Cloud-Aided Cognitive Ambient Backscatter Wireless Sensor Networks
Cognitive ambient backscatter is a wireless communication paradigm that allows a secondary backscatter device to superimpose its information-bearing data on a primary signal, without requiring any type of power-consuming active components or other signal conditioning units. In such a network, the pe...
Saved in:
Published in | IEEE access Vol. 7; pp. 57399 - 57414 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Piscataway
IEEE
2019
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
ISSN | 2169-3536 2169-3536 |
DOI | 10.1109/ACCESS.2019.2914001 |
Cover
Loading…
Abstract | Cognitive ambient backscatter is a wireless communication paradigm that allows a secondary backscatter device to superimpose its information-bearing data on a primary signal, without requiring any type of power-consuming active components or other signal conditioning units. In such a network, the performance of the backscatter system can be severely degraded by channel estimation errors and co-channel direct-link interference (DLI) from the primary system. To overcome these shortcomings, we consider a cloud radio access network (C-RAN) architecture, where both the primary and secondary edge nodes are connected to a cloud processor via high-speed links. In this centralized architecture, secondary edge nodes provide network access to ambient backscatter passive and semi-passive sensors with communication capabilities, and the problem of acquiring channel state information and suppressing the DLI is managed by the cloud processor. In particular, we assess the performance of the secondary backscatter sensor transmission in a realistic system setup, which takes into account training-based channel estimation, practical modulation constraints, and imperfect DLI suppression. In addition, we formulate and solve an optimization problem aimed at maximizing the transmission rate of the secondary transmission, subject to limits on channel estimation error, average symbol error rate, power consumption, and energy storage capabilities of the backscatter sensor. The validity of our analysis and the performance of the secondary system based on the proposed designs are corroborated through the Monte Carlo simulations. |
---|---|
AbstractList | Cognitive ambient backscatter is a wireless communication paradigm that allows a secondary backscatter device to superimpose its information-bearing data on a primary signal, without requiring any type of power-consuming active components or other signal conditioning units. In such a network, the performance of the backscatter system can be severely degraded by channel estimation errors and co-channel direct-link interference (DLI) from the primary system. To overcome these shortcomings, we consider a cloud radio access network (C-RAN) architecture, where both the primary and secondary edge nodes are connected to a cloud processor via high-speed links. In this centralized architecture, secondary edge nodes provide network access to ambient backscatter passive and semi-passive sensors with communication capabilities, and the problem of acquiring channel state information and suppressing the DLI is managed by the cloud processor. In particular, we assess the performance of the secondary backscatter sensor transmission in a realistic system setup, which takes into account training-based channel estimation, practical modulation constraints, and imperfect DLI suppression. In addition, we formulate and solve an optimization problem aimed at maximizing the transmission rate of the secondary transmission, subject to limits on channel estimation error, average symbol error rate, power consumption, and energy storage capabilities of the backscatter sensor. The validity of our analysis and the performance of the secondary system based on the proposed designs are corroborated through the Monte Carlo simulations. |
Author | Gelli, Giacinto Darsena, Donatella Verde, Francesco |
Author_xml | – sequence: 1 givenname: Donatella surname: Darsena fullname: Darsena, Donatella organization: Department of Engineering, Parthenope University, Naples, Italy – sequence: 2 givenname: Giacinto orcidid: 0000-0003-2796-8241 surname: Gelli fullname: Gelli, Giacinto organization: Department of Electrical Engineering and Information Technology, University of Naples Federico II, Naples, Italy – sequence: 3 givenname: Francesco orcidid: 0000-0001-9039-3896 surname: Verde fullname: Verde, Francesco email: f.verde@unina.it organization: Department of Electrical Engineering and Information Technology, University of Naples Federico II, Naples, Italy |
BookMark | eNqFUU1P3TAQtCoqQYFfwCVSz3l4_RkfHxEtSKgcHhVHa-M4yI8QU9sPxL9vaBCquLCXXY12Zlaz38jeFCdPyAnQFQA1p-u2Pd9sVoyCWTEDglL4Qg4YKFNzydXef_M-Oc55S-dqZkjqA3LWjnHX1-vQ-75q490USnjy1fqhC34q1Rm6--ywFJ-q25D86HOuNn7KMVW_fHmO6T4fka8Djtkfv_VD8vvH-U17UV9d_7xs11e1E7QpdSNcD6CoVrobDPaCD9gzo6XzZuB6kFIyB4CaKs45Ms26oeFohDYKhO74IblcdPuIW_uYwgOmFxsx2H9ATHcWUwlu9BYcotY901J0AjvslHZcSC7ROGaMmrW-L1qPKf7Z-VzsNu7SNJ9vmZBSgQYj5y2-bLkUc05-eHcFal-zt0v29jV7-5b9zDIfWC4ULCFOJWEYP-GeLNzgvX93azSd3wX8L5rUkcw |
CODEN | IAECCG |
CitedBy_id | crossref_primary_10_1109_ACCESS_2019_2950601 crossref_primary_10_1109_ACCESS_2020_2995938 crossref_primary_10_1109_ACCESS_2021_3050480 crossref_primary_10_1109_JIOT_2023_3305645 crossref_primary_10_3390_s20092708 crossref_primary_10_3390_electronics9040622 crossref_primary_10_1016_j_cogsys_2021_03_002 crossref_primary_10_32604_cmc_2023_035638 crossref_primary_10_3390_s21124180 crossref_primary_10_1109_ACCESS_2020_3030658 crossref_primary_10_3390_jlpea10030029 crossref_primary_10_1109_TWC_2021_3131244 crossref_primary_10_1109_TMC_2020_2964677 crossref_primary_10_1109_ACCESS_2020_3030653 crossref_primary_10_1109_ACCESS_2022_3206806 crossref_primary_10_1109_JIOT_2022_3162095 crossref_primary_10_3390_s20051273 crossref_primary_10_3390_info11020089 crossref_primary_10_1016_j_comnet_2020_107277 crossref_primary_10_1109_JSEN_2022_3223297 crossref_primary_10_1109_OJCOMS_2024_3444719 crossref_primary_10_1109_ACCESS_2021_3104619 crossref_primary_10_1016_j_procs_2022_07_111 crossref_primary_10_1109_ACCESS_2022_3155879 crossref_primary_10_1109_TSP_2023_3284589 crossref_primary_10_1109_ACCESS_2021_3128207 crossref_primary_10_3390_e21090860 crossref_primary_10_3390_s20154104 crossref_primary_10_1016_j_iot_2023_100768 crossref_primary_10_1109_LCOMM_2021_3139676 |
Cites_doi | 10.1007/978-3-319-19303-8 10.1145/2934872.2934901 10.1109/ISCC.2012.6249261 10.1109/JSYST.2014.2298837 10.1109/MWC.2017.1600418 10.1109/TCOMM.2017.2772261 10.1109/TWC.2018.2849698 10.1109/26.809706 10.1214/aoms/1177704250 10.1109/GLOCOMW.2012.6477806 10.1109/WCSP.2015.7341107 10.1109/TCOMM.2013.120713.130417 10.1145/2619239.2626319 10.1109/JSEN.2014.2331704 10.1109/COMST.2014.2368999 10.1109/TMTT.1965.1125964 10.1109/78.340781 10.1109/MCOM.2007.374432 10.1109/TCOMM.2015.2412546 10.1109/TWC.2017.2665629 10.1109/TSP.2015.2446440 10.1109/MCOM.2015.7120024 10.1109/JIOT.2018.2856633 10.1109/GLOCOM.2016.7841620 10.1109/TWC.2016.2635654 10.1109/MCOM.2015.7081084 10.1109/JSAC.2004.839380 10.1109/COMST.2014.2355255 10.1109/TCOMM.2017.2710338 10.1109/TCOMM.2014.020314.130559 10.1109/TVT.2017.2768667 10.1109/5.32056 10.1145/2934872.2934894 10.1109/RFID.2012.6193049 10.1109/TMTT.2012.2185810 10.1109/LCOMM.2018.2817555 10.1109/TCOMM.2017.2664865 10.1109/MWC.2016.7462480 10.1109/GLOCOM.2015.7417704 10.1145/2486001.2486015 10.1109/TCOMM.2016.2602341 10.1109/JSAC.2015.2481258 10.1109/TCOMM.2017.2665494 10.1145/2785956.2787490 10.1109/TCCN.2015.2508028 10.1109/LWC.2018.2827983 10.1109/MWC.2012.6231157 10.1109/MCOM.2015.7263367 10.1109/78.969514 10.1109/TCOMM.2017.2654448 10.1109/ICC.2018.8422302 10.1109/JSAC.2018.2872382 10.1109/79.841722 10.1561/0100000006 10.1109/JRPROC.1948.226245 10.1109/JSSC.2003.817249 10.1016/S0024-3795(97)10015-5 10.1109/JSSC.2008.920318 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019 |
DBID | 97E ESBDL RIA RIE AAYXX CITATION 7SC 7SP 7SR 8BQ 8FD JG9 JQ2 L7M L~C L~D DOA |
DOI | 10.1109/ACCESS.2019.2914001 |
DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE Xplore Open Access Journals IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts METADEX Technology Research Database Materials Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace METADEX Computer and Information Systems Abstracts Professional |
DatabaseTitleList | Materials Research Database |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 2169-3536 |
EndPage | 57414 |
ExternalDocumentID | oai_doaj_org_article_1caa77d2754b4abab67c34535a9c2996 10_1109_ACCESS_2019_2914001 8701691 |
Genre | orig-research |
GrantInformation_xml | – fundername: “Information and Electrical Technologies for e-Health and Industry 4.0” (TecHealth4.0) |
GroupedDBID | 0R~ 4.4 5VS 6IK 97E AAJGR ABAZT ABVLG ACGFS ADBBV AGSQL ALMA_UNASSIGNED_HOLDINGS BCNDV BEFXN BFFAM BGNUA BKEBE BPEOZ EBS EJD ESBDL GROUPED_DOAJ IPLJI JAVBF KQ8 M43 M~E O9- OCL OK1 RIA RIE RNS AAYXX CITATION RIG 7SC 7SP 7SR 8BQ 8FD JG9 JQ2 L7M L~C L~D |
ID | FETCH-LOGICAL-c408t-84cd1160767bf9ad43fad2975ce9f37f5552c11a706333a272bf83a94796147b3 |
IEDL.DBID | RIE |
ISSN | 2169-3536 |
IngestDate | Wed Aug 27 01:26:23 EDT 2025 Sun Jun 29 12:44:56 EDT 2025 Tue Jul 01 02:41:27 EDT 2025 Thu Apr 24 23:05:34 EDT 2025 Wed Aug 27 02:46:27 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Language | English |
License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/OAPA.html |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c408t-84cd1160767bf9ad43fad2975ce9f37f5552c11a706333a272bf83a94796147b3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0003-2796-8241 0000-0001-9039-3896 |
OpenAccessLink | https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/document/8701691 |
PQID | 2455617195 |
PQPubID | 4845423 |
PageCount | 16 |
ParticipantIDs | ieee_primary_8701691 doaj_primary_oai_doaj_org_article_1caa77d2754b4abab67c34535a9c2996 crossref_primary_10_1109_ACCESS_2019_2914001 crossref_citationtrail_10_1109_ACCESS_2019_2914001 proquest_journals_2455617195 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20190000 2019-00-00 20190101 2019-01-01 |
PublicationDateYYYYMMDD | 2019-01-01 |
PublicationDate_xml | – year: 2019 text: 20190000 |
PublicationDecade | 2010 |
PublicationPlace | Piscataway |
PublicationPlace_xml | – name: Piscataway |
PublicationTitle | IEEE access |
PublicationTitleAbbrev | Access |
PublicationYear | 2019 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref57 ref13 ref56 ref12 ref15 ref58 ref14 ref53 ref55 ref11 ref54 ref10 quek (ref38) 2017 ref17 ref16 ref19 ref18 (ref1) 2012 zhang (ref42) 2018 ref51 ref50 rappaport (ref64) 2001 ref46 ref45 wang (ref24) 2017 ref48 ref47 ref41 ref44 ref43 ref49 ref8 ref7 ref9 ref3 ref6 ref5 kay (ref60) 1993 ref40 ref35 ref34 ref37 ref36 ref31 ref30 ref33 ref32 ref2 goldsmith (ref4) 2013 ref39 horn (ref59) 1990 ma (ref25) 2015 proakis (ref52) 2001 (ref63) 2019 ref68 ref67 ref23 ref26 ref69 ref20 ref66 ref22 ref21 ref28 ref27 fraden (ref65) 2016 ref29 ref62 ref61 |
References_xml | – year: 2016 ident: ref65 publication-title: Handbook of Modern Sensors Physics Designs and Applications doi: 10.1007/978-3-319-19303-8 – ident: ref23 doi: 10.1145/2934872.2934901 – ident: ref7 doi: 10.1109/ISCC.2012.6249261 – ident: ref44 doi: 10.1109/JSYST.2014.2298837 – ident: ref36 doi: 10.1109/MWC.2017.1600418 – ident: ref31 doi: 10.1109/TCOMM.2017.2772261 – ident: ref48 doi: 10.1109/TWC.2018.2849698 – ident: ref61 doi: 10.1109/26.809706 – ident: ref69 doi: 10.1214/aoms/1177704250 – ident: ref8 doi: 10.1109/GLOCOMW.2012.6477806 – ident: ref26 doi: 10.1109/WCSP.2015.7341107 – year: 1993 ident: ref60 publication-title: Fundamentals of Statistical Signal Processing Detection Theory – year: 2001 ident: ref52 publication-title: Digital Communications – ident: ref35 doi: 10.1109/TCOMM.2013.120713.130417 – ident: ref20 doi: 10.1145/2619239.2626319 – ident: ref12 doi: 10.1109/JSEN.2014.2331704 – ident: ref16 doi: 10.1109/COMST.2014.2368999 – ident: ref62 doi: 10.1109/TMTT.1965.1125964 – year: 2018 ident: ref42 publication-title: Interference-free transceiver design and signal detection for ambient backscatter communication systems over frequency-selective channels – year: 2013 ident: ref4 publication-title: Principles of Cognitive Radio – ident: ref68 doi: 10.1109/78.340781 – ident: ref2 doi: 10.1109/MCOM.2007.374432 – ident: ref13 doi: 10.1109/TCOMM.2015.2412546 – year: 2012 ident: ref1 publication-title: Overview of the Internet of Things (IoT) – ident: ref10 doi: 10.1109/TWC.2017.2665629 – start-page: 243 year: 2017 ident: ref24 article-title: FM backscatter: Enabling connected cities and smart fabrics publication-title: Proc USENIX NSDI – ident: ref47 doi: 10.1109/TSP.2015.2446440 – ident: ref5 doi: 10.1109/MCOM.2015.7120024 – year: 1990 ident: ref59 publication-title: Matrix Analysis – ident: ref34 doi: 10.1109/JIOT.2018.2856633 – ident: ref30 doi: 10.1109/GLOCOM.2016.7841620 – ident: ref29 doi: 10.1109/TWC.2016.2635654 – ident: ref15 doi: 10.1109/MCOM.2015.7081084 – ident: ref3 doi: 10.1109/JSAC.2004.839380 – ident: ref37 doi: 10.1109/COMST.2014.2355255 – ident: ref33 doi: 10.1109/TCOMM.2017.2710338 – ident: ref11 doi: 10.1109/TCOMM.2014.020314.130559 – ident: ref43 doi: 10.1109/TVT.2017.2768667 – ident: ref58 doi: 10.1109/5.32056 – ident: ref22 doi: 10.1145/2934872.2934894 – ident: ref55 doi: 10.1109/RFID.2012.6193049 – ident: ref54 doi: 10.1109/TMTT.2012.2185810 – year: 2017 ident: ref38 publication-title: Cloud Radio Access Networks Principles Technologies and Applications – ident: ref40 doi: 10.1109/LCOMM.2018.2817555 – ident: ref57 doi: 10.1109/TCOMM.2017.2664865 – ident: ref18 doi: 10.1109/MWC.2016.7462480 – ident: ref27 doi: 10.1109/GLOCOM.2015.7417704 – ident: ref19 doi: 10.1145/2486001.2486015 – year: 2001 ident: ref64 publication-title: Wireless Communications Principles and Practice – ident: ref28 doi: 10.1109/TCOMM.2016.2602341 – ident: ref9 doi: 10.1109/JSAC.2015.2481258 – start-page: 50 year: 2015 ident: ref25 article-title: Signal detection for ambient backscatter system with multiple receiving antennas publication-title: Proc IEEE Canadian Workshop Inf Theory (CWIT) – ident: ref14 doi: 10.1109/TCOMM.2017.2665494 – ident: ref21 doi: 10.1145/2785956.2787490 – ident: ref17 doi: 10.1109/TCCN.2015.2508028 – ident: ref39 doi: 10.1109/LWC.2018.2827983 – year: 2019 ident: ref63 publication-title: Powercast Wireless Power Calculator (Version 1 5) – ident: ref6 doi: 10.1109/MWC.2012.6231157 – ident: ref45 doi: 10.1109/MCOM.2015.7263367 – ident: ref56 doi: 10.1109/78.969514 – ident: ref32 doi: 10.1109/TCOMM.2017.2654448 – ident: ref46 doi: 10.1109/ICC.2018.8422302 – ident: ref41 doi: 10.1109/JSAC.2018.2872382 – ident: ref50 doi: 10.1109/79.841722 – ident: ref51 doi: 10.1561/0100000006 – ident: ref53 doi: 10.1109/JRPROC.1948.226245 – ident: ref66 doi: 10.1109/JSSC.2003.817249 – ident: ref67 doi: 10.1016/S0024-3795(97)10015-5 – ident: ref49 doi: 10.1109/JSSC.2008.920318 |
SSID | ssj0000816957 |
Score | 2.3174195 |
Snippet | Cognitive ambient backscatter is a wireless communication paradigm that allows a secondary backscatter device to superimpose its information-bearing data on a... |
SourceID | doaj proquest crossref ieee |
SourceType | Open Website Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 57399 |
SubjectTerms | Ambient backscatter Backscatter Backscattering Channel estimation Cloud computing cloud radio access network cognitive radio Computer architecture data rate maximization energy harvesting Energy storage interference suppression Microprocessors Modulation Nodes Optimization passive and semi-passive sensors performance analysis Power consumption Power management Sensors State (computer science) Wireless communication Wireless communications Wireless networks Wireless sensor networks |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1NS8MwGA6ykx5EnWJ1Sg8erWvz0STHrjiG4C462C0kaQLC3GQf_98kTcdA0IvXkn7kedv3o7zv8wDwgJnhHHOUGZbrDGOtM6VgkRnDIC-VRtz62eHXaTmZ4Zc5mR9IffmesJYeuAVuWGgpKW0gJVhhqaQqqUaYICK5dq40kG27mHdQTAUfzIqSExpphoqcD6u6djvyvVz8CXJXVkQZmC4UBcb-KLHywy-HYDM-A6cxS0yr9unOwZFZXoCTA-7APhjVi9WuyaqPxjRp3TUBpdWn8hOO6cjPzutAnpn6DteF82jpm6tZV-t02rZ-by7BbPz8Xk-yKIiQaZyzbcawbgrPCFdSZblsMLKy8aOx2nCLqCWEQF0Ukrq8AyEJKVSWIckx5S4KU4WuQG-5WpprkFpmXCpVOn8lXYmXE1ZKWyqXjVhLIVM6AbDDRujIFu5FKxYiVA05Fy2gwgMqIqAJeNyf9NWSZfy-fORB3y_1TNfhgLO_iPYXf9k_AX1vsv1FnP_x_D8JGHQmFPGr3AiIvRgoLTi5-Y9b34Jjv532h8wA9LbrnblzKcpW3Ye38RtMFN4r priority: 102 providerName: Directory of Open Access Journals |
Title | Cloud-Aided Cognitive Ambient Backscatter Wireless Sensor Networks |
URI | https://ieeexplore.ieee.org/document/8701691 https://www.proquest.com/docview/2455617195 https://doaj.org/article/1caa77d2754b4abab67c34535a9c2996 |
Volume | 7 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT9wwEB4BJziUFqi65aEceiRL4kdsH3cjEKoEl4LEzbIdW0JsdyvYvfTX1-M4EYKq6i2K7MjxjOflmW8AvjHplWKKll5WrmTMudJaUpfeS6Ia66gKWDt8c9tc37PvD_xhC87HWhjvfUo-81N8THf53cptMFR2EXkLsV22YTs6bn2t1hhPwQYSiosMLFRX6mLWtvEfMHtLTYmKjkRu_DIon4TRn5uqvJPESb1c7cPNsLA-q-Rpulnbqfv9BrPxf1f-ET5kO7OY9YzxCbb88gD2XqEPHsK8Xaw2XTl77HxXtEMaUTH7abFGsphj9b1L8JsF5sguokwsfkSvd_Vc3PbJ4y9HcH91eddel7mlQulYJdelZK6rEVOuETYo0zEaTIfFtc6rQEXgnBNX10ZEy4VSQwSxQVKjmFBRjwtLP8POcrX0X6AI0kdjrIkSz0QnseKyMaGx0Z4JQRBp3QTIsNfaZbxxbHux0MnvqJTuCaSRQDoTaALn46RfPdzGv4fPkYjjUMTKTi_i5ut89HTtjBGiI4Izy4w1thGOMk65US4q42YCh0iw8SOZVhM4GVhC53P9ognDdqKiVvzr32cdwy4usA_SnMDO-nnjT6PZsrZnyd0_S1z7B5gm6Ik |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB6VcoAegLagbimQQ4_NNvEjto-7EdUC3b20lXqzbMeWEMtu1e5e-uvrSZwIAULcosiOHM94Xp75BuCUSa8UUzT3snA5Y87l1pIy914SVVlHVcDa4fmimt2wr7f8dgfOhloY732bfObH-Nje5Tdrt8VQ2XnkLcR2eQbPo95nqqvWGiIq2EJCcZGghcpCnU_qOv4F5m-pMVHRlUitX3r106L0p7Yqf8jiVsFcvIZ5v7Qur-THeLuxY_f4G2rj_679DbxKlmY26VhjH3b86gD2fsEfPIRpvVxvm3zyvfFNVveJRNnkp8UqyWyK9feuBeDMMEt2GaVidhX93vV9tujSxx_ews3F5-t6lqemCrljhdzkkrmmRFS5StigTMNoMA2W1zqvAhWBc05cWRoRbRdKDRHEBkmNYkJFTS4sfQe7q_XKH0EWpI_mWBVlnoluYsFlZUJlo0UTgiDSuhGQfq-1S4jj2PhiqVvPo1C6I5BGAulEoBGcDZPuOsCNfw-fIhGHoYiW3b6Im6_T4dOlM0aIhgjOLDPW2Eo4yjjlRrmojqsRHCLBho8kWo3gpGcJnU72gyYMG4qKUvHjv8_6BC9m1_NLffll8e09vMTFdiGbE9jd3G_9h2jEbOzHlnefAHhm6uQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Cloud-Aided+Cognitive+Ambient+Backscatter+Wireless+Sensor+Networks&rft.jtitle=IEEE+access&rft.au=Darsena%2C+Donatella&rft.au=Gelli%2C+Giacinto&rft.au=Verde%2C+Francesco&rft.date=2019&rft.pub=IEEE&rft.eissn=2169-3536&rft.volume=7&rft.spage=57399&rft.epage=57414&rft_id=info:doi/10.1109%2FACCESS.2019.2914001&rft.externalDocID=8701691 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2169-3536&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2169-3536&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2169-3536&client=summon |