Analysis of Correlation Between Secondary PM2.5 and Factory Pollution Sources by Using ANN and the Correlation Coefficient
Industry 4.0 is gaining more attention from the public, and thus the correlation between factories and nearby environmental pollution sources is a subject worth in-depth research. Among environmental issues, Particulate Matter2.5 (PM2.5) has received considerable attention in recent years from acade...
Saved in:
Published in | IEEE access Vol. 5; pp. 22812 - 22822 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Piscataway
IEEE
01.01.2017
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Industry 4.0 is gaining more attention from the public, and thus the correlation between factories and nearby environmental pollution sources is a subject worth in-depth research. Among environmental issues, Particulate Matter2.5 (PM2.5) has received considerable attention in recent years from academic units and governments, and one of the secondary PM2.5 sources is the complex chemical reaction of exhaust gases emitted from factories and ammonia (NH3), with NH3 mostly coming from stock farming. Therefore, the correlation between stock farming data and pollutionsources emitted from factories can be examined by using an artificial neural network (ANN). The first target of this study is to investigate the correlation of factory air pollution source data and stock farming data nearby air monitoring stations to the annual mean PM2.5 concentration of nearby air monitoring stations. Second, the study uses Tensorflow to build an ANN model to analyze whether the industrial and stock farming data have an effect on the PM2.5 concentration. Weather data are taken in this experiment to learn about the correlation. The experimental results show that the Spearman's correlation coefficient of the factory emitted air pollution data and stock farming data nearby air monitoring stations for the annual mean PM2.5 concentration is 0.6 to 0.9, representing positive correlation. The ANN experiment shows the annual mean PM2.5 concentration classification model with industrial data plus stock farming data plus weather data, in which the ANN classification accuracy is 0.75 as validated by mean square error (MSE) methods. Compared with the ANN classification model only with weather data, the MSE classification accuracy is 1.5. According to the two experiments, the industrial factor and stock farming factor are items that may influence the PM2.5 concentration change. |
---|---|
AbstractList | Industry 4.0 is gaining more attention from the public, and thus the correlation between factories and nearby environmental pollution sources is a subject worth in-depth research. Among environmental issues, Particulate Matter2.5 (PM2.5) has received considerable attention in recent years from academic units and governments, and one of the secondary PM2.5 sources is the complex chemical reaction of exhaust gases emitted from factories and ammonia (NH3), with NH3 mostly coming from stock farming. Therefore, the correlation between stock farming data and pollutionsources emitted from factories can be examined by using an artificial neural network (ANN). The first target of this study is to investigate the correlation of factory air pollution source data and stock farming data nearby air monitoring stations to the annual mean PM2.5 concentration of nearby air monitoring stations. Second, the study uses Tensorflow to build an ANN model to analyze whether the industrial and stock farming data have an effect on the PM2.5 concentration. Weather data are taken in this experiment to learn about the correlation. The experimental results show that the Spearman's correlation coefficient of the factory emitted air pollution data and stock farming data nearby air monitoring stations for the annual mean PM2.5 concentration is 0.6 to 0.9, representing positive correlation. The ANN experiment shows the annual mean PM2.5 concentration classification model with industrial data plus stock farming data plus weather data, in which the ANN classification accuracy is 0.75 as validated by mean square error (MSE) methods. Compared with the ANN classification model only with weather data, the MSE classification accuracy is 1.5. According to the two experiments, the industrial factor and stock farming factor are items that may influence the PM2.5 concentration change. |
Author | Chien-Yuan Tseng Jui-Hung Chang |
Author_xml | – sequence: 1 givenname: Jui-Hung orcidid: 0000-0002-3735-8853 surname: Chang fullname: Chang, Jui-Hung – sequence: 2 givenname: Chien-Yuan surname: Tseng fullname: Tseng, Chien-Yuan |
BookMark | eNp9UU1PGzEUtCqQSoFfwMVSzwn2rj-P6QoKEtBKKWfL632mjrZrajuq0l9fJ0tR20N98dNoZvTmzTt0NMUJELqgZEkp0Zerrrtar5cNoXLZSMHbVr5BJw0VetHyVhz9Mb9F5zlvSH2qQlyeoJ-ryY67HDKOHncxJRhtCXHCH6D8AJjwGlycBpt2-PN9s-TYTgO-tq7EPRLHcXtgr-M2Oci43-HHHKYnvHp4OFDLV_jLtovgfXABpnKGjr0dM5y__Kfo8frqS3ezuPv08bZb3S0cI6osFFO90wpAc8-c4ERKcJL4lgw1B_OKyp40ZKCNcgSYlH2jWSsck4MfmLXtKbqdfYdoN-Y5hW81jYk2mAMQ05OxqQQ3ghGekmZggmvCmFJeOcGct1I43bs6VK_3s9dzit-3kIvZ1OT1hNk0jHPNhJS8svTMcinmnMAbF8ohf0k2jIYSs2_OzM2ZfXPmpbmqbf_R_t74_6qLWRUA4FWhiKzX0e0vz22mKg |
CODEN | IAECCG |
CitedBy_id | crossref_primary_10_1007_s11869_022_01153_8 crossref_primary_10_1016_j_psep_2024_08_076 crossref_primary_10_1016_j_scs_2020_102076 crossref_primary_10_1007_s40808_022_01349_y crossref_primary_10_1109_ACCESS_2019_2950439 crossref_primary_10_1109_ACCESS_2022_3144588 crossref_primary_10_1109_ACCESS_2021_3059483 crossref_primary_10_1109_ACCESS_2020_2995507 crossref_primary_10_1007_s12145_021_00755_7 crossref_primary_10_1109_JSTARS_2023_3333269 crossref_primary_10_1109_ACCESS_2020_3008895 crossref_primary_10_3390_math11020476 crossref_primary_10_1590_0103_6513_20220064 crossref_primary_10_3389_fpubh_2023_1295468 crossref_primary_10_1007_s11036_020_01713_1 crossref_primary_10_1109_TIA_2023_3299886 crossref_primary_10_1109_JSYST_2019_2910594 crossref_primary_10_1109_ACCESS_2020_3038827 crossref_primary_10_3390_en14092639 crossref_primary_10_1016_j_compind_2019_04_018 crossref_primary_10_1109_ACCESS_2019_2944755 |
Cites_doi | 10.1016/j.atmosres.2016.11.007 10.4236/jep.2014.58074 10.1109/SCM.2016.7519803 10.1109/MWC.2014.6882291 10.1016/j.chemosphere.2017.04.128 10.1021/jacs.5b13048 10.1016/j.atmosenv.2015.01.028 10.1007/s11356-015-4380-3 10.19026/ajfst.11.2410 10.5194/acp-12-10295-2012 10.1016/j.ejor.2013.07.028 10.1016/j.patrec.2009.08.008 10.1145/2964284.2967230 10.1109/OFS.2002.1000499 10.1007/s00521-015-1955-3 10.1109/IGARSS.2014.6947397 10.1002/2016GL068354 10.5194/isprsarchives-XL-2-W3-73-2014 10.1016/j.patcog.2016.03.008 10.1016/j.anbehav.2015.01.010 10.4081/gh.2014.292 10.1007/s11869-011-0167-y 10.1016/j.ins.2014.07.013 10.1021/es503696k |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2017 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2017 |
DBID | 97E ESBDL RIA RIE AAYXX CITATION 7SC 7SP 7SR 8BQ 8FD JG9 JQ2 L7M L~C L~D DOA |
DOI | 10.1109/ACCESS.2017.2765337 |
DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE Xplore Open Access Journals IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts METADEX Technology Research Database Materials Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace METADEX Computer and Information Systems Abstracts Professional |
DatabaseTitleList | Materials Research Database |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 2169-3536 |
EndPage | 22822 |
ExternalDocumentID | oai_doaj_org_article_6f102d465904488f8c64cfa76c9bccfa 10_1109_ACCESS_2017_2765337 8078179 |
Genre | orig-research |
GroupedDBID | 0R~ 4.4 5VS 6IK 97E AAJGR ABAZT ABVLG ACGFS ADBBV AGSQL ALMA_UNASSIGNED_HOLDINGS BCNDV BEFXN BFFAM BGNUA BKEBE BPEOZ EBS EJD ESBDL GROUPED_DOAJ IPLJI JAVBF KQ8 M43 M~E O9- OCL OK1 RIA RIE RNS AAYXX CITATION RIG 7SC 7SP 7SR 8BQ 8FD JG9 JQ2 L7M L~C L~D |
ID | FETCH-LOGICAL-c408t-848bc98ee95f4c65077ec70f30d0004f817b020d128c0e477b29436c47dfd4aa3 |
IEDL.DBID | DOA |
ISSN | 2169-3536 |
IngestDate | Wed Aug 27 01:30:47 EDT 2025 Sun Jun 29 15:32:38 EDT 2025 Tue Jul 01 04:10:57 EDT 2025 Thu Apr 24 23:03:13 EDT 2025 Tue Aug 26 16:52:37 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Language | English |
License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/OAPA.html |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c408t-848bc98ee95f4c65077ec70f30d0004f817b020d128c0e477b29436c47dfd4aa3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-3735-8853 |
OpenAccessLink | https://doaj.org/article/6f102d465904488f8c64cfa76c9bccfa |
PQID | 2455946775 |
PQPubID | 4845423 |
PageCount | 11 |
ParticipantIDs | crossref_citationtrail_10_1109_ACCESS_2017_2765337 crossref_primary_10_1109_ACCESS_2017_2765337 ieee_primary_8078179 doaj_primary_oai_doaj_org_article_6f102d465904488f8c64cfa76c9bccfa proquest_journals_2455946775 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2017-01-01 |
PublicationDateYYYYMMDD | 2017-01-01 |
PublicationDate_xml | – month: 01 year: 2017 text: 2017-01-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | Piscataway |
PublicationPlace_xml | – name: Piscataway |
PublicationTitle | IEEE access |
PublicationTitleAbbrev | Access |
PublicationYear | 2017 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref13 ref24 ref12 ref23 ref15 ref14 ref20 ref11 ref22 ref10 ref21 ref2 ref1 ref17 ref16 ref19 ref18 ref8 ref7 ref9 ref4 ref3 ref6 ref5 |
References_xml | – ident: ref13 doi: 10.1016/j.atmosres.2016.11.007 – ident: ref8 doi: 10.4236/jep.2014.58074 – ident: ref3 doi: 10.1109/SCM.2016.7519803 – ident: ref2 doi: 10.1109/MWC.2014.6882291 – ident: ref12 doi: 10.1016/j.chemosphere.2017.04.128 – ident: ref6 doi: 10.1021/jacs.5b13048 – ident: ref10 doi: 10.1016/j.atmosenv.2015.01.028 – ident: ref15 doi: 10.1007/s11356-015-4380-3 – ident: ref18 doi: 10.19026/ajfst.11.2410 – ident: ref5 doi: 10.5194/acp-12-10295-2012 – ident: ref22 doi: 10.1016/j.ejor.2013.07.028 – ident: ref24 doi: 10.1016/j.patrec.2009.08.008 – ident: ref16 doi: 10.1145/2964284.2967230 – ident: ref9 doi: 10.1109/OFS.2002.1000499 – ident: ref17 doi: 10.1007/s00521-015-1955-3 – ident: ref14 doi: 10.1109/IGARSS.2014.6947397 – ident: ref4 doi: 10.1002/2016GL068354 – ident: ref20 doi: 10.5194/isprsarchives-XL-2-W3-73-2014 – ident: ref23 doi: 10.1016/j.patcog.2016.03.008 – ident: ref21 doi: 10.1016/j.anbehav.2015.01.010 – ident: ref19 doi: 10.4081/gh.2014.292 – ident: ref7 doi: 10.1007/s11869-011-0167-y – ident: ref1 doi: 10.1016/j.ins.2014.07.013 – ident: ref11 doi: 10.1021/es503696k |
SSID | ssj0000816957 |
Score | 2.1730454 |
Snippet | Industry 4.0 is gaining more attention from the public, and thus the correlation between factories and nearby environmental pollution sources is a subject... |
SourceID | doaj proquest crossref ieee |
SourceType | Open Website Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 22812 |
SubjectTerms | Air monitoring Air pollution Ammonia Artificial neural network Artificial neural networks Atmospheric modeling Chemical reactions Classification Correlation Correlation analysis Correlation coefficients Exhaust gases Factories Farming Industrial plants Industries mean square error methods Meteorological data Monitoring Pollution monitoring Pollution sources Production facilities Stations tensorflow |
SummonAdditionalLinks | – databaseName: IEEE Electronic Library (IEL) dbid: RIE link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT9wwEB4BJ3poKVB1C0U-cCTBmzh-HJeoK1RpV0iAxM2KX5dWuxXsHuDXM3a8EZSq4mZZtmVrJp5vJuNvAE4rU5tgvSyMM7RgY-EKyRHI1cLSIJXjLsR4x2zOL2_Zz7vmbgvOhrcw3vuUfObL2Ez_8t3SrmOo7Dxyo6MCbcM2Om79W60hnhILSKhGZGKhMVXnk7bFM8TsLVFWgiOuEa-MT-Loz0VV3tzEybxMP8Fss7E-q-RXuV6Z0j79xdn43p3vwceMM8mkV4zPsOUX-_DhBfvgATxtCEnIMpA2Vuno8-LIRZ-7Ra6js-y6-0dyNavKhnQLR6apPg_2xBLJafR1Cv8_EPNIUv4BmcznaShCy1fLtkuf-Cpwp4dwO_1x014WuRRDYRmVq0IyaayS3qsmMIuoTghvBQ01dREVBjycQeDp0NpZ6pkQplKs5pYJFxzruvoL7CyWC_8VCAIyFsbKIPZpmKW8U8LWsul4qCtTjbsRVBsZaZt5ymO5jN86-StU6V6wOgpWZ8GO4GyY9Ken6fj_8Iso_GFo5NhOHSg0nT9ZzQOCL8d4oyj6sDJIy5kNneBWGYuNERxEQQ-LZBmP4HijSjrfBw-6Yui5oU0Szbd_zzqC3bjBPrhzDDur-7X_jnBnZU6Snj8DtBL78A priority: 102 providerName: IEEE |
Title | Analysis of Correlation Between Secondary PM2.5 and Factory Pollution Sources by Using ANN and the Correlation Coefficient |
URI | https://ieeexplore.ieee.org/document/8078179 https://www.proquest.com/docview/2455946775 https://doaj.org/article/6f102d465904488f8c64cfa76c9bccfa |
Volume | 5 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8NAEF6kJz2IT6zWsgePpt0km30ca7CIYBFqobcl-zpJK2091F_v7CYtLYJevIVlssnuTGa-WSbfIHSX6Vx740SirSYJTblNBAMgl3NDvJCWWR_OO15G7GlCn6fFdKfVV6gJq-mB643rMw8h0FJWSAKZhPDCMGp8xZmR2sBF8L4Q83aSqeiDRcpkwRuaoZTI_qAsYUWhlov3Ms4A5fC9UBQZ-5sWKz_8cgw2wxN03KBEPKjf7hQduNkZOtrhDjxHXxs6ETz3uAw9NuqqNvxQV17hcUh1bbVY49eXrFfgambxMHbXgZHQ4DhKj-Ph_RLrNY7VA3gwGkVRAIZ705ZzF9kmIEhdoMnw8a18SppGComhRKwSQYU2UjgnC08NYDLOneHE58QGTOdFyjXARguxyhBHOdeZpDkzlFtvaVXll6g1m8_cFcIAp6hPpQbkUlBDWCW5yUVRMZ9nOkurNso2e6pMwzIeml28q5htEKlqRaigCNUooo3utzd91CQbv4s_BGVtRQNDdhwAu1GN3ai_7KaNzoOqt5ME3n1wTm3U2aheNV_zUmUU8i6IKLy4_o9H36DDsJz6IKeDWqvFp7sFaLPS3WjF3fgX4jcGn_Pu |
linkProvider | Directory of Open Access Journals |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB6VcgAOvApioYAPHJvUSfw8biNWC3RXSG2l3qz4dQHtonb30P56xk42ooAQN8saWxPNxPPZHn8D8KG2jY0uqMJ6SwtWSV8ogUCukY5Gpb3wMZ13LJZifsE-X_LLPTga38KEEHLyWShTM9_l-7XbpqOy48SNjg50D-5j3OdV_1prPFFJJSQ0lwO1UEX18bRt8StS_pYsaykQ2cg74Sez9A9lVf5Yi3OAmT2BxU61Pq_kW7nd2NLd_sba-L-6P4XHA9Ik0941nsFeWD2HR7_wDx7A7Y6ShKwjaVOdjj4zjpz02VvkLG2XfXd1Q74u6pKTbuXJLFfowZ5UJDlLn-ULgGtib0jOQCDT5TKLIri8M227DpmxAjV9ARezj-ftvBiKMRSOUbUpFFPWaRWC5pE5xHVSBidpbKhPuDDix1mEnh7jnaOBSWlrzRrhmPTRs65rXsL-ar0Kr4AgJGOx0hbRD2eOik5L1yjeidjUtq66CdQ7Gxk3MJWnghnfTd6xUG16w5pkWDMYdgJH46AfPVHHv8VPkvFH0cSynTvQaGb4aY2ICL88E1xT3MWqqJxgLnZSOG0dNiZwkAw9TjLYeAKHO1cyw4pwbWr0WI1RSfLXfx_1Hh7Mzxen5vTT8ssbeJiU7Y96DmF_c7UNbxH8bOy77PM_AfqJ_zk |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Analysis+of+Correlation+Between+Secondary+PM2.5+and+Factory+Pollution+Sources+by+Using+ANN+and+the+Correlation+Coefficient&rft.jtitle=IEEE+access&rft.au=Jui-Hung%2C+Chang&rft.au=Chien-Yuan+Tseng&rft.date=2017-01-01&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.eissn=2169-3536&rft.volume=5&rft.spage=22812&rft_id=info:doi/10.1109%2FACCESS.2017.2765337&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2169-3536&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2169-3536&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2169-3536&client=summon |