Analysis of Correlation Between Secondary PM2.5 and Factory Pollution Sources by Using ANN and the Correlation Coefficient

Industry 4.0 is gaining more attention from the public, and thus the correlation between factories and nearby environmental pollution sources is a subject worth in-depth research. Among environmental issues, Particulate Matter2.5 (PM2.5) has received considerable attention in recent years from acade...

Full description

Saved in:
Bibliographic Details
Published inIEEE access Vol. 5; pp. 22812 - 22822
Main Authors Chang, Jui-Hung, Tseng, Chien-Yuan
Format Journal Article
LanguageEnglish
Published Piscataway IEEE 01.01.2017
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Industry 4.0 is gaining more attention from the public, and thus the correlation between factories and nearby environmental pollution sources is a subject worth in-depth research. Among environmental issues, Particulate Matter2.5 (PM2.5) has received considerable attention in recent years from academic units and governments, and one of the secondary PM2.5 sources is the complex chemical reaction of exhaust gases emitted from factories and ammonia (NH3), with NH3 mostly coming from stock farming. Therefore, the correlation between stock farming data and pollutionsources emitted from factories can be examined by using an artificial neural network (ANN). The first target of this study is to investigate the correlation of factory air pollution source data and stock farming data nearby air monitoring stations to the annual mean PM2.5 concentration of nearby air monitoring stations. Second, the study uses Tensorflow to build an ANN model to analyze whether the industrial and stock farming data have an effect on the PM2.5 concentration. Weather data are taken in this experiment to learn about the correlation. The experimental results show that the Spearman's correlation coefficient of the factory emitted air pollution data and stock farming data nearby air monitoring stations for the annual mean PM2.5 concentration is 0.6 to 0.9, representing positive correlation. The ANN experiment shows the annual mean PM2.5 concentration classification model with industrial data plus stock farming data plus weather data, in which the ANN classification accuracy is 0.75 as validated by mean square error (MSE) methods. Compared with the ANN classification model only with weather data, the MSE classification accuracy is 1.5. According to the two experiments, the industrial factor and stock farming factor are items that may influence the PM2.5 concentration change.
AbstractList Industry 4.0 is gaining more attention from the public, and thus the correlation between factories and nearby environmental pollution sources is a subject worth in-depth research. Among environmental issues, Particulate Matter2.5 (PM2.5) has received considerable attention in recent years from academic units and governments, and one of the secondary PM2.5 sources is the complex chemical reaction of exhaust gases emitted from factories and ammonia (NH3), with NH3 mostly coming from stock farming. Therefore, the correlation between stock farming data and pollutionsources emitted from factories can be examined by using an artificial neural network (ANN). The first target of this study is to investigate the correlation of factory air pollution source data and stock farming data nearby air monitoring stations to the annual mean PM2.5 concentration of nearby air monitoring stations. Second, the study uses Tensorflow to build an ANN model to analyze whether the industrial and stock farming data have an effect on the PM2.5 concentration. Weather data are taken in this experiment to learn about the correlation. The experimental results show that the Spearman's correlation coefficient of the factory emitted air pollution data and stock farming data nearby air monitoring stations for the annual mean PM2.5 concentration is 0.6 to 0.9, representing positive correlation. The ANN experiment shows the annual mean PM2.5 concentration classification model with industrial data plus stock farming data plus weather data, in which the ANN classification accuracy is 0.75 as validated by mean square error (MSE) methods. Compared with the ANN classification model only with weather data, the MSE classification accuracy is 1.5. According to the two experiments, the industrial factor and stock farming factor are items that may influence the PM2.5 concentration change.
Author Chien-Yuan Tseng
Jui-Hung Chang
Author_xml – sequence: 1
  givenname: Jui-Hung
  orcidid: 0000-0002-3735-8853
  surname: Chang
  fullname: Chang, Jui-Hung
– sequence: 2
  givenname: Chien-Yuan
  surname: Tseng
  fullname: Tseng, Chien-Yuan
BookMark eNp9UU1PGzEUtCqQSoFfwMVSzwn2rj-P6QoKEtBKKWfL632mjrZrajuq0l9fJ0tR20N98dNoZvTmzTt0NMUJELqgZEkp0Zerrrtar5cNoXLZSMHbVr5BJw0VetHyVhz9Mb9F5zlvSH2qQlyeoJ-ryY67HDKOHncxJRhtCXHCH6D8AJjwGlycBpt2-PN9s-TYTgO-tq7EPRLHcXtgr-M2Oci43-HHHKYnvHp4OFDLV_jLtovgfXABpnKGjr0dM5y__Kfo8frqS3ezuPv08bZb3S0cI6osFFO90wpAc8-c4ERKcJL4lgw1B_OKyp40ZKCNcgSYlH2jWSsck4MfmLXtKbqdfYdoN-Y5hW81jYk2mAMQ05OxqQQ3ghGekmZggmvCmFJeOcGct1I43bs6VK_3s9dzit-3kIvZ1OT1hNk0jHPNhJS8svTMcinmnMAbF8ohf0k2jIYSs2_OzM2ZfXPmpbmqbf_R_t74_6qLWRUA4FWhiKzX0e0vz22mKg
CODEN IAECCG
CitedBy_id crossref_primary_10_1007_s11869_022_01153_8
crossref_primary_10_1016_j_psep_2024_08_076
crossref_primary_10_1016_j_scs_2020_102076
crossref_primary_10_1007_s40808_022_01349_y
crossref_primary_10_1109_ACCESS_2019_2950439
crossref_primary_10_1109_ACCESS_2022_3144588
crossref_primary_10_1109_ACCESS_2021_3059483
crossref_primary_10_1109_ACCESS_2020_2995507
crossref_primary_10_1007_s12145_021_00755_7
crossref_primary_10_1109_JSTARS_2023_3333269
crossref_primary_10_1109_ACCESS_2020_3008895
crossref_primary_10_3390_math11020476
crossref_primary_10_1590_0103_6513_20220064
crossref_primary_10_3389_fpubh_2023_1295468
crossref_primary_10_1007_s11036_020_01713_1
crossref_primary_10_1109_TIA_2023_3299886
crossref_primary_10_1109_JSYST_2019_2910594
crossref_primary_10_1109_ACCESS_2020_3038827
crossref_primary_10_3390_en14092639
crossref_primary_10_1016_j_compind_2019_04_018
crossref_primary_10_1109_ACCESS_2019_2944755
Cites_doi 10.1016/j.atmosres.2016.11.007
10.4236/jep.2014.58074
10.1109/SCM.2016.7519803
10.1109/MWC.2014.6882291
10.1016/j.chemosphere.2017.04.128
10.1021/jacs.5b13048
10.1016/j.atmosenv.2015.01.028
10.1007/s11356-015-4380-3
10.19026/ajfst.11.2410
10.5194/acp-12-10295-2012
10.1016/j.ejor.2013.07.028
10.1016/j.patrec.2009.08.008
10.1145/2964284.2967230
10.1109/OFS.2002.1000499
10.1007/s00521-015-1955-3
10.1109/IGARSS.2014.6947397
10.1002/2016GL068354
10.5194/isprsarchives-XL-2-W3-73-2014
10.1016/j.patcog.2016.03.008
10.1016/j.anbehav.2015.01.010
10.4081/gh.2014.292
10.1007/s11869-011-0167-y
10.1016/j.ins.2014.07.013
10.1021/es503696k
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2017
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2017
DBID 97E
ESBDL
RIA
RIE
AAYXX
CITATION
7SC
7SP
7SR
8BQ
8FD
JG9
JQ2
L7M
L~C
L~D
DOA
DOI 10.1109/ACCESS.2017.2765337
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE Xplore Open Access Journals
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
METADEX
Computer and Information Systems Abstracts Professional
DatabaseTitleList Materials Research Database


Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2169-3536
EndPage 22822
ExternalDocumentID oai_doaj_org_article_6f102d465904488f8c64cfa76c9bccfa
10_1109_ACCESS_2017_2765337
8078179
Genre orig-research
GroupedDBID 0R~
4.4
5VS
6IK
97E
AAJGR
ABAZT
ABVLG
ACGFS
ADBBV
AGSQL
ALMA_UNASSIGNED_HOLDINGS
BCNDV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
EJD
ESBDL
GROUPED_DOAJ
IPLJI
JAVBF
KQ8
M43
M~E
O9-
OCL
OK1
RIA
RIE
RNS
AAYXX
CITATION
RIG
7SC
7SP
7SR
8BQ
8FD
JG9
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c408t-848bc98ee95f4c65077ec70f30d0004f817b020d128c0e477b29436c47dfd4aa3
IEDL.DBID DOA
ISSN 2169-3536
IngestDate Wed Aug 27 01:30:47 EDT 2025
Sun Jun 29 15:32:38 EDT 2025
Tue Jul 01 04:10:57 EDT 2025
Thu Apr 24 23:03:13 EDT 2025
Tue Aug 26 16:52:37 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/OAPA.html
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c408t-848bc98ee95f4c65077ec70f30d0004f817b020d128c0e477b29436c47dfd4aa3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-3735-8853
OpenAccessLink https://doaj.org/article/6f102d465904488f8c64cfa76c9bccfa
PQID 2455946775
PQPubID 4845423
PageCount 11
ParticipantIDs crossref_citationtrail_10_1109_ACCESS_2017_2765337
crossref_primary_10_1109_ACCESS_2017_2765337
ieee_primary_8078179
doaj_primary_oai_doaj_org_article_6f102d465904488f8c64cfa76c9bccfa
proquest_journals_2455946775
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2017-01-01
PublicationDateYYYYMMDD 2017-01-01
PublicationDate_xml – month: 01
  year: 2017
  text: 2017-01-01
  day: 01
PublicationDecade 2010
PublicationPlace Piscataway
PublicationPlace_xml – name: Piscataway
PublicationTitle IEEE access
PublicationTitleAbbrev Access
PublicationYear 2017
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref24
ref12
ref23
ref15
ref14
ref20
ref11
ref22
ref10
ref21
ref2
ref1
ref17
ref16
ref19
ref18
ref8
ref7
ref9
ref4
ref3
ref6
ref5
References_xml – ident: ref13
  doi: 10.1016/j.atmosres.2016.11.007
– ident: ref8
  doi: 10.4236/jep.2014.58074
– ident: ref3
  doi: 10.1109/SCM.2016.7519803
– ident: ref2
  doi: 10.1109/MWC.2014.6882291
– ident: ref12
  doi: 10.1016/j.chemosphere.2017.04.128
– ident: ref6
  doi: 10.1021/jacs.5b13048
– ident: ref10
  doi: 10.1016/j.atmosenv.2015.01.028
– ident: ref15
  doi: 10.1007/s11356-015-4380-3
– ident: ref18
  doi: 10.19026/ajfst.11.2410
– ident: ref5
  doi: 10.5194/acp-12-10295-2012
– ident: ref22
  doi: 10.1016/j.ejor.2013.07.028
– ident: ref24
  doi: 10.1016/j.patrec.2009.08.008
– ident: ref16
  doi: 10.1145/2964284.2967230
– ident: ref9
  doi: 10.1109/OFS.2002.1000499
– ident: ref17
  doi: 10.1007/s00521-015-1955-3
– ident: ref14
  doi: 10.1109/IGARSS.2014.6947397
– ident: ref4
  doi: 10.1002/2016GL068354
– ident: ref20
  doi: 10.5194/isprsarchives-XL-2-W3-73-2014
– ident: ref23
  doi: 10.1016/j.patcog.2016.03.008
– ident: ref21
  doi: 10.1016/j.anbehav.2015.01.010
– ident: ref19
  doi: 10.4081/gh.2014.292
– ident: ref7
  doi: 10.1007/s11869-011-0167-y
– ident: ref1
  doi: 10.1016/j.ins.2014.07.013
– ident: ref11
  doi: 10.1021/es503696k
SSID ssj0000816957
Score 2.1730454
Snippet Industry 4.0 is gaining more attention from the public, and thus the correlation between factories and nearby environmental pollution sources is a subject...
SourceID doaj
proquest
crossref
ieee
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 22812
SubjectTerms Air monitoring
Air pollution
Ammonia
Artificial neural network
Artificial neural networks
Atmospheric modeling
Chemical reactions
Classification
Correlation
Correlation analysis
Correlation coefficients
Exhaust gases
Factories
Farming
Industrial plants
Industries
mean square error methods
Meteorological data
Monitoring
Pollution monitoring
Pollution sources
Production facilities
Stations
tensorflow
SummonAdditionalLinks – databaseName: IEEE Electronic Library (IEL)
  dbid: RIE
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT9wwEB4BJ3poKVB1C0U-cCTBmzh-HJeoK1RpV0iAxM2KX5dWuxXsHuDXM3a8EZSq4mZZtmVrJp5vJuNvAE4rU5tgvSyMM7RgY-EKyRHI1cLSIJXjLsR4x2zOL2_Zz7vmbgvOhrcw3vuUfObL2Ez_8t3SrmOo7Dxyo6MCbcM2Om79W60hnhILSKhGZGKhMVXnk7bFM8TsLVFWgiOuEa-MT-Loz0VV3tzEybxMP8Fss7E-q-RXuV6Z0j79xdn43p3vwceMM8mkV4zPsOUX-_DhBfvgATxtCEnIMpA2Vuno8-LIRZ-7Ra6js-y6-0dyNavKhnQLR6apPg_2xBLJafR1Cv8_EPNIUv4BmcznaShCy1fLtkuf-Cpwp4dwO_1x014WuRRDYRmVq0IyaayS3qsmMIuoTghvBQ01dREVBjycQeDp0NpZ6pkQplKs5pYJFxzruvoL7CyWC_8VCAIyFsbKIPZpmKW8U8LWsul4qCtTjbsRVBsZaZt5ymO5jN86-StU6V6wOgpWZ8GO4GyY9Ken6fj_8Iso_GFo5NhOHSg0nT9ZzQOCL8d4oyj6sDJIy5kNneBWGYuNERxEQQ-LZBmP4HijSjrfBw-6Yui5oU0Szbd_zzqC3bjBPrhzDDur-7X_jnBnZU6Snj8DtBL78A
  priority: 102
  providerName: IEEE
Title Analysis of Correlation Between Secondary PM2.5 and Factory Pollution Sources by Using ANN and the Correlation Coefficient
URI https://ieeexplore.ieee.org/document/8078179
https://www.proquest.com/docview/2455946775
https://doaj.org/article/6f102d465904488f8c64cfa76c9bccfa
Volume 5
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8NAEF6kJz2IT6zWsgePpt0km30ca7CIYBFqobcl-zpJK2091F_v7CYtLYJevIVlssnuTGa-WSbfIHSX6Vx740SirSYJTblNBAMgl3NDvJCWWR_OO15G7GlCn6fFdKfVV6gJq-mB643rMw8h0FJWSAKZhPDCMGp8xZmR2sBF8L4Q83aSqeiDRcpkwRuaoZTI_qAsYUWhlov3Ms4A5fC9UBQZ-5sWKz_8cgw2wxN03KBEPKjf7hQduNkZOtrhDjxHXxs6ETz3uAw9NuqqNvxQV17hcUh1bbVY49eXrFfgambxMHbXgZHQ4DhKj-Ph_RLrNY7VA3gwGkVRAIZ705ZzF9kmIEhdoMnw8a18SppGComhRKwSQYU2UjgnC08NYDLOneHE58QGTOdFyjXARguxyhBHOdeZpDkzlFtvaVXll6g1m8_cFcIAp6hPpQbkUlBDWCW5yUVRMZ9nOkurNso2e6pMwzIeml28q5htEKlqRaigCNUooo3utzd91CQbv4s_BGVtRQNDdhwAu1GN3ai_7KaNzoOqt5ME3n1wTm3U2aheNV_zUmUU8i6IKLy4_o9H36DDsJz6IKeDWqvFp7sFaLPS3WjF3fgX4jcGn_Pu
linkProvider Directory of Open Access Journals
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB6VcgAOvApioYAPHJvUSfw8biNWC3RXSG2l3qz4dQHtonb30P56xk42ooAQN8saWxPNxPPZHn8D8KG2jY0uqMJ6SwtWSV8ogUCukY5Gpb3wMZ13LJZifsE-X_LLPTga38KEEHLyWShTM9_l-7XbpqOy48SNjg50D-5j3OdV_1prPFFJJSQ0lwO1UEX18bRt8StS_pYsaykQ2cg74Sez9A9lVf5Yi3OAmT2BxU61Pq_kW7nd2NLd_sba-L-6P4XHA9Ik0941nsFeWD2HR7_wDx7A7Y6ShKwjaVOdjj4zjpz02VvkLG2XfXd1Q74u6pKTbuXJLFfowZ5UJDlLn-ULgGtib0jOQCDT5TKLIri8M227DpmxAjV9ARezj-ftvBiKMRSOUbUpFFPWaRWC5pE5xHVSBidpbKhPuDDix1mEnh7jnaOBSWlrzRrhmPTRs65rXsL-ar0Kr4AgJGOx0hbRD2eOik5L1yjeidjUtq66CdQ7Gxk3MJWnghnfTd6xUG16w5pkWDMYdgJH46AfPVHHv8VPkvFH0cSynTvQaGb4aY2ICL88E1xT3MWqqJxgLnZSOG0dNiZwkAw9TjLYeAKHO1cyw4pwbWr0WI1RSfLXfx_1Hh7Mzxen5vTT8ssbeJiU7Y96DmF_c7UNbxH8bOy77PM_AfqJ_zk
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Analysis+of+Correlation+Between+Secondary+PM2.5+and+Factory+Pollution+Sources+by+Using+ANN+and+the+Correlation+Coefficient&rft.jtitle=IEEE+access&rft.au=Jui-Hung%2C+Chang&rft.au=Chien-Yuan+Tseng&rft.date=2017-01-01&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.eissn=2169-3536&rft.volume=5&rft.spage=22812&rft_id=info:doi/10.1109%2FACCESS.2017.2765337&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2169-3536&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2169-3536&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2169-3536&client=summon