Implementation-friendly and Energy-efficient Symbol-by-symbol Detection Scheme for IEEE 802.15.4 O-QPSK Receivers

In this paper, the noncoherent detection scheme for the receiver in wireless sensor nodes is discussed. That is, an implementation-friendly and energy-efficient symbol-by-symbol detection scheme for IEEE 802.15.4 offset-quadrature phase shift keying (O-QPSK) receivers is investigated under both pure...

Full description

Saved in:
Bibliographic Details
Published inIEEE access Vol. 8; p. 1
Main Authors Zhang, Gaoyuan, Shi, Congyu, Han, Congzheng, Li, Xingwang, Wang, Dan, Rabie, Khaled M. Rabie Khaled, Kharel, Rupak
Format Journal Article
LanguageEnglish
Published Piscataway IEEE 01.01.2020
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:In this paper, the noncoherent detection scheme for the receiver in wireless sensor nodes is discussed. That is, an implementation-friendly and energy-efficient symbol-by-symbol detection scheme for IEEE 802.15.4 offset-quadrature phase shift keying (O-QPSK) receivers is investigated under both pure additive white Gaussian noise (AWGN) channel and fading channel. Specifically, the residual carrier frequency offset (CFO) of the chip sample is estimated and compensated with the aid of the preamble; then, the standard noncoherent detection scheme with perfectly known CFO is directly configured. The corresponding simulation results show that only 4 preamble symbols is sufficient for accurate CFO estimation. Compared with the conventional noncoherent detector, the average running time per data packet of our enhanced detector is only 0.17 times of the former; meanwhile, at the packet error rate of 1 × 10⁻³, our enhanced detector can obtain 2.2 dB gains in the (32, 4) direct sequence spread spectrum system. A more reasonable trade-off between complexity and reliability is thus achieved for energy-saving and maximum service life in wireless sensor networks (WSNs).
ISSN:2169-3536
2169-3536
DOI:10.1109/ACCESS.2020.3020183