Person Identification From Audio Aesthetic
Behavioral biometrics survey actions rather than the physical traits of the person. Within this categorization, social behavioral biometrics utilizes an individual's communications for biometric analysis. The investigation of the uniqueness of human preferences and their implications to other a...
Saved in:
Published in | IEEE access Vol. 9; pp. 102225 - 102235 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Piscataway
IEEE
2021
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Behavioral biometrics survey actions rather than the physical traits of the person. Within this categorization, social behavioral biometrics utilizes an individual's communications for biometric analysis. The investigation of the uniqueness of human preferences and their implications to other aspects of an individual, such as personality or gender, is both a psychological and a biometric problem. An emerging approach is the usage of an individual's aesthetic preferences for the purpose of person identification. Recent research into the identification from visual aesthetics has found that these preferences hold significant discriminatory value. However, aesthetic identification has only been conducted through a visual medium via a set of liked images. The contribution of this work is the development of the first audio aesthetic preference system for person identification. The proposed system extracts descriptive intra-song and inter-song features from a set of songs favored by users and utilizes an ensemble of classifiers for prediction. The final decision is optimized by a genetic algorithm. Experimental results demonstrate that the developed audio aesthetic system achieves 95% user recognition accuracy on both proprietary and public audio datasets. |
---|---|
AbstractList | Behavioral biometrics survey actions rather than the physical traits of the person. Within this categorization, social behavioral biometrics utilizes an individual’s communications for biometric analysis. The investigation of the uniqueness of human preferences and their implications to other aspects of an individual, such as personality or gender, is both a psychological and a biometric problem. An emerging approach is the usage of an individual’s aesthetic preferences for the purpose of person identification. Recent research into the identification from visual aesthetics has found that these preferences hold significant discriminatory value. However, aesthetic identification has only been conducted through a visual medium via a set of liked images. The contribution of this work is the development of the first audio aesthetic preference system for person identification. The proposed system extracts descriptive intra-song and inter-song features from a set of songs favored by users and utilizes an ensemble of classifiers for prediction. The final decision is optimized by a genetic algorithm. Experimental results demonstrate that the developed audio aesthetic system achieves 95% user recognition accuracy on both proprietary and public audio datasets. |
Author | Gavrilova, Marina L. Sieu, Brandon |
Author_xml | – sequence: 1 givenname: Brandon orcidid: 0000-0001-8805-9119 surname: Sieu fullname: Sieu, Brandon email: brandon.sieu@ucalgary.ca organization: Department of Computer Science, University of Calgary, Calgary, AB, Canada – sequence: 2 givenname: Marina L. surname: Gavrilova fullname: Gavrilova, Marina L. organization: Department of Computer Science, University of Calgary, Calgary, AB, Canada |
BookMark | eNpNUE1LAzEQDaJgrf0FvRS8CVvzuUmOy9JqoaBQPYfsZlZT2k3Nbg_-e1O3FOcyH8x7M-_does2tIDQlOA5IVg_FWW52GzmFFMyZ1jnUuZXaERJrjMmWH79r75Fk67b4hQqjYQcocc3iF1oZysHbe8bX9vep3YZw35WHJ0PswK6_gt6X9-jm8buOpic8xh9LBfv5Uu2fn1elcU6qzlWfaawkzVR2knpckuFkwoIVFqQitfMsZpxzIBp1YCwwjImlW4IdQ2vFIFGsDFaDbwu2K05RL-38ccE683fIMRPY2P6ZwdGcoW5zVmdZHMnpBK4kpAoXaV53vDE9TBwHWL4PiYlZhuOsU3vGyqEkFQKqtIWG7bqGLouQnO5SrA5eWwGj83JY3P2OKGmA8oDwAWhuSJScfYLuCh21g |
CODEN | IAECCG |
CitedBy_id | crossref_primary_10_1002_cav_2163 crossref_primary_10_1007_s00371_024_03492_2 crossref_primary_10_1109_ACCESS_2022_3200166 |
Cites_doi | 10.1109/ACCESS.2018.2872931 10.1016/j.ijhcs.2010.05.006 10.1007/s11042-016-4232-2 10.1145/1967293.1967296 10.1109/ACCESS.2020.3040797 10.1109/TSMC.2017.2690321 10.1109/ACCESS.2020.3017661 10.2478/aoa-2014-0068 10.2307/2707484 10.1177/8755123316630349 10.1080/10826080802347537 10.1109/TPAMI.2021.3054775 10.1145/3240323.3240342 10.1109/ACCESS.2019.2907327 10.1007/978-3-319-57351-9_2 10.1007/s00371-020-01893-7 10.1109/ACCESS.2020.2968170 10.1037/a0018374 10.1145/2663204.2663259 10.1145/1891879.1891881 10.1177/0305735610388897 10.1145/1178723.1178727 10.1109/ICME.2002.1035731 10.33851/JMIS.2020.7.3.205 10.3390/s20041133 10.1109/LSP.2004.831663 10.1177/0305735616658957 10.1016/j.eswa.2019.113114 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021 |
DBID | 97E ESBDL RIA RIE AAYXX CITATION 7SC 7SP 7SR 8BQ 8FD JG9 JQ2 L7M L~C L~D DOA |
DOI | 10.1109/ACCESS.2021.3096776 |
DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005-present IEEE Open Access Journals IEEE All-Society Periodicals Package (ASPP) 1998-Present IEEE Electronic Library (IEL) CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts METADEX Technology Research Database Materials Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace METADEX Computer and Information Systems Abstracts Professional |
DatabaseTitleList | Materials Research Database |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: RIE name: IEEE Xplore url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Music |
EISSN | 2169-3536 |
EndPage | 102235 |
ExternalDocumentID | oai_doaj_org_article_74804a63c0964d57850b7e337db946f4 10_1109_ACCESS_2021_3096776 9481784 |
Genre | orig-research |
GrantInformation_xml | – fundername: Innovation for Defence Excellence and Security (IDEaS) – fundername: Natural Sciences and Engineering Research Council (NSERC) funderid: 10.13039/501100005049 |
GroupedDBID | 0R~ 4.4 5VS 6IK 97E AAJGR ACGFS ADBBV ALMA_UNASSIGNED_HOLDINGS BCNDV BEFXN BFFAM BGNUA BKEBE BPEOZ EBS EJD ESBDL GROUPED_DOAJ IFIPE IPLJI JAVBF KQ8 M43 M~E O9- OCL OK1 RIA RIE RIG RNS AAYXX CITATION 7SC 7SP 7SR 8BQ 8FD JG9 JQ2 L7M L~C L~D |
ID | FETCH-LOGICAL-c408t-80d7c189d77d6a25d78e1eb951b4c3d3c3403e398fe5a5a33789f12df4b81ef53 |
IEDL.DBID | RIE |
ISSN | 2169-3536 |
IngestDate | Tue Oct 22 14:58:16 EDT 2024 Thu Oct 10 19:38:03 EDT 2024 Fri Aug 23 02:46:36 EDT 2024 Mon Nov 04 12:06:33 EST 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c408t-80d7c189d77d6a25d78e1eb951b4c3d3c3403e398fe5a5a33789f12df4b81ef53 |
ORCID | 0000-0001-8805-9119 |
OpenAccessLink | https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/document/9481784 |
PQID | 2555727528 |
PQPubID | 4845423 |
PageCount | 11 |
ParticipantIDs | proquest_journals_2555727528 crossref_primary_10_1109_ACCESS_2021_3096776 doaj_primary_oai_doaj_org_article_74804a63c0964d57850b7e337db946f4 ieee_primary_9481784 |
PublicationCentury | 2000 |
PublicationDate | 20210000 2021-00-00 20210101 2021-01-01 |
PublicationDateYYYYMMDD | 2021-01-01 |
PublicationDate_xml | – year: 2021 text: 20210000 |
PublicationDecade | 2020 |
PublicationPlace | Piscataway |
PublicationPlace_xml | – name: Piscataway |
PublicationTitle | IEEE access |
PublicationTitleAbbrev | Access |
PublicationYear | 2021 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref13 ref34 ref12 klapuri (ref31) 2007 ref37 ref15 ref36 ref14 ref30 ref33 ref11 ref32 ref10 ref2 ref1 ref17 ref38 ref16 ref19 defferrard (ref26) 2017 ref18 lovato (ref5) 2012 minaee (ref25) 2019 ref24 ref23 ref20 song (ref22) 2012; 4 rahman (ref35) 2014 ref21 rump (ref29) 2010 driedger (ref28) 2014 ref8 ref7 ref9 ref4 fitzgerald (ref27) 2010; 10 ref3 azam (ref6) 2016; 24 |
References_xml | – ident: ref7 doi: 10.1109/ACCESS.2018.2872931 – year: 2019 ident: ref25 article-title: Biometrics recognition using deep learning: A survey publication-title: arXiv 1912 00271 contributor: fullname: minaee – ident: ref3 doi: 10.1016/j.ijhcs.2010.05.006 – ident: ref23 doi: 10.1007/s11042-016-4232-2 – start-page: 611 year: 2014 ident: ref28 article-title: Extending harmonic-percussive separation of audio signals publication-title: Proc ISMIR contributor: fullname: driedger – ident: ref36 doi: 10.1145/1967293.1967296 – ident: ref8 doi: 10.1109/ACCESS.2020.3040797 – ident: ref1 doi: 10.1109/TSMC.2017.2690321 – ident: ref9 doi: 10.1109/ACCESS.2020.3017661 – ident: ref30 doi: 10.2478/aoa-2014-0068 – ident: ref2 doi: 10.2307/2707484 – ident: ref11 doi: 10.1177/8755123316630349 – ident: ref20 doi: 10.1080/10826080802347537 – year: 2017 ident: ref26 article-title: FMA: A dataset for music analysis publication-title: Proc 18th Int Soc Music Inf Retr Conf (ISMIR) contributor: fullname: defferrard – ident: ref19 doi: 10.1109/TPAMI.2021.3054775 – ident: ref37 doi: 10.1145/3240323.3240342 – ident: ref17 doi: 10.1109/ACCESS.2019.2907327 – ident: ref15 doi: 10.1007/978-3-319-57351-9_2 – ident: ref4 doi: 10.1007/s00371-020-01893-7 – volume: 4 start-page: 395 year: 2012 ident: ref22 article-title: A survey of music recommendation systems and future perspectives publication-title: Proc 9th Int Symp Comput Music Modeling Retr contributor: fullname: song – ident: ref10 doi: 10.1109/ACCESS.2020.2968170 – ident: ref12 doi: 10.1037/a0018374 – ident: ref14 doi: 10.1145/2663204.2663259 – start-page: 87 year: 2010 ident: ref29 article-title: Autoregressive MFCC models for genre classification improved by harmonic-percussion separation publication-title: Proc ISMIR contributor: fullname: rump – start-page: 4556 year: 2012 ident: ref5 article-title: Tell me what you like and I'll tell you what you are: Discriminating visual preferences on Flickr data publication-title: Proc Asian Conf Comput Vis contributor: fullname: lovato – volume: 24 start-page: 53 year: 2016 ident: ref6 article-title: Gender prediction using individual perceptual image aesthetics publication-title: J WSCG contributor: fullname: azam – ident: ref38 doi: 10.1145/1891879.1891881 – ident: ref21 doi: 10.1177/0305735610388897 – ident: ref34 doi: 10.1145/1178723.1178727 – year: 2007 ident: ref31 publication-title: Signal Processing Methods for Music Transcription contributor: fullname: klapuri – ident: ref32 doi: 10.1109/ICME.2002.1035731 – volume: 10 start-page: 1 year: 2010 ident: ref27 article-title: Harmonic/percussive separation using median filtering publication-title: Proc DAFx contributor: fullname: fitzgerald – ident: ref18 doi: 10.33851/JMIS.2020.7.3.205 – ident: ref16 doi: 10.3390/s20041133 – ident: ref33 doi: 10.1109/LSP.2004.831663 – ident: ref13 doi: 10.1177/0305735616658957 – year: 2014 ident: ref35 article-title: Ensemble classifiers and their applications: A review publication-title: arXiv 1404 4088 contributor: fullname: rahman – ident: ref24 doi: 10.1016/j.eswa.2019.113114 |
SSID | ssj0000816957 |
Score | 2.262416 |
Snippet | Behavioral biometrics survey actions rather than the physical traits of the person. Within this categorization, social behavioral biometrics utilizes an... |
SourceID | doaj proquest crossref ieee |
SourceType | Open Website Aggregation Database Publisher |
StartPage | 102225 |
SubjectTerms | Aesthetics Audio aesthetics behavioral biometrics biometric security Biometrics Biometrics (access control) Electroencephalography Feature extraction Genetic algorithms human–machine interactions Music pattern recognition Principal component analysis Visual discrimination Visualization |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV09T8MwELVQJxgQUBCFgjIwIULt2I7tMVRUFRKIgUrdLMcfgoEWlfb_c3bSKhIDC6vjXOJ3ie-dZb9D6AbXxjqDTU4CEznEa5srZVjuveGUQUAoRTzg_PxSTmfsac7nnVJfcU9YIw_cADcSTGJmSmqBazMXpVlwLTylwtWKlaFRAsWqk0ylOViSUnHRygzB9VE1HsOIICEsyD0FWyKqjHRCUVLsb0us_JqXU7CZHKHDliVmVfN2x2jPL07QQUc7sI9uXxNXzpqTtqFdessmq-VnVm3cxzKrwPB7PKN4imaTx7fxNG8LH-SWYbmGqOGEJVI5IVxpCu6E9MTXQIZqZqmjljJMPVUyeG64ATCkCqRwgdWS-MDpGeotlgt_jjIJ-KVOJkAiBrf4EIhnVpU2BIvtAN1tMdBfjb6FTnkBVrqBTEfIdAvZAD1EnHZdozh1agCX6dZl-i-XDVA_orwzEgVjhITm4RZ13f5I3xoyHg4Uixfy4j8efYn243CaNZQh6q1XG38FrGJdX6cP6AdGS8Rx priority: 102 providerName: Directory of Open Access Journals |
Title | Person Identification From Audio Aesthetic |
URI | https://ieeexplore.ieee.org/document/9481784 https://www.proquest.com/docview/2555727528 https://doaj.org/article/74804a63c0964d57850b7e337db946f4 |
Volume | 9 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT9wwEB7xuNBDKY-KLRTl0BMii7O2Y_u4rLpClUAcisTNcuyxqKruIti99Nd37HhXiHLgFkWeZDxjZx7xfAPwjXXOB8dc3USharLXvjbGiRrRSS7IILQqFThf37RXd-LHvbzfgPN1LQwi5sNnOEyX-V9-mPtlSpVdJGQRpcUmbCpj-lqtdT4lNZAwUhVgoYaZi_FkQnOgEHDUDDl56irhirwwPhmjvzRV-e9LnM3LdBeuV4z1p0p-D5eLbuj_vsJsfC_nn-Bj8TOrcb8w9mADZ_vw4QX64D5s5x7PB3B2m73uqq_ZjSWJV02f5n-q8TL8mldjYvghVTsewt30-8_JVV1aKNReML0g-xOUb7QJSoXWjWRQGhvsyK3qhOeBey4YR250ROmk41xpE5tRiKLTDUbJP8PWbD7DI6i0EjoPcpFCOiLBGBsU3rQ-Rs_8AM5XsrWPPVKGzREGM7ZXhU2qsEUVA7hM8l8PTTDX-QbJzZZdY-mVTLiWe6IRIeHysE4hcRk6I9ooBnCQZL1-SBHzAE5W2rRlSz5bip0kOWtypL-8TXUMO4nBPr9yAluLpyV-JY9j0Z3mSP00L7h_4zbSYw |
link.rule.ids | 315,783,787,799,867,2109,4031,27935,27936,27937,55086 |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Nb9QwEB2V9gA98NFSdaFADpxQs3XWdmwftytWC3QrDq3Um-XYY4EqdlHZvfDrGTveVUU5cIuiOJnM2Jk3E88bgPescz445uomClWTv_a1MU7UiE5yQQ6hVanAeX7Zzq7F5xt5swOn21oYRMybz3CYDvO__LD065QqO0vMIkqLR7BHuFq3fbXWNqOSWkgYqQq1UMPM2XgyobegIHDUDDlhdZWYRe65n8zSX9qqPPgWZwczfQbzjWj9vpLb4XrVDf3vv1gb_1f25_C0IM1q3E-NF7CDiwPYv8c_eAB7ucvzIXz4mnF31VftxpLGq6Z3yx_VeB2-L6sxCfwt1Tu-hOvpx6vJrC5NFGovmF6RBwrKN9oEpULrRjIojQ12BKw64XngngvGkRsdUTrpOFfaxGYUouh0g1HyI9hdLBd4DJVWQueLXKSgjoZgjA0Kb1ofo2d-AKcb3dqfPVeGzTEGM7Y3hU2msMUUAzhP-t9emoiu8wnSmy3rxtIjmXAt9zRGhMTMwzqFJGXojGijGMBh0vX2JkXNAzjZWNOWRfnLUvQkCa7JkX7171Hv4PHsan5hLz5dfnkNT5KwfbblBHZXd2t8Q_hj1b3N0-4PFsrUuQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Person+Identification+From+Audio+Aesthetic&rft.jtitle=IEEE+access&rft.au=Sieu%2C+Brandon&rft.au=Gavrilova%2C+Marina+L.&rft.date=2021&rft.pub=IEEE&rft.eissn=2169-3536&rft.volume=9&rft.spage=102225&rft.epage=102235&rft_id=info:doi/10.1109%2FACCESS.2021.3096776&rft.externalDocID=9481784 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2169-3536&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2169-3536&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2169-3536&client=summon |