The mechanism of STING autoinhibition and activation

2′,3′-cGAMP, produced by the DNA sensor cGAS, activates stimulator of interferon genes (STING) and triggers immune response during infection. Tremendous effort has been placed on unraveling the mechanism of STING activation. However, little is known about STING inhibition. Here, we found that apo-ST...

Full description

Saved in:
Bibliographic Details
Published inMolecular cell Vol. 83; no. 9; pp. 1502 - 1518.e10
Main Authors Liu, Sheng, Yang, Bo, Hou, Yingxiang, Cui, Kaige, Yang, Xiaozhu, Li, Xiaoxiong, Chen, Lianwan, Liu, Shichao, Zhang, Zhichao, Jia, Yuanyuan, Xie, Yufeng, Xue, Ying, Li, Xiaomei, Yan, Bingxue, Wu, Changxin, Deng, Wen, Qi, Jianxun, Lu, Defen, Gao, George F., Wang, Peiyi, Shang, Guijun
Format Journal Article
LanguageEnglish
Published United States Elsevier Inc 04.05.2023
Subjects
Online AccessGet full text

Cover

Loading…
Abstract 2′,3′-cGAMP, produced by the DNA sensor cGAS, activates stimulator of interferon genes (STING) and triggers immune response during infection. Tremendous effort has been placed on unraveling the mechanism of STING activation. However, little is known about STING inhibition. Here, we found that apo-STING exhibits a bilayer with head-to-head as well as side-by-side packing, mediated by its ligand-binding domain (LBD). This type of assembly holds two endoplasmic reticulum (ER) membranes together not only to prevent STING ER exit but also to eliminate the recruitment of TBK1, representing the autoinhibited state of STING. Additionally, we obtained the filament structure of the STING/2′,3′-cGAMP complex, which adopts a bent monolayer assembly mediated by LBD and transmembrane domain (TMD). The active, curved STING polymer could deform ER membrane to support its ER exit and anterograde transportation. Our data together provide a panoramic vision regarding STING autoinhibition and activation, which adds substantially to current understanding of the cGAS-STING pathway. [Display omitted] •Apo-STING exists as oligomer in the cell•Apo-STING oligomer adopts a bilayer with head-to-head and side-by-side packing of LBD•Apo-STING bilayer is crucial for STING ER retention and autoinhibition•Activated STING filament displays a bent conformation mediated by LBD and TMD Liu et al. show that apo-STING forms oligomers with bilayer assembly zippering two ER membranes in the resting state whereby STING fulfills its ER retention and autoinhibition. The activated STING filament adopts a bent conformation that deforms the membrane, which is fit for its anterograde transportation.
AbstractList 2',3'-cGAMP, produced by the DNA sensor cGAS, activates stimulator of interferon genes (STING) and triggers immune response during infection. Tremendous effort has been placed on unraveling the mechanism of STING activation. However, little is known about STING inhibition. Here, we found that apo-STING exhibits a bilayer with head-to-head as well as side-by-side packing, mediated by its ligand-binding domain (LBD). This type of assembly holds two endoplasmic reticulum (ER) membranes together not only to prevent STING ER exit but also to eliminate the recruitment of TBK1, representing the autoinhibited state of STING. Additionally, we obtained the filament structure of the STING/2',3'-cGAMP complex, which adopts a bent monolayer assembly mediated by LBD and transmembrane domain (TMD). The active, curved STING polymer could deform ER membrane to support its ER exit and anterograde transportation. Our data together provide a panoramic vision regarding STING autoinhibition and activation, which adds substantially to current understanding of the cGAS-STING pathway.2',3'-cGAMP, produced by the DNA sensor cGAS, activates stimulator of interferon genes (STING) and triggers immune response during infection. Tremendous effort has been placed on unraveling the mechanism of STING activation. However, little is known about STING inhibition. Here, we found that apo-STING exhibits a bilayer with head-to-head as well as side-by-side packing, mediated by its ligand-binding domain (LBD). This type of assembly holds two endoplasmic reticulum (ER) membranes together not only to prevent STING ER exit but also to eliminate the recruitment of TBK1, representing the autoinhibited state of STING. Additionally, we obtained the filament structure of the STING/2',3'-cGAMP complex, which adopts a bent monolayer assembly mediated by LBD and transmembrane domain (TMD). The active, curved STING polymer could deform ER membrane to support its ER exit and anterograde transportation. Our data together provide a panoramic vision regarding STING autoinhibition and activation, which adds substantially to current understanding of the cGAS-STING pathway.
2',3'-cGAMP, produced by the DNA sensor cGAS, activates stimulator of interferon genes (STING) and triggers immune response during infection. Tremendous effort has been placed on unraveling the mechanism of STING activation. However, little is known about STING inhibition. Here, we found that apo-STING exhibits a bilayer with head-to-head as well as side-by-side packing, mediated by its ligand-binding domain (LBD). This type of assembly holds two endoplasmic reticulum (ER) membranes together not only to prevent STING ER exit but also to eliminate the recruitment of TBK1, representing the autoinhibited state of STING. Additionally, we obtained the filament structure of the STING/2',3'-cGAMP complex, which adopts a bent monolayer assembly mediated by LBD and transmembrane domain (TMD). The active, curved STING polymer could deform ER membrane to support its ER exit and anterograde transportation. Our data together provide a panoramic vision regarding STING autoinhibition and activation, which adds substantially to current understanding of the cGAS-STING pathway.
2′,3′-cGAMP, produced by the DNA sensor cGAS, activates stimulator of interferon genes (STING) and triggers immune response during infection. Tremendous effort has been placed on unraveling the mechanism of STING activation. However, little is known about STING inhibition. Here, we found that apo-STING exhibits a bilayer with head-to-head as well as side-by-side packing, mediated by its ligand-binding domain (LBD). This type of assembly holds two endoplasmic reticulum (ER) membranes together not only to prevent STING ER exit but also to eliminate the recruitment of TBK1, representing the autoinhibited state of STING. Additionally, we obtained the filament structure of the STING/2′,3′-cGAMP complex, which adopts a bent monolayer assembly mediated by LBD and transmembrane domain (TMD). The active, curved STING polymer could deform ER membrane to support its ER exit and anterograde transportation. Our data together provide a panoramic vision regarding STING autoinhibition and activation, which adds substantially to current understanding of the cGAS-STING pathway. [Display omitted] •Apo-STING exists as oligomer in the cell•Apo-STING oligomer adopts a bilayer with head-to-head and side-by-side packing of LBD•Apo-STING bilayer is crucial for STING ER retention and autoinhibition•Activated STING filament displays a bent conformation mediated by LBD and TMD Liu et al. show that apo-STING forms oligomers with bilayer assembly zippering two ER membranes in the resting state whereby STING fulfills its ER retention and autoinhibition. The activated STING filament adopts a bent conformation that deforms the membrane, which is fit for its anterograde transportation.
Author Yang, Xiaozhu
Chen, Lianwan
Xue, Ying
Deng, Wen
Lu, Defen
Liu, Sheng
Yan, Bingxue
Jia, Yuanyuan
Li, Xiaomei
Xie, Yufeng
Shang, Guijun
Liu, Shichao
Cui, Kaige
Qi, Jianxun
Zhang, Zhichao
Gao, George F.
Li, Xiaoxiong
Wu, Changxin
Yang, Bo
Wang, Peiyi
Hou, Yingxiang
Author_xml – sequence: 1
  givenname: Sheng
  surname: Liu
  fullname: Liu, Sheng
  organization: Shanxi Provincial Key Laboratory of Protein Structure Determination, Shanxi Academy of Advanced Research and Innovation, Taiyuan 030012, China
– sequence: 2
  givenname: Bo
  surname: Yang
  fullname: Yang, Bo
  organization: Shanxi Provincial Key Laboratory of Protein Structure Determination, Shanxi Academy of Advanced Research and Innovation, Taiyuan 030012, China
– sequence: 3
  givenname: Yingxiang
  surname: Hou
  fullname: Hou, Yingxiang
  organization: The Key Laboratory of Medical Molecular Cell Biology of Shanxi Province, Institutes of Biomedical Sciences, Shanxi University, Taiyuan 030006, China
– sequence: 4
  givenname: Kaige
  surname: Cui
  fullname: Cui, Kaige
  organization: Shanxi Provincial Key Laboratory of Protein Structure Determination, Shanxi Academy of Advanced Research and Innovation, Taiyuan 030012, China
– sequence: 5
  givenname: Xiaozhu
  surname: Yang
  fullname: Yang, Xiaozhu
  organization: Shanxi Provincial Key Laboratory of Protein Structure Determination, Shanxi Academy of Advanced Research and Innovation, Taiyuan 030012, China
– sequence: 6
  givenname: Xiaoxiong
  surname: Li
  fullname: Li, Xiaoxiong
  organization: Shanxi Provincial Key Laboratory of Protein Structure Determination, Shanxi Academy of Advanced Research and Innovation, Taiyuan 030012, China
– sequence: 7
  givenname: Lianwan
  surname: Chen
  fullname: Chen, Lianwan
  organization: National Key Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
– sequence: 8
  givenname: Shichao
  surname: Liu
  fullname: Liu, Shichao
  organization: Shanxi Provincial Key Laboratory of Protein Structure Determination, Shanxi Academy of Advanced Research and Innovation, Taiyuan 030012, China
– sequence: 9
  givenname: Zhichao
  surname: Zhang
  fullname: Zhang, Zhichao
  organization: Shanxi Provincial Key Laboratory of Protein Structure Determination, Shanxi Academy of Advanced Research and Innovation, Taiyuan 030012, China
– sequence: 10
  givenname: Yuanyuan
  surname: Jia
  fullname: Jia, Yuanyuan
  organization: Shanxi Provincial Key Laboratory of Protein Structure Determination, Shanxi Academy of Advanced Research and Innovation, Taiyuan 030012, China
– sequence: 11
  givenname: Yufeng
  surname: Xie
  fullname: Xie, Yufeng
  organization: Shanxi Provincial Key Laboratory of Protein Structure Determination, Shanxi Academy of Advanced Research and Innovation, Taiyuan 030012, China
– sequence: 12
  givenname: Ying
  surname: Xue
  fullname: Xue, Ying
  organization: Shanxi Provincial Key Laboratory of Protein Structure Determination, Shanxi Academy of Advanced Research and Innovation, Taiyuan 030012, China
– sequence: 13
  givenname: Xiaomei
  surname: Li
  fullname: Li, Xiaomei
  organization: Shanxi Provincial Key Laboratory of Protein Structure Determination, Shanxi Academy of Advanced Research and Innovation, Taiyuan 030012, China
– sequence: 14
  givenname: Bingxue
  surname: Yan
  fullname: Yan, Bingxue
  organization: Shanxi Provincial Key Laboratory of Protein Structure Determination, Shanxi Academy of Advanced Research and Innovation, Taiyuan 030012, China
– sequence: 15
  givenname: Changxin
  surname: Wu
  fullname: Wu, Changxin
  organization: The Key Laboratory of Medical Molecular Cell Biology of Shanxi Province, Institutes of Biomedical Sciences, Shanxi University, Taiyuan 030006, China
– sequence: 16
  givenname: Wen
  surname: Deng
  fullname: Deng, Wen
  organization: College of Veterinary Medicine, Northwest A&F University, Yangling 712100, China
– sequence: 17
  givenname: Jianxun
  surname: Qi
  fullname: Qi, Jianxun
  organization: CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
– sequence: 18
  givenname: Defen
  surname: Lu
  fullname: Lu, Defen
  email: ludefen1@sxau.edu.cn
  organization: Shanxi Provincial Key Laboratory of Protein Structure Determination, Shanxi Academy of Advanced Research and Innovation, Taiyuan 030012, China
– sequence: 19
  givenname: George F.
  surname: Gao
  fullname: Gao, George F.
  email: gaof@im.ac.cn
  organization: Shanxi Provincial Key Laboratory of Protein Structure Determination, Shanxi Academy of Advanced Research and Innovation, Taiyuan 030012, China
– sequence: 20
  givenname: Peiyi
  surname: Wang
  fullname: Wang, Peiyi
  email: wangpy@sustech.edu.cn
  organization: Cryo-EM Center, Southern University of Science and Technology, Shenzhen 518055, China
– sequence: 21
  givenname: Guijun
  surname: Shang
  fullname: Shang, Guijun
  email: gjshang@gmail.com
  organization: Shanxi Provincial Key Laboratory of Protein Structure Determination, Shanxi Academy of Advanced Research and Innovation, Taiyuan 030012, China
BackLink https://www.ncbi.nlm.nih.gov/pubmed/37086726$$D View this record in MEDLINE/PubMed
BookMark eNqFUE1Lw0AUXKRiP_QfiOTopXF3s9kPD4IUrYWiB-t52a_QLUm2ZpOC_97UthcPCgPvPZgZ3swYDOpQOwCuEUwRRPRuk1ahNK5MMcRZCntgcQZGCAo2JYiSwXHHjOZDMI5xAyEiORcXYJgxyCnDdATIau2Sypm1qn2sklAk76vF6zxRXRt8vfbatz7Uiaptokzrd2p_XoLzQpXRXR3nBHw8P61mL9Pl23wxe1xODYG8nbKi_0wRWmBLrUWMG8YFRbnQTGeFEFZkRGijdZEzrRXlmcIitzwjOXOCo2wCbg--2yZ8di62svKxj1yq2oUuSsxhDnFOOO2pN0dqpytn5bbxlWq-5ClpT7g_EEwTYmxcIY1vf9K0jfKlRFDua5UbeahV7muVsAcWvZj8Ep_8_5E9HGSuL2nnXSOj8a42zvrGmVba4P82-AZS_ZGt
CitedBy_id crossref_primary_10_1080_07853890_2024_2394588
crossref_primary_10_15252_embr_202357496
crossref_primary_10_3390_jpm14070736
crossref_primary_10_1038_s41467_023_44052_x
crossref_primary_10_3390_ijms25031828
crossref_primary_10_1038_s44319_025_00423_7
crossref_primary_10_1016_j_phrs_2024_107063
crossref_primary_10_1080_17568919_2024_2383164
crossref_primary_10_1038_s44319_023_00045_x
crossref_primary_10_1084_jem_20232167
crossref_primary_10_1016_j_sbi_2023_102767
crossref_primary_10_1016_j_biomaterials_2023_122300
crossref_primary_10_1096_fj_202402757RR
crossref_primary_10_1016_j_molcel_2023_04_004
crossref_primary_10_1016_j_celrep_2023_113277
crossref_primary_10_1038_s41577_024_01112_7
crossref_primary_10_1002_med_22016
crossref_primary_10_1016_j_bcp_2023_115938
crossref_primary_10_1515_mr_2024_0016
crossref_primary_10_1007_s11427_024_2808_3
crossref_primary_10_1016_j_bmc_2024_117967
crossref_primary_10_1016_j_ccr_2023_215316
crossref_primary_10_1111_bph_16473
crossref_primary_10_1172_JCI181044
crossref_primary_10_1002_smll_202403201
crossref_primary_10_1007_s11684_023_1026_6
crossref_primary_10_1016_j_ebiom_2024_105491
crossref_primary_10_1007_s12264_024_01334_8
crossref_primary_10_1002_bies_202400091
Cites_doi 10.1016/j.celrep.2018.11.048
10.1038/s41586-021-03762-2
10.1038/s41467-020-20234-9
10.1007/s12013-017-0792-7
10.1038/s41586-019-1006-9
10.26508/lsa.201700014
10.1016/j.molcel.2013.05.022
10.1038/s41586-019-0998-5
10.1146/annurev-biophys-070317-033259
10.1136/annrheumdis-2016-209841
10.1002/pmic.200500081
10.1038/ni.2350
10.1126/science.aaa2630
10.1038/nmeth.2727
10.1073/pnas.1803406115
10.1038/ncomms10680
10.1126/science.1229963
10.1038/nmeth.4169
10.1046/j.1365-2443.2001.00426.x
10.3389/fimmu.2019.02770
10.1016/j.immuni.2008.09.003
10.1016/j.cell.2019.05.036
10.1002/pro.3330
10.1038/s41586-019-1228-x
10.3389/fimmu.2021.646304
10.1038/s41586-021-03800-z
10.1056/NEJMoa1312625
10.1038/s41586-018-0287-8
10.1016/j.jaci.2016.10.031
10.1074/jbc.M115.672287
10.1084/jem.20201517
10.1016/j.jaci.2020.06.032
10.1038/nsmb.2333
10.1107/S0907444910007493
10.1038/srep18035
10.1016/j.immuni.2012.03.019
10.7554/eLife.31919
10.1038/s41586-018-0705-y
10.1073/pnas.0911267106
10.1038/nature08476
10.1016/j.celrep.2018.03.115
10.1126/scisignal.2002521
10.1107/S2059798318006551
10.1073/pnas.0900850106
10.1016/j.celrep.2013.05.009
10.1038/nri3850
10.1146/annurev-immunol-032713-120156
10.1038/nsmb.2332
10.1038/s41586-019-1000-2
10.1016/j.molcel.2015.07.022
10.1038/nature12306
10.1038/nprot.2007.365
10.1126/science.1232458
10.1084/jem.20200600
10.1111/febs.15640
10.1084/jem.20182192
10.1007/s10875-022-01284-8
10.1038/s12276-019-0333-0
10.1038/nmeth.4193
10.1016/j.jaci.2016.10.030
10.1038/s41586-021-03743-5
10.1016/j.cell.2017.09.039
10.1111/mmi.12616
10.1126/science.aba6098
10.1001/jamadermatol.2015.0251
10.1038/s41586-022-04559-7
10.1038/s41467-017-00573-w
10.7554/eLife.42166
10.1038/nsmb.2331
10.1016/j.cell.2013.07.023
10.1038/nmeth.2089
10.3389/fimmu.2018.01535
10.4049/jimmunol.1900387
10.3389/fped.2020.577918
10.1002/jcc.20084
10.1007/s10875-019-00690-9
10.1016/j.chom.2015.07.001
10.1126/science.aat8657
10.1093/rheumatology/kez444
10.1038/s41467-017-01554-9
10.1016/j.jsb.2015.08.008
10.1186/1546-0096-13-S1-O85
10.1084/jem.20201045
10.1146/annurev-immunol-031210-101340
10.1172/JCI79100
10.3389/fimmu.2022.808607
10.1038/s41590-018-0287-8
10.1016/j.bbrc.2018.05.199
10.1073/pnas.1423026112
10.1016/j.cell.2013.04.046
10.1016/j.molcel.2012.05.029
10.1038/s41586-022-04999-1
10.1038/s41590-020-0730-5
10.1038/nature07317
10.1128/MCB.00640-08
10.1074/jbc.RA119.007367
10.1016/j.cell.2015.11.045
ContentType Journal Article
Copyright 2023 Elsevier Inc.
Copyright © 2023 Elsevier Inc. All rights reserved.
Copyright_xml – notice: 2023 Elsevier Inc.
– notice: Copyright © 2023 Elsevier Inc. All rights reserved.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOI 10.1016/j.molcel.2023.03.029
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
MEDLINE

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1097-4164
EndPage 1518.e10
ExternalDocumentID 37086726
10_1016_j_molcel_2023_03_029
S1097276523002435
Genre Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
--K
-DZ
-~X
0R~
123
1~5
4.4
457
4G.
5RE
62-
7-5
AACTN
AAEDW
AAFTH
AAIAV
AAKRW
AAKUH
AALRI
AAUCE
AAVLU
AAXUO
ABJNI
ABMAC
ABMWF
ABVKL
ACGFO
ACGFS
ACNCT
ADBBV
ADEZE
ADJPV
AEFWE
AENEX
AFFNX
AFTJW
AGKMS
AITUG
ALKID
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ASPBG
AVWKF
AZFZN
BAWUL
CS3
DIK
DU5
E3Z
EBS
F5P
FCP
FDB
FEDTE
FIRID
HVGLF
IH2
IHE
IXB
J1W
JIG
KQ8
L7B
M3Z
M41
N9A
O-L
O9-
OK1
P2P
RCE
ROL
RPZ
SDG
SES
TR2
ZA5
.55
.GJ
29M
2WC
3O-
53G
5VS
AAEDT
AAHBH
AAIKJ
AAMRU
AAQFI
AAQXK
AAYWO
AAYXX
ABDGV
ABWVN
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
ADVLN
AEUPX
AEXQZ
AFPUW
AGCQF
AGHFR
AGQPQ
AIGII
AKAPO
AKBMS
AKRWK
AKYEP
APXCP
CITATION
EJD
FGOYB
HH5
HZ~
OZT
R2-
RIG
SSZ
UHS
X7M
ZGI
ZXP
CGR
CUY
CVF
ECM
EFKBS
EIF
NPM
7X8
ID FETCH-LOGICAL-c408t-7f023a46f2d6dd178c7896159b7b3f99d9349bcbbf57bba683a295d83457e9813
IEDL.DBID IXB
ISSN 1097-2765
1097-4164
IngestDate Tue Aug 05 10:32:45 EDT 2025
Mon Jul 21 06:05:51 EDT 2025
Tue Jul 01 03:21:23 EDT 2025
Thu Apr 24 23:01:51 EDT 2025
Fri Feb 23 02:39:37 EST 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 9
Keywords cGAS
STING
cGAMP
autoinhibition
activation
Language English
License Copyright © 2023 Elsevier Inc. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c408t-7f023a46f2d6dd178c7896159b7b3f99d9349bcbbf57bba683a295d83457e9813
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink http://www.cell.com/article/S1097276523002435/pdf
PMID 37086726
PQID 2805025486
PQPubID 23479
ParticipantIDs proquest_miscellaneous_2805025486
pubmed_primary_37086726
crossref_citationtrail_10_1016_j_molcel_2023_03_029
crossref_primary_10_1016_j_molcel_2023_03_029
elsevier_sciencedirect_doi_10_1016_j_molcel_2023_03_029
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-05-04
PublicationDateYYYYMMDD 2023-05-04
PublicationDate_xml – month: 05
  year: 2023
  text: 2023-05-04
  day: 04
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Molecular cell
PublicationTitleAlternate Mol Cell
PublicationYear 2023
Publisher Elsevier Inc
Publisher_xml – name: Elsevier Inc
References Schneider, Rasband, Eliceiri (bib88) 2012; 9
Zivanov, Nakane, Forsberg, Kimanius, Hagen, Lindahl, Scheres (bib96) 2018; 7
Steiner, Schaale, Prigione, De Nardo, Dagley, Chien-Hsiung, Laohamonthonkul, Harapas, Gantier, Gattorno (bib45) 2020
Lu, Shang, Zhang, Yu, Cong, Yuan, He, Zhu, Zhao, Yin (bib93) 2014; 92
Zhang, Han, Tao, Ye, Du, Deng, Zhang, Li, Jiang, Su (bib31) 2015; 5
Shang, Zhu, Li, Zhang, Zhu, Lu, Liu, Yu, Zhao, Xu (bib24) 2012; 19
Wittig, Schägger (bib61) 2005; 5
Shu, Yi, Watts, Kao, Li (bib27) 2012; 19
Béthune, Wieland (bib79) 2018; 47
Tanaka, Chen (bib19) 2012; 5
Morehouse, Yip, Keszei, McNamara-Bordewick, Shao, Kranzusch (bib68) 2022; 608
Tang, Xu, Zhou, Peng, Liu, Liu, Li, Yang, Zhao (bib50) 2020; 40
Ahn, Barber (bib85) 2019; 51
Sun, Li, Chen, Chen, You, Zhou, Zhou, Zhai, Chen, Jiang (bib15) 2009; 106
Balka, De Nardo (bib38) 2021; 288
Zhang, Nandakumar, Reinert, Huang, Laustsen, Gao, Sun, Jensen, Troldborg, Assil (bib72) 2020; 21
Ishikawa, Barber (bib12) 2008; 455
Slot, Geuze (bib99) 2007; 2
Shang, Zhang, Chen, Bai, Zhang (bib23) 2019; 567
Haag, Gulen, Reymond, Gibelin, Abrami, Decout, Heymann, van der Goot, Turcatti, Behrendt, Ablasser (bib62) 2018; 559
Gaidt, Ebert, Chauhan, Ramshorn, Pinci, Zuber, O'Duill, Schmid-Burgk, Hoss, Buhmann (bib67) 2017; 171
Pan, Perera, Piesvaux, Presland, Schroeder, Cumming, Trotter, Altman, Buevich, Cash (bib80) 2020; 369
Ergun, Fernandez, Weiss, Li (bib34) 2019; 178
Wu, Sun, Chen, Du, Shi, Chen, Chen (bib4) 2013; 339
Huang, Liu, Du, Jiang, Su (bib25) 2012; 19
Pettersen, Goddard, Huang, Couch, Greenblatt, Meng, Ferrin (bib90) 2004; 25
Ishikawa, Ma, Barber (bib17) 2009; 461
Punjani, Rubinstein, Fleet, Brubaker (bib92) 2017; 14
Ouyang, Song, Wang, Ru, Shaw, Jiang, Niu, Zhu, Qiu, Parvatiyar (bib26) 2012; 36
Hirama, Lu, Kay, Maekawa, Kozlov, Grinstein, Fairn (bib84) 2017; 8
Cong, Yuan, Du, Wu, Lu, Wu, Zhang, Li, Wei, Li (bib33) 2019; 294
Liu, Cai, Wu, Cong, Chen, Li, Du, Ren, Wu, Grishin, Chen (bib20) 2015; 347
Saldanha, Balka, Davidson, Wainstein, Wong, Macintosh, Loo, Weber, Kamath, Circa (bib56) 2018; 9
Srikanth, Woo, Wu, El-Sherbiny, Leung, Chupradit, Rice, Seo, Calmettes, Ramakrishna (bib39) 2019; 20
Lin, Torreggiani, Kahle, Rumsey, Wright, Montes-Cano, Silveira, Alehashemi, Mitchell, Aue (bib49) 2021; 12
Subczynski, Pasenkiewicz-Gierula, Widomska, Mainali, Raguz (bib83) 2017; 75
Zhang, Shang, Gui, Zhang, Bai, Chen (bib35) 2019; 567
Eroglu, Gursel, Gursel, Duzova, de Jesus, Goldbach-Mansky, Ozen (bib60) 2015; 13
Stabell, Meyerson, Gullberg, Gilchrist, Webb, Old, Perera, Sawyer (bib69) 2018; 7
Munoz, Rodière, Jeremiah, Rieux-Laucat, Oojageer, Rice, Rozenberg, Crow, Bessis (bib53) 2015; 151
Briard, Place, Kanneganti (bib3) 2020; 35
Konno, Chinn, Hong, Orange, Lupski, Mendoza, Pedroza, Barber (bib57) 2018; 23
Ran, Xiong, Xu, Luo, Wang, Wang (bib77) 2019; 203
Slavik, Morehouse, Ragucci, Zhou, Ai, Chen, Li, Wei, Bähre, König (bib10) 2021; 597
Gao, Ascano, Zillinger, Wang, Dai, Serganov, Gaffney, Shuman, Jones, Deng (bib29) 2013; 154
Yin, Tian, Kabaleeswaran, Jiang, Tu, Eck, Chen, Wu (bib28) 2012; 46
Zhao, Du, Xu, Shu, Sankaran, Bell, Liu, Lei, Gao, Fu (bib36) 2019; 569
York, Williams, Argus, Zhou, Brar, Vergnes, Gray, Zhen, Wu, Yamada (bib81) 2015; 163
Rivara, Ablasser (bib43) 2020; 217
Barbalat, Ewald, Mouchess, Barton (bib1) 2011; 29
Holm, Jensen, Jakobsen, Cheshenko, Horan, Moeller, Gonzalez-Dosal, Rasmussen, Christensen, Yarovinsky (bib87) 2012; 13
Chen, Desai, McNew, Gerard, Novick, Ferro-Novick (bib74) 2015; 112
Liu, Jesus, Marrero, Yang, Ramsey, Sanchez, Tenbrock, Wittkowski, Jones, Kuehn (bib46) 2014; 371
Melki, Rose, Uggenti, Van Eyck, Frémond, Kitabayashi, Rice, Jenkinson, Boulai, Jeremiah (bib63) 2017; 140
Gui, Yang, Li, Tan, Shi, Li, Du, Chen (bib78) 2019; 567
Dobbs, Burnaevskiy, Chen, Gonugunta, Alto, Yan (bib18) 2015; 18
Lu, Shang, Li, Lu, Bai, Zhang (bib37) 2022; 604
Williams, Headd, Moriarty, Prisant, Videau, Deis, Verma, Keedy, Hintze, Chen (bib98) 2018; 27
Lin, Berard, Al Rasheed, Aladba, Kranzusch, Henderlight, Grom, Kahle, Torreggiani, Aue (bib55) 2020; 146
Ogawa, Mukai, Saito, Arai, Taguchi (bib75) 2018; 503
Ablasser, Chen (bib6) 2019; 363
Ramanjulu, Pesiridis, Yang, Concha, Singhaus, Zhang, Tran, Moore, Lehmann, Eberl (bib64) 2018; 564
König, Fiehn, Wolf, Schuster, Cura Costa, Tüngler, Alvarez, Chara, Engel, Goldbach-Mansky (bib58) 2017; 76
Deng, Chong, Law, Mukai, Ho, Martinu, Backes, Eckalbar, Taguchi, Shum (bib41) 2020; 217
Zheng, Palovcak, Armache, Verba, Cheng, Agard (bib94) 2017; 14
Gao, Ascano, Wu, Barchet, Gaffney, Zillinger, Serganov, Liu, Jones, Hartmann (bib8) 2013; 153
Kranzusch, Wilson, Lee, Berger, Doudna, Vance (bib30) 2015; 59
Jin, Waterman, Jonscher, Short, Reisdorph, Cambier (bib14) 2008; 28
Dai, Liu, Zhao, He, Yin (bib48) 2020; 8
Iwamura, Yoneyama, Yamaguchi, Suhara, Mori, Shiota, Okabe, Namiki, Fujita (bib100) 2001; 6
Zhong, Yang, Li, Wang, Li, Diao, Lei, He, Zhang, Tien (bib13) 2008; 29
Mukai, Ogawa, Uematsu, Kuchitsu, Kiku, Uemura, Waguri, Suzuki, Dohmae, Arai (bib42) 2021; 12
Kucukelbir, Sigworth, Tagare (bib97) 2014; 11
Ding, Gaska, Douam, Wei, Kim, Balev, Heller, Ploss (bib70) 2018; 115
Holleufer, Winther, Gad, Ai, Chen, Li, Wei, Deng, Liu, Frederiksen (bib11) 2021; 597
Taguchi, Mukai, Takaya, Shindo (bib44) 2021; 12
Saitoh, Fujita, Hayashi, Takahara, Satoh, Lee, Matsunaga, Kageyama, Omori, Noda (bib16) 2009; 106
Keskitalo, Haapaniemi, Einarsdottir, Rajamäki, Heikkilä, Ilander, Pöyhönen, Morgunova, Hokynar, Lagström (bib54) 2019; 10
Hussain, Xie, Jabeen, Lu, Yang, Wu, Shang (bib22) 2022; 13
Holm, Rahbek, Gad, Bak, Jakobsen, Jiang, Hansen, Jensen, Sun, Thomsen (bib86) 2016; 7
Seo, Kang, Suh, Park, Lee, Choi, Kim, Kim, Park, Ye (bib52) 2017; 139
Wu, Chen (bib2) 2014; 32
Crow, Manel (bib21) 2015; 15
Emsley, Lohkamp, Scott, Cowtan (bib89) 2010; 66
Raffaele, Messia, Moneta, Caiello, Federici, Pardeo, Bracaglia, De Benedetti, Insalaco (bib51) 2020; 59
Hanna, Mela, Wang, Henderson, Chapman, Edwardson, Audhya (bib71) 2016; 291
Wang, Powers, Gold, Rapoport (bib73) 2018; 1
Lepelley, Martin-Niclós, Le Bihan, Marsh, Uggenti, Rice, Bondet, Duffy, Hertzog, Rehwinkel (bib40) 2020; 217
Afonine, Poon, Read, Sobolev, Terwilliger, Urzhumtsev, Adams (bib91) 2018; 74
Ablasser, Goldeck, Cavlar, Deimling, Witte, Röhl, Hopfner, Ludwig, Hornung (bib7) 2013; 498
Gulen, Koch, Haag, Schuler, Apetoh, Villunger, Radtke, Ablasser (bib66) 2017; 8
Sun, Zhang, Jiang, Pan, Tan, Yu, Guo, Yin, Shen, Shu, Liu (bib76) 2018; 25
Guffroy, Dieudonné, Gies, Danion (bib59) 2022; 42
Diner, Burdette, Wilson, Monroe, Kellenberger, Hyodo, Hayakawa, Hammond, Vance (bib9) 2013; 3
Wu, Chen, Dobbs, Sakai, Liou, Miner, Yan (bib65) 2019; 216
Rohou, Grigorieff (bib95) 2015; 192
Zhang, Shi, Wu, Zhang, Sun, Chen, Chen (bib32) 2013; 51
Jeremiah, Neven, Gentili, Callebaut, Maschalidi, Stolzenberg, Goudin, Frémond, Nitschke, Molina (bib47) 2014; 124
Sun, Wu, Du, Chen, Chen (bib5) 2013; 339
Chu, Tu, Yang, Wu, Repa, Yan (bib82) 2021; 596
Ran (10.1016/j.molcel.2023.03.029_bib77) 2019; 203
Morehouse (10.1016/j.molcel.2023.03.029_bib68) 2022; 608
Wittig (10.1016/j.molcel.2023.03.029_bib61) 2005; 5
Holm (10.1016/j.molcel.2023.03.029_bib87) 2012; 13
König (10.1016/j.molcel.2023.03.029_bib58) 2017; 76
Huang (10.1016/j.molcel.2023.03.029_bib25) 2012; 19
Hirama (10.1016/j.molcel.2023.03.029_bib84) 2017; 8
Pettersen (10.1016/j.molcel.2023.03.029_bib90) 2004; 25
Zivanov (10.1016/j.molcel.2023.03.029_bib96) 2018; 7
Guffroy (10.1016/j.molcel.2023.03.029_bib59) 2022; 42
Sun (10.1016/j.molcel.2023.03.029_bib5) 2013; 339
Liu (10.1016/j.molcel.2023.03.029_bib46) 2014; 371
Lu (10.1016/j.molcel.2023.03.029_bib93) 2014; 92
Jin (10.1016/j.molcel.2023.03.029_bib14) 2008; 28
Rohou (10.1016/j.molcel.2023.03.029_bib95) 2015; 192
Lepelley (10.1016/j.molcel.2023.03.029_bib40) 2020; 217
Briard (10.1016/j.molcel.2023.03.029_bib3) 2020; 35
Shang (10.1016/j.molcel.2023.03.029_bib23) 2019; 567
Ishikawa (10.1016/j.molcel.2023.03.029_bib17) 2009; 461
Haag (10.1016/j.molcel.2023.03.029_bib62) 2018; 559
York (10.1016/j.molcel.2023.03.029_bib81) 2015; 163
Chu (10.1016/j.molcel.2023.03.029_bib82) 2021; 596
Seo (10.1016/j.molcel.2023.03.029_bib52) 2017; 139
Pan (10.1016/j.molcel.2023.03.029_bib80) 2020; 369
Ding (10.1016/j.molcel.2023.03.029_bib70) 2018; 115
Munoz (10.1016/j.molcel.2023.03.029_bib53) 2015; 151
Stabell (10.1016/j.molcel.2023.03.029_bib69) 2018; 7
Ogawa (10.1016/j.molcel.2023.03.029_bib75) 2018; 503
Afonine (10.1016/j.molcel.2023.03.029_bib91) 2018; 74
Crow (10.1016/j.molcel.2023.03.029_bib21) 2015; 15
Zheng (10.1016/j.molcel.2023.03.029_bib94) 2017; 14
Keskitalo (10.1016/j.molcel.2023.03.029_bib54) 2019; 10
Shu (10.1016/j.molcel.2023.03.029_bib27) 2012; 19
Deng (10.1016/j.molcel.2023.03.029_bib41) 2020; 217
Konno (10.1016/j.molcel.2023.03.029_bib57) 2018; 23
Rivara (10.1016/j.molcel.2023.03.029_bib43) 2020; 217
Emsley (10.1016/j.molcel.2023.03.029_bib89) 2010; 66
Kranzusch (10.1016/j.molcel.2023.03.029_bib30) 2015; 59
Lin (10.1016/j.molcel.2023.03.029_bib49) 2021; 12
Tanaka (10.1016/j.molcel.2023.03.029_bib19) 2012; 5
Zhang (10.1016/j.molcel.2023.03.029_bib72) 2020; 21
Slot (10.1016/j.molcel.2023.03.029_bib99) 2007; 2
Saitoh (10.1016/j.molcel.2023.03.029_bib16) 2009; 106
Sun (10.1016/j.molcel.2023.03.029_bib15) 2009; 106
Hanna (10.1016/j.molcel.2023.03.029_bib71) 2016; 291
Dai (10.1016/j.molcel.2023.03.029_bib48) 2020; 8
Ishikawa (10.1016/j.molcel.2023.03.029_bib12) 2008; 455
Srikanth (10.1016/j.molcel.2023.03.029_bib39) 2019; 20
Jeremiah (10.1016/j.molcel.2023.03.029_bib47) 2014; 124
Béthune (10.1016/j.molcel.2023.03.029_bib79) 2018; 47
Steiner (10.1016/j.molcel.2023.03.029_bib45) 2020
Raffaele (10.1016/j.molcel.2023.03.029_bib51) 2020; 59
Zhang (10.1016/j.molcel.2023.03.029_bib35) 2019; 567
Subczynski (10.1016/j.molcel.2023.03.029_bib83) 2017; 75
Schneider (10.1016/j.molcel.2023.03.029_bib88) 2012; 9
Eroglu (10.1016/j.molcel.2023.03.029_bib60) 2015; 13
Zhao (10.1016/j.molcel.2023.03.029_bib36) 2019; 569
Wang (10.1016/j.molcel.2023.03.029_bib73) 2018; 1
Dobbs (10.1016/j.molcel.2023.03.029_bib18) 2015; 18
Lin (10.1016/j.molcel.2023.03.029_bib55) 2020; 146
Gaidt (10.1016/j.molcel.2023.03.029_bib67) 2017; 171
Wu (10.1016/j.molcel.2023.03.029_bib4) 2013; 339
Williams (10.1016/j.molcel.2023.03.029_bib98) 2018; 27
Taguchi (10.1016/j.molcel.2023.03.029_bib44) 2021; 12
Liu (10.1016/j.molcel.2023.03.029_bib20) 2015; 347
Mukai (10.1016/j.molcel.2023.03.029_bib42) 2021; 12
Yin (10.1016/j.molcel.2023.03.029_bib28) 2012; 46
Zhang (10.1016/j.molcel.2023.03.029_bib31) 2015; 5
Ablasser (10.1016/j.molcel.2023.03.029_bib6) 2019; 363
Holleufer (10.1016/j.molcel.2023.03.029_bib11) 2021; 597
Chen (10.1016/j.molcel.2023.03.029_bib74) 2015; 112
Barbalat (10.1016/j.molcel.2023.03.029_bib1) 2011; 29
Tang (10.1016/j.molcel.2023.03.029_bib50) 2020; 40
Ergun (10.1016/j.molcel.2023.03.029_bib34) 2019; 178
Punjani (10.1016/j.molcel.2023.03.029_bib92) 2017; 14
Sun (10.1016/j.molcel.2023.03.029_bib76) 2018; 25
Ramanjulu (10.1016/j.molcel.2023.03.029_bib64) 2018; 564
Zhang (10.1016/j.molcel.2023.03.029_bib32) 2013; 51
Iwamura (10.1016/j.molcel.2023.03.029_bib100) 2001; 6
Zhong (10.1016/j.molcel.2023.03.029_bib13) 2008; 29
Cong (10.1016/j.molcel.2023.03.029_bib33) 2019; 294
Lu (10.1016/j.molcel.2023.03.029_bib37) 2022; 604
Hussain (10.1016/j.molcel.2023.03.029_bib22) 2022; 13
Ouyang (10.1016/j.molcel.2023.03.029_bib26) 2012; 36
Kucukelbir (10.1016/j.molcel.2023.03.029_bib97) 2014; 11
Slavik (10.1016/j.molcel.2023.03.029_bib10) 2021; 597
Ahn (10.1016/j.molcel.2023.03.029_bib85) 2019; 51
Wu (10.1016/j.molcel.2023.03.029_bib2) 2014; 32
Balka (10.1016/j.molcel.2023.03.029_bib38) 2021; 288
Wu (10.1016/j.molcel.2023.03.029_bib65) 2019; 216
Holm (10.1016/j.molcel.2023.03.029_bib86) 2016; 7
Gui (10.1016/j.molcel.2023.03.029_bib78) 2019; 567
Melki (10.1016/j.molcel.2023.03.029_bib63) 2017; 140
Saldanha (10.1016/j.molcel.2023.03.029_bib56) 2018; 9
Shang (10.1016/j.molcel.2023.03.029_bib24) 2012; 19
Gao (10.1016/j.molcel.2023.03.029_bib8) 2013; 153
Ablasser (10.1016/j.molcel.2023.03.029_bib7) 2013; 498
Gao (10.1016/j.molcel.2023.03.029_bib29) 2013; 154
Gulen (10.1016/j.molcel.2023.03.029_bib66) 2017; 8
Diner (10.1016/j.molcel.2023.03.029_bib9) 2013; 3
37146568 - Mol Cell. 2023 May 4;83(9):1372-1374
References_xml – volume: 46
  start-page: 735
  year: 2012
  end-page: 745
  ident: bib28
  article-title: Cyclic di-GMP sensing via the innate immune signaling protein STING
  publication-title: Mol. Cell
– volume: 294
  start-page: 11420
  year: 2019
  end-page: 11432
  ident: bib33
  article-title: Crystal structures of porcine STING(CBD)-CDN complexes reveal the mechanism of ligand recognition and discrimination of STING proteins
  publication-title: J. Biol. Chem.
– volume: 178
  start-page: 290
  year: 2019
  end-page: 301.e10
  ident: bib34
  article-title: STING polymer structure reveals mechanisms for activation, hyperactivation, and inhibition
  publication-title: Cell
– volume: 59
  start-page: 891
  year: 2015
  end-page: 903
  ident: bib30
  article-title: Ancient origin of cGAS-STING reveals mechanism of universal 2′,3′ cGAMP signaling
  publication-title: Mol. Cell
– volume: 216
  start-page: 867
  year: 2019
  end-page: 883
  ident: bib65
  article-title: STING-mediated disruption of calcium homeostasis chronically activates ER stress and primes T cell death
  publication-title: J. Exp. Med.
– volume: 503
  start-page: 138
  year: 2018
  end-page: 145
  ident: bib75
  article-title: The binding of TBK1 to STING requires exocytic membrane traffic from the ER
  publication-title: Biochem. Biophys. Res. Commun.
– volume: 455
  start-page: 674
  year: 2008
  end-page: 678
  ident: bib12
  article-title: STING is an endoplasmic reticulum adaptor that facilitates innate immune signalling
  publication-title: Nature
– volume: 7
  year: 2018
  ident: bib96
  article-title: New tools for automated high-resolution cryo-EM structure determination in RELION-3
  publication-title: eLife
– volume: 163
  start-page: 1716
  year: 2015
  end-page: 1729
  ident: bib81
  article-title: Limiting cholesterol biosynthetic flux spontaneously engages Type I IFN signaling
  publication-title: Cell
– volume: 597
  start-page: 109
  year: 2021
  end-page: 113
  ident: bib10
  article-title: cGAS-like receptors sense RNA and control 3’2′-cGAMP signalling in Drosophila
  publication-title: Nature
– volume: 51
  start-page: 226
  year: 2013
  end-page: 235
  ident: bib32
  article-title: Cyclic GMP-AMP containing mixed phosphodiester linkages is an endogenous high-affinity ligand for STING
  publication-title: Mol. Cell
– volume: 498
  start-page: 380
  year: 2013
  end-page: 384
  ident: bib7
  article-title: cGAS produces a 2'-5′-linked cyclic dinucleotide second messenger that activates STING
  publication-title: Nature
– volume: 8
  year: 2020
  ident: bib48
  article-title: Stimulator of interferon genes-associated vasculopathy with onset in infancy: A systematic review of case reports
  publication-title: Front. Pediatr.
– volume: 18
  start-page: 157
  year: 2015
  end-page: 168
  ident: bib18
  article-title: STING activation by translocation from the ER is associated with infection and autoinflammatory disease
  publication-title: Cell Host Microbe
– volume: 288
  start-page: 5504
  year: 2021
  end-page: 5529
  ident: bib38
  article-title: Molecular and spatial mechanisms governing STING signalling
  publication-title: FEBS Journal
– volume: 106
  start-page: 8653
  year: 2009
  end-page: 8658
  ident: bib15
  article-title: Eris, an endoplasmic reticulum IFN stimulator, activates innate immune signaling through dimerization
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 564
  start-page: 439
  year: 2018
  end-page: 443
  ident: bib64
  article-title: Design of amidobenzimidazole STING receptor agonists with systemic activity
  publication-title: Nature
– volume: 371
  start-page: 507
  year: 2014
  end-page: 518
  ident: bib46
  article-title: Activated STING in a vascular and pulmonary syndrome
  publication-title: N. Engl. J. Med.
– volume: 29
  start-page: 538
  year: 2008
  end-page: 550
  ident: bib13
  article-title: The adaptor protein MITA links virus-sensing receptors to IRF3 transcription factor activation
  publication-title: Immunity
– volume: 1
  year: 2018
  ident: bib73
  article-title: The ER morphology-regulating lunapark protein induces the formation of stacked bilayer discs
  publication-title: Life Sci. Alliance
– volume: 47
  start-page: 63
  year: 2018
  end-page: 83
  ident: bib79
  article-title: Assembly of COPI and COPII vesicular coat proteins on membranes
  publication-title: Annu. Rev. Biophys.
– volume: 12
  year: 2021
  ident: bib44
  article-title: STING operation at the ER/Golgi interface
  publication-title: Front. Immunol.
– volume: 217
  year: 2020
  ident: bib40
  article-title: Mutations in COPA lead to abnormal trafficking of STING to the Golgi and interferon signaling
  publication-title: J. Exp. Med.
– volume: 5
  start-page: 4338
  year: 2005
  end-page: 4346
  ident: bib61
  article-title: Advantages and limitations of clear-native PAGE
  publication-title: Proteomics
– volume: 19
  start-page: 722
  year: 2012
  end-page: 724
  ident: bib27
  article-title: Structure of STING bound to cyclic di-GMP reveals the mechanism of cyclic dinucleotide recognition by the immune system
  publication-title: Nat. Struct. Mol. Biol.
– volume: 461
  start-page: 788
  year: 2009
  end-page: 792
  ident: bib17
  article-title: STING regulates intracellular DNA-mediated, type I interferon-dependent innate immunity
  publication-title: Nature
– volume: 567
  start-page: 394
  year: 2019
  end-page: 398
  ident: bib35
  article-title: Structural basis of STING binding with and phosphorylation by TBK1
  publication-title: Nature
– volume: 7
  year: 2018
  ident: bib69
  article-title: Dengue viruses cleave STING in humans but not in nonhuman primates, their presumed natural reservoir
  publication-title: eLife
– volume: 124
  start-page: 5516
  year: 2014
  end-page: 5520
  ident: bib47
  article-title: Inherited STING-activating mutation underlies a familial inflammatory syndrome with lupus-like manifestations
  publication-title: J. Clin. Invest.
– volume: 2
  start-page: 2480
  year: 2007
  end-page: 2491
  ident: bib99
  article-title: Cryosectioning and immunolabeling
  publication-title: Nat. Protoc.
– volume: 154
  start-page: 748
  year: 2013
  end-page: 762
  ident: bib29
  article-title: Structure-function analysis of STING activation by c[G(2′,5′)pA(3′,5′)p] and targeting by antiviral DMXAA
  publication-title: Cell
– volume: 27
  start-page: 293
  year: 2018
  end-page: 315
  ident: bib98
  article-title: MolProbity: more and better reference data for improved all-atom structure validation
  publication-title: Protein Sci.
– volume: 12
  year: 2021
  ident: bib49
  article-title: Case report: novel SAVI-causing variants in STING1 expand the clinical disease spectrum and suggest a refined model of STING activation
  publication-title: Front. Immunol.
– volume: 140
  start-page: 543
  year: 2017
  end-page: 552.e5
  ident: bib63
  article-title: Disease-associated mutations identify a novel region in human STING necessary for the control of type I interferon signaling
  publication-title: J. Allergy Clin. Immunol.
– volume: 28
  start-page: 5014
  year: 2008
  end-page: 5026
  ident: bib14
  article-title: MPYS, a novel membrane tetraspanner, is associated with major histocompatibility complex class II and mediates transduction of apoptotic signals
  publication-title: Mol. Cell. Biol.
– volume: 20
  start-page: 152
  year: 2019
  end-page: 162
  ident: bib39
  article-title: The Ca(2+) sensor STIM1 regulates the type I interferon response by retaining the signaling adaptor STING at the endoplasmic reticulum
  publication-title: Nat. Immunol.
– volume: 6
  start-page: 375
  year: 2001
  end-page: 388
  ident: bib100
  article-title: Induction of IRF-3/-7 kinase and NF-kappaB in response to double-stranded RNA and virus infection: common and unique pathways
  publication-title: Genes Cells
– volume: 567
  start-page: 262
  year: 2019
  end-page: 266
  ident: bib78
  article-title: Autophagy induction via STING trafficking is a primordial function of the cGAS pathway
  publication-title: Nature
– volume: 339
  start-page: 826
  year: 2013
  end-page: 830
  ident: bib4
  article-title: Cyclic GMP-AMP is an endogenous second messenger in innate immune signaling by cytosolic DNA
  publication-title: Science
– volume: 13
  year: 2015
  ident: bib60
  article-title: STING-associated vasculopathy with onset in infancy: new clinical findings and mutation in three Turkish children
  publication-title: Pediatr. Rheumatol.
– volume: 11
  start-page: 63
  year: 2014
  end-page: 65
  ident: bib97
  article-title: Quantifying the local resolution of cryo-EM density maps
  publication-title: Nat. Methods
– volume: 363
  year: 2019
  ident: bib6
  article-title: cGAS in action: expanding roles in immunity and inflammation
  publication-title: Science
– volume: 59
  start-page: 905
  year: 2020
  end-page: 907
  ident: bib51
  article-title: A patient with stimulator of interferon genes-associated vasculopathy with onset in infancy without skin vasculopathy
  publication-title: Rheumatol. Oxf. Engl.
– volume: 567
  start-page: 389
  year: 2019
  end-page: 393
  ident: bib23
  article-title: Cryo-EM structures of STING reveal its mechanism of activation by cyclic GMP-AMP
  publication-title: Nature
– year: 2020
  ident: bib45
  article-title: Activation of STING due to COPI-deficiency
  publication-title: Preprint at bioRxiv
– volume: 171
  start-page: 1110
  year: 2017
  end-page: 1124
  ident: bib67
  article-title: The DNA inflammasome in human myeloid cells is initiated by a STING-cell death program upstream of NLRP3
  publication-title: Cell
– volume: 5
  year: 2015
  ident: bib31
  article-title: Rat and human STINGs profile similarly towards anticancer/antiviral compounds
  publication-title: Sci. Rep.
– volume: 217
  year: 2020
  ident: bib41
  article-title: A defect in COPI-mediated transport of STING causes immune dysregulation in COPA syndrome
  publication-title: J. Exp. Med.
– volume: 42
  start-page: 1156
  year: 2022
  end-page: 1159
  ident: bib59
  article-title: Complex allele with additive gain-of-function STING1 variants in a patient with cavitating lung lesions and aspergillosis
  publication-title: J. Clin. Immunol.
– volume: 10
  year: 2019
  ident: bib54
  article-title: Novel TMEM173 mutation and the role of disease modifying alleles
  publication-title: Front. Immunol.
– volume: 106
  start-page: 20842
  year: 2009
  end-page: 20846
  ident: bib16
  article-title: Atg9a controls dsDNA-driven dynamic translocation of STING and the innate immune response
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 112
  start-page: 418
  year: 2015
  end-page: 423
  ident: bib74
  article-title: Lunapark stabilizes nascent three-way junctions in the endoplasmic reticulum
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 75
  start-page: 369
  year: 2017
  end-page: 385
  ident: bib83
  article-title: High cholesterol/low cholesterol: effects in biological membranes: a review
  publication-title: Cell Biochem. Biophys.
– volume: 559
  start-page: 269
  year: 2018
  end-page: 273
  ident: bib62
  article-title: Targeting STING with covalent small-molecule inhibitors
  publication-title: Nature
– volume: 35
  start-page: 112
  year: 2020
  end-page: 124
  ident: bib3
  article-title: DNA sensing in the innate immune response
  publication-title: Physiology (Bethesda)
– volume: 14
  start-page: 290
  year: 2017
  end-page: 296
  ident: bib92
  article-title: cryoSPARC: algorithms for rapid unsupervised cryo-EM structure determination
  publication-title: Nat. Methods
– volume: 9
  year: 2018
  ident: bib56
  article-title: A mutation outside the dimerization domain causing atypical STING-associated vasculopathy with onset in infancy
  publication-title: Front. Immunol.
– volume: 36
  start-page: 1073
  year: 2012
  end-page: 1086
  ident: bib26
  article-title: Structural analysis of the STING adaptor protein reveals a hydrophobic dimer interface and mode of cyclic di-GMP binding
  publication-title: Immunity
– volume: 115
  start-page: E6310
  year: 2018
  end-page: E6318
  ident: bib70
  article-title: Species-specific disruption of STING-dependent antiviral cellular defenses by the Zika virus NS2B3 protease
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 19
  start-page: 728
  year: 2012
  end-page: 730
  ident: bib25
  article-title: The structural basis for the sensing and binding of cyclic di-GMP by STING
  publication-title: Nat. Struct. Mol. Biol.
– volume: 7
  year: 2016
  ident: bib86
  article-title: Influenza A virus targets a cGAS-independent STING pathway that controls enveloped RNA viruses
  publication-title: Nat. Commun.
– volume: 3
  start-page: 1355
  year: 2013
  end-page: 1361
  ident: bib9
  article-title: The innate immune DNA sensor cGAS produces a noncanonical cyclic dinucleotide that activates human STING
  publication-title: Cell Rep.
– volume: 13
  year: 2022
  ident: bib22
  article-title: Activation of STING based on its structural features
  publication-title: Front. Immunol.
– volume: 146
  start-page: 1204
  year: 2020
  end-page: 1208.e6
  ident: bib55
  article-title: A novel STING1 variant causes a recessive form of STING-associated vasculopathy with onset in infancy (SAVI)
  publication-title: J. Allergy Clin. Immunol.
– volume: 339
  start-page: 786
  year: 2013
  end-page: 791
  ident: bib5
  article-title: Cyclic GMP-AMP synthase is a cytosolic DNA sensor that activates the type I interferon pathway
  publication-title: Science
– volume: 9
  start-page: 671
  year: 2012
  end-page: 675
  ident: bib88
  article-title: NIH Image to ImageJ: 25 years of image analysis
  publication-title: Nat. Methods
– volume: 15
  start-page: 429
  year: 2015
  end-page: 440
  ident: bib21
  article-title: Aicardi-Goutieres syndrome and the type I interferonopathies
  publication-title: Nat. Rev. Immunol.
– volume: 8
  start-page: 427
  year: 2017
  ident: bib66
  article-title: Signalling strength determines proapoptotic functions of STING
  publication-title: Nat. Commun.
– volume: 217
  year: 2020
  ident: bib43
  article-title: COPA silences STING
  publication-title: J. Exp. Med.
– volume: 29
  start-page: 185
  year: 2011
  end-page: 214
  ident: bib1
  article-title: Nucleic acid recognition by the innate immune system
  publication-title: Annu. Rev. Immunol.
– volume: 92
  start-page: 1092
  year: 2014
  end-page: 1112
  ident: bib93
  article-title: Structural insights into the T6SS effector protein Tse3 and the Tse3-Tsi3 complex from Pseudomonas aeruginosa reveal a calcium-dependent membrane-binding mechanism
  publication-title: Mol. Microbiol.
– volume: 19
  start-page: 725
  year: 2012
  end-page: 727
  ident: bib24
  article-title: Crystal structures of STING protein reveal basis for recognition of cyclic di-GMP
  publication-title: Nat. Struct. Mol. Biol.
– volume: 12
  year: 2021
  ident: bib42
  article-title: Homeostatic regulation of STING by retrograde membrane traffic to the ER
  publication-title: Nat. Commun.
– volume: 66
  start-page: 486
  year: 2010
  end-page: 501
  ident: bib89
  article-title: Features and development of coot
  publication-title: Acta Crystallogr. D Biol. Crystallogr.
– volume: 596
  start-page: 570
  year: 2021
  end-page: 575
  ident: bib82
  article-title: Tonic prime-boost of STING signalling mediates Niemann-Pick disease type C
  publication-title: Nature
– volume: 25
  start-page: 1605
  year: 2004
  end-page: 1612
  ident: bib90
  article-title: UCSF Chimera--a visualization system for exploratory research and analysis
  publication-title: J. Comput. Chem.
– volume: 8
  year: 2017
  ident: bib84
  article-title: Membrane curvature induced by proximity of anionic phospholipids can initiate endocytosis
  publication-title: Nat. Commun.
– volume: 32
  start-page: 461
  year: 2014
  end-page: 488
  ident: bib2
  article-title: Innate immune sensing and signaling of cytosolic nucleic acids
  publication-title: Annu. Rev. Immunol.
– volume: 25
  start-page: 3086
  year: 2018
  end-page: 3098.e3
  ident: bib76
  article-title: TMED2 potentiates cellular IFN responses to DNA viruses by reinforcing MITA dimerization and facilitating its trafficking
  publication-title: Cell Rep.
– volume: 369
  year: 2020
  ident: bib80
  article-title: An orally available non-nucleotide STING agonist with antitumor activity
  publication-title: Science
– volume: 192
  start-page: 216
  year: 2015
  end-page: 221
  ident: bib95
  article-title: CTFFIND4: fast and accurate defocus estimation from electron micrographs
  publication-title: J. Struct. Biol.
– volume: 21
  start-page: 868
  year: 2020
  end-page: 879
  ident: bib72
  article-title: STEEP mediates STING ER exit and activation of signaling
  publication-title: Nat. Immunol.
– volume: 597
  start-page: 114
  year: 2021
  end-page: 118
  ident: bib11
  article-title: Two cGAS-like receptors induce antiviral immunity in Drosophila
  publication-title: Nature
– volume: 23
  start-page: 1112
  year: 2018
  end-page: 1123
  ident: bib57
  article-title: Pro-inflammation associated with a gain-of-function mutation (R284S) in the innate immune sensor STING
  publication-title: Cell Rep.
– volume: 151
  start-page: 872
  year: 2015
  end-page: 877
  ident: bib53
  article-title: Stimulator of interferon genes-associated vasculopathy with onset in infancy: A mimic of childhood granulomatosis with polyangiitis
  publication-title: JAMA Dermatol.
– volume: 13
  start-page: 737
  year: 2012
  end-page: 743
  ident: bib87
  article-title: Virus-cell fusion as a trigger of innate immunity dependent on the adaptor STING
  publication-title: Nat. Immunol.
– volume: 569
  start-page: 718
  year: 2019
  end-page: 722
  ident: bib36
  article-title: A conserved PLPLRT/SD motif of STING mediates the recruitment and activation of TBK1
  publication-title: Nature
– volume: 608
  start-page: 803
  year: 2022
  end-page: 807
  ident: bib68
  article-title: Cryo-EM structure of an active bacterial TIR–STING filament complex
  publication-title: Nature
– volume: 203
  start-page: 1560
  year: 2019
  end-page: 1570
  ident: bib77
  article-title: YIPF5 is essential for innate immunity to DNA virus and facilitates COPII-dependent STING trafficking
  publication-title: J. Immunol.
– volume: 604
  start-page: 557
  year: 2022
  end-page: 562
  ident: bib37
  article-title: Activation of STING by targeting a pocket in the transmembrane domain
  publication-title: Nature
– volume: 347
  year: 2015
  ident: bib20
  article-title: Phosphorylation of innate immune adaptor proteins MAVS, STING, and TRIF induces IRF3 activation
  publication-title: Science
– volume: 51
  start-page: 1
  year: 2019
  end-page: 10
  ident: bib85
  article-title: STING signaling and host defense against microbial infection
  publication-title: Exp. Mol. Med.
– volume: 291
  start-page: 1014
  year: 2016
  end-page: 1027
  ident: bib71
  article-title: Sar1 GTPase activity is regulated by membrane curvature-Sar1
  publication-title: J. Biol. Chem.
– volume: 153
  start-page: 1094
  year: 2013
  end-page: 1107
  ident: bib8
  article-title: Cyclic [G(2',5’)pA(3’,5’)p] is the metazoan second messenger produced by DNA-activated cyclic GMP-AMP synthase
  publication-title: Cell
– volume: 74
  start-page: 531
  year: 2018
  end-page: 544
  ident: bib91
  article-title: Real-space refinement in PHENIX for cryo-EM and crystallography
  publication-title: Acta Crystallogr. D Struct. Biol.
– volume: 5
  year: 2012
  ident: bib19
  article-title: STING specifies IRF3 phosphorylation by TBK1 in the cytosolic DNA signaling pathway
  publication-title: Sci. Signal.
– volume: 14
  start-page: 331
  year: 2017
  end-page: 332
  ident: bib94
  article-title: MotionCor2: anisotropic correction of beam-induced motion for improved cryo-electron microscopy
  publication-title: Nat. Methods
– volume: 139
  start-page: 1396
  year: 2017
  end-page: 1399.e12
  ident: bib52
  article-title: Tofacitinib relieves symptoms of stimulator of interferon genes (STING)-associated vasculopathy with onset in infancy caused by 2 de novo variants in TMEM173
  publication-title: J. Allergy Clin. Immunol.
– volume: 40
  start-page: 114
  year: 2020
  end-page: 122
  ident: bib50
  article-title: STING-associated vasculopathy with onset in infancy in three children with new clinical aspect and unsatisfactory therapeutic responses to tofacitinib
  publication-title: J. Clin. Immunol.
– volume: 76
  start-page: 468
  year: 2017
  end-page: 472
  ident: bib58
  article-title: Familial chilblain lupus due to a gain-of-function mutation in STING
  publication-title: Ann. Rheum. Dis.
– volume: 25
  start-page: 3086
  year: 2018
  ident: 10.1016/j.molcel.2023.03.029_bib76
  article-title: TMED2 potentiates cellular IFN responses to DNA viruses by reinforcing MITA dimerization and facilitating its trafficking
  publication-title: Cell Rep.
  doi: 10.1016/j.celrep.2018.11.048
– volume: 596
  start-page: 570
  year: 2021
  ident: 10.1016/j.molcel.2023.03.029_bib82
  article-title: Tonic prime-boost of STING signalling mediates Niemann-Pick disease type C
  publication-title: Nature
  doi: 10.1038/s41586-021-03762-2
– volume: 12
  year: 2021
  ident: 10.1016/j.molcel.2023.03.029_bib42
  article-title: Homeostatic regulation of STING by retrograde membrane traffic to the ER
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-020-20234-9
– volume: 75
  start-page: 369
  year: 2017
  ident: 10.1016/j.molcel.2023.03.029_bib83
  article-title: High cholesterol/low cholesterol: effects in biological membranes: a review
  publication-title: Cell Biochem. Biophys.
  doi: 10.1007/s12013-017-0792-7
– volume: 567
  start-page: 262
  year: 2019
  ident: 10.1016/j.molcel.2023.03.029_bib78
  article-title: Autophagy induction via STING trafficking is a primordial function of the cGAS pathway
  publication-title: Nature
  doi: 10.1038/s41586-019-1006-9
– volume: 1
  year: 2018
  ident: 10.1016/j.molcel.2023.03.029_bib73
  article-title: The ER morphology-regulating lunapark protein induces the formation of stacked bilayer discs
  publication-title: Life Sci. Alliance
  doi: 10.26508/lsa.201700014
– volume: 51
  start-page: 226
  year: 2013
  ident: 10.1016/j.molcel.2023.03.029_bib32
  article-title: Cyclic GMP-AMP containing mixed phosphodiester linkages is an endogenous high-affinity ligand for STING
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2013.05.022
– volume: 567
  start-page: 389
  year: 2019
  ident: 10.1016/j.molcel.2023.03.029_bib23
  article-title: Cryo-EM structures of STING reveal its mechanism of activation by cyclic GMP-AMP
  publication-title: Nature
  doi: 10.1038/s41586-019-0998-5
– volume: 47
  start-page: 63
  year: 2018
  ident: 10.1016/j.molcel.2023.03.029_bib79
  article-title: Assembly of COPI and COPII vesicular coat proteins on membranes
  publication-title: Annu. Rev. Biophys.
  doi: 10.1146/annurev-biophys-070317-033259
– volume: 76
  start-page: 468
  year: 2017
  ident: 10.1016/j.molcel.2023.03.029_bib58
  article-title: Familial chilblain lupus due to a gain-of-function mutation in STING
  publication-title: Ann. Rheum. Dis.
  doi: 10.1136/annrheumdis-2016-209841
– year: 2020
  ident: 10.1016/j.molcel.2023.03.029_bib45
  article-title: Activation of STING due to COPI-deficiency
  publication-title: Preprint at bioRxiv
– volume: 5
  start-page: 4338
  year: 2005
  ident: 10.1016/j.molcel.2023.03.029_bib61
  article-title: Advantages and limitations of clear-native PAGE
  publication-title: Proteomics
  doi: 10.1002/pmic.200500081
– volume: 13
  start-page: 737
  year: 2012
  ident: 10.1016/j.molcel.2023.03.029_bib87
  article-title: Virus-cell fusion as a trigger of innate immunity dependent on the adaptor STING
  publication-title: Nat. Immunol.
  doi: 10.1038/ni.2350
– volume: 347
  year: 2015
  ident: 10.1016/j.molcel.2023.03.029_bib20
  article-title: Phosphorylation of innate immune adaptor proteins MAVS, STING, and TRIF induces IRF3 activation
  publication-title: Science
  doi: 10.1126/science.aaa2630
– volume: 11
  start-page: 63
  year: 2014
  ident: 10.1016/j.molcel.2023.03.029_bib97
  article-title: Quantifying the local resolution of cryo-EM density maps
  publication-title: Nat. Methods
  doi: 10.1038/nmeth.2727
– volume: 115
  start-page: E6310
  year: 2018
  ident: 10.1016/j.molcel.2023.03.029_bib70
  article-title: Species-specific disruption of STING-dependent antiviral cellular defenses by the Zika virus NS2B3 protease
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.1803406115
– volume: 7
  year: 2016
  ident: 10.1016/j.molcel.2023.03.029_bib86
  article-title: Influenza A virus targets a cGAS-independent STING pathway that controls enveloped RNA viruses
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms10680
– volume: 339
  start-page: 826
  year: 2013
  ident: 10.1016/j.molcel.2023.03.029_bib4
  article-title: Cyclic GMP-AMP is an endogenous second messenger in innate immune signaling by cytosolic DNA
  publication-title: Science
  doi: 10.1126/science.1229963
– volume: 14
  start-page: 290
  year: 2017
  ident: 10.1016/j.molcel.2023.03.029_bib92
  article-title: cryoSPARC: algorithms for rapid unsupervised cryo-EM structure determination
  publication-title: Nat. Methods
  doi: 10.1038/nmeth.4169
– volume: 6
  start-page: 375
  year: 2001
  ident: 10.1016/j.molcel.2023.03.029_bib100
  article-title: Induction of IRF-3/-7 kinase and NF-kappaB in response to double-stranded RNA and virus infection: common and unique pathways
  publication-title: Genes Cells
  doi: 10.1046/j.1365-2443.2001.00426.x
– volume: 10
  year: 2019
  ident: 10.1016/j.molcel.2023.03.029_bib54
  article-title: Novel TMEM173 mutation and the role of disease modifying alleles
  publication-title: Front. Immunol.
  doi: 10.3389/fimmu.2019.02770
– volume: 29
  start-page: 538
  year: 2008
  ident: 10.1016/j.molcel.2023.03.029_bib13
  article-title: The adaptor protein MITA links virus-sensing receptors to IRF3 transcription factor activation
  publication-title: Immunity
  doi: 10.1016/j.immuni.2008.09.003
– volume: 178
  start-page: 290
  year: 2019
  ident: 10.1016/j.molcel.2023.03.029_bib34
  article-title: STING polymer structure reveals mechanisms for activation, hyperactivation, and inhibition
  publication-title: Cell
  doi: 10.1016/j.cell.2019.05.036
– volume: 27
  start-page: 293
  year: 2018
  ident: 10.1016/j.molcel.2023.03.029_bib98
  article-title: MolProbity: more and better reference data for improved all-atom structure validation
  publication-title: Protein Sci.
  doi: 10.1002/pro.3330
– volume: 569
  start-page: 718
  year: 2019
  ident: 10.1016/j.molcel.2023.03.029_bib36
  article-title: A conserved PLPLRT/SD motif of STING mediates the recruitment and activation of TBK1
  publication-title: Nature
  doi: 10.1038/s41586-019-1228-x
– volume: 12
  year: 2021
  ident: 10.1016/j.molcel.2023.03.029_bib44
  article-title: STING operation at the ER/Golgi interface
  publication-title: Front. Immunol.
  doi: 10.3389/fimmu.2021.646304
– volume: 597
  start-page: 114
  year: 2021
  ident: 10.1016/j.molcel.2023.03.029_bib11
  article-title: Two cGAS-like receptors induce antiviral immunity in Drosophila
  publication-title: Nature
  doi: 10.1038/s41586-021-03800-z
– volume: 371
  start-page: 507
  year: 2014
  ident: 10.1016/j.molcel.2023.03.029_bib46
  article-title: Activated STING in a vascular and pulmonary syndrome
  publication-title: N. Engl. J. Med.
  doi: 10.1056/NEJMoa1312625
– volume: 559
  start-page: 269
  year: 2018
  ident: 10.1016/j.molcel.2023.03.029_bib62
  article-title: Targeting STING with covalent small-molecule inhibitors
  publication-title: Nature
  doi: 10.1038/s41586-018-0287-8
– volume: 140
  start-page: 543
  year: 2017
  ident: 10.1016/j.molcel.2023.03.029_bib63
  article-title: Disease-associated mutations identify a novel region in human STING necessary for the control of type I interferon signaling
  publication-title: J. Allergy Clin. Immunol.
  doi: 10.1016/j.jaci.2016.10.031
– volume: 291
  start-page: 1014
  year: 2016
  ident: 10.1016/j.molcel.2023.03.029_bib71
  article-title: Sar1 GTPase activity is regulated by membrane curvature-Sar1
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M115.672287
– volume: 217
  year: 2020
  ident: 10.1016/j.molcel.2023.03.029_bib43
  article-title: COPA silences STING
  publication-title: J. Exp. Med.
  doi: 10.1084/jem.20201517
– volume: 146
  start-page: 1204
  year: 2020
  ident: 10.1016/j.molcel.2023.03.029_bib55
  article-title: A novel STING1 variant causes a recessive form of STING-associated vasculopathy with onset in infancy (SAVI)
  publication-title: J. Allergy Clin. Immunol.
  doi: 10.1016/j.jaci.2020.06.032
– volume: 19
  start-page: 728
  year: 2012
  ident: 10.1016/j.molcel.2023.03.029_bib25
  article-title: The structural basis for the sensing and binding of cyclic di-GMP by STING
  publication-title: Nat. Struct. Mol. Biol.
  doi: 10.1038/nsmb.2333
– volume: 66
  start-page: 486
  year: 2010
  ident: 10.1016/j.molcel.2023.03.029_bib89
  article-title: Features and development of coot
  publication-title: Acta Crystallogr. D Biol. Crystallogr.
  doi: 10.1107/S0907444910007493
– volume: 5
  year: 2015
  ident: 10.1016/j.molcel.2023.03.029_bib31
  article-title: Rat and human STINGs profile similarly towards anticancer/antiviral compounds
  publication-title: Sci. Rep.
  doi: 10.1038/srep18035
– volume: 36
  start-page: 1073
  year: 2012
  ident: 10.1016/j.molcel.2023.03.029_bib26
  article-title: Structural analysis of the STING adaptor protein reveals a hydrophobic dimer interface and mode of cyclic di-GMP binding
  publication-title: Immunity
  doi: 10.1016/j.immuni.2012.03.019
– volume: 7
  year: 2018
  ident: 10.1016/j.molcel.2023.03.029_bib69
  article-title: Dengue viruses cleave STING in humans but not in nonhuman primates, their presumed natural reservoir
  publication-title: eLife
  doi: 10.7554/eLife.31919
– volume: 564
  start-page: 439
  year: 2018
  ident: 10.1016/j.molcel.2023.03.029_bib64
  article-title: Design of amidobenzimidazole STING receptor agonists with systemic activity
  publication-title: Nature
  doi: 10.1038/s41586-018-0705-y
– volume: 106
  start-page: 20842
  year: 2009
  ident: 10.1016/j.molcel.2023.03.029_bib16
  article-title: Atg9a controls dsDNA-driven dynamic translocation of STING and the innate immune response
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.0911267106
– volume: 461
  start-page: 788
  year: 2009
  ident: 10.1016/j.molcel.2023.03.029_bib17
  article-title: STING regulates intracellular DNA-mediated, type I interferon-dependent innate immunity
  publication-title: Nature
  doi: 10.1038/nature08476
– volume: 23
  start-page: 1112
  year: 2018
  ident: 10.1016/j.molcel.2023.03.029_bib57
  article-title: Pro-inflammation associated with a gain-of-function mutation (R284S) in the innate immune sensor STING
  publication-title: Cell Rep.
  doi: 10.1016/j.celrep.2018.03.115
– volume: 5
  year: 2012
  ident: 10.1016/j.molcel.2023.03.029_bib19
  article-title: STING specifies IRF3 phosphorylation by TBK1 in the cytosolic DNA signaling pathway
  publication-title: Sci. Signal.
  doi: 10.1126/scisignal.2002521
– volume: 74
  start-page: 531
  year: 2018
  ident: 10.1016/j.molcel.2023.03.029_bib91
  article-title: Real-space refinement in PHENIX for cryo-EM and crystallography
  publication-title: Acta Crystallogr. D Struct. Biol.
  doi: 10.1107/S2059798318006551
– volume: 106
  start-page: 8653
  year: 2009
  ident: 10.1016/j.molcel.2023.03.029_bib15
  article-title: Eris, an endoplasmic reticulum IFN stimulator, activates innate immune signaling through dimerization
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.0900850106
– volume: 3
  start-page: 1355
  year: 2013
  ident: 10.1016/j.molcel.2023.03.029_bib9
  article-title: The innate immune DNA sensor cGAS produces a noncanonical cyclic dinucleotide that activates human STING
  publication-title: Cell Rep.
  doi: 10.1016/j.celrep.2013.05.009
– volume: 15
  start-page: 429
  year: 2015
  ident: 10.1016/j.molcel.2023.03.029_bib21
  article-title: Aicardi-Goutieres syndrome and the type I interferonopathies
  publication-title: Nat. Rev. Immunol.
  doi: 10.1038/nri3850
– volume: 32
  start-page: 461
  year: 2014
  ident: 10.1016/j.molcel.2023.03.029_bib2
  article-title: Innate immune sensing and signaling of cytosolic nucleic acids
  publication-title: Annu. Rev. Immunol.
  doi: 10.1146/annurev-immunol-032713-120156
– volume: 19
  start-page: 725
  year: 2012
  ident: 10.1016/j.molcel.2023.03.029_bib24
  article-title: Crystal structures of STING protein reveal basis for recognition of cyclic di-GMP
  publication-title: Nat. Struct. Mol. Biol.
  doi: 10.1038/nsmb.2332
– volume: 567
  start-page: 394
  year: 2019
  ident: 10.1016/j.molcel.2023.03.029_bib35
  article-title: Structural basis of STING binding with and phosphorylation by TBK1
  publication-title: Nature
  doi: 10.1038/s41586-019-1000-2
– volume: 12
  year: 2021
  ident: 10.1016/j.molcel.2023.03.029_bib49
  article-title: Case report: novel SAVI-causing variants in STING1 expand the clinical disease spectrum and suggest a refined model of STING activation
  publication-title: Front. Immunol.
– volume: 59
  start-page: 891
  year: 2015
  ident: 10.1016/j.molcel.2023.03.029_bib30
  article-title: Ancient origin of cGAS-STING reveals mechanism of universal 2′,3′ cGAMP signaling
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2015.07.022
– volume: 498
  start-page: 380
  year: 2013
  ident: 10.1016/j.molcel.2023.03.029_bib7
  article-title: cGAS produces a 2'-5′-linked cyclic dinucleotide second messenger that activates STING
  publication-title: Nature
  doi: 10.1038/nature12306
– volume: 2
  start-page: 2480
  year: 2007
  ident: 10.1016/j.molcel.2023.03.029_bib99
  article-title: Cryosectioning and immunolabeling
  publication-title: Nat. Protoc.
  doi: 10.1038/nprot.2007.365
– volume: 339
  start-page: 786
  year: 2013
  ident: 10.1016/j.molcel.2023.03.029_bib5
  article-title: Cyclic GMP-AMP synthase is a cytosolic DNA sensor that activates the type I interferon pathway
  publication-title: Science
  doi: 10.1126/science.1232458
– volume: 217
  year: 2020
  ident: 10.1016/j.molcel.2023.03.029_bib40
  article-title: Mutations in COPA lead to abnormal trafficking of STING to the Golgi and interferon signaling
  publication-title: J. Exp. Med.
  doi: 10.1084/jem.20200600
– volume: 288
  start-page: 5504
  year: 2021
  ident: 10.1016/j.molcel.2023.03.029_bib38
  article-title: Molecular and spatial mechanisms governing STING signalling
  publication-title: FEBS Journal
  doi: 10.1111/febs.15640
– volume: 216
  start-page: 867
  year: 2019
  ident: 10.1016/j.molcel.2023.03.029_bib65
  article-title: STING-mediated disruption of calcium homeostasis chronically activates ER stress and primes T cell death
  publication-title: J. Exp. Med.
  doi: 10.1084/jem.20182192
– volume: 42
  start-page: 1156
  year: 2022
  ident: 10.1016/j.molcel.2023.03.029_bib59
  article-title: Complex allele with additive gain-of-function STING1 variants in a patient with cavitating lung lesions and aspergillosis
  publication-title: J. Clin. Immunol.
  doi: 10.1007/s10875-022-01284-8
– volume: 51
  start-page: 1
  year: 2019
  ident: 10.1016/j.molcel.2023.03.029_bib85
  article-title: STING signaling and host defense against microbial infection
  publication-title: Exp. Mol. Med.
  doi: 10.1038/s12276-019-0333-0
– volume: 14
  start-page: 331
  year: 2017
  ident: 10.1016/j.molcel.2023.03.029_bib94
  article-title: MotionCor2: anisotropic correction of beam-induced motion for improved cryo-electron microscopy
  publication-title: Nat. Methods
  doi: 10.1038/nmeth.4193
– volume: 139
  start-page: 1396
  year: 2017
  ident: 10.1016/j.molcel.2023.03.029_bib52
  article-title: Tofacitinib relieves symptoms of stimulator of interferon genes (STING)-associated vasculopathy with onset in infancy caused by 2 de novo variants in TMEM173
  publication-title: J. Allergy Clin. Immunol.
  doi: 10.1016/j.jaci.2016.10.030
– volume: 597
  start-page: 109
  year: 2021
  ident: 10.1016/j.molcel.2023.03.029_bib10
  article-title: cGAS-like receptors sense RNA and control 3’2′-cGAMP signalling in Drosophila
  publication-title: Nature
  doi: 10.1038/s41586-021-03743-5
– volume: 171
  start-page: 1110
  year: 2017
  ident: 10.1016/j.molcel.2023.03.029_bib67
  article-title: The DNA inflammasome in human myeloid cells is initiated by a STING-cell death program upstream of NLRP3
  publication-title: Cell
  doi: 10.1016/j.cell.2017.09.039
– volume: 92
  start-page: 1092
  year: 2014
  ident: 10.1016/j.molcel.2023.03.029_bib93
  article-title: Structural insights into the T6SS effector protein Tse3 and the Tse3-Tsi3 complex from Pseudomonas aeruginosa reveal a calcium-dependent membrane-binding mechanism
  publication-title: Mol. Microbiol.
  doi: 10.1111/mmi.12616
– volume: 369
  year: 2020
  ident: 10.1016/j.molcel.2023.03.029_bib80
  article-title: An orally available non-nucleotide STING agonist with antitumor activity
  publication-title: Science
  doi: 10.1126/science.aba6098
– volume: 151
  start-page: 872
  year: 2015
  ident: 10.1016/j.molcel.2023.03.029_bib53
  article-title: Stimulator of interferon genes-associated vasculopathy with onset in infancy: A mimic of childhood granulomatosis with polyangiitis
  publication-title: JAMA Dermatol.
  doi: 10.1001/jamadermatol.2015.0251
– volume: 604
  start-page: 557
  year: 2022
  ident: 10.1016/j.molcel.2023.03.029_bib37
  article-title: Activation of STING by targeting a pocket in the transmembrane domain
  publication-title: Nature
  doi: 10.1038/s41586-022-04559-7
– volume: 8
  start-page: 427
  year: 2017
  ident: 10.1016/j.molcel.2023.03.029_bib66
  article-title: Signalling strength determines proapoptotic functions of STING
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-017-00573-w
– volume: 7
  year: 2018
  ident: 10.1016/j.molcel.2023.03.029_bib96
  article-title: New tools for automated high-resolution cryo-EM structure determination in RELION-3
  publication-title: eLife
  doi: 10.7554/eLife.42166
– volume: 19
  start-page: 722
  year: 2012
  ident: 10.1016/j.molcel.2023.03.029_bib27
  article-title: Structure of STING bound to cyclic di-GMP reveals the mechanism of cyclic dinucleotide recognition by the immune system
  publication-title: Nat. Struct. Mol. Biol.
  doi: 10.1038/nsmb.2331
– volume: 154
  start-page: 748
  year: 2013
  ident: 10.1016/j.molcel.2023.03.029_bib29
  article-title: Structure-function analysis of STING activation by c[G(2′,5′)pA(3′,5′)p] and targeting by antiviral DMXAA
  publication-title: Cell
  doi: 10.1016/j.cell.2013.07.023
– volume: 35
  start-page: 112
  year: 2020
  ident: 10.1016/j.molcel.2023.03.029_bib3
  article-title: DNA sensing in the innate immune response
  publication-title: Physiology (Bethesda)
– volume: 9
  start-page: 671
  year: 2012
  ident: 10.1016/j.molcel.2023.03.029_bib88
  article-title: NIH Image to ImageJ: 25 years of image analysis
  publication-title: Nat. Methods
  doi: 10.1038/nmeth.2089
– volume: 9
  year: 2018
  ident: 10.1016/j.molcel.2023.03.029_bib56
  article-title: A mutation outside the dimerization domain causing atypical STING-associated vasculopathy with onset in infancy
  publication-title: Front. Immunol.
  doi: 10.3389/fimmu.2018.01535
– volume: 203
  start-page: 1560
  year: 2019
  ident: 10.1016/j.molcel.2023.03.029_bib77
  article-title: YIPF5 is essential for innate immunity to DNA virus and facilitates COPII-dependent STING trafficking
  publication-title: J. Immunol.
  doi: 10.4049/jimmunol.1900387
– volume: 8
  year: 2020
  ident: 10.1016/j.molcel.2023.03.029_bib48
  article-title: Stimulator of interferon genes-associated vasculopathy with onset in infancy: A systematic review of case reports
  publication-title: Front. Pediatr.
  doi: 10.3389/fped.2020.577918
– volume: 25
  start-page: 1605
  year: 2004
  ident: 10.1016/j.molcel.2023.03.029_bib90
  article-title: UCSF Chimera--a visualization system for exploratory research and analysis
  publication-title: J. Comput. Chem.
  doi: 10.1002/jcc.20084
– volume: 40
  start-page: 114
  year: 2020
  ident: 10.1016/j.molcel.2023.03.029_bib50
  article-title: STING-associated vasculopathy with onset in infancy in three children with new clinical aspect and unsatisfactory therapeutic responses to tofacitinib
  publication-title: J. Clin. Immunol.
  doi: 10.1007/s10875-019-00690-9
– volume: 18
  start-page: 157
  year: 2015
  ident: 10.1016/j.molcel.2023.03.029_bib18
  article-title: STING activation by translocation from the ER is associated with infection and autoinflammatory disease
  publication-title: Cell Host Microbe
  doi: 10.1016/j.chom.2015.07.001
– volume: 363
  year: 2019
  ident: 10.1016/j.molcel.2023.03.029_bib6
  article-title: cGAS in action: expanding roles in immunity and inflammation
  publication-title: Science
  doi: 10.1126/science.aat8657
– volume: 59
  start-page: 905
  year: 2020
  ident: 10.1016/j.molcel.2023.03.029_bib51
  article-title: A patient with stimulator of interferon genes-associated vasculopathy with onset in infancy without skin vasculopathy
  publication-title: Rheumatol. Oxf. Engl.
  doi: 10.1093/rheumatology/kez444
– volume: 8
  year: 2017
  ident: 10.1016/j.molcel.2023.03.029_bib84
  article-title: Membrane curvature induced by proximity of anionic phospholipids can initiate endocytosis
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-017-01554-9
– volume: 192
  start-page: 216
  year: 2015
  ident: 10.1016/j.molcel.2023.03.029_bib95
  article-title: CTFFIND4: fast and accurate defocus estimation from electron micrographs
  publication-title: J. Struct. Biol.
  doi: 10.1016/j.jsb.2015.08.008
– volume: 13
  year: 2015
  ident: 10.1016/j.molcel.2023.03.029_bib60
  article-title: STING-associated vasculopathy with onset in infancy: new clinical findings and mutation in three Turkish children
  publication-title: Pediatr. Rheumatol.
  doi: 10.1186/1546-0096-13-S1-O85
– volume: 217
  year: 2020
  ident: 10.1016/j.molcel.2023.03.029_bib41
  article-title: A defect in COPI-mediated transport of STING causes immune dysregulation in COPA syndrome
  publication-title: J. Exp. Med.
  doi: 10.1084/jem.20201045
– volume: 29
  start-page: 185
  year: 2011
  ident: 10.1016/j.molcel.2023.03.029_bib1
  article-title: Nucleic acid recognition by the innate immune system
  publication-title: Annu. Rev. Immunol.
  doi: 10.1146/annurev-immunol-031210-101340
– volume: 124
  start-page: 5516
  year: 2014
  ident: 10.1016/j.molcel.2023.03.029_bib47
  article-title: Inherited STING-activating mutation underlies a familial inflammatory syndrome with lupus-like manifestations
  publication-title: J. Clin. Invest.
  doi: 10.1172/JCI79100
– volume: 13
  year: 2022
  ident: 10.1016/j.molcel.2023.03.029_bib22
  article-title: Activation of STING based on its structural features
  publication-title: Front. Immunol.
  doi: 10.3389/fimmu.2022.808607
– volume: 20
  start-page: 152
  year: 2019
  ident: 10.1016/j.molcel.2023.03.029_bib39
  article-title: The Ca(2+) sensor STIM1 regulates the type I interferon response by retaining the signaling adaptor STING at the endoplasmic reticulum
  publication-title: Nat. Immunol.
  doi: 10.1038/s41590-018-0287-8
– volume: 503
  start-page: 138
  year: 2018
  ident: 10.1016/j.molcel.2023.03.029_bib75
  article-title: The binding of TBK1 to STING requires exocytic membrane traffic from the ER
  publication-title: Biochem. Biophys. Res. Commun.
  doi: 10.1016/j.bbrc.2018.05.199
– volume: 112
  start-page: 418
  year: 2015
  ident: 10.1016/j.molcel.2023.03.029_bib74
  article-title: Lunapark stabilizes nascent three-way junctions in the endoplasmic reticulum
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.1423026112
– volume: 153
  start-page: 1094
  year: 2013
  ident: 10.1016/j.molcel.2023.03.029_bib8
  article-title: Cyclic [G(2',5’)pA(3’,5’)p] is the metazoan second messenger produced by DNA-activated cyclic GMP-AMP synthase
  publication-title: Cell
  doi: 10.1016/j.cell.2013.04.046
– volume: 46
  start-page: 735
  year: 2012
  ident: 10.1016/j.molcel.2023.03.029_bib28
  article-title: Cyclic di-GMP sensing via the innate immune signaling protein STING
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2012.05.029
– volume: 608
  start-page: 803
  year: 2022
  ident: 10.1016/j.molcel.2023.03.029_bib68
  article-title: Cryo-EM structure of an active bacterial TIR–STING filament complex
  publication-title: Nature
  doi: 10.1038/s41586-022-04999-1
– volume: 21
  start-page: 868
  year: 2020
  ident: 10.1016/j.molcel.2023.03.029_bib72
  article-title: STEEP mediates STING ER exit and activation of signaling
  publication-title: Nat. Immunol.
  doi: 10.1038/s41590-020-0730-5
– volume: 455
  start-page: 674
  year: 2008
  ident: 10.1016/j.molcel.2023.03.029_bib12
  article-title: STING is an endoplasmic reticulum adaptor that facilitates innate immune signalling
  publication-title: Nature
  doi: 10.1038/nature07317
– volume: 28
  start-page: 5014
  year: 2008
  ident: 10.1016/j.molcel.2023.03.029_bib14
  article-title: MPYS, a novel membrane tetraspanner, is associated with major histocompatibility complex class II and mediates transduction of apoptotic signals
  publication-title: Mol. Cell. Biol.
  doi: 10.1128/MCB.00640-08
– volume: 294
  start-page: 11420
  year: 2019
  ident: 10.1016/j.molcel.2023.03.029_bib33
  article-title: Crystal structures of porcine STING(CBD)-CDN complexes reveal the mechanism of ligand recognition and discrimination of STING proteins
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.RA119.007367
– volume: 163
  start-page: 1716
  year: 2015
  ident: 10.1016/j.molcel.2023.03.029_bib81
  article-title: Limiting cholesterol biosynthetic flux spontaneously engages Type I IFN signaling
  publication-title: Cell
  doi: 10.1016/j.cell.2015.11.045
– reference: 37146568 - Mol Cell. 2023 May 4;83(9):1372-1374
SSID ssj0014589
Score 2.5753345
Snippet 2′,3′-cGAMP, produced by the DNA sensor cGAS, activates stimulator of interferon genes (STING) and triggers immune response during infection. Tremendous effort...
2',3'-cGAMP, produced by the DNA sensor cGAS, activates stimulator of interferon genes (STING) and triggers immune response during infection. Tremendous effort...
SourceID proquest
pubmed
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1502
SubjectTerms activation
autoinhibition
cGAMP
cGAS
DNA
Immunity, Innate
Membrane Proteins - metabolism
Nucleotidyltransferases - genetics
Nucleotidyltransferases - metabolism
Protein Serine-Threonine Kinases - metabolism
Signal Transduction
STING
Title The mechanism of STING autoinhibition and activation
URI https://dx.doi.org/10.1016/j.molcel.2023.03.029
https://www.ncbi.nlm.nih.gov/pubmed/37086726
https://www.proquest.com/docview/2805025486
Volume 83
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dS8MwEA9jIvgifju_qOBr2Zak-XhUcX7BHpzi3kLTJFjZ2uG2B_97c2k7EBRB6EvLpT3u2sv17n53CF1kfptxFlL_1GQx5VTGmjEcO-rtJceGsaraYsjuXujDOBm30HWDhYGyytr2VzY9WOv6SreWZneW590R5E4xZxDWhLZ6ADQnVAQQ3_hqlUmgSRiDB8QxUDfwuVDjNS0nmYUEBCah1WlwNH_cnn5zP8M2NNhCm7X_GF1WLG6jli120Ho1UfJzF1Gv9mhqAc6bz6dR6aLR8_3wNkqXizIv3nIdKrSitDARIBqqeOweehncPF_fxfVghDijPbGIufMMp5Q5L0tj-lxkXEjvmkjNNXFSGkmo1JnWLuFap0yQFMvECEITbqXok33ULsrCHqIoE06k1msSohmpI1okFhMjnGHU38V0EGnkobK6azgMr5iopjzsXVVSVCBF1fMHlh0Ur1bNqq4Zf9DzRtTqm_aVN-x_rDxvNKP8hwHZjrSw5XKusOglAPUXrIMOKpWteCHc_8lxzI7-_dxjtAFnofSRnqD24mNpT717stBnaO3y8en18Sy8h1-qtOIL
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dT9swED8VpgleEIx9FBgLEq9Ri-3443GrYO3G-kKR-mbFsS2CaIKgfeC_x-cklZCYkJDylJyT011y_uU-AU6LsM14h6F_ZouUCaZSwzlJPQv2UhDLeZNtMeXja_Znns17MOpqYTCtsrX9jU2P1ro9M2ilObgvy8EVxk6J4OjWxLZ62QZ8CGhA4PyGyfzXOpTAsjgHD6lTJO_q52KS16K-KxxGIAiNvU4j0nx1f_of_oz70MUu7LQAMvnZ8LgHPVd9go_NSMmnfWBB78nCYT1v-bhIap9czSbT30m-WtZldVOamKKV5JVNsKShcch-huuL89lonLaTEdKCDeUyFT4wnDPugzCtPROyEFIFbKKMMNQrZRVlyhTG-EwYk3NJc6IyKynLhFPyjH6Bzaqu3DdICull7oIq0Z2Re2pk5gi10lvOwl1sH2gnD120bcNxesWd7vLDbnUjRY1S1MNwENWHdL3qvmmb8Qa96EStX6hfB8v-xsqTTjM6fBkY7sgrV68eNZHDDGv9Je_D10Zla16oCL9ygvCDdz_3B2yNZ_8u9eVk-vcQtvFKzINkR7C5fFi57wGrLM1xfBefAfGp44c
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+mechanism+of+STING+autoinhibition+and+activation&rft.jtitle=Molecular+cell&rft.au=Liu%2C+Sheng&rft.au=Yang%2C+Bo&rft.au=Hou%2C+Yingxiang&rft.au=Cui%2C+Kaige&rft.date=2023-05-04&rft.eissn=1097-4164&rft.volume=83&rft.issue=9&rft.spage=1502&rft_id=info:doi/10.1016%2Fj.molcel.2023.03.029&rft_id=info%3Apmid%2F37086726&rft.externalDocID=37086726
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1097-2765&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1097-2765&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1097-2765&client=summon