 10.13039/501100001809 – fundername: Key Research and Development Program of Jiangxi Province grantid: 20161BBE50086 funderid: 10.13039/501100013064 – fundername: Humanities and Social Sciences Key (Major) Project of Education Department grantid: JD19056 – fundername: Jiangxi Provincial Department of Education Science and Technology Key Project grantid: GJJ150299 |
GroupedDBID | 0R~ 4.4 5VS 6IK 97E AAJGR ABAZT ABVLG ACGFS ADBBV AGSQL ALMA_UNASSIGNED_HOLDINGS BCNDV BEFXN BFFAM BGNUA BKEBE BPEOZ EBS EJD ESBDL GROUPED_DOAJ IPLJI JAVBF KQ8 M43 M~E O9- OCL OK1 RIA RIE RNS AAYXX CITATION RIG 7SC 7SP 7SR 8BQ 8FD JG9 JQ2 L7M L~C L~D |
ID | FETCH-LOGICAL-c408t-889094b3cba72a12c56ee8f01dac4bba6c05ecbc3b4557763e0a8ec2fee01bae3 |
IEDL.DBID | DOA |
ISSN | 2169-3536 |
IngestDate | Wed Aug 27 01:28:08 EDT 2025 Mon Jun 30 04:34:16 EDT 2025 Thu Apr 24 23:12:38 EDT 2025 Tue Jul 01 02:55:33 EDT 2025 Wed Aug 27 02:32:50 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Language | English |
License | https://creativecommons.org/licenses/by/4.0/legalcode |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c408t-889094b3cba72a12c56ee8f01dac4bba6c05ecbc3b4557763e0a8ec2fee01bae3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-9094-5379 0000-0002-7849-8270 0000-0002-0160-7213 |
OpenAccessLink | https://doaj.org/article/7a765ccc45554d6f98d7a7117afd0d07 |
PQID | 2454641533 |
PQPubID | 4845423 |
PageCount | 12 |
ParticipantIDs | crossref_primary_10_1109_ACCESS_2020_3005823 ieee_primary_9127893 crossref_citationtrail_10_1109_ACCESS_2020_3005823 proquest_journals_2454641533 doaj_primary_oai_doaj_org_article_7a765ccc45554d6f98d7a7117afd0d07 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20200000 2020-00-00 20200101 2020-01-01 |
PublicationDateYYYYMMDD | 2020-01-01 |
PublicationDate_xml | – year: 2020 text: 20200000 |
PublicationDecade | 2020 |
PublicationPlace | Piscataway |
PublicationPlace_xml | – name: Piscataway |
PublicationTitle | IEEE access |
PublicationTitleAbbrev | Access |
PublicationYear | 2020 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref35 ref13 ref34 zhou (ref22) 2015 ref37 ref15 ref36 ref14 ref31 ref30 kamps (ref12) 2002 ref33 ref32 ref10 ref2 ref1 ref39 ref17 collobert (ref18) 2011; 12 ref38 lee (ref16) 2011 zhang (ref8) 2015 wang (ref27) 2016 zhou (ref28) 2016 pang (ref4) 2002 ref24 maas (ref44) 2011; 1 ref45 yuan (ref41) 2019; 33 ref26 ref25 ref20 ref42 bahdanau (ref43) 2014 joulin (ref47) 2016 ref21 mikolov (ref11) 2013 yin (ref19) 2016 ref29 ref7 ref9 ref3 ref6 ref5 ref40 kingma (ref46) 2014 tang (ref23) 2015 |
References_xml | – year: 2013 ident: ref11 article-title: Efficient estimation of word representations in vector space publication-title: arXiv 1301 3781 [cs] – ident: ref37 doi: 10.1145/3132847.3133037 – ident: ref29 doi: 10.18653/v1/W17-5227 – year: 2015 ident: ref8 article-title: A sensitivity analysis of (and practitioners' guide to) convolutional neural networks for sentence classification publication-title: arXiv 1510 03820 – ident: ref14 doi: 10.3115/1218955.1218990 – volume: 1 start-page: 142 year: 2011 ident: ref44 article-title: Learning word vectors for sentiment analysis publication-title: Proc Annu Meeting Assoc Comput Linguist Conf Human Lang Technol – start-page: 332 year: 2002 ident: ref12 article-title: Words with attitude publication-title: Proc 20th Belgian-Netherlands Conf Artif Intell – year: 2015 ident: ref22 article-title: A C-LSTM neural network for text classification publication-title: arXiv 1511 08630 – year: 2016 ident: ref19 article-title: Multichannel variable-size convolution for sentence classification publication-title: arXiv 1603 04513 – year: 2016 ident: ref28 article-title: Text classification improved by integrating bidirectional LSTM with two-dimensional max pooling publication-title: arXiv 1611 06639 – ident: ref1 doi: 10.1017/CBO9781139084789 – ident: ref36 doi: 10.18653/v1/D16-1058 – ident: ref39 doi: 10.1145/3316615.3316673 – start-page: 79 year: 2002 ident: ref4 article-title: Thumbs up? Sentiment classification using machine learning techniques publication-title: Proc ACL-Conf Empirical Methods Natural Lang Process Assoc Comput Linguistics – ident: ref3 doi: 10.1561/1500000011 – ident: ref6 doi: 10.3115/v1/P14-1062 – ident: ref24 doi: 10.18653/v1/D16-1103 – ident: ref21 doi: 10.1109/IJCNN.2019.8852406 – ident: ref10 doi: 10.18653/v1/D15-1168 – ident: ref15 doi: 10.1007/978-94-007-1757-2_11 – ident: ref2 doi: 10.1109/MIS.2016.31 – volume: 33 start-page: 109 year: 2019 ident: ref41 article-title: Sentiment analysis based on multi-channel convolution and bi-directional GRU with attention mechanism publication-title: J Chin Inf Process – ident: ref5 doi: 10.1145/1014052.1014073 – year: 2014 ident: ref43 article-title: Neural machine translation by jointly learning to align and translate publication-title: arXiv 1409 0473 – year: 2015 ident: ref23 article-title: Effective LSTMs for target-dependent sentiment classification publication-title: arXiv 1512 01100 – ident: ref32 doi: 10.1007/978-3-319-93417-4_48 – ident: ref25 doi: 10.1016/j.neucom.2018.04.045 – ident: ref42 doi: 10.3115/v1/D14-1179 – ident: ref40 doi: 10.1109/ACCESS.2019.2954590 – ident: ref26 doi: 10.1007/s42979-020-0076-y – ident: ref20 doi: 10.18653/v1/D15-1167 – year: 2016 ident: ref47 article-title: Bag of tricks for efficient text classification publication-title: arXiv 1607 01759 – start-page: 89 year: 2011 ident: ref16 article-title: Chinese sentiment analysis using maximum entropy publication-title: Proc Workshop Sentiment Anal AI Meets Psychology – ident: ref13 doi: 10.1142/9789812774675 – ident: ref9 doi: 10.3115/v1/P15-1130 – ident: ref34 doi: 10.18653/v1/N16-1174 – start-page: 2428 year: 2016 ident: ref27 article-title: Combination of convolutional and recurrent neural network for sentiment analysis of short texts publication-title: Proc COLING 26th Int Conf Comput Linguistics Tech Papers – ident: ref33 doi: 10.1109/ICENCO.2018.8636124 – ident: ref31 doi: 10.1109/ICALIP.2018.8455328 – ident: ref30 doi: 10.18653/v1/S17-2134 – ident: ref7 doi: 10.3115/v1/D14-1181 – ident: ref38 doi: 10.24963/ijcai.2017/568 – year: 2014 ident: ref46 article-title: Adam: A method for stochastic optimization publication-title: arXiv 1412 6980 – volume: 12 start-page: 2493 year: 2011 ident: ref18 article-title: Natural language processing (almost) from scratch publication-title: J Mach Learn Res – ident: ref45 doi: 10.3115/1219840.1219855 – ident: ref35 doi: 10.18653/v1/P16-1123 – ident: ref17 doi: 10.1109/WI.2018.00-13 |
SSID | ssj0000816957 |
Score | 2.4311476 |
Snippet | Convolutional Neural Network(CNN) and Recurrent Neural Network(RNN) have been widely used in the field of text sentiment analysis and have achieved good... |
SourceID | doaj proquest crossref ieee |
SourceType | Open Website Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 134964 |
SubjectTerms | Artificial neural networks attention mechanism bidirectional gated recurrent unit network Context modeling Convolutional neural network Data mining Datasets Feature extraction Machine learning Neural networks Recurrent neural networks Semantics Sentiment analysis Task analysis text sentiment orientation analysis Words (language) |
SummonAdditionalLinks | – databaseName: IEEE Electronic Library (IEL) dbid: RIE link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwELbanuDAqyAWCvKBY7N1HDuJj7srSoW0iwRd0VtkjydiRZuiNnvpr-_Y8Ua8hLhFliey9TnzcGa-YeydqaQkXFVGtlJkCtBlThUiA9tSLKZaZWKPpeWqPFurjxf6Yo8dj7UwiBiTz3AaHuO_fH8N23BVdmLyULdZ7LN9CtyGWq3xPiU0kDC6SsRCuTAns8WC9kAhoKTINLTPk8Uvxidy9KemKn9o4mheTh-z5W5hQ1bJ9-m2d1O4-42z8X9X_oQ9Sn4mnw0H4ynbw-4Ze_gT--Ahuzonxcy_hHShIM0_3WxSIVLHd1wlfE5WznMaiZW6WShG6PCSL1YrbjvP55vBJsYLRf7h85p_3fTf-KzvhzRKvsRQWry5vXrO1qfvzxdnWeq-kIESdZ_VtaHQzxXgbCVtLkGXiHUrcm9BOWdLEBrBQeGU1hWpKRS2RpAtosidxeIFO-iuO3zJOHotJCgSKGuFwhuF5Dm0rXbSGfQwYXIHSwOJmjx0yLhsYogiTDNg2QQsm4TlhB2PQj8GZo5_T58HvMepgVY7DhBOTfpKm8pWpQYA2pFWvmxN7WkozyvbeuFFNWGHAdvxJQnWCTvanZ4mqYDbRiqtShXc6Vd_l3rNHoQFDvc5R-ygv9niG_Jwevc2Hu17AzT4UQ priority: 102 providerName: IEEE |
Title | Text Sentiment Orientation Analysis Based on Multi-Channel CNN and Bidirectional GRU With Attention Mechanism |
URI | https://ieeexplore.ieee.org/document/9127893 https://www.proquest.com/docview/2454641533 https://doaj.org/article/7a765ccc45554d6f98d7a7117afd0d07 |
Volume | 8 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LTxsxELYqTvSAaNOqAYp84MgKr9feXR-TqICQEiQgKjfLj1kRCbYVLP-_40eiVJXKhatle9cz4_k8lucbQk5UwznqVRSIlawQDmxhRcUKZzqMxUQnVKyxNF_Ul0txdS_vt0p9hTdhiR44Ce6sMU0tnXNCIvD5ulOtx6aybEznmU955Ih5W8FU9MFtWSvZZJqhkqmzyWyGK8KAkGOcGorp8eovKIqM_bnEyj9-OYLN-T7Zy6dEOkl_94l8gP4z-bjFHTgiT3foVulteOwTLvjo9fMqpxH1dM00QqeIUZ5iS8yzLUIqQQ-PdLZYUNN7Ol0lRIvXgfTiZkl_roYHOhmG9AiSziEkBq9enr6Q5fmPu9llkWsnFE6wdijaVmHgZitnTcNNyZ2sAdqOld44Ya2pHZPgrKssCrZBJwPMtOB4B8BKa6D6Snb6Xz18IxS8ZNwJHFC3AphXAhD3u05abhV4NyZ8LUbtMrF4qG_xqGOAwZROstdB9jrLfkxON4N-J16N_3efBv1sugZS7NiApqKzqei3TGVMRkG7m0lUGdKAce6jtbZ13sAvmgspahEOwwfv8elDshuWk-5ujsjO8PwK3_E0M9jjaLjHMfHwD7Xl7-w |
linkProvider | Directory of Open Access Journals |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwzV1Lb9QwELZKOQAHXgWxUMAHuJGt49hJfOCwu1C2tLtIsCt6S_2YiFXbtOpmheC38Ff4b4wTZ8VL3Cpxiyzb8uOzxzOZmY-QZyrjHPdVRCgrWSQsmMiIhEVWl6iLiVKohmNpMk3Hc_H2UB5ukG_rWBgAaJzPoO8_m3_57syuvKlsR8U-brOjqt6HL59RQVu-3HuFu_mc893Xs9E4ChwCkRUsr6M8V6jAmMQanXEdcytTgLxksdNWGKNTyyRYYxMjpMzwsAHTOVheArDYaEiw3yvkKr4zJG-jw9YWHE9ZoWQWUhnFTO0MRiNcNVQ6OerCnrCPJ7-Iu4YVINC4_HH3NwJt9xb53i1F68dy3F_Vpm-__pYl8n9dq9vkZnhJ00EL_TtkA6q75MZP-RW3yOkMRQ_94B2i_Gjpu4tFCLWqaJeNhQ5RjjuKJU0scuTDLSo4oaPplOrK0eGilfqNyZS-eT-nHxf1Jzqo69ZRlE7AB08vlqf3yPxS5nufbFZnFTwgFJxk3ApskOYCmFMC8G1UltJwo8DZHuEdDAobkq97DpCTolHCmCpa7BQeO0XATo-8WDc6b3OP_Lv60ONrXdUnDm8KEBdFuIeKTGeptNbijKRwaalyh0VxnOnSMceyHtnyWFp3EmDUI9sdWotwyS0LLqRIhVcYHv691VNybTybHBQHe9P9R-S6H2xrvdomm_XFCh7je642T5pjRcnRZWPzB4GqWTA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Text+Sentiment+Orientation+Analysis+Based+on+Multi-Channel+CNN+and+Bidirectional+GRU+With+Attention+Mechanism&rft.jtitle=IEEE+access&rft.au=Cheng%2C+Yan&rft.au=Yao%2C+Leibo&rft.au=Xiang%2C+Guoxiong&rft.au=Zhang%2C+Guanghe&rft.date=2020&rft.issn=2169-3536&rft.eissn=2169-3536&rft.volume=8&rft.spage=134964&rft.epage=134975&rft_id=info:doi/10.1109%2FACCESS.2020.3005823&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_ACCESS_2020_3005823 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2169-3536&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2169-3536&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2169-3536&client=summon |