Text Sentiment Orientation Analysis Based on Multi-Channel CNN and Bidirectional GRU With Attention Mechanism

Convolutional Neural Network(CNN) and Recurrent Neural Network(RNN) have been widely used in the field of text sentiment analysis and have achieved good results. However, there is an anteroposterior dependency between texts, although CNN can extract local information between consecutive words of a s...

Full description

Saved in:
Bibliographic Details
Published inIEEE access Vol. 8; pp. 134964 - 134975
Main Authors Cheng, Yan, Yao, Leibo, Xiang, Guoxiong, Zhang, Guanghe, Tang, Tianwei, Zhong, Linhui
Format Journal Article
LanguageEnglish
Published Piscataway IEEE 2020
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Convolutional Neural Network(CNN) and Recurrent Neural Network(RNN) have been widely used in the field of text sentiment analysis and have achieved good results. However, there is an anteroposterior dependency between texts, although CNN can extract local information between consecutive words of a sentence, it ignores the contextual semantic information between words. Bidirectional GRU can make up for the shortcomings that CNN can't extract contextual semantic information of long text, but it can't extract the local features of the text as well as CNN. Therefore, we propose a multi-channel model that combines the CNN and the bidirectional gated recurrent unit network with attention mechanism (MC-AttCNN-AttBiGRU). The model can pay attention to the words that are important to the sentiment polarity classification in the sentence through the attention mechanism and combine the advantages of CNN to extract local features of text and bidirectional GRU to extract contextual semantic information of long text, which improves the text feature extraction ability of the model. The experimental results on the IMDB dataset and Yelp 2015 dataset show that the proposed model can extract more rich text features than other baseline models, and can achieve better results than other baseline models.
AbstractList Convolutional Neural Network(CNN) and Recurrent Neural Network(RNN) have been widely used in the field of text sentiment analysis and have achieved good results. However, there is an anteroposterior dependency between texts, although CNN can extract local information between consecutive words of a sentence, it ignores the contextual semantic information between words. Bidirectional GRU can make up for the shortcomings that CNN can't extract contextual semantic information of long text, but it can't extract the local features of the text as well as CNN. Therefore, we propose a multi-channel model that combines the CNN and the bidirectional gated recurrent unit network with attention mechanism (MC-AttCNN-AttBiGRU). The model can pay attention to the words that are important to the sentiment polarity classification in the sentence through the attention mechanism and combine the advantages of CNN to extract local features of text and bidirectional GRU to extract contextual semantic information of long text, which improves the text feature extraction ability of the model. The experimental results on the IMDB dataset and Yelp 2015 dataset show that the proposed model can extract more rich text features than other baseline models, and can achieve better results than other baseline models.
Author Zhang, Guanghe
Cheng, Yan
Xiang, Guoxiong
Zhong, Linhui
Tang, Tianwei
Yao, Leibo
Author_xml – sequence: 1
  givenname: Yan
  orcidid: 0000-0002-0160-7213
  surname: Cheng
  fullname: Cheng, Yan
  email: chyan88888@jxnu.edu.cn
  organization: School of Computer Information Engineering, Jiangxi Normal University, Nanchang, China
– sequence: 2
  givenname: Leibo
  orcidid: 0000-0002-9094-5379
  surname: Yao
  fullname: Yao, Leibo
  email: yaoleibo_jxnu@163.com
  organization: School of Computer Information Engineering, Jiangxi Normal University, Nanchang, China
– sequence: 3
  givenname: Guoxiong
  surname: Xiang
  fullname: Xiang, Guoxiong
  email: 1529159315@qq.com
  organization: School of Communication, Jiangxi Normal University, Nanchang, China
– sequence: 4
  givenname: Guanghe
  surname: Zhang
  fullname: Zhang, Guanghe
  organization: School of Computer Information Engineering, Jiangxi Normal University, Nanchang, China
– sequence: 5
  givenname: Tianwei
  orcidid: 0000-0002-7849-8270
  surname: Tang
  fullname: Tang, Tianwei
  organization: Center of Management Decision Evaluation Research, Jiangxi Normal University, Nanchang, China
– sequence: 6
  givenname: Linhui
  surname: Zhong
  fullname: Zhong, Linhui
  organization: School of Computer Information Engineering, Jiangxi Normal University, Nanchang, China
BookMark eNqFkU1P3DAQhq2KSlDKL-Biqeds_RHHznGJKEXiQ2JBHK2JMyleZRNqe6Xy7-sQhKpe8MEzejXPO7LfL-RgnEYk5JSzFees_r5umvPNZiWYYCvJmDJCfiJHgld1IZWsDv7pD8lJjFuWj8mS0kdkd49_Et3gmPwuX_Q2-Fwg-Wmk6xGGl-gjPYOIHc3K9X5IvmieYBxxoM3NDYWxo2e-8wHdzMBAL-4e6KNPT3Sd0mw7Y-gy4uPuK_ncwxDx5K0ek4cf5_fNz-Lq9uKyWV8VrmQmFcbUrC5b6VrQArhwqkI0PeMduLJtoXJMoWudbEultK4kMjDoRI_IeAsoj8nl4ttNsLXPwe8gvNgJvH0VpvDLQkjeDWg16Eo557KTKruqr02XJc419B3rmM5e3xav5zD93mNMdjvtQ35ptKJUZVVyJWWeksuUC1OMAfv3rZzZOSa7xGTnmOxbTJmq_6OcXz4_BfDDB-zpwnpEfN9Wc6FNLeVf8RqiyQ
CODEN IAECCG
CitedBy_id crossref_primary_10_1016_j_knosys_2022_109701
crossref_primary_10_3390_electronics13132509
crossref_primary_10_1007_s11042_023_17565_2
crossref_primary_10_1007_s41060_025_00714_1
crossref_primary_10_1007_s10489_024_05954_5
crossref_primary_10_1016_j_cose_2024_103780
crossref_primary_10_3390_su15097213
crossref_primary_10_1016_j_asoc_2024_111571
crossref_primary_10_1016_j_ipm_2022_102929
crossref_primary_10_1016_j_engappai_2024_108470
crossref_primary_10_3389_fpsyg_2024_1321582
crossref_primary_10_1016_j_cose_2022_102607
crossref_primary_10_1093_bib_bbad303
crossref_primary_10_1109_ACCESS_2023_3281889
crossref_primary_10_4018_IJTHI_313927
crossref_primary_10_17694_bajece_887339
crossref_primary_10_1016_j_cie_2023_109693
crossref_primary_10_1002_sim_10148
crossref_primary_10_1007_s13042_024_02184_6
crossref_primary_10_1007_s10462_022_10144_1
crossref_primary_10_1016_j_neucom_2022_08_076
crossref_primary_10_3390_technologies12110222
crossref_primary_10_1016_j_bspc_2025_107576
crossref_primary_10_1007_s11042_022_13155_w
crossref_primary_10_3390_app142210420
crossref_primary_10_1007_s10462_021_09973_3
crossref_primary_10_1016_j_inffus_2024_102712
crossref_primary_10_1016_j_neucom_2025_129862
crossref_primary_10_7717_peerj_cs_2592
crossref_primary_10_3233_JIFS_237391
crossref_primary_10_1108_DTA_05_2024_0472
crossref_primary_10_3389_fnbot_2022_897402
crossref_primary_10_3389_fpsyg_2021_661235
crossref_primary_10_1145_3462442
crossref_primary_10_3390_info14020090
crossref_primary_10_3389_fpsyg_2022_948721
crossref_primary_10_1108_IJICC_06_2021_0109
crossref_primary_10_12677_CSA_2022_129218
crossref_primary_10_1007_s10489_022_03910_9
crossref_primary_10_3390_diagnostics13122092
crossref_primary_10_3390_electronics13020453
crossref_primary_10_1007_s11042_023_17347_w
crossref_primary_10_54097_jceim_v11i1_9474
crossref_primary_10_1016_j_procs_2022_09_473
crossref_primary_10_3390_s23218975
crossref_primary_10_1016_j_jneumeth_2022_109593
crossref_primary_10_1145_3708987
crossref_primary_10_1016_j_jksuci_2023_101571
crossref_primary_10_1016_j_jss_2023_111667
crossref_primary_10_1080_12460125_2024_2440024
Cites_doi 10.1145/3132847.3133037
10.18653/v1/W17-5227
10.3115/1218955.1218990
10.1017/CBO9781139084789
10.18653/v1/D16-1058
10.1145/3316615.3316673
10.1561/1500000011
10.3115/v1/P14-1062
10.18653/v1/D16-1103
10.1109/IJCNN.2019.8852406
10.18653/v1/D15-1168
10.1007/978-94-007-1757-2_11
10.1109/MIS.2016.31
10.1145/1014052.1014073
10.1007/978-3-319-93417-4_48
10.1016/j.neucom.2018.04.045
10.3115/v1/D14-1179
10.1109/ACCESS.2019.2954590
10.1007/s42979-020-0076-y
10.18653/v1/D15-1167
10.1142/9789812774675
10.3115/v1/P15-1130
10.18653/v1/N16-1174
10.1109/ICENCO.2018.8636124
10.1109/ICALIP.2018.8455328
10.18653/v1/S17-2134
10.3115/v1/D14-1181
10.24963/ijcai.2017/568
10.3115/1219840.1219855
10.18653/v1/P16-1123
10.1109/WI.2018.00-13
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020
DBID 97E
ESBDL
RIA
RIE
AAYXX
CITATION
7SC
7SP
7SR
8BQ
8FD
JG9
JQ2
L7M
L~C
L~D
DOA
DOI 10.1109/ACCESS.2020.3005823
DatabaseName IEEE Xplore (IEEE)
IEEE Xplore Open Access Journals (WRLC)
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
METADEX
Computer and Information Systems Abstracts Professional
DatabaseTitleList
Materials Research Database

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2169-3536
EndPage 134975
ExternalDocumentID oai_doaj_org_article_7a765ccc45554d6f98d7a7117afd0d07
10_1109_ACCESS_2020_3005823
9127893
Genre orig-research
GrantInformation_xml – fundername: National Natural Science Foundation of China
  grantid: 61967011
  funderid: 10.13039/501100001809
– fundername: Key Research and Development Program of Jiangxi Province
  grantid: 20161BBE50086
  funderid: 10.13039/501100013064
– fundername: Humanities and Social Sciences Key (Major) Project of Education Department
  grantid: JD19056
– fundername: Jiangxi Provincial Department of Education Science and Technology Key Project
  grantid: GJJ150299
GroupedDBID 0R~
4.4
5VS
6IK
97E
AAJGR
ABAZT
ABVLG
ACGFS
ADBBV
AGSQL
ALMA_UNASSIGNED_HOLDINGS
BCNDV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
EJD
ESBDL
GROUPED_DOAJ
IPLJI
JAVBF
KQ8
M43
M~E
O9-
OCL
OK1
RIA
RIE
RNS
AAYXX
CITATION
RIG
7SC
7SP
7SR
8BQ
8FD
JG9
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c408t-889094b3cba72a12c56ee8f01dac4bba6c05ecbc3b4557763e0a8ec2fee01bae3
IEDL.DBID DOA
ISSN 2169-3536
IngestDate Wed Aug 27 01:28:08 EDT 2025
Mon Jun 30 04:34:16 EDT 2025
Thu Apr 24 23:12:38 EDT 2025
Tue Jul 01 02:55:33 EDT 2025
Wed Aug 27 02:32:50 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Language English
License https://creativecommons.org/licenses/by/4.0/legalcode
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c408t-889094b3cba72a12c56ee8f01dac4bba6c05ecbc3b4557763e0a8ec2fee01bae3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-9094-5379
0000-0002-7849-8270
0000-0002-0160-7213
OpenAccessLink https://doaj.org/article/7a765ccc45554d6f98d7a7117afd0d07
PQID 2454641533
PQPubID 4845423
PageCount 12
ParticipantIDs crossref_primary_10_1109_ACCESS_2020_3005823
ieee_primary_9127893
crossref_citationtrail_10_1109_ACCESS_2020_3005823
proquest_journals_2454641533
doaj_primary_oai_doaj_org_article_7a765ccc45554d6f98d7a7117afd0d07
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20200000
2020-00-00
20200101
2020-01-01
PublicationDateYYYYMMDD 2020-01-01
PublicationDate_xml – year: 2020
  text: 20200000
PublicationDecade 2020
PublicationPlace Piscataway
PublicationPlace_xml – name: Piscataway
PublicationTitle IEEE access
PublicationTitleAbbrev Access
PublicationYear 2020
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref35
ref13
ref34
zhou (ref22) 2015
ref37
ref15
ref36
ref14
ref31
ref30
kamps (ref12) 2002
ref33
ref32
ref10
ref2
ref1
ref39
ref17
collobert (ref18) 2011; 12
ref38
lee (ref16) 2011
zhang (ref8) 2015
wang (ref27) 2016
zhou (ref28) 2016
pang (ref4) 2002
ref24
maas (ref44) 2011; 1
ref45
yuan (ref41) 2019; 33
ref26
ref25
ref20
ref42
bahdanau (ref43) 2014
joulin (ref47) 2016
ref21
mikolov (ref11) 2013
yin (ref19) 2016
ref29
ref7
ref9
ref3
ref6
ref5
ref40
kingma (ref46) 2014
tang (ref23) 2015
References_xml – year: 2013
  ident: ref11
  article-title: Efficient estimation of word representations in vector space
  publication-title: arXiv 1301 3781 [cs]
– ident: ref37
  doi: 10.1145/3132847.3133037
– ident: ref29
  doi: 10.18653/v1/W17-5227
– year: 2015
  ident: ref8
  article-title: A sensitivity analysis of (and practitioners' guide to) convolutional neural networks for sentence classification
  publication-title: arXiv 1510 03820
– ident: ref14
  doi: 10.3115/1218955.1218990
– volume: 1
  start-page: 142
  year: 2011
  ident: ref44
  article-title: Learning word vectors for sentiment analysis
  publication-title: Proc Annu Meeting Assoc Comput Linguist Conf Human Lang Technol
– start-page: 332
  year: 2002
  ident: ref12
  article-title: Words with attitude
  publication-title: Proc 20th Belgian-Netherlands Conf Artif Intell
– year: 2015
  ident: ref22
  article-title: A C-LSTM neural network for text classification
  publication-title: arXiv 1511 08630
– year: 2016
  ident: ref19
  article-title: Multichannel variable-size convolution for sentence classification
  publication-title: arXiv 1603 04513
– year: 2016
  ident: ref28
  article-title: Text classification improved by integrating bidirectional LSTM with two-dimensional max pooling
  publication-title: arXiv 1611 06639
– ident: ref1
  doi: 10.1017/CBO9781139084789
– ident: ref36
  doi: 10.18653/v1/D16-1058
– ident: ref39
  doi: 10.1145/3316615.3316673
– start-page: 79
  year: 2002
  ident: ref4
  article-title: Thumbs up? Sentiment classification using machine learning techniques
  publication-title: Proc ACL-Conf Empirical Methods Natural Lang Process Assoc Comput Linguistics
– ident: ref3
  doi: 10.1561/1500000011
– ident: ref6
  doi: 10.3115/v1/P14-1062
– ident: ref24
  doi: 10.18653/v1/D16-1103
– ident: ref21
  doi: 10.1109/IJCNN.2019.8852406
– ident: ref10
  doi: 10.18653/v1/D15-1168
– ident: ref15
  doi: 10.1007/978-94-007-1757-2_11
– ident: ref2
  doi: 10.1109/MIS.2016.31
– volume: 33
  start-page: 109
  year: 2019
  ident: ref41
  article-title: Sentiment analysis based on multi-channel convolution and bi-directional GRU with attention mechanism
  publication-title: J Chin Inf Process
– ident: ref5
  doi: 10.1145/1014052.1014073
– year: 2014
  ident: ref43
  article-title: Neural machine translation by jointly learning to align and translate
  publication-title: arXiv 1409 0473
– year: 2015
  ident: ref23
  article-title: Effective LSTMs for target-dependent sentiment classification
  publication-title: arXiv 1512 01100
– ident: ref32
  doi: 10.1007/978-3-319-93417-4_48
– ident: ref25
  doi: 10.1016/j.neucom.2018.04.045
– ident: ref42
  doi: 10.3115/v1/D14-1179
– ident: ref40
  doi: 10.1109/ACCESS.2019.2954590
– ident: ref26
  doi: 10.1007/s42979-020-0076-y
– ident: ref20
  doi: 10.18653/v1/D15-1167
– year: 2016
  ident: ref47
  article-title: Bag of tricks for efficient text classification
  publication-title: arXiv 1607 01759
– start-page: 89
  year: 2011
  ident: ref16
  article-title: Chinese sentiment analysis using maximum entropy
  publication-title: Proc Workshop Sentiment Anal AI Meets Psychology
– ident: ref13
  doi: 10.1142/9789812774675
– ident: ref9
  doi: 10.3115/v1/P15-1130
– ident: ref34
  doi: 10.18653/v1/N16-1174
– start-page: 2428
  year: 2016
  ident: ref27
  article-title: Combination of convolutional and recurrent neural network for sentiment analysis of short texts
  publication-title: Proc COLING 26th Int Conf Comput Linguistics Tech Papers
– ident: ref33
  doi: 10.1109/ICENCO.2018.8636124
– ident: ref31
  doi: 10.1109/ICALIP.2018.8455328
– ident: ref30
  doi: 10.18653/v1/S17-2134
– ident: ref7
  doi: 10.3115/v1/D14-1181
– ident: ref38
  doi: 10.24963/ijcai.2017/568
– year: 2014
  ident: ref46
  article-title: Adam: A method for stochastic optimization
  publication-title: arXiv 1412 6980
– volume: 12
  start-page: 2493
  year: 2011
  ident: ref18
  article-title: Natural language processing (almost) from scratch
  publication-title: J Mach Learn Res
– ident: ref45
  doi: 10.3115/1219840.1219855
– ident: ref35
  doi: 10.18653/v1/P16-1123
– ident: ref17
  doi: 10.1109/WI.2018.00-13
SSID ssj0000816957
Score 2.4311476
Snippet Convolutional Neural Network(CNN) and Recurrent Neural Network(RNN) have been widely used in the field of text sentiment analysis and have achieved good...
SourceID doaj
proquest
crossref
ieee
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 134964
SubjectTerms Artificial neural networks
attention mechanism
bidirectional gated recurrent unit network
Context modeling
Convolutional neural network
Data mining
Datasets
Feature extraction
Machine learning
Neural networks
Recurrent neural networks
Semantics
Sentiment analysis
Task analysis
text sentiment orientation analysis
Words (language)
SummonAdditionalLinks – databaseName: IEEE Electronic Library (IEL)
  dbid: RIE
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwELbanuDAqyAWCvKBY7N1HDuJj7srSoW0iwRd0VtkjydiRZuiNnvpr-_Y8Ua8hLhFliey9TnzcGa-YeydqaQkXFVGtlJkCtBlThUiA9tSLKZaZWKPpeWqPFurjxf6Yo8dj7UwiBiTz3AaHuO_fH8N23BVdmLyULdZ7LN9CtyGWq3xPiU0kDC6SsRCuTAns8WC9kAhoKTINLTPk8Uvxidy9KemKn9o4mheTh-z5W5hQ1bJ9-m2d1O4-42z8X9X_oQ9Sn4mnw0H4ynbw-4Ze_gT--Ahuzonxcy_hHShIM0_3WxSIVLHd1wlfE5WznMaiZW6WShG6PCSL1YrbjvP55vBJsYLRf7h85p_3fTf-KzvhzRKvsRQWry5vXrO1qfvzxdnWeq-kIESdZ_VtaHQzxXgbCVtLkGXiHUrcm9BOWdLEBrBQeGU1hWpKRS2RpAtosidxeIFO-iuO3zJOHotJCgSKGuFwhuF5Dm0rXbSGfQwYXIHSwOJmjx0yLhsYogiTDNg2QQsm4TlhB2PQj8GZo5_T58HvMepgVY7DhBOTfpKm8pWpQYA2pFWvmxN7WkozyvbeuFFNWGHAdvxJQnWCTvanZ4mqYDbRiqtShXc6Vd_l3rNHoQFDvc5R-ygv9niG_Jwevc2Hu17AzT4UQ
  priority: 102
  providerName: IEEE
Title Text Sentiment Orientation Analysis Based on Multi-Channel CNN and Bidirectional GRU With Attention Mechanism
URI https://ieeexplore.ieee.org/document/9127893
https://www.proquest.com/docview/2454641533
https://doaj.org/article/7a765ccc45554d6f98d7a7117afd0d07
Volume 8
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LTxsxELYqTvSAaNOqAYp84MgKr9feXR-TqICQEiQgKjfLj1kRCbYVLP-_40eiVJXKhatle9cz4_k8lucbQk5UwznqVRSIlawQDmxhRcUKZzqMxUQnVKyxNF_Ul0txdS_vt0p9hTdhiR44Ce6sMU0tnXNCIvD5ulOtx6aybEznmU955Ih5W8FU9MFtWSvZZJqhkqmzyWyGK8KAkGOcGorp8eovKIqM_bnEyj9-OYLN-T7Zy6dEOkl_94l8gP4z-bjFHTgiT3foVulteOwTLvjo9fMqpxH1dM00QqeIUZ5iS8yzLUIqQQ-PdLZYUNN7Ol0lRIvXgfTiZkl_roYHOhmG9AiSziEkBq9enr6Q5fmPu9llkWsnFE6wdijaVmHgZitnTcNNyZ2sAdqOld44Ya2pHZPgrKssCrZBJwPMtOB4B8BKa6D6Snb6Xz18IxS8ZNwJHFC3AphXAhD3u05abhV4NyZ8LUbtMrF4qG_xqGOAwZROstdB9jrLfkxON4N-J16N_3efBv1sugZS7NiApqKzqei3TGVMRkG7m0lUGdKAce6jtbZ13sAvmgspahEOwwfv8elDshuWk-5ujsjO8PwK3_E0M9jjaLjHMfHwD7Xl7-w
linkProvider Directory of Open Access Journals
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwzV1Lb9QwELZKOQAHXgWxUMAHuJGt49hJfOCwu1C2tLtIsCt6S_2YiFXbtOpmheC38Ff4b4wTZ8VL3Cpxiyzb8uOzxzOZmY-QZyrjHPdVRCgrWSQsmMiIhEVWl6iLiVKohmNpMk3Hc_H2UB5ukG_rWBgAaJzPoO8_m3_57syuvKlsR8U-brOjqt6HL59RQVu-3HuFu_mc893Xs9E4ChwCkRUsr6M8V6jAmMQanXEdcytTgLxksdNWGKNTyyRYYxMjpMzwsAHTOVheArDYaEiw3yvkKr4zJG-jw9YWHE9ZoWQWUhnFTO0MRiNcNVQ6OerCnrCPJ7-Iu4YVINC4_HH3NwJt9xb53i1F68dy3F_Vpm-__pYl8n9dq9vkZnhJ00EL_TtkA6q75MZP-RW3yOkMRQ_94B2i_Gjpu4tFCLWqaJeNhQ5RjjuKJU0scuTDLSo4oaPplOrK0eGilfqNyZS-eT-nHxf1Jzqo69ZRlE7AB08vlqf3yPxS5nufbFZnFTwgFJxk3ApskOYCmFMC8G1UltJwo8DZHuEdDAobkq97DpCTolHCmCpa7BQeO0XATo-8WDc6b3OP_Lv60ONrXdUnDm8KEBdFuIeKTGeptNbijKRwaalyh0VxnOnSMceyHtnyWFp3EmDUI9sdWotwyS0LLqRIhVcYHv691VNybTybHBQHe9P9R-S6H2xrvdomm_XFCh7je642T5pjRcnRZWPzB4GqWTA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Text+Sentiment+Orientation+Analysis+Based+on+Multi-Channel+CNN+and+Bidirectional+GRU+With+Attention+Mechanism&rft.jtitle=IEEE+access&rft.au=Cheng%2C+Yan&rft.au=Yao%2C+Leibo&rft.au=Xiang%2C+Guoxiong&rft.au=Zhang%2C+Guanghe&rft.date=2020&rft.issn=2169-3536&rft.eissn=2169-3536&rft.volume=8&rft.spage=134964&rft.epage=134975&rft_id=info:doi/10.1109%2FACCESS.2020.3005823&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_ACCESS_2020_3005823
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2169-3536&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2169-3536&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2169-3536&client=summon