Structure Preserving Non-negative Feature Self-Representation for Unsupervised Feature Selection
Inspired by the importance of self-representation and structure-preserving ability of features, in this paper, we propose a novel unsupervised feature selection algorithm named structure-preserving non-negative feature self-representation (SPNFSR). In this algorithm, each feature in high-dimensional...
Saved in:
Published in | IEEE access Vol. 5; pp. 8792 - 8803 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Piscataway
IEEE
2017
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Be the first to leave a comment!