The mechanism of STING autoinhibition and activation
2′,3′-cGAMP, produced by the DNA sensor cGAS, activates stimulator of interferon genes (STING) and triggers immune response during infection. Tremendous effort has been placed on unraveling the mechanism of STING activation. However, little is known about STING inhibition. Here, we found that apo-ST...
Saved in:
Published in | Molecular cell Vol. 83; no. 9; pp. 1502 - 1518.e10 |
---|---|
Main Authors | , , , , , , , , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
Elsevier Inc
04.05.2023
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | 2′,3′-cGAMP, produced by the DNA sensor cGAS, activates stimulator of interferon genes (STING) and triggers immune response during infection. Tremendous effort has been placed on unraveling the mechanism of STING activation. However, little is known about STING inhibition. Here, we found that apo-STING exhibits a bilayer with head-to-head as well as side-by-side packing, mediated by its ligand-binding domain (LBD). This type of assembly holds two endoplasmic reticulum (ER) membranes together not only to prevent STING ER exit but also to eliminate the recruitment of TBK1, representing the autoinhibited state of STING. Additionally, we obtained the filament structure of the STING/2′,3′-cGAMP complex, which adopts a bent monolayer assembly mediated by LBD and transmembrane domain (TMD). The active, curved STING polymer could deform ER membrane to support its ER exit and anterograde transportation. Our data together provide a panoramic vision regarding STING autoinhibition and activation, which adds substantially to current understanding of the cGAS-STING pathway.
[Display omitted]
•Apo-STING exists as oligomer in the cell•Apo-STING oligomer adopts a bilayer with head-to-head and side-by-side packing of LBD•Apo-STING bilayer is crucial for STING ER retention and autoinhibition•Activated STING filament displays a bent conformation mediated by LBD and TMD
Liu et al. show that apo-STING forms oligomers with bilayer assembly zippering two ER membranes in the resting state whereby STING fulfills its ER retention and autoinhibition. The activated STING filament adopts a bent conformation that deforms the membrane, which is fit for its anterograde transportation. |
---|---|
AbstractList | 2',3'-cGAMP, produced by the DNA sensor cGAS, activates stimulator of interferon genes (STING) and triggers immune response during infection. Tremendous effort has been placed on unraveling the mechanism of STING activation. However, little is known about STING inhibition. Here, we found that apo-STING exhibits a bilayer with head-to-head as well as side-by-side packing, mediated by its ligand-binding domain (LBD). This type of assembly holds two endoplasmic reticulum (ER) membranes together not only to prevent STING ER exit but also to eliminate the recruitment of TBK1, representing the autoinhibited state of STING. Additionally, we obtained the filament structure of the STING/2',3'-cGAMP complex, which adopts a bent monolayer assembly mediated by LBD and transmembrane domain (TMD). The active, curved STING polymer could deform ER membrane to support its ER exit and anterograde transportation. Our data together provide a panoramic vision regarding STING autoinhibition and activation, which adds substantially to current understanding of the cGAS-STING pathway.2',3'-cGAMP, produced by the DNA sensor cGAS, activates stimulator of interferon genes (STING) and triggers immune response during infection. Tremendous effort has been placed on unraveling the mechanism of STING activation. However, little is known about STING inhibition. Here, we found that apo-STING exhibits a bilayer with head-to-head as well as side-by-side packing, mediated by its ligand-binding domain (LBD). This type of assembly holds two endoplasmic reticulum (ER) membranes together not only to prevent STING ER exit but also to eliminate the recruitment of TBK1, representing the autoinhibited state of STING. Additionally, we obtained the filament structure of the STING/2',3'-cGAMP complex, which adopts a bent monolayer assembly mediated by LBD and transmembrane domain (TMD). The active, curved STING polymer could deform ER membrane to support its ER exit and anterograde transportation. Our data together provide a panoramic vision regarding STING autoinhibition and activation, which adds substantially to current understanding of the cGAS-STING pathway. 2',3'-cGAMP, produced by the DNA sensor cGAS, activates stimulator of interferon genes (STING) and triggers immune response during infection. Tremendous effort has been placed on unraveling the mechanism of STING activation. However, little is known about STING inhibition. Here, we found that apo-STING exhibits a bilayer with head-to-head as well as side-by-side packing, mediated by its ligand-binding domain (LBD). This type of assembly holds two endoplasmic reticulum (ER) membranes together not only to prevent STING ER exit but also to eliminate the recruitment of TBK1, representing the autoinhibited state of STING. Additionally, we obtained the filament structure of the STING/2',3'-cGAMP complex, which adopts a bent monolayer assembly mediated by LBD and transmembrane domain (TMD). The active, curved STING polymer could deform ER membrane to support its ER exit and anterograde transportation. Our data together provide a panoramic vision regarding STING autoinhibition and activation, which adds substantially to current understanding of the cGAS-STING pathway. 2′,3′-cGAMP, produced by the DNA sensor cGAS, activates stimulator of interferon genes (STING) and triggers immune response during infection. Tremendous effort has been placed on unraveling the mechanism of STING activation. However, little is known about STING inhibition. Here, we found that apo-STING exhibits a bilayer with head-to-head as well as side-by-side packing, mediated by its ligand-binding domain (LBD). This type of assembly holds two endoplasmic reticulum (ER) membranes together not only to prevent STING ER exit but also to eliminate the recruitment of TBK1, representing the autoinhibited state of STING. Additionally, we obtained the filament structure of the STING/2′,3′-cGAMP complex, which adopts a bent monolayer assembly mediated by LBD and transmembrane domain (TMD). The active, curved STING polymer could deform ER membrane to support its ER exit and anterograde transportation. Our data together provide a panoramic vision regarding STING autoinhibition and activation, which adds substantially to current understanding of the cGAS-STING pathway. [Display omitted] •Apo-STING exists as oligomer in the cell•Apo-STING oligomer adopts a bilayer with head-to-head and side-by-side packing of LBD•Apo-STING bilayer is crucial for STING ER retention and autoinhibition•Activated STING filament displays a bent conformation mediated by LBD and TMD Liu et al. show that apo-STING forms oligomers with bilayer assembly zippering two ER membranes in the resting state whereby STING fulfills its ER retention and autoinhibition. The activated STING filament adopts a bent conformation that deforms the membrane, which is fit for its anterograde transportation. |
Author | Yang, Xiaozhu Chen, Lianwan Xue, Ying Deng, Wen Lu, Defen Liu, Sheng Yan, Bingxue Jia, Yuanyuan Li, Xiaomei Xie, Yufeng Shang, Guijun Liu, Shichao Cui, Kaige Qi, Jianxun Zhang, Zhichao Gao, George F. Li, Xiaoxiong Wu, Changxin Yang, Bo Wang, Peiyi Hou, Yingxiang |
Author_xml | – sequence: 1 givenname: Sheng surname: Liu fullname: Liu, Sheng organization: Shanxi Provincial Key Laboratory of Protein Structure Determination, Shanxi Academy of Advanced Research and Innovation, Taiyuan 030012, China – sequence: 2 givenname: Bo surname: Yang fullname: Yang, Bo organization: Shanxi Provincial Key Laboratory of Protein Structure Determination, Shanxi Academy of Advanced Research and Innovation, Taiyuan 030012, China – sequence: 3 givenname: Yingxiang surname: Hou fullname: Hou, Yingxiang organization: The Key Laboratory of Medical Molecular Cell Biology of Shanxi Province, Institutes of Biomedical Sciences, Shanxi University, Taiyuan 030006, China – sequence: 4 givenname: Kaige surname: Cui fullname: Cui, Kaige organization: Shanxi Provincial Key Laboratory of Protein Structure Determination, Shanxi Academy of Advanced Research and Innovation, Taiyuan 030012, China – sequence: 5 givenname: Xiaozhu surname: Yang fullname: Yang, Xiaozhu organization: Shanxi Provincial Key Laboratory of Protein Structure Determination, Shanxi Academy of Advanced Research and Innovation, Taiyuan 030012, China – sequence: 6 givenname: Xiaoxiong surname: Li fullname: Li, Xiaoxiong organization: Shanxi Provincial Key Laboratory of Protein Structure Determination, Shanxi Academy of Advanced Research and Innovation, Taiyuan 030012, China – sequence: 7 givenname: Lianwan surname: Chen fullname: Chen, Lianwan organization: National Key Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China – sequence: 8 givenname: Shichao surname: Liu fullname: Liu, Shichao organization: Shanxi Provincial Key Laboratory of Protein Structure Determination, Shanxi Academy of Advanced Research and Innovation, Taiyuan 030012, China – sequence: 9 givenname: Zhichao surname: Zhang fullname: Zhang, Zhichao organization: Shanxi Provincial Key Laboratory of Protein Structure Determination, Shanxi Academy of Advanced Research and Innovation, Taiyuan 030012, China – sequence: 10 givenname: Yuanyuan surname: Jia fullname: Jia, Yuanyuan organization: Shanxi Provincial Key Laboratory of Protein Structure Determination, Shanxi Academy of Advanced Research and Innovation, Taiyuan 030012, China – sequence: 11 givenname: Yufeng surname: Xie fullname: Xie, Yufeng organization: Shanxi Provincial Key Laboratory of Protein Structure Determination, Shanxi Academy of Advanced Research and Innovation, Taiyuan 030012, China – sequence: 12 givenname: Ying surname: Xue fullname: Xue, Ying organization: Shanxi Provincial Key Laboratory of Protein Structure Determination, Shanxi Academy of Advanced Research and Innovation, Taiyuan 030012, China – sequence: 13 givenname: Xiaomei surname: Li fullname: Li, Xiaomei organization: Shanxi Provincial Key Laboratory of Protein Structure Determination, Shanxi Academy of Advanced Research and Innovation, Taiyuan 030012, China – sequence: 14 givenname: Bingxue surname: Yan fullname: Yan, Bingxue organization: Shanxi Provincial Key Laboratory of Protein Structure Determination, Shanxi Academy of Advanced Research and Innovation, Taiyuan 030012, China – sequence: 15 givenname: Changxin surname: Wu fullname: Wu, Changxin organization: The Key Laboratory of Medical Molecular Cell Biology of Shanxi Province, Institutes of Biomedical Sciences, Shanxi University, Taiyuan 030006, China – sequence: 16 givenname: Wen surname: Deng fullname: Deng, Wen organization: College of Veterinary Medicine, Northwest A&F University, Yangling 712100, China – sequence: 17 givenname: Jianxun surname: Qi fullname: Qi, Jianxun organization: CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China – sequence: 18 givenname: Defen surname: Lu fullname: Lu, Defen email: ludefen1@sxau.edu.cn organization: Shanxi Provincial Key Laboratory of Protein Structure Determination, Shanxi Academy of Advanced Research and Innovation, Taiyuan 030012, China – sequence: 19 givenname: George F. surname: Gao fullname: Gao, George F. email: gaof@im.ac.cn organization: Shanxi Provincial Key Laboratory of Protein Structure Determination, Shanxi Academy of Advanced Research and Innovation, Taiyuan 030012, China – sequence: 20 givenname: Peiyi surname: Wang fullname: Wang, Peiyi email: wangpy@sustech.edu.cn organization: Cryo-EM Center, Southern University of Science and Technology, Shenzhen 518055, China – sequence: 21 givenname: Guijun surname: Shang fullname: Shang, Guijun email: gjshang@gmail.com organization: Shanxi Provincial Key Laboratory of Protein Structure Determination, Shanxi Academy of Advanced Research and Innovation, Taiyuan 030012, China |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/37086726$$D View this record in MEDLINE/PubMed |
BookMark | eNqFUE1Lw0AUXKRiP_QfiOTopXF3s9kPD4IUrYWiB-t52a_QLUm2ZpOC_97UthcPCgPvPZgZ3swYDOpQOwCuEUwRRPRuk1ahNK5MMcRZCntgcQZGCAo2JYiSwXHHjOZDMI5xAyEiORcXYJgxyCnDdATIau2Sypm1qn2sklAk76vF6zxRXRt8vfbatz7Uiaptokzrd2p_XoLzQpXRXR3nBHw8P61mL9Pl23wxe1xODYG8nbKi_0wRWmBLrUWMG8YFRbnQTGeFEFZkRGijdZEzrRXlmcIitzwjOXOCo2wCbg--2yZ8di62svKxj1yq2oUuSsxhDnFOOO2pN0dqpytn5bbxlWq-5ClpT7g_EEwTYmxcIY1vf9K0jfKlRFDua5UbeahV7muVsAcWvZj8Ep_8_5E9HGSuL2nnXSOj8a42zvrGmVba4P82-AZS_ZGt |
CitedBy_id | crossref_primary_10_1080_07853890_2024_2394588 crossref_primary_10_15252_embr_202357496 crossref_primary_10_3390_jpm14070736 crossref_primary_10_1038_s41467_023_44052_x crossref_primary_10_3390_ijms25031828 crossref_primary_10_1038_s44319_025_00423_7 crossref_primary_10_1016_j_phrs_2024_107063 crossref_primary_10_1080_17568919_2024_2383164 crossref_primary_10_1038_s44319_023_00045_x crossref_primary_10_1084_jem_20232167 crossref_primary_10_1016_j_sbi_2023_102767 crossref_primary_10_1016_j_biomaterials_2023_122300 crossref_primary_10_1096_fj_202402757RR crossref_primary_10_1016_j_molcel_2023_04_004 crossref_primary_10_1016_j_celrep_2023_113277 crossref_primary_10_1038_s41577_024_01112_7 crossref_primary_10_1002_med_22016 crossref_primary_10_1016_j_bcp_2023_115938 crossref_primary_10_1515_mr_2024_0016 crossref_primary_10_1007_s11427_024_2808_3 crossref_primary_10_1016_j_bmc_2024_117967 crossref_primary_10_1016_j_ccr_2023_215316 crossref_primary_10_1111_bph_16473 crossref_primary_10_1172_JCI181044 crossref_primary_10_1002_smll_202403201 crossref_primary_10_1007_s11684_023_1026_6 crossref_primary_10_1016_j_ebiom_2024_105491 crossref_primary_10_1007_s12264_024_01334_8 crossref_primary_10_1002_bies_202400091 |
Cites_doi | 10.1016/j.celrep.2018.11.048 10.1038/s41586-021-03762-2 10.1038/s41467-020-20234-9 10.1007/s12013-017-0792-7 10.1038/s41586-019-1006-9 10.26508/lsa.201700014 10.1016/j.molcel.2013.05.022 10.1038/s41586-019-0998-5 10.1146/annurev-biophys-070317-033259 10.1136/annrheumdis-2016-209841 10.1002/pmic.200500081 10.1038/ni.2350 10.1126/science.aaa2630 10.1038/nmeth.2727 10.1073/pnas.1803406115 10.1038/ncomms10680 10.1126/science.1229963 10.1038/nmeth.4169 10.1046/j.1365-2443.2001.00426.x 10.3389/fimmu.2019.02770 10.1016/j.immuni.2008.09.003 10.1016/j.cell.2019.05.036 10.1002/pro.3330 10.1038/s41586-019-1228-x 10.3389/fimmu.2021.646304 10.1038/s41586-021-03800-z 10.1056/NEJMoa1312625 10.1038/s41586-018-0287-8 10.1016/j.jaci.2016.10.031 10.1074/jbc.M115.672287 10.1084/jem.20201517 10.1016/j.jaci.2020.06.032 10.1038/nsmb.2333 10.1107/S0907444910007493 10.1038/srep18035 10.1016/j.immuni.2012.03.019 10.7554/eLife.31919 10.1038/s41586-018-0705-y 10.1073/pnas.0911267106 10.1038/nature08476 10.1016/j.celrep.2018.03.115 10.1126/scisignal.2002521 10.1107/S2059798318006551 10.1073/pnas.0900850106 10.1016/j.celrep.2013.05.009 10.1038/nri3850 10.1146/annurev-immunol-032713-120156 10.1038/nsmb.2332 10.1038/s41586-019-1000-2 10.1016/j.molcel.2015.07.022 10.1038/nature12306 10.1038/nprot.2007.365 10.1126/science.1232458 10.1084/jem.20200600 10.1111/febs.15640 10.1084/jem.20182192 10.1007/s10875-022-01284-8 10.1038/s12276-019-0333-0 10.1038/nmeth.4193 10.1016/j.jaci.2016.10.030 10.1038/s41586-021-03743-5 10.1016/j.cell.2017.09.039 10.1111/mmi.12616 10.1126/science.aba6098 10.1001/jamadermatol.2015.0251 10.1038/s41586-022-04559-7 10.1038/s41467-017-00573-w 10.7554/eLife.42166 10.1038/nsmb.2331 10.1016/j.cell.2013.07.023 10.1038/nmeth.2089 10.3389/fimmu.2018.01535 10.4049/jimmunol.1900387 10.3389/fped.2020.577918 10.1002/jcc.20084 10.1007/s10875-019-00690-9 10.1016/j.chom.2015.07.001 10.1126/science.aat8657 10.1093/rheumatology/kez444 10.1038/s41467-017-01554-9 10.1016/j.jsb.2015.08.008 10.1186/1546-0096-13-S1-O85 10.1084/jem.20201045 10.1146/annurev-immunol-031210-101340 10.1172/JCI79100 10.3389/fimmu.2022.808607 10.1038/s41590-018-0287-8 10.1016/j.bbrc.2018.05.199 10.1073/pnas.1423026112 10.1016/j.cell.2013.04.046 10.1016/j.molcel.2012.05.029 10.1038/s41586-022-04999-1 10.1038/s41590-020-0730-5 10.1038/nature07317 10.1128/MCB.00640-08 10.1074/jbc.RA119.007367 10.1016/j.cell.2015.11.045 |
ContentType | Journal Article |
Copyright | 2023 Elsevier Inc. Copyright © 2023 Elsevier Inc. All rights reserved. |
Copyright_xml | – notice: 2023 Elsevier Inc. – notice: Copyright © 2023 Elsevier Inc. All rights reserved. |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 |
DOI | 10.1016/j.molcel.2023.03.029 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 1097-4164 |
EndPage | 1518.e10 |
ExternalDocumentID | 37086726 10_1016_j_molcel_2023_03_029 S1097276523002435 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | --- --K -DZ -~X 0R~ 123 1~5 4.4 457 4G. 5RE 62- 7-5 AACTN AAEDW AAFTH AAIAV AAKRW AAKUH AALRI AAUCE AAVLU AAXUO ABJNI ABMAC ABMWF ABVKL ACGFO ACGFS ACNCT ADBBV ADEZE ADJPV AEFWE AENEX AFFNX AFTJW AGKMS AITUG ALKID ALMA_UNASSIGNED_HOLDINGS AMRAJ ASPBG AVWKF AZFZN BAWUL CS3 DIK DU5 E3Z EBS F5P FCP FDB FEDTE FIRID HVGLF IH2 IHE IXB J1W JIG KQ8 L7B M3Z M41 N9A O-L O9- OK1 P2P RCE ROL RPZ SDG SES TR2 ZA5 .55 .GJ 29M 2WC 3O- 53G 5VS AAEDT AAHBH AAIKJ AAMRU AAQFI AAQXK AAYWO AAYXX ABDGV ABWVN ACRPL ACVFH ADCNI ADMUD ADNMO ADVLN AEUPX AEXQZ AFPUW AGCQF AGHFR AGQPQ AIGII AKAPO AKBMS AKRWK AKYEP APXCP CITATION EJD FGOYB HH5 HZ~ OZT R2- RIG SSZ UHS X7M ZGI ZXP CGR CUY CVF ECM EFKBS EIF NPM 7X8 |
ID | FETCH-LOGICAL-c408t-7f023a46f2d6dd178c7896159b7b3f99d9349bcbbf57bba683a295d83457e9813 |
IEDL.DBID | IXB |
ISSN | 1097-2765 1097-4164 |
IngestDate | Tue Aug 05 10:32:45 EDT 2025 Mon Jul 21 06:05:51 EDT 2025 Tue Jul 01 03:21:23 EDT 2025 Thu Apr 24 23:01:51 EDT 2025 Fri Feb 23 02:39:37 EST 2024 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 9 |
Keywords | cGAS STING cGAMP autoinhibition activation |
Language | English |
License | Copyright © 2023 Elsevier Inc. All rights reserved. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c408t-7f023a46f2d6dd178c7896159b7b3f99d9349bcbbf57bba683a295d83457e9813 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
OpenAccessLink | http://www.cell.com/article/S1097276523002435/pdf |
PMID | 37086726 |
PQID | 2805025486 |
PQPubID | 23479 |
ParticipantIDs | proquest_miscellaneous_2805025486 pubmed_primary_37086726 crossref_citationtrail_10_1016_j_molcel_2023_03_029 crossref_primary_10_1016_j_molcel_2023_03_029 elsevier_sciencedirect_doi_10_1016_j_molcel_2023_03_029 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-05-04 |
PublicationDateYYYYMMDD | 2023-05-04 |
PublicationDate_xml | – month: 05 year: 2023 text: 2023-05-04 day: 04 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | Molecular cell |
PublicationTitleAlternate | Mol Cell |
PublicationYear | 2023 |
Publisher | Elsevier Inc |
Publisher_xml | – name: Elsevier Inc |
References | Schneider, Rasband, Eliceiri (bib88) 2012; 9 Zivanov, Nakane, Forsberg, Kimanius, Hagen, Lindahl, Scheres (bib96) 2018; 7 Steiner, Schaale, Prigione, De Nardo, Dagley, Chien-Hsiung, Laohamonthonkul, Harapas, Gantier, Gattorno (bib45) 2020 Lu, Shang, Zhang, Yu, Cong, Yuan, He, Zhu, Zhao, Yin (bib93) 2014; 92 Zhang, Han, Tao, Ye, Du, Deng, Zhang, Li, Jiang, Su (bib31) 2015; 5 Shang, Zhu, Li, Zhang, Zhu, Lu, Liu, Yu, Zhao, Xu (bib24) 2012; 19 Wittig, Schägger (bib61) 2005; 5 Shu, Yi, Watts, Kao, Li (bib27) 2012; 19 Béthune, Wieland (bib79) 2018; 47 Tanaka, Chen (bib19) 2012; 5 Morehouse, Yip, Keszei, McNamara-Bordewick, Shao, Kranzusch (bib68) 2022; 608 Tang, Xu, Zhou, Peng, Liu, Liu, Li, Yang, Zhao (bib50) 2020; 40 Ahn, Barber (bib85) 2019; 51 Sun, Li, Chen, Chen, You, Zhou, Zhou, Zhai, Chen, Jiang (bib15) 2009; 106 Balka, De Nardo (bib38) 2021; 288 Zhang, Nandakumar, Reinert, Huang, Laustsen, Gao, Sun, Jensen, Troldborg, Assil (bib72) 2020; 21 Ishikawa, Barber (bib12) 2008; 455 Slot, Geuze (bib99) 2007; 2 Shang, Zhang, Chen, Bai, Zhang (bib23) 2019; 567 Haag, Gulen, Reymond, Gibelin, Abrami, Decout, Heymann, van der Goot, Turcatti, Behrendt, Ablasser (bib62) 2018; 559 Gaidt, Ebert, Chauhan, Ramshorn, Pinci, Zuber, O'Duill, Schmid-Burgk, Hoss, Buhmann (bib67) 2017; 171 Pan, Perera, Piesvaux, Presland, Schroeder, Cumming, Trotter, Altman, Buevich, Cash (bib80) 2020; 369 Ergun, Fernandez, Weiss, Li (bib34) 2019; 178 Wu, Sun, Chen, Du, Shi, Chen, Chen (bib4) 2013; 339 Huang, Liu, Du, Jiang, Su (bib25) 2012; 19 Pettersen, Goddard, Huang, Couch, Greenblatt, Meng, Ferrin (bib90) 2004; 25 Ishikawa, Ma, Barber (bib17) 2009; 461 Punjani, Rubinstein, Fleet, Brubaker (bib92) 2017; 14 Ouyang, Song, Wang, Ru, Shaw, Jiang, Niu, Zhu, Qiu, Parvatiyar (bib26) 2012; 36 Hirama, Lu, Kay, Maekawa, Kozlov, Grinstein, Fairn (bib84) 2017; 8 Cong, Yuan, Du, Wu, Lu, Wu, Zhang, Li, Wei, Li (bib33) 2019; 294 Liu, Cai, Wu, Cong, Chen, Li, Du, Ren, Wu, Grishin, Chen (bib20) 2015; 347 Saldanha, Balka, Davidson, Wainstein, Wong, Macintosh, Loo, Weber, Kamath, Circa (bib56) 2018; 9 Srikanth, Woo, Wu, El-Sherbiny, Leung, Chupradit, Rice, Seo, Calmettes, Ramakrishna (bib39) 2019; 20 Lin, Torreggiani, Kahle, Rumsey, Wright, Montes-Cano, Silveira, Alehashemi, Mitchell, Aue (bib49) 2021; 12 Subczynski, Pasenkiewicz-Gierula, Widomska, Mainali, Raguz (bib83) 2017; 75 Zhang, Shang, Gui, Zhang, Bai, Chen (bib35) 2019; 567 Eroglu, Gursel, Gursel, Duzova, de Jesus, Goldbach-Mansky, Ozen (bib60) 2015; 13 Stabell, Meyerson, Gullberg, Gilchrist, Webb, Old, Perera, Sawyer (bib69) 2018; 7 Munoz, Rodière, Jeremiah, Rieux-Laucat, Oojageer, Rice, Rozenberg, Crow, Bessis (bib53) 2015; 151 Briard, Place, Kanneganti (bib3) 2020; 35 Konno, Chinn, Hong, Orange, Lupski, Mendoza, Pedroza, Barber (bib57) 2018; 23 Ran, Xiong, Xu, Luo, Wang, Wang (bib77) 2019; 203 Slavik, Morehouse, Ragucci, Zhou, Ai, Chen, Li, Wei, Bähre, König (bib10) 2021; 597 Gao, Ascano, Zillinger, Wang, Dai, Serganov, Gaffney, Shuman, Jones, Deng (bib29) 2013; 154 Yin, Tian, Kabaleeswaran, Jiang, Tu, Eck, Chen, Wu (bib28) 2012; 46 Zhao, Du, Xu, Shu, Sankaran, Bell, Liu, Lei, Gao, Fu (bib36) 2019; 569 York, Williams, Argus, Zhou, Brar, Vergnes, Gray, Zhen, Wu, Yamada (bib81) 2015; 163 Rivara, Ablasser (bib43) 2020; 217 Barbalat, Ewald, Mouchess, Barton (bib1) 2011; 29 Holm, Jensen, Jakobsen, Cheshenko, Horan, Moeller, Gonzalez-Dosal, Rasmussen, Christensen, Yarovinsky (bib87) 2012; 13 Chen, Desai, McNew, Gerard, Novick, Ferro-Novick (bib74) 2015; 112 Liu, Jesus, Marrero, Yang, Ramsey, Sanchez, Tenbrock, Wittkowski, Jones, Kuehn (bib46) 2014; 371 Melki, Rose, Uggenti, Van Eyck, Frémond, Kitabayashi, Rice, Jenkinson, Boulai, Jeremiah (bib63) 2017; 140 Gui, Yang, Li, Tan, Shi, Li, Du, Chen (bib78) 2019; 567 Dobbs, Burnaevskiy, Chen, Gonugunta, Alto, Yan (bib18) 2015; 18 Lu, Shang, Li, Lu, Bai, Zhang (bib37) 2022; 604 Williams, Headd, Moriarty, Prisant, Videau, Deis, Verma, Keedy, Hintze, Chen (bib98) 2018; 27 Lin, Berard, Al Rasheed, Aladba, Kranzusch, Henderlight, Grom, Kahle, Torreggiani, Aue (bib55) 2020; 146 Ogawa, Mukai, Saito, Arai, Taguchi (bib75) 2018; 503 Ablasser, Chen (bib6) 2019; 363 Ramanjulu, Pesiridis, Yang, Concha, Singhaus, Zhang, Tran, Moore, Lehmann, Eberl (bib64) 2018; 564 König, Fiehn, Wolf, Schuster, Cura Costa, Tüngler, Alvarez, Chara, Engel, Goldbach-Mansky (bib58) 2017; 76 Deng, Chong, Law, Mukai, Ho, Martinu, Backes, Eckalbar, Taguchi, Shum (bib41) 2020; 217 Zheng, Palovcak, Armache, Verba, Cheng, Agard (bib94) 2017; 14 Gao, Ascano, Wu, Barchet, Gaffney, Zillinger, Serganov, Liu, Jones, Hartmann (bib8) 2013; 153 Kranzusch, Wilson, Lee, Berger, Doudna, Vance (bib30) 2015; 59 Jin, Waterman, Jonscher, Short, Reisdorph, Cambier (bib14) 2008; 28 Dai, Liu, Zhao, He, Yin (bib48) 2020; 8 Iwamura, Yoneyama, Yamaguchi, Suhara, Mori, Shiota, Okabe, Namiki, Fujita (bib100) 2001; 6 Zhong, Yang, Li, Wang, Li, Diao, Lei, He, Zhang, Tien (bib13) 2008; 29 Mukai, Ogawa, Uematsu, Kuchitsu, Kiku, Uemura, Waguri, Suzuki, Dohmae, Arai (bib42) 2021; 12 Kucukelbir, Sigworth, Tagare (bib97) 2014; 11 Ding, Gaska, Douam, Wei, Kim, Balev, Heller, Ploss (bib70) 2018; 115 Holleufer, Winther, Gad, Ai, Chen, Li, Wei, Deng, Liu, Frederiksen (bib11) 2021; 597 Taguchi, Mukai, Takaya, Shindo (bib44) 2021; 12 Saitoh, Fujita, Hayashi, Takahara, Satoh, Lee, Matsunaga, Kageyama, Omori, Noda (bib16) 2009; 106 Keskitalo, Haapaniemi, Einarsdottir, Rajamäki, Heikkilä, Ilander, Pöyhönen, Morgunova, Hokynar, Lagström (bib54) 2019; 10 Hussain, Xie, Jabeen, Lu, Yang, Wu, Shang (bib22) 2022; 13 Holm, Rahbek, Gad, Bak, Jakobsen, Jiang, Hansen, Jensen, Sun, Thomsen (bib86) 2016; 7 Seo, Kang, Suh, Park, Lee, Choi, Kim, Kim, Park, Ye (bib52) 2017; 139 Wu, Chen (bib2) 2014; 32 Crow, Manel (bib21) 2015; 15 Emsley, Lohkamp, Scott, Cowtan (bib89) 2010; 66 Raffaele, Messia, Moneta, Caiello, Federici, Pardeo, Bracaglia, De Benedetti, Insalaco (bib51) 2020; 59 Hanna, Mela, Wang, Henderson, Chapman, Edwardson, Audhya (bib71) 2016; 291 Wang, Powers, Gold, Rapoport (bib73) 2018; 1 Lepelley, Martin-Niclós, Le Bihan, Marsh, Uggenti, Rice, Bondet, Duffy, Hertzog, Rehwinkel (bib40) 2020; 217 Afonine, Poon, Read, Sobolev, Terwilliger, Urzhumtsev, Adams (bib91) 2018; 74 Ablasser, Goldeck, Cavlar, Deimling, Witte, Röhl, Hopfner, Ludwig, Hornung (bib7) 2013; 498 Gulen, Koch, Haag, Schuler, Apetoh, Villunger, Radtke, Ablasser (bib66) 2017; 8 Sun, Zhang, Jiang, Pan, Tan, Yu, Guo, Yin, Shen, Shu, Liu (bib76) 2018; 25 Guffroy, Dieudonné, Gies, Danion (bib59) 2022; 42 Diner, Burdette, Wilson, Monroe, Kellenberger, Hyodo, Hayakawa, Hammond, Vance (bib9) 2013; 3 Wu, Chen, Dobbs, Sakai, Liou, Miner, Yan (bib65) 2019; 216 Rohou, Grigorieff (bib95) 2015; 192 Zhang, Shi, Wu, Zhang, Sun, Chen, Chen (bib32) 2013; 51 Jeremiah, Neven, Gentili, Callebaut, Maschalidi, Stolzenberg, Goudin, Frémond, Nitschke, Molina (bib47) 2014; 124 Sun, Wu, Du, Chen, Chen (bib5) 2013; 339 Chu, Tu, Yang, Wu, Repa, Yan (bib82) 2021; 596 Ran (10.1016/j.molcel.2023.03.029_bib77) 2019; 203 Morehouse (10.1016/j.molcel.2023.03.029_bib68) 2022; 608 Wittig (10.1016/j.molcel.2023.03.029_bib61) 2005; 5 Holm (10.1016/j.molcel.2023.03.029_bib87) 2012; 13 König (10.1016/j.molcel.2023.03.029_bib58) 2017; 76 Huang (10.1016/j.molcel.2023.03.029_bib25) 2012; 19 Hirama (10.1016/j.molcel.2023.03.029_bib84) 2017; 8 Pettersen (10.1016/j.molcel.2023.03.029_bib90) 2004; 25 Zivanov (10.1016/j.molcel.2023.03.029_bib96) 2018; 7 Guffroy (10.1016/j.molcel.2023.03.029_bib59) 2022; 42 Sun (10.1016/j.molcel.2023.03.029_bib5) 2013; 339 Liu (10.1016/j.molcel.2023.03.029_bib46) 2014; 371 Lu (10.1016/j.molcel.2023.03.029_bib93) 2014; 92 Jin (10.1016/j.molcel.2023.03.029_bib14) 2008; 28 Rohou (10.1016/j.molcel.2023.03.029_bib95) 2015; 192 Lepelley (10.1016/j.molcel.2023.03.029_bib40) 2020; 217 Briard (10.1016/j.molcel.2023.03.029_bib3) 2020; 35 Shang (10.1016/j.molcel.2023.03.029_bib23) 2019; 567 Ishikawa (10.1016/j.molcel.2023.03.029_bib17) 2009; 461 Haag (10.1016/j.molcel.2023.03.029_bib62) 2018; 559 York (10.1016/j.molcel.2023.03.029_bib81) 2015; 163 Chu (10.1016/j.molcel.2023.03.029_bib82) 2021; 596 Seo (10.1016/j.molcel.2023.03.029_bib52) 2017; 139 Pan (10.1016/j.molcel.2023.03.029_bib80) 2020; 369 Ding (10.1016/j.molcel.2023.03.029_bib70) 2018; 115 Munoz (10.1016/j.molcel.2023.03.029_bib53) 2015; 151 Stabell (10.1016/j.molcel.2023.03.029_bib69) 2018; 7 Ogawa (10.1016/j.molcel.2023.03.029_bib75) 2018; 503 Afonine (10.1016/j.molcel.2023.03.029_bib91) 2018; 74 Crow (10.1016/j.molcel.2023.03.029_bib21) 2015; 15 Zheng (10.1016/j.molcel.2023.03.029_bib94) 2017; 14 Keskitalo (10.1016/j.molcel.2023.03.029_bib54) 2019; 10 Shu (10.1016/j.molcel.2023.03.029_bib27) 2012; 19 Deng (10.1016/j.molcel.2023.03.029_bib41) 2020; 217 Konno (10.1016/j.molcel.2023.03.029_bib57) 2018; 23 Rivara (10.1016/j.molcel.2023.03.029_bib43) 2020; 217 Emsley (10.1016/j.molcel.2023.03.029_bib89) 2010; 66 Kranzusch (10.1016/j.molcel.2023.03.029_bib30) 2015; 59 Lin (10.1016/j.molcel.2023.03.029_bib49) 2021; 12 Tanaka (10.1016/j.molcel.2023.03.029_bib19) 2012; 5 Zhang (10.1016/j.molcel.2023.03.029_bib72) 2020; 21 Slot (10.1016/j.molcel.2023.03.029_bib99) 2007; 2 Saitoh (10.1016/j.molcel.2023.03.029_bib16) 2009; 106 Sun (10.1016/j.molcel.2023.03.029_bib15) 2009; 106 Hanna (10.1016/j.molcel.2023.03.029_bib71) 2016; 291 Dai (10.1016/j.molcel.2023.03.029_bib48) 2020; 8 Ishikawa (10.1016/j.molcel.2023.03.029_bib12) 2008; 455 Srikanth (10.1016/j.molcel.2023.03.029_bib39) 2019; 20 Jeremiah (10.1016/j.molcel.2023.03.029_bib47) 2014; 124 Béthune (10.1016/j.molcel.2023.03.029_bib79) 2018; 47 Steiner (10.1016/j.molcel.2023.03.029_bib45) 2020 Raffaele (10.1016/j.molcel.2023.03.029_bib51) 2020; 59 Zhang (10.1016/j.molcel.2023.03.029_bib35) 2019; 567 Subczynski (10.1016/j.molcel.2023.03.029_bib83) 2017; 75 Schneider (10.1016/j.molcel.2023.03.029_bib88) 2012; 9 Eroglu (10.1016/j.molcel.2023.03.029_bib60) 2015; 13 Zhao (10.1016/j.molcel.2023.03.029_bib36) 2019; 569 Wang (10.1016/j.molcel.2023.03.029_bib73) 2018; 1 Dobbs (10.1016/j.molcel.2023.03.029_bib18) 2015; 18 Lin (10.1016/j.molcel.2023.03.029_bib55) 2020; 146 Gaidt (10.1016/j.molcel.2023.03.029_bib67) 2017; 171 Wu (10.1016/j.molcel.2023.03.029_bib4) 2013; 339 Williams (10.1016/j.molcel.2023.03.029_bib98) 2018; 27 Taguchi (10.1016/j.molcel.2023.03.029_bib44) 2021; 12 Liu (10.1016/j.molcel.2023.03.029_bib20) 2015; 347 Mukai (10.1016/j.molcel.2023.03.029_bib42) 2021; 12 Yin (10.1016/j.molcel.2023.03.029_bib28) 2012; 46 Zhang (10.1016/j.molcel.2023.03.029_bib31) 2015; 5 Ablasser (10.1016/j.molcel.2023.03.029_bib6) 2019; 363 Holleufer (10.1016/j.molcel.2023.03.029_bib11) 2021; 597 Chen (10.1016/j.molcel.2023.03.029_bib74) 2015; 112 Barbalat (10.1016/j.molcel.2023.03.029_bib1) 2011; 29 Tang (10.1016/j.molcel.2023.03.029_bib50) 2020; 40 Ergun (10.1016/j.molcel.2023.03.029_bib34) 2019; 178 Punjani (10.1016/j.molcel.2023.03.029_bib92) 2017; 14 Sun (10.1016/j.molcel.2023.03.029_bib76) 2018; 25 Ramanjulu (10.1016/j.molcel.2023.03.029_bib64) 2018; 564 Zhang (10.1016/j.molcel.2023.03.029_bib32) 2013; 51 Iwamura (10.1016/j.molcel.2023.03.029_bib100) 2001; 6 Zhong (10.1016/j.molcel.2023.03.029_bib13) 2008; 29 Cong (10.1016/j.molcel.2023.03.029_bib33) 2019; 294 Lu (10.1016/j.molcel.2023.03.029_bib37) 2022; 604 Hussain (10.1016/j.molcel.2023.03.029_bib22) 2022; 13 Ouyang (10.1016/j.molcel.2023.03.029_bib26) 2012; 36 Kucukelbir (10.1016/j.molcel.2023.03.029_bib97) 2014; 11 Slavik (10.1016/j.molcel.2023.03.029_bib10) 2021; 597 Ahn (10.1016/j.molcel.2023.03.029_bib85) 2019; 51 Wu (10.1016/j.molcel.2023.03.029_bib2) 2014; 32 Balka (10.1016/j.molcel.2023.03.029_bib38) 2021; 288 Wu (10.1016/j.molcel.2023.03.029_bib65) 2019; 216 Holm (10.1016/j.molcel.2023.03.029_bib86) 2016; 7 Gui (10.1016/j.molcel.2023.03.029_bib78) 2019; 567 Melki (10.1016/j.molcel.2023.03.029_bib63) 2017; 140 Saldanha (10.1016/j.molcel.2023.03.029_bib56) 2018; 9 Shang (10.1016/j.molcel.2023.03.029_bib24) 2012; 19 Gao (10.1016/j.molcel.2023.03.029_bib8) 2013; 153 Ablasser (10.1016/j.molcel.2023.03.029_bib7) 2013; 498 Gao (10.1016/j.molcel.2023.03.029_bib29) 2013; 154 Gulen (10.1016/j.molcel.2023.03.029_bib66) 2017; 8 Diner (10.1016/j.molcel.2023.03.029_bib9) 2013; 3 37146568 - Mol Cell. 2023 May 4;83(9):1372-1374 |
References_xml | – volume: 46 start-page: 735 year: 2012 end-page: 745 ident: bib28 article-title: Cyclic di-GMP sensing via the innate immune signaling protein STING publication-title: Mol. Cell – volume: 294 start-page: 11420 year: 2019 end-page: 11432 ident: bib33 article-title: Crystal structures of porcine STING(CBD)-CDN complexes reveal the mechanism of ligand recognition and discrimination of STING proteins publication-title: J. Biol. Chem. – volume: 178 start-page: 290 year: 2019 end-page: 301.e10 ident: bib34 article-title: STING polymer structure reveals mechanisms for activation, hyperactivation, and inhibition publication-title: Cell – volume: 59 start-page: 891 year: 2015 end-page: 903 ident: bib30 article-title: Ancient origin of cGAS-STING reveals mechanism of universal 2′,3′ cGAMP signaling publication-title: Mol. Cell – volume: 216 start-page: 867 year: 2019 end-page: 883 ident: bib65 article-title: STING-mediated disruption of calcium homeostasis chronically activates ER stress and primes T cell death publication-title: J. Exp. Med. – volume: 503 start-page: 138 year: 2018 end-page: 145 ident: bib75 article-title: The binding of TBK1 to STING requires exocytic membrane traffic from the ER publication-title: Biochem. Biophys. Res. Commun. – volume: 455 start-page: 674 year: 2008 end-page: 678 ident: bib12 article-title: STING is an endoplasmic reticulum adaptor that facilitates innate immune signalling publication-title: Nature – volume: 7 year: 2018 ident: bib96 article-title: New tools for automated high-resolution cryo-EM structure determination in RELION-3 publication-title: eLife – volume: 163 start-page: 1716 year: 2015 end-page: 1729 ident: bib81 article-title: Limiting cholesterol biosynthetic flux spontaneously engages Type I IFN signaling publication-title: Cell – volume: 597 start-page: 109 year: 2021 end-page: 113 ident: bib10 article-title: cGAS-like receptors sense RNA and control 3’2′-cGAMP signalling in Drosophila publication-title: Nature – volume: 51 start-page: 226 year: 2013 end-page: 235 ident: bib32 article-title: Cyclic GMP-AMP containing mixed phosphodiester linkages is an endogenous high-affinity ligand for STING publication-title: Mol. Cell – volume: 498 start-page: 380 year: 2013 end-page: 384 ident: bib7 article-title: cGAS produces a 2'-5′-linked cyclic dinucleotide second messenger that activates STING publication-title: Nature – volume: 8 year: 2020 ident: bib48 article-title: Stimulator of interferon genes-associated vasculopathy with onset in infancy: A systematic review of case reports publication-title: Front. Pediatr. – volume: 18 start-page: 157 year: 2015 end-page: 168 ident: bib18 article-title: STING activation by translocation from the ER is associated with infection and autoinflammatory disease publication-title: Cell Host Microbe – volume: 288 start-page: 5504 year: 2021 end-page: 5529 ident: bib38 article-title: Molecular and spatial mechanisms governing STING signalling publication-title: FEBS Journal – volume: 106 start-page: 8653 year: 2009 end-page: 8658 ident: bib15 article-title: Eris, an endoplasmic reticulum IFN stimulator, activates innate immune signaling through dimerization publication-title: Proc. Natl. Acad. Sci. USA – volume: 564 start-page: 439 year: 2018 end-page: 443 ident: bib64 article-title: Design of amidobenzimidazole STING receptor agonists with systemic activity publication-title: Nature – volume: 371 start-page: 507 year: 2014 end-page: 518 ident: bib46 article-title: Activated STING in a vascular and pulmonary syndrome publication-title: N. Engl. J. Med. – volume: 29 start-page: 538 year: 2008 end-page: 550 ident: bib13 article-title: The adaptor protein MITA links virus-sensing receptors to IRF3 transcription factor activation publication-title: Immunity – volume: 1 year: 2018 ident: bib73 article-title: The ER morphology-regulating lunapark protein induces the formation of stacked bilayer discs publication-title: Life Sci. Alliance – volume: 47 start-page: 63 year: 2018 end-page: 83 ident: bib79 article-title: Assembly of COPI and COPII vesicular coat proteins on membranes publication-title: Annu. Rev. Biophys. – volume: 12 year: 2021 ident: bib44 article-title: STING operation at the ER/Golgi interface publication-title: Front. Immunol. – volume: 217 year: 2020 ident: bib40 article-title: Mutations in COPA lead to abnormal trafficking of STING to the Golgi and interferon signaling publication-title: J. Exp. Med. – volume: 5 start-page: 4338 year: 2005 end-page: 4346 ident: bib61 article-title: Advantages and limitations of clear-native PAGE publication-title: Proteomics – volume: 19 start-page: 722 year: 2012 end-page: 724 ident: bib27 article-title: Structure of STING bound to cyclic di-GMP reveals the mechanism of cyclic dinucleotide recognition by the immune system publication-title: Nat. Struct. Mol. Biol. – volume: 461 start-page: 788 year: 2009 end-page: 792 ident: bib17 article-title: STING regulates intracellular DNA-mediated, type I interferon-dependent innate immunity publication-title: Nature – volume: 567 start-page: 394 year: 2019 end-page: 398 ident: bib35 article-title: Structural basis of STING binding with and phosphorylation by TBK1 publication-title: Nature – volume: 7 year: 2018 ident: bib69 article-title: Dengue viruses cleave STING in humans but not in nonhuman primates, their presumed natural reservoir publication-title: eLife – volume: 124 start-page: 5516 year: 2014 end-page: 5520 ident: bib47 article-title: Inherited STING-activating mutation underlies a familial inflammatory syndrome with lupus-like manifestations publication-title: J. Clin. Invest. – volume: 2 start-page: 2480 year: 2007 end-page: 2491 ident: bib99 article-title: Cryosectioning and immunolabeling publication-title: Nat. Protoc. – volume: 154 start-page: 748 year: 2013 end-page: 762 ident: bib29 article-title: Structure-function analysis of STING activation by c[G(2′,5′)pA(3′,5′)p] and targeting by antiviral DMXAA publication-title: Cell – volume: 27 start-page: 293 year: 2018 end-page: 315 ident: bib98 article-title: MolProbity: more and better reference data for improved all-atom structure validation publication-title: Protein Sci. – volume: 12 year: 2021 ident: bib49 article-title: Case report: novel SAVI-causing variants in STING1 expand the clinical disease spectrum and suggest a refined model of STING activation publication-title: Front. Immunol. – volume: 140 start-page: 543 year: 2017 end-page: 552.e5 ident: bib63 article-title: Disease-associated mutations identify a novel region in human STING necessary for the control of type I interferon signaling publication-title: J. Allergy Clin. Immunol. – volume: 28 start-page: 5014 year: 2008 end-page: 5026 ident: bib14 article-title: MPYS, a novel membrane tetraspanner, is associated with major histocompatibility complex class II and mediates transduction of apoptotic signals publication-title: Mol. Cell. Biol. – volume: 20 start-page: 152 year: 2019 end-page: 162 ident: bib39 article-title: The Ca(2+) sensor STIM1 regulates the type I interferon response by retaining the signaling adaptor STING at the endoplasmic reticulum publication-title: Nat. Immunol. – volume: 6 start-page: 375 year: 2001 end-page: 388 ident: bib100 article-title: Induction of IRF-3/-7 kinase and NF-kappaB in response to double-stranded RNA and virus infection: common and unique pathways publication-title: Genes Cells – volume: 567 start-page: 262 year: 2019 end-page: 266 ident: bib78 article-title: Autophagy induction via STING trafficking is a primordial function of the cGAS pathway publication-title: Nature – volume: 339 start-page: 826 year: 2013 end-page: 830 ident: bib4 article-title: Cyclic GMP-AMP is an endogenous second messenger in innate immune signaling by cytosolic DNA publication-title: Science – volume: 13 year: 2015 ident: bib60 article-title: STING-associated vasculopathy with onset in infancy: new clinical findings and mutation in three Turkish children publication-title: Pediatr. Rheumatol. – volume: 11 start-page: 63 year: 2014 end-page: 65 ident: bib97 article-title: Quantifying the local resolution of cryo-EM density maps publication-title: Nat. Methods – volume: 363 year: 2019 ident: bib6 article-title: cGAS in action: expanding roles in immunity and inflammation publication-title: Science – volume: 59 start-page: 905 year: 2020 end-page: 907 ident: bib51 article-title: A patient with stimulator of interferon genes-associated vasculopathy with onset in infancy without skin vasculopathy publication-title: Rheumatol. Oxf. Engl. – volume: 567 start-page: 389 year: 2019 end-page: 393 ident: bib23 article-title: Cryo-EM structures of STING reveal its mechanism of activation by cyclic GMP-AMP publication-title: Nature – year: 2020 ident: bib45 article-title: Activation of STING due to COPI-deficiency publication-title: Preprint at bioRxiv – volume: 171 start-page: 1110 year: 2017 end-page: 1124 ident: bib67 article-title: The DNA inflammasome in human myeloid cells is initiated by a STING-cell death program upstream of NLRP3 publication-title: Cell – volume: 5 year: 2015 ident: bib31 article-title: Rat and human STINGs profile similarly towards anticancer/antiviral compounds publication-title: Sci. Rep. – volume: 217 year: 2020 ident: bib41 article-title: A defect in COPI-mediated transport of STING causes immune dysregulation in COPA syndrome publication-title: J. Exp. Med. – volume: 42 start-page: 1156 year: 2022 end-page: 1159 ident: bib59 article-title: Complex allele with additive gain-of-function STING1 variants in a patient with cavitating lung lesions and aspergillosis publication-title: J. Clin. Immunol. – volume: 10 year: 2019 ident: bib54 article-title: Novel TMEM173 mutation and the role of disease modifying alleles publication-title: Front. Immunol. – volume: 106 start-page: 20842 year: 2009 end-page: 20846 ident: bib16 article-title: Atg9a controls dsDNA-driven dynamic translocation of STING and the innate immune response publication-title: Proc. Natl. Acad. Sci. USA – volume: 112 start-page: 418 year: 2015 end-page: 423 ident: bib74 article-title: Lunapark stabilizes nascent three-way junctions in the endoplasmic reticulum publication-title: Proc. Natl. Acad. Sci. USA – volume: 75 start-page: 369 year: 2017 end-page: 385 ident: bib83 article-title: High cholesterol/low cholesterol: effects in biological membranes: a review publication-title: Cell Biochem. Biophys. – volume: 559 start-page: 269 year: 2018 end-page: 273 ident: bib62 article-title: Targeting STING with covalent small-molecule inhibitors publication-title: Nature – volume: 35 start-page: 112 year: 2020 end-page: 124 ident: bib3 article-title: DNA sensing in the innate immune response publication-title: Physiology (Bethesda) – volume: 14 start-page: 290 year: 2017 end-page: 296 ident: bib92 article-title: cryoSPARC: algorithms for rapid unsupervised cryo-EM structure determination publication-title: Nat. Methods – volume: 9 year: 2018 ident: bib56 article-title: A mutation outside the dimerization domain causing atypical STING-associated vasculopathy with onset in infancy publication-title: Front. Immunol. – volume: 36 start-page: 1073 year: 2012 end-page: 1086 ident: bib26 article-title: Structural analysis of the STING adaptor protein reveals a hydrophobic dimer interface and mode of cyclic di-GMP binding publication-title: Immunity – volume: 115 start-page: E6310 year: 2018 end-page: E6318 ident: bib70 article-title: Species-specific disruption of STING-dependent antiviral cellular defenses by the Zika virus NS2B3 protease publication-title: Proc. Natl. Acad. Sci. USA – volume: 19 start-page: 728 year: 2012 end-page: 730 ident: bib25 article-title: The structural basis for the sensing and binding of cyclic di-GMP by STING publication-title: Nat. Struct. Mol. Biol. – volume: 7 year: 2016 ident: bib86 article-title: Influenza A virus targets a cGAS-independent STING pathway that controls enveloped RNA viruses publication-title: Nat. Commun. – volume: 3 start-page: 1355 year: 2013 end-page: 1361 ident: bib9 article-title: The innate immune DNA sensor cGAS produces a noncanonical cyclic dinucleotide that activates human STING publication-title: Cell Rep. – volume: 13 year: 2022 ident: bib22 article-title: Activation of STING based on its structural features publication-title: Front. Immunol. – volume: 146 start-page: 1204 year: 2020 end-page: 1208.e6 ident: bib55 article-title: A novel STING1 variant causes a recessive form of STING-associated vasculopathy with onset in infancy (SAVI) publication-title: J. Allergy Clin. Immunol. – volume: 339 start-page: 786 year: 2013 end-page: 791 ident: bib5 article-title: Cyclic GMP-AMP synthase is a cytosolic DNA sensor that activates the type I interferon pathway publication-title: Science – volume: 9 start-page: 671 year: 2012 end-page: 675 ident: bib88 article-title: NIH Image to ImageJ: 25 years of image analysis publication-title: Nat. Methods – volume: 15 start-page: 429 year: 2015 end-page: 440 ident: bib21 article-title: Aicardi-Goutieres syndrome and the type I interferonopathies publication-title: Nat. Rev. Immunol. – volume: 8 start-page: 427 year: 2017 ident: bib66 article-title: Signalling strength determines proapoptotic functions of STING publication-title: Nat. Commun. – volume: 217 year: 2020 ident: bib43 article-title: COPA silences STING publication-title: J. Exp. Med. – volume: 29 start-page: 185 year: 2011 end-page: 214 ident: bib1 article-title: Nucleic acid recognition by the innate immune system publication-title: Annu. Rev. Immunol. – volume: 92 start-page: 1092 year: 2014 end-page: 1112 ident: bib93 article-title: Structural insights into the T6SS effector protein Tse3 and the Tse3-Tsi3 complex from Pseudomonas aeruginosa reveal a calcium-dependent membrane-binding mechanism publication-title: Mol. Microbiol. – volume: 19 start-page: 725 year: 2012 end-page: 727 ident: bib24 article-title: Crystal structures of STING protein reveal basis for recognition of cyclic di-GMP publication-title: Nat. Struct. Mol. Biol. – volume: 12 year: 2021 ident: bib42 article-title: Homeostatic regulation of STING by retrograde membrane traffic to the ER publication-title: Nat. Commun. – volume: 66 start-page: 486 year: 2010 end-page: 501 ident: bib89 article-title: Features and development of coot publication-title: Acta Crystallogr. D Biol. Crystallogr. – volume: 596 start-page: 570 year: 2021 end-page: 575 ident: bib82 article-title: Tonic prime-boost of STING signalling mediates Niemann-Pick disease type C publication-title: Nature – volume: 25 start-page: 1605 year: 2004 end-page: 1612 ident: bib90 article-title: UCSF Chimera--a visualization system for exploratory research and analysis publication-title: J. Comput. Chem. – volume: 8 year: 2017 ident: bib84 article-title: Membrane curvature induced by proximity of anionic phospholipids can initiate endocytosis publication-title: Nat. Commun. – volume: 32 start-page: 461 year: 2014 end-page: 488 ident: bib2 article-title: Innate immune sensing and signaling of cytosolic nucleic acids publication-title: Annu. Rev. Immunol. – volume: 25 start-page: 3086 year: 2018 end-page: 3098.e3 ident: bib76 article-title: TMED2 potentiates cellular IFN responses to DNA viruses by reinforcing MITA dimerization and facilitating its trafficking publication-title: Cell Rep. – volume: 369 year: 2020 ident: bib80 article-title: An orally available non-nucleotide STING agonist with antitumor activity publication-title: Science – volume: 192 start-page: 216 year: 2015 end-page: 221 ident: bib95 article-title: CTFFIND4: fast and accurate defocus estimation from electron micrographs publication-title: J. Struct. Biol. – volume: 21 start-page: 868 year: 2020 end-page: 879 ident: bib72 article-title: STEEP mediates STING ER exit and activation of signaling publication-title: Nat. Immunol. – volume: 597 start-page: 114 year: 2021 end-page: 118 ident: bib11 article-title: Two cGAS-like receptors induce antiviral immunity in Drosophila publication-title: Nature – volume: 23 start-page: 1112 year: 2018 end-page: 1123 ident: bib57 article-title: Pro-inflammation associated with a gain-of-function mutation (R284S) in the innate immune sensor STING publication-title: Cell Rep. – volume: 151 start-page: 872 year: 2015 end-page: 877 ident: bib53 article-title: Stimulator of interferon genes-associated vasculopathy with onset in infancy: A mimic of childhood granulomatosis with polyangiitis publication-title: JAMA Dermatol. – volume: 13 start-page: 737 year: 2012 end-page: 743 ident: bib87 article-title: Virus-cell fusion as a trigger of innate immunity dependent on the adaptor STING publication-title: Nat. Immunol. – volume: 569 start-page: 718 year: 2019 end-page: 722 ident: bib36 article-title: A conserved PLPLRT/SD motif of STING mediates the recruitment and activation of TBK1 publication-title: Nature – volume: 608 start-page: 803 year: 2022 end-page: 807 ident: bib68 article-title: Cryo-EM structure of an active bacterial TIR–STING filament complex publication-title: Nature – volume: 203 start-page: 1560 year: 2019 end-page: 1570 ident: bib77 article-title: YIPF5 is essential for innate immunity to DNA virus and facilitates COPII-dependent STING trafficking publication-title: J. Immunol. – volume: 604 start-page: 557 year: 2022 end-page: 562 ident: bib37 article-title: Activation of STING by targeting a pocket in the transmembrane domain publication-title: Nature – volume: 347 year: 2015 ident: bib20 article-title: Phosphorylation of innate immune adaptor proteins MAVS, STING, and TRIF induces IRF3 activation publication-title: Science – volume: 51 start-page: 1 year: 2019 end-page: 10 ident: bib85 article-title: STING signaling and host defense against microbial infection publication-title: Exp. Mol. Med. – volume: 291 start-page: 1014 year: 2016 end-page: 1027 ident: bib71 article-title: Sar1 GTPase activity is regulated by membrane curvature-Sar1 publication-title: J. Biol. Chem. – volume: 153 start-page: 1094 year: 2013 end-page: 1107 ident: bib8 article-title: Cyclic [G(2',5’)pA(3’,5’)p] is the metazoan second messenger produced by DNA-activated cyclic GMP-AMP synthase publication-title: Cell – volume: 74 start-page: 531 year: 2018 end-page: 544 ident: bib91 article-title: Real-space refinement in PHENIX for cryo-EM and crystallography publication-title: Acta Crystallogr. D Struct. Biol. – volume: 5 year: 2012 ident: bib19 article-title: STING specifies IRF3 phosphorylation by TBK1 in the cytosolic DNA signaling pathway publication-title: Sci. Signal. – volume: 14 start-page: 331 year: 2017 end-page: 332 ident: bib94 article-title: MotionCor2: anisotropic correction of beam-induced motion for improved cryo-electron microscopy publication-title: Nat. Methods – volume: 139 start-page: 1396 year: 2017 end-page: 1399.e12 ident: bib52 article-title: Tofacitinib relieves symptoms of stimulator of interferon genes (STING)-associated vasculopathy with onset in infancy caused by 2 de novo variants in TMEM173 publication-title: J. Allergy Clin. Immunol. – volume: 40 start-page: 114 year: 2020 end-page: 122 ident: bib50 article-title: STING-associated vasculopathy with onset in infancy in three children with new clinical aspect and unsatisfactory therapeutic responses to tofacitinib publication-title: J. Clin. Immunol. – volume: 76 start-page: 468 year: 2017 end-page: 472 ident: bib58 article-title: Familial chilblain lupus due to a gain-of-function mutation in STING publication-title: Ann. Rheum. Dis. – volume: 25 start-page: 3086 year: 2018 ident: 10.1016/j.molcel.2023.03.029_bib76 article-title: TMED2 potentiates cellular IFN responses to DNA viruses by reinforcing MITA dimerization and facilitating its trafficking publication-title: Cell Rep. doi: 10.1016/j.celrep.2018.11.048 – volume: 596 start-page: 570 year: 2021 ident: 10.1016/j.molcel.2023.03.029_bib82 article-title: Tonic prime-boost of STING signalling mediates Niemann-Pick disease type C publication-title: Nature doi: 10.1038/s41586-021-03762-2 – volume: 12 year: 2021 ident: 10.1016/j.molcel.2023.03.029_bib42 article-title: Homeostatic regulation of STING by retrograde membrane traffic to the ER publication-title: Nat. Commun. doi: 10.1038/s41467-020-20234-9 – volume: 75 start-page: 369 year: 2017 ident: 10.1016/j.molcel.2023.03.029_bib83 article-title: High cholesterol/low cholesterol: effects in biological membranes: a review publication-title: Cell Biochem. Biophys. doi: 10.1007/s12013-017-0792-7 – volume: 567 start-page: 262 year: 2019 ident: 10.1016/j.molcel.2023.03.029_bib78 article-title: Autophagy induction via STING trafficking is a primordial function of the cGAS pathway publication-title: Nature doi: 10.1038/s41586-019-1006-9 – volume: 1 year: 2018 ident: 10.1016/j.molcel.2023.03.029_bib73 article-title: The ER morphology-regulating lunapark protein induces the formation of stacked bilayer discs publication-title: Life Sci. Alliance doi: 10.26508/lsa.201700014 – volume: 51 start-page: 226 year: 2013 ident: 10.1016/j.molcel.2023.03.029_bib32 article-title: Cyclic GMP-AMP containing mixed phosphodiester linkages is an endogenous high-affinity ligand for STING publication-title: Mol. Cell doi: 10.1016/j.molcel.2013.05.022 – volume: 567 start-page: 389 year: 2019 ident: 10.1016/j.molcel.2023.03.029_bib23 article-title: Cryo-EM structures of STING reveal its mechanism of activation by cyclic GMP-AMP publication-title: Nature doi: 10.1038/s41586-019-0998-5 – volume: 47 start-page: 63 year: 2018 ident: 10.1016/j.molcel.2023.03.029_bib79 article-title: Assembly of COPI and COPII vesicular coat proteins on membranes publication-title: Annu. Rev. Biophys. doi: 10.1146/annurev-biophys-070317-033259 – volume: 76 start-page: 468 year: 2017 ident: 10.1016/j.molcel.2023.03.029_bib58 article-title: Familial chilblain lupus due to a gain-of-function mutation in STING publication-title: Ann. Rheum. Dis. doi: 10.1136/annrheumdis-2016-209841 – year: 2020 ident: 10.1016/j.molcel.2023.03.029_bib45 article-title: Activation of STING due to COPI-deficiency publication-title: Preprint at bioRxiv – volume: 5 start-page: 4338 year: 2005 ident: 10.1016/j.molcel.2023.03.029_bib61 article-title: Advantages and limitations of clear-native PAGE publication-title: Proteomics doi: 10.1002/pmic.200500081 – volume: 13 start-page: 737 year: 2012 ident: 10.1016/j.molcel.2023.03.029_bib87 article-title: Virus-cell fusion as a trigger of innate immunity dependent on the adaptor STING publication-title: Nat. Immunol. doi: 10.1038/ni.2350 – volume: 347 year: 2015 ident: 10.1016/j.molcel.2023.03.029_bib20 article-title: Phosphorylation of innate immune adaptor proteins MAVS, STING, and TRIF induces IRF3 activation publication-title: Science doi: 10.1126/science.aaa2630 – volume: 11 start-page: 63 year: 2014 ident: 10.1016/j.molcel.2023.03.029_bib97 article-title: Quantifying the local resolution of cryo-EM density maps publication-title: Nat. Methods doi: 10.1038/nmeth.2727 – volume: 115 start-page: E6310 year: 2018 ident: 10.1016/j.molcel.2023.03.029_bib70 article-title: Species-specific disruption of STING-dependent antiviral cellular defenses by the Zika virus NS2B3 protease publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.1803406115 – volume: 7 year: 2016 ident: 10.1016/j.molcel.2023.03.029_bib86 article-title: Influenza A virus targets a cGAS-independent STING pathway that controls enveloped RNA viruses publication-title: Nat. Commun. doi: 10.1038/ncomms10680 – volume: 339 start-page: 826 year: 2013 ident: 10.1016/j.molcel.2023.03.029_bib4 article-title: Cyclic GMP-AMP is an endogenous second messenger in innate immune signaling by cytosolic DNA publication-title: Science doi: 10.1126/science.1229963 – volume: 14 start-page: 290 year: 2017 ident: 10.1016/j.molcel.2023.03.029_bib92 article-title: cryoSPARC: algorithms for rapid unsupervised cryo-EM structure determination publication-title: Nat. Methods doi: 10.1038/nmeth.4169 – volume: 6 start-page: 375 year: 2001 ident: 10.1016/j.molcel.2023.03.029_bib100 article-title: Induction of IRF-3/-7 kinase and NF-kappaB in response to double-stranded RNA and virus infection: common and unique pathways publication-title: Genes Cells doi: 10.1046/j.1365-2443.2001.00426.x – volume: 10 year: 2019 ident: 10.1016/j.molcel.2023.03.029_bib54 article-title: Novel TMEM173 mutation and the role of disease modifying alleles publication-title: Front. Immunol. doi: 10.3389/fimmu.2019.02770 – volume: 29 start-page: 538 year: 2008 ident: 10.1016/j.molcel.2023.03.029_bib13 article-title: The adaptor protein MITA links virus-sensing receptors to IRF3 transcription factor activation publication-title: Immunity doi: 10.1016/j.immuni.2008.09.003 – volume: 178 start-page: 290 year: 2019 ident: 10.1016/j.molcel.2023.03.029_bib34 article-title: STING polymer structure reveals mechanisms for activation, hyperactivation, and inhibition publication-title: Cell doi: 10.1016/j.cell.2019.05.036 – volume: 27 start-page: 293 year: 2018 ident: 10.1016/j.molcel.2023.03.029_bib98 article-title: MolProbity: more and better reference data for improved all-atom structure validation publication-title: Protein Sci. doi: 10.1002/pro.3330 – volume: 569 start-page: 718 year: 2019 ident: 10.1016/j.molcel.2023.03.029_bib36 article-title: A conserved PLPLRT/SD motif of STING mediates the recruitment and activation of TBK1 publication-title: Nature doi: 10.1038/s41586-019-1228-x – volume: 12 year: 2021 ident: 10.1016/j.molcel.2023.03.029_bib44 article-title: STING operation at the ER/Golgi interface publication-title: Front. Immunol. doi: 10.3389/fimmu.2021.646304 – volume: 597 start-page: 114 year: 2021 ident: 10.1016/j.molcel.2023.03.029_bib11 article-title: Two cGAS-like receptors induce antiviral immunity in Drosophila publication-title: Nature doi: 10.1038/s41586-021-03800-z – volume: 371 start-page: 507 year: 2014 ident: 10.1016/j.molcel.2023.03.029_bib46 article-title: Activated STING in a vascular and pulmonary syndrome publication-title: N. Engl. J. Med. doi: 10.1056/NEJMoa1312625 – volume: 559 start-page: 269 year: 2018 ident: 10.1016/j.molcel.2023.03.029_bib62 article-title: Targeting STING with covalent small-molecule inhibitors publication-title: Nature doi: 10.1038/s41586-018-0287-8 – volume: 140 start-page: 543 year: 2017 ident: 10.1016/j.molcel.2023.03.029_bib63 article-title: Disease-associated mutations identify a novel region in human STING necessary for the control of type I interferon signaling publication-title: J. Allergy Clin. Immunol. doi: 10.1016/j.jaci.2016.10.031 – volume: 291 start-page: 1014 year: 2016 ident: 10.1016/j.molcel.2023.03.029_bib71 article-title: Sar1 GTPase activity is regulated by membrane curvature-Sar1 publication-title: J. Biol. Chem. doi: 10.1074/jbc.M115.672287 – volume: 217 year: 2020 ident: 10.1016/j.molcel.2023.03.029_bib43 article-title: COPA silences STING publication-title: J. Exp. Med. doi: 10.1084/jem.20201517 – volume: 146 start-page: 1204 year: 2020 ident: 10.1016/j.molcel.2023.03.029_bib55 article-title: A novel STING1 variant causes a recessive form of STING-associated vasculopathy with onset in infancy (SAVI) publication-title: J. Allergy Clin. Immunol. doi: 10.1016/j.jaci.2020.06.032 – volume: 19 start-page: 728 year: 2012 ident: 10.1016/j.molcel.2023.03.029_bib25 article-title: The structural basis for the sensing and binding of cyclic di-GMP by STING publication-title: Nat. Struct. Mol. Biol. doi: 10.1038/nsmb.2333 – volume: 66 start-page: 486 year: 2010 ident: 10.1016/j.molcel.2023.03.029_bib89 article-title: Features and development of coot publication-title: Acta Crystallogr. D Biol. Crystallogr. doi: 10.1107/S0907444910007493 – volume: 5 year: 2015 ident: 10.1016/j.molcel.2023.03.029_bib31 article-title: Rat and human STINGs profile similarly towards anticancer/antiviral compounds publication-title: Sci. Rep. doi: 10.1038/srep18035 – volume: 36 start-page: 1073 year: 2012 ident: 10.1016/j.molcel.2023.03.029_bib26 article-title: Structural analysis of the STING adaptor protein reveals a hydrophobic dimer interface and mode of cyclic di-GMP binding publication-title: Immunity doi: 10.1016/j.immuni.2012.03.019 – volume: 7 year: 2018 ident: 10.1016/j.molcel.2023.03.029_bib69 article-title: Dengue viruses cleave STING in humans but not in nonhuman primates, their presumed natural reservoir publication-title: eLife doi: 10.7554/eLife.31919 – volume: 564 start-page: 439 year: 2018 ident: 10.1016/j.molcel.2023.03.029_bib64 article-title: Design of amidobenzimidazole STING receptor agonists with systemic activity publication-title: Nature doi: 10.1038/s41586-018-0705-y – volume: 106 start-page: 20842 year: 2009 ident: 10.1016/j.molcel.2023.03.029_bib16 article-title: Atg9a controls dsDNA-driven dynamic translocation of STING and the innate immune response publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.0911267106 – volume: 461 start-page: 788 year: 2009 ident: 10.1016/j.molcel.2023.03.029_bib17 article-title: STING regulates intracellular DNA-mediated, type I interferon-dependent innate immunity publication-title: Nature doi: 10.1038/nature08476 – volume: 23 start-page: 1112 year: 2018 ident: 10.1016/j.molcel.2023.03.029_bib57 article-title: Pro-inflammation associated with a gain-of-function mutation (R284S) in the innate immune sensor STING publication-title: Cell Rep. doi: 10.1016/j.celrep.2018.03.115 – volume: 5 year: 2012 ident: 10.1016/j.molcel.2023.03.029_bib19 article-title: STING specifies IRF3 phosphorylation by TBK1 in the cytosolic DNA signaling pathway publication-title: Sci. Signal. doi: 10.1126/scisignal.2002521 – volume: 74 start-page: 531 year: 2018 ident: 10.1016/j.molcel.2023.03.029_bib91 article-title: Real-space refinement in PHENIX for cryo-EM and crystallography publication-title: Acta Crystallogr. D Struct. Biol. doi: 10.1107/S2059798318006551 – volume: 106 start-page: 8653 year: 2009 ident: 10.1016/j.molcel.2023.03.029_bib15 article-title: Eris, an endoplasmic reticulum IFN stimulator, activates innate immune signaling through dimerization publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.0900850106 – volume: 3 start-page: 1355 year: 2013 ident: 10.1016/j.molcel.2023.03.029_bib9 article-title: The innate immune DNA sensor cGAS produces a noncanonical cyclic dinucleotide that activates human STING publication-title: Cell Rep. doi: 10.1016/j.celrep.2013.05.009 – volume: 15 start-page: 429 year: 2015 ident: 10.1016/j.molcel.2023.03.029_bib21 article-title: Aicardi-Goutieres syndrome and the type I interferonopathies publication-title: Nat. Rev. Immunol. doi: 10.1038/nri3850 – volume: 32 start-page: 461 year: 2014 ident: 10.1016/j.molcel.2023.03.029_bib2 article-title: Innate immune sensing and signaling of cytosolic nucleic acids publication-title: Annu. Rev. Immunol. doi: 10.1146/annurev-immunol-032713-120156 – volume: 19 start-page: 725 year: 2012 ident: 10.1016/j.molcel.2023.03.029_bib24 article-title: Crystal structures of STING protein reveal basis for recognition of cyclic di-GMP publication-title: Nat. Struct. Mol. Biol. doi: 10.1038/nsmb.2332 – volume: 567 start-page: 394 year: 2019 ident: 10.1016/j.molcel.2023.03.029_bib35 article-title: Structural basis of STING binding with and phosphorylation by TBK1 publication-title: Nature doi: 10.1038/s41586-019-1000-2 – volume: 12 year: 2021 ident: 10.1016/j.molcel.2023.03.029_bib49 article-title: Case report: novel SAVI-causing variants in STING1 expand the clinical disease spectrum and suggest a refined model of STING activation publication-title: Front. Immunol. – volume: 59 start-page: 891 year: 2015 ident: 10.1016/j.molcel.2023.03.029_bib30 article-title: Ancient origin of cGAS-STING reveals mechanism of universal 2′,3′ cGAMP signaling publication-title: Mol. Cell doi: 10.1016/j.molcel.2015.07.022 – volume: 498 start-page: 380 year: 2013 ident: 10.1016/j.molcel.2023.03.029_bib7 article-title: cGAS produces a 2'-5′-linked cyclic dinucleotide second messenger that activates STING publication-title: Nature doi: 10.1038/nature12306 – volume: 2 start-page: 2480 year: 2007 ident: 10.1016/j.molcel.2023.03.029_bib99 article-title: Cryosectioning and immunolabeling publication-title: Nat. Protoc. doi: 10.1038/nprot.2007.365 – volume: 339 start-page: 786 year: 2013 ident: 10.1016/j.molcel.2023.03.029_bib5 article-title: Cyclic GMP-AMP synthase is a cytosolic DNA sensor that activates the type I interferon pathway publication-title: Science doi: 10.1126/science.1232458 – volume: 217 year: 2020 ident: 10.1016/j.molcel.2023.03.029_bib40 article-title: Mutations in COPA lead to abnormal trafficking of STING to the Golgi and interferon signaling publication-title: J. Exp. Med. doi: 10.1084/jem.20200600 – volume: 288 start-page: 5504 year: 2021 ident: 10.1016/j.molcel.2023.03.029_bib38 article-title: Molecular and spatial mechanisms governing STING signalling publication-title: FEBS Journal doi: 10.1111/febs.15640 – volume: 216 start-page: 867 year: 2019 ident: 10.1016/j.molcel.2023.03.029_bib65 article-title: STING-mediated disruption of calcium homeostasis chronically activates ER stress and primes T cell death publication-title: J. Exp. Med. doi: 10.1084/jem.20182192 – volume: 42 start-page: 1156 year: 2022 ident: 10.1016/j.molcel.2023.03.029_bib59 article-title: Complex allele with additive gain-of-function STING1 variants in a patient with cavitating lung lesions and aspergillosis publication-title: J. Clin. Immunol. doi: 10.1007/s10875-022-01284-8 – volume: 51 start-page: 1 year: 2019 ident: 10.1016/j.molcel.2023.03.029_bib85 article-title: STING signaling and host defense against microbial infection publication-title: Exp. Mol. Med. doi: 10.1038/s12276-019-0333-0 – volume: 14 start-page: 331 year: 2017 ident: 10.1016/j.molcel.2023.03.029_bib94 article-title: MotionCor2: anisotropic correction of beam-induced motion for improved cryo-electron microscopy publication-title: Nat. Methods doi: 10.1038/nmeth.4193 – volume: 139 start-page: 1396 year: 2017 ident: 10.1016/j.molcel.2023.03.029_bib52 article-title: Tofacitinib relieves symptoms of stimulator of interferon genes (STING)-associated vasculopathy with onset in infancy caused by 2 de novo variants in TMEM173 publication-title: J. Allergy Clin. Immunol. doi: 10.1016/j.jaci.2016.10.030 – volume: 597 start-page: 109 year: 2021 ident: 10.1016/j.molcel.2023.03.029_bib10 article-title: cGAS-like receptors sense RNA and control 3’2′-cGAMP signalling in Drosophila publication-title: Nature doi: 10.1038/s41586-021-03743-5 – volume: 171 start-page: 1110 year: 2017 ident: 10.1016/j.molcel.2023.03.029_bib67 article-title: The DNA inflammasome in human myeloid cells is initiated by a STING-cell death program upstream of NLRP3 publication-title: Cell doi: 10.1016/j.cell.2017.09.039 – volume: 92 start-page: 1092 year: 2014 ident: 10.1016/j.molcel.2023.03.029_bib93 article-title: Structural insights into the T6SS effector protein Tse3 and the Tse3-Tsi3 complex from Pseudomonas aeruginosa reveal a calcium-dependent membrane-binding mechanism publication-title: Mol. Microbiol. doi: 10.1111/mmi.12616 – volume: 369 year: 2020 ident: 10.1016/j.molcel.2023.03.029_bib80 article-title: An orally available non-nucleotide STING agonist with antitumor activity publication-title: Science doi: 10.1126/science.aba6098 – volume: 151 start-page: 872 year: 2015 ident: 10.1016/j.molcel.2023.03.029_bib53 article-title: Stimulator of interferon genes-associated vasculopathy with onset in infancy: A mimic of childhood granulomatosis with polyangiitis publication-title: JAMA Dermatol. doi: 10.1001/jamadermatol.2015.0251 – volume: 604 start-page: 557 year: 2022 ident: 10.1016/j.molcel.2023.03.029_bib37 article-title: Activation of STING by targeting a pocket in the transmembrane domain publication-title: Nature doi: 10.1038/s41586-022-04559-7 – volume: 8 start-page: 427 year: 2017 ident: 10.1016/j.molcel.2023.03.029_bib66 article-title: Signalling strength determines proapoptotic functions of STING publication-title: Nat. Commun. doi: 10.1038/s41467-017-00573-w – volume: 7 year: 2018 ident: 10.1016/j.molcel.2023.03.029_bib96 article-title: New tools for automated high-resolution cryo-EM structure determination in RELION-3 publication-title: eLife doi: 10.7554/eLife.42166 – volume: 19 start-page: 722 year: 2012 ident: 10.1016/j.molcel.2023.03.029_bib27 article-title: Structure of STING bound to cyclic di-GMP reveals the mechanism of cyclic dinucleotide recognition by the immune system publication-title: Nat. Struct. Mol. Biol. doi: 10.1038/nsmb.2331 – volume: 154 start-page: 748 year: 2013 ident: 10.1016/j.molcel.2023.03.029_bib29 article-title: Structure-function analysis of STING activation by c[G(2′,5′)pA(3′,5′)p] and targeting by antiviral DMXAA publication-title: Cell doi: 10.1016/j.cell.2013.07.023 – volume: 35 start-page: 112 year: 2020 ident: 10.1016/j.molcel.2023.03.029_bib3 article-title: DNA sensing in the innate immune response publication-title: Physiology (Bethesda) – volume: 9 start-page: 671 year: 2012 ident: 10.1016/j.molcel.2023.03.029_bib88 article-title: NIH Image to ImageJ: 25 years of image analysis publication-title: Nat. Methods doi: 10.1038/nmeth.2089 – volume: 9 year: 2018 ident: 10.1016/j.molcel.2023.03.029_bib56 article-title: A mutation outside the dimerization domain causing atypical STING-associated vasculopathy with onset in infancy publication-title: Front. Immunol. doi: 10.3389/fimmu.2018.01535 – volume: 203 start-page: 1560 year: 2019 ident: 10.1016/j.molcel.2023.03.029_bib77 article-title: YIPF5 is essential for innate immunity to DNA virus and facilitates COPII-dependent STING trafficking publication-title: J. Immunol. doi: 10.4049/jimmunol.1900387 – volume: 8 year: 2020 ident: 10.1016/j.molcel.2023.03.029_bib48 article-title: Stimulator of interferon genes-associated vasculopathy with onset in infancy: A systematic review of case reports publication-title: Front. Pediatr. doi: 10.3389/fped.2020.577918 – volume: 25 start-page: 1605 year: 2004 ident: 10.1016/j.molcel.2023.03.029_bib90 article-title: UCSF Chimera--a visualization system for exploratory research and analysis publication-title: J. Comput. Chem. doi: 10.1002/jcc.20084 – volume: 40 start-page: 114 year: 2020 ident: 10.1016/j.molcel.2023.03.029_bib50 article-title: STING-associated vasculopathy with onset in infancy in three children with new clinical aspect and unsatisfactory therapeutic responses to tofacitinib publication-title: J. Clin. Immunol. doi: 10.1007/s10875-019-00690-9 – volume: 18 start-page: 157 year: 2015 ident: 10.1016/j.molcel.2023.03.029_bib18 article-title: STING activation by translocation from the ER is associated with infection and autoinflammatory disease publication-title: Cell Host Microbe doi: 10.1016/j.chom.2015.07.001 – volume: 363 year: 2019 ident: 10.1016/j.molcel.2023.03.029_bib6 article-title: cGAS in action: expanding roles in immunity and inflammation publication-title: Science doi: 10.1126/science.aat8657 – volume: 59 start-page: 905 year: 2020 ident: 10.1016/j.molcel.2023.03.029_bib51 article-title: A patient with stimulator of interferon genes-associated vasculopathy with onset in infancy without skin vasculopathy publication-title: Rheumatol. Oxf. Engl. doi: 10.1093/rheumatology/kez444 – volume: 8 year: 2017 ident: 10.1016/j.molcel.2023.03.029_bib84 article-title: Membrane curvature induced by proximity of anionic phospholipids can initiate endocytosis publication-title: Nat. Commun. doi: 10.1038/s41467-017-01554-9 – volume: 192 start-page: 216 year: 2015 ident: 10.1016/j.molcel.2023.03.029_bib95 article-title: CTFFIND4: fast and accurate defocus estimation from electron micrographs publication-title: J. Struct. Biol. doi: 10.1016/j.jsb.2015.08.008 – volume: 13 year: 2015 ident: 10.1016/j.molcel.2023.03.029_bib60 article-title: STING-associated vasculopathy with onset in infancy: new clinical findings and mutation in three Turkish children publication-title: Pediatr. Rheumatol. doi: 10.1186/1546-0096-13-S1-O85 – volume: 217 year: 2020 ident: 10.1016/j.molcel.2023.03.029_bib41 article-title: A defect in COPI-mediated transport of STING causes immune dysregulation in COPA syndrome publication-title: J. Exp. Med. doi: 10.1084/jem.20201045 – volume: 29 start-page: 185 year: 2011 ident: 10.1016/j.molcel.2023.03.029_bib1 article-title: Nucleic acid recognition by the innate immune system publication-title: Annu. Rev. Immunol. doi: 10.1146/annurev-immunol-031210-101340 – volume: 124 start-page: 5516 year: 2014 ident: 10.1016/j.molcel.2023.03.029_bib47 article-title: Inherited STING-activating mutation underlies a familial inflammatory syndrome with lupus-like manifestations publication-title: J. Clin. Invest. doi: 10.1172/JCI79100 – volume: 13 year: 2022 ident: 10.1016/j.molcel.2023.03.029_bib22 article-title: Activation of STING based on its structural features publication-title: Front. Immunol. doi: 10.3389/fimmu.2022.808607 – volume: 20 start-page: 152 year: 2019 ident: 10.1016/j.molcel.2023.03.029_bib39 article-title: The Ca(2+) sensor STIM1 regulates the type I interferon response by retaining the signaling adaptor STING at the endoplasmic reticulum publication-title: Nat. Immunol. doi: 10.1038/s41590-018-0287-8 – volume: 503 start-page: 138 year: 2018 ident: 10.1016/j.molcel.2023.03.029_bib75 article-title: The binding of TBK1 to STING requires exocytic membrane traffic from the ER publication-title: Biochem. Biophys. Res. Commun. doi: 10.1016/j.bbrc.2018.05.199 – volume: 112 start-page: 418 year: 2015 ident: 10.1016/j.molcel.2023.03.029_bib74 article-title: Lunapark stabilizes nascent three-way junctions in the endoplasmic reticulum publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.1423026112 – volume: 153 start-page: 1094 year: 2013 ident: 10.1016/j.molcel.2023.03.029_bib8 article-title: Cyclic [G(2',5’)pA(3’,5’)p] is the metazoan second messenger produced by DNA-activated cyclic GMP-AMP synthase publication-title: Cell doi: 10.1016/j.cell.2013.04.046 – volume: 46 start-page: 735 year: 2012 ident: 10.1016/j.molcel.2023.03.029_bib28 article-title: Cyclic di-GMP sensing via the innate immune signaling protein STING publication-title: Mol. Cell doi: 10.1016/j.molcel.2012.05.029 – volume: 608 start-page: 803 year: 2022 ident: 10.1016/j.molcel.2023.03.029_bib68 article-title: Cryo-EM structure of an active bacterial TIR–STING filament complex publication-title: Nature doi: 10.1038/s41586-022-04999-1 – volume: 21 start-page: 868 year: 2020 ident: 10.1016/j.molcel.2023.03.029_bib72 article-title: STEEP mediates STING ER exit and activation of signaling publication-title: Nat. Immunol. doi: 10.1038/s41590-020-0730-5 – volume: 455 start-page: 674 year: 2008 ident: 10.1016/j.molcel.2023.03.029_bib12 article-title: STING is an endoplasmic reticulum adaptor that facilitates innate immune signalling publication-title: Nature doi: 10.1038/nature07317 – volume: 28 start-page: 5014 year: 2008 ident: 10.1016/j.molcel.2023.03.029_bib14 article-title: MPYS, a novel membrane tetraspanner, is associated with major histocompatibility complex class II and mediates transduction of apoptotic signals publication-title: Mol. Cell. Biol. doi: 10.1128/MCB.00640-08 – volume: 294 start-page: 11420 year: 2019 ident: 10.1016/j.molcel.2023.03.029_bib33 article-title: Crystal structures of porcine STING(CBD)-CDN complexes reveal the mechanism of ligand recognition and discrimination of STING proteins publication-title: J. Biol. Chem. doi: 10.1074/jbc.RA119.007367 – volume: 163 start-page: 1716 year: 2015 ident: 10.1016/j.molcel.2023.03.029_bib81 article-title: Limiting cholesterol biosynthetic flux spontaneously engages Type I IFN signaling publication-title: Cell doi: 10.1016/j.cell.2015.11.045 – reference: 37146568 - Mol Cell. 2023 May 4;83(9):1372-1374 |
SSID | ssj0014589 |
Score | 2.5753345 |
Snippet | 2′,3′-cGAMP, produced by the DNA sensor cGAS, activates stimulator of interferon genes (STING) and triggers immune response during infection. Tremendous effort... 2',3'-cGAMP, produced by the DNA sensor cGAS, activates stimulator of interferon genes (STING) and triggers immune response during infection. Tremendous effort... |
SourceID | proquest pubmed crossref elsevier |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 1502 |
SubjectTerms | activation autoinhibition cGAMP cGAS DNA Immunity, Innate Membrane Proteins - metabolism Nucleotidyltransferases - genetics Nucleotidyltransferases - metabolism Protein Serine-Threonine Kinases - metabolism Signal Transduction STING |
Title | The mechanism of STING autoinhibition and activation |
URI | https://dx.doi.org/10.1016/j.molcel.2023.03.029 https://www.ncbi.nlm.nih.gov/pubmed/37086726 https://www.proquest.com/docview/2805025486 |
Volume | 83 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dS8MwEA9jIvgifju_qOBr2Zak-XhUcX7BHpzi3kLTJFjZ2uG2B_97c2k7EBRB6EvLpT3u2sv17n53CF1kfptxFlL_1GQx5VTGmjEcO-rtJceGsaraYsjuXujDOBm30HWDhYGyytr2VzY9WOv6SreWZneW590R5E4xZxDWhLZ6ADQnVAQQ3_hqlUmgSRiDB8QxUDfwuVDjNS0nmYUEBCah1WlwNH_cnn5zP8M2NNhCm7X_GF1WLG6jli120Ho1UfJzF1Gv9mhqAc6bz6dR6aLR8_3wNkqXizIv3nIdKrSitDARIBqqeOweehncPF_fxfVghDijPbGIufMMp5Q5L0tj-lxkXEjvmkjNNXFSGkmo1JnWLuFap0yQFMvECEITbqXok33ULsrCHqIoE06k1msSohmpI1okFhMjnGHU38V0EGnkobK6azgMr5iopjzsXVVSVCBF1fMHlh0Ur1bNqq4Zf9DzRtTqm_aVN-x_rDxvNKP8hwHZjrSw5XKusOglAPUXrIMOKpWteCHc_8lxzI7-_dxjtAFnofSRnqD24mNpT717stBnaO3y8en18Sy8h1-qtOIL |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dT9swED8VpgleEIx9FBgLEq9Ri-3443GrYO3G-kKR-mbFsS2CaIKgfeC_x-cklZCYkJDylJyT011y_uU-AU6LsM14h6F_ZouUCaZSwzlJPQv2UhDLeZNtMeXja_Znns17MOpqYTCtsrX9jU2P1ro9M2ilObgvy8EVxk6J4OjWxLZ62QZ8CGhA4PyGyfzXOpTAsjgHD6lTJO_q52KS16K-KxxGIAiNvU4j0nx1f_of_oz70MUu7LQAMvnZ8LgHPVd9go_NSMmnfWBB78nCYT1v-bhIap9czSbT30m-WtZldVOamKKV5JVNsKShcch-huuL89lonLaTEdKCDeUyFT4wnDPugzCtPROyEFIFbKKMMNQrZRVlyhTG-EwYk3NJc6IyKynLhFPyjH6Bzaqu3DdICull7oIq0Z2Re2pk5gi10lvOwl1sH2gnD120bcNxesWd7vLDbnUjRY1S1MNwENWHdL3qvmmb8Qa96EStX6hfB8v-xsqTTjM6fBkY7sgrV68eNZHDDGv9Je_D10Zla16oCL9ygvCDdz_3B2yNZ_8u9eVk-vcQtvFKzINkR7C5fFi57wGrLM1xfBefAfGp44c |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+mechanism+of+STING+autoinhibition+and+activation&rft.jtitle=Molecular+cell&rft.au=Liu%2C+Sheng&rft.au=Yang%2C+Bo&rft.au=Hou%2C+Yingxiang&rft.au=Cui%2C+Kaige&rft.date=2023-05-04&rft.eissn=1097-4164&rft.volume=83&rft.issue=9&rft.spage=1502&rft_id=info:doi/10.1016%2Fj.molcel.2023.03.029&rft_id=info%3Apmid%2F37086726&rft.externalDocID=37086726 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1097-2765&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1097-2765&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1097-2765&client=summon |