Structure Preserving Non-negative Feature Self-Representation for Unsupervised Feature Selection
Inspired by the importance of self-representation and structure-preserving ability of features, in this paper, we propose a novel unsupervised feature selection algorithm named structure-preserving non-negative feature self-representation (SPNFSR). In this algorithm, each feature in high-dimensional...
Saved in:
Published in | IEEE access Vol. 5; pp. 8792 - 8803 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Piscataway
IEEE
2017
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Inspired by the importance of self-representation and structure-preserving ability of features, in this paper, we propose a novel unsupervised feature selection algorithm named structure-preserving non-negative feature self-representation (SPNFSR). In this algorithm, each feature in high-dimensional data can be represented by the linear combination of other features. Then, to exploit the structure-preserving ability of features, we construct a low-rank representation graph, which takes the local and global structures into consideration to maintain the intrinsic structure of the data space. Finally, an l 2,1 -norm regularization and the non-negative constraint are imposed on the representation coefficient matrix with the goal of achieving feature selection in the batch mode. Moreover, we provide a simple yet efficient iterative update algorithm to solve SPNFSR, as well as the convergence analysis of the proposed algorithm. The performance of the proposed approach is illustrated by six publicly available databases. In comparison with the state-of-the-art approaches, the extensive experimental results show the advantages and effectiveness of our approach. |
---|---|
AbstractList | Inspired by the importance of self-representation and structure-preserving ability of features, in this paper, we propose a novel unsupervised feature selection algorithm named structure-preserving non-negative feature self-representation (SPNFSR). In this algorithm, each feature in high-dimensional data can be represented by the linear combination of other features. Then, to exploit the structure-preserving ability of features, we construct a low-rank representation graph, which takes the local and global structures into consideration to maintain the intrinsic structure of the data space. Finally, an l2,1-norm regularization and the non-negative constraint are imposed on the representation coefficient matrix with the goal of achieving feature selection in the batch mode. Moreover, we provide a simple yet efficient iterative update algorithm to solve SPNFSR, as well as the convergence analysis of the proposed algorithm. The performance of the proposed approach is illustrated by six publicly available databases. In comparison with the state-of-the-art approaches, the extensive experimental results show the advantages and effectiveness of our approach. Inspired by the importance of self-representation and structure-preserving ability of features, in this paper, we propose a novel unsupervised feature selection algorithm named structure-preserving non-negative feature self-representation (SPNFSR). In this algorithm, each feature in high-dimensional data can be represented by the linear combination of other features. Then, to exploit the structure-preserving ability of features, we construct a low-rank representation graph, which takes the local and global structures into consideration to maintain the intrinsic structure of the data space. Finally, an l 2,1 -norm regularization and the non-negative constraint are imposed on the representation coefficient matrix with the goal of achieving feature selection in the batch mode. Moreover, we provide a simple yet efficient iterative update algorithm to solve SPNFSR, as well as the convergence analysis of the proposed algorithm. The performance of the proposed approach is illustrated by six publicly available databases. In comparison with the state-of-the-art approaches, the extensive experimental results show the advantages and effectiveness of our approach. |
Author | Yugen Yi Guoliang Luo Wei Zhou Chengdong Wu |
Author_xml | – sequence: 1 givenname: Wei orcidid: 0000-0002-5931-3197 surname: Zhou fullname: Zhou, Wei – sequence: 2 givenname: Chengdong surname: Wu fullname: Wu, Chengdong – sequence: 3 givenname: Yugen orcidid: 0000-0001-9828-0319 surname: Yi fullname: Yi, Yugen – sequence: 4 givenname: Guoliang surname: Luo fullname: Luo, Guoliang |
BookMark | eNp9UU1LAzEUDKLg5y_wsuB5a77THKW0WigqVs8xTd6WLTWpya7gv3fXVREP5pIwb2bekDlG-yEGQOic4BEhWF9eTSbT5XJEMVEjKrVWnOyhI0qkLplgcv_X-xCd5bzB3Rl3kFBH6HnZpNY1bYLiPkGG9FaHdXEbQxlgbZv6DYoZ2M_5ErZV-QC7nhaabhZDUcVUPIXc7nphBv-bDK6nnKKDym4znH3dJ-hpNn2c3JSLu-v55GpROo7HTalAYi-F9OAZlcw68IoAcFxVgmI9ZopJ5jWrGMWKU848lb5arZyWwJRl7ATNB18f7cbsUv1i07uJtjafQExrY1NTuy0YzBwRXhPu-Io7R7XQQnAnZQdpAbzzuhi8dim-tpAbs4ltCl18Q7kQmkvF-416YLkUc05QGVcP39IkW28Nwabvxwz9mL4f89VPp2V_tN-J_1edD6oaAH4UqosthWIfybWeEQ |
CODEN | IAECCG |
CitedBy_id | crossref_primary_10_1007_s11042_019_08159_y crossref_primary_10_1109_ACCESS_2021_3058761 crossref_primary_10_1007_s10586_018_2550_z crossref_primary_10_1109_ACCESS_2018_2863752 crossref_primary_10_1016_j_eswa_2020_113745 crossref_primary_10_1016_j_image_2018_06_005 crossref_primary_10_1007_s10462_019_09682_y crossref_primary_10_3390_info15010057 crossref_primary_10_1016_j_patrec_2022_01_022 crossref_primary_10_1109_ACCESS_2019_2930355 crossref_primary_10_1007_s11063_020_10225_8 crossref_primary_10_1109_ACCESS_2019_2930470 crossref_primary_10_1109_ACCESS_2018_2878855 crossref_primary_10_1007_s11227_020_03480_y crossref_primary_10_1186_s13640_018_0287_5 crossref_primary_10_3390_a16010014 crossref_primary_10_1109_ACCESS_2020_3010862 crossref_primary_10_1109_ACCESS_2020_2980079 crossref_primary_10_1109_ACCESS_2019_2894366 crossref_primary_10_1109_TETCI_2023_3301401 crossref_primary_10_1109_ACCESS_2019_2911132 crossref_primary_10_1109_ACCESS_2019_2911530 crossref_primary_10_1109_ACCESS_2017_2724763 crossref_primary_10_1109_ACCESS_2020_2994371 crossref_primary_10_2174_2666255816666220823163913 crossref_primary_10_1109_ACCESS_2020_3024690 crossref_primary_10_1155_2018_1942582 crossref_primary_10_1109_ACCESS_2019_2924520 |
Cites_doi | 10.1155/2014/972125 10.1145/1835804.1835848 10.1109/TPAMI.2012.88 10.1016/j.patcog.2014.08.006 10.1109/TNNLS.2014.2314123 10.1109/TPAMI.2009.190 10.1109/AFGR.1998.670949 10.1016/j.patcog.2014.10.021 10.1016/j.patcog.2012.11.025 10.1109/TNN.2010.2047114 10.1016/j.neucom.2007.06.014 10.1016/j.neucom.2015.10.119 10.1109/TPAMI.2005.92 10.1145/1273496.1273641 10.1007/978-3-319-46654-5_65 10.1016/j.neucom.2016.03.017 10.1109/TCYB.2013.2272642 10.1016/j.patcog.2013.02.012 10.1109/TPAMI.2008.277 10.1109/TPAMI.2005.159 10.1109/TPAMI.2003.1251154 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2017 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2017 |
DBID | 97E ESBDL RIA RIE AAYXX CITATION 7SC 7SP 7SR 8BQ 8FD JG9 JQ2 L7M L~C L~D DOA |
DOI | 10.1109/ACCESS.2017.2699741 |
DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE Xplore Open Access Journals IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE/IET Electronic Library (IEL) CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts METADEX Technology Research Database Materials Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace METADEX Computer and Information Systems Abstracts Professional |
DatabaseTitleList | Materials Research Database |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 2169-3536 |
EndPage | 8803 |
ExternalDocumentID | oai_doaj_org_article_03c15d914c4b4cc2959554c6691495e4 10_1109_ACCESS_2017_2699741 7914657 |
Genre | orig-research |
GrantInformation_xml | – fundername: National Natural Science Foundation of China grantid: 61471110; 61602221; 61602222; 61403078; 61562044 funderid: 10.13039/501100001809 – fundername: Fundamental Research Funds for the Central Universities grantid: N140403005; N162610004; N160404003 – fundername: Doctoral Fund of Jiangxi Normal University grantid: 7525 – fundername: Foundation of Liaoning Educational Department grantid: L2014090 |
GroupedDBID | 0R~ 4.4 5VS 6IK 97E AAJGR ABAZT ABVLG ACGFS ADBBV AGSQL ALMA_UNASSIGNED_HOLDINGS BCNDV BEFXN BFFAM BGNUA BKEBE BPEOZ EBS EJD ESBDL GROUPED_DOAJ IPLJI JAVBF KQ8 M43 M~E O9- OCL OK1 RIA RIE RNS AAYXX CITATION RIG 7SC 7SP 7SR 8BQ 8FD JG9 JQ2 L7M L~C L~D |
ID | FETCH-LOGICAL-c408t-7e60d656ded3263aced71ee40ff5209837363d93f32074243d26dfbbc96e37a33 |
IEDL.DBID | RIE |
ISSN | 2169-3536 |
IngestDate | Wed Aug 27 01:30:32 EDT 2025 Mon Jun 30 07:00:35 EDT 2025 Tue Jul 01 04:10:50 EDT 2025 Thu Apr 24 22:53:17 EDT 2025 Tue Aug 26 16:39:27 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Language | English |
License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/OAPA.html |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c408t-7e60d656ded3263aced71ee40ff5209837363d93f32074243d26dfbbc96e37a33 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-5931-3197 0000-0001-9828-0319 |
OpenAccessLink | https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/document/7914657 |
PQID | 2455946743 |
PQPubID | 4845423 |
PageCount | 12 |
ParticipantIDs | crossref_citationtrail_10_1109_ACCESS_2017_2699741 ieee_primary_7914657 proquest_journals_2455946743 doaj_primary_oai_doaj_org_article_03c15d914c4b4cc2959554c6691495e4 crossref_primary_10_1109_ACCESS_2017_2699741 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20170000 2017-00-00 20170101 2017-01-01 |
PublicationDateYYYYMMDD | 2017-01-01 |
PublicationDate_xml | – year: 2017 text: 20170000 |
PublicationDecade | 2010 |
PublicationPlace | Piscataway |
PublicationPlace_xml | – name: Piscataway |
PublicationTitle | IEEE access |
PublicationTitleAbbrev | Access |
PublicationYear | 2017 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref15 ref30 ref11 ref10 ref2 ref1 ref17 yang (ref18) 2011 li (ref20) 2012 duda (ref3) 2012 he (ref14) 2005 qian (ref19) 2013 ref23 han (ref13) 2015; 26 hou (ref16) 2011 ref25 ref22 ref21 sun (ref6) 2010; 32 martinez (ref24) 1998 ref28 ref27 zhao (ref7) 2011; 25 ref29 ref8 samaria (ref26) 1995; 22 ref9 ref4 ref5 xu (ref12) 2010; 21 |
References_xml | – ident: ref10 doi: 10.1155/2014/972125 – start-page: 507 year: 2005 ident: ref14 article-title: Laplacian score for feature selection publication-title: Proc Adv Neural Inf Process Syst – year: 1998 ident: ref24 article-title: The AR face database – ident: ref15 doi: 10.1145/1835804.1835848 – ident: ref27 doi: 10.1109/TPAMI.2012.88 – ident: ref21 doi: 10.1016/j.patcog.2014.08.006 – year: 2012 ident: ref3 publication-title: Pattern Classification – start-page: 1621 year: 2013 ident: ref19 article-title: Robust unsupervised feature selection publication-title: Proc 23rd Int Joint Conf Artif Intell – volume: 26 start-page: 252 year: 2015 ident: ref13 article-title: Semi-supervised feature selection via spline regression for video semantic recognition publication-title: IEEE Trans Neural Netw Learn Syst doi: 10.1109/TNNLS.2014.2314123 – volume: 32 start-page: 1610 year: 2010 ident: ref6 article-title: Local-learning-based feature selection for high-dimensional data analysis publication-title: IEEE Trans Pattern Anal Mach Intell doi: 10.1109/TPAMI.2009.190 – volume: 25 start-page: 1 year: 2011 ident: ref7 article-title: On similarity preserving feature selection publication-title: IEEE Trans Knowl Data Eng – ident: ref25 doi: 10.1109/AFGR.1998.670949 – ident: ref2 doi: 10.1016/j.patcog.2014.10.021 – ident: ref9 doi: 10.1016/j.patcog.2012.11.025 – start-page: 1589 year: 2011 ident: ref18 article-title: $\ell $ 2,1-norm regularized discriminative feature selection for unsupervised learning publication-title: Proc Int Joint Conf Artif Intell – volume: 21 start-page: 1033 year: 2010 ident: ref12 article-title: Discriminative semi-supervised feature selection via manifold regularization publication-title: IEEE Trans Neural Netw doi: 10.1109/TNN.2010.2047114 – ident: ref11 doi: 10.1016/j.neucom.2007.06.014 – ident: ref29 doi: 10.1016/j.neucom.2015.10.119 – ident: ref22 doi: 10.1109/TPAMI.2005.92 – ident: ref5 doi: 10.1145/1273496.1273641 – volume: 22 start-page: 138 year: 1995 ident: ref26 article-title: Parameterisation of a stochastic model for human face identification publication-title: Proc 2nd IEEE Workshop Appl Comput Vis – ident: ref30 doi: 10.1007/978-3-319-46654-5_65 – ident: ref1 doi: 10.1016/j.neucom.2016.03.017 – ident: ref17 doi: 10.1109/TCYB.2013.2272642 – start-page: 1026 year: 2012 ident: ref20 article-title: Unsupervised feature selection using non-negative spectral analysis publication-title: Proc 26th AAAI Conf Artif Intell – ident: ref8 doi: 10.1016/j.patcog.2013.02.012 – ident: ref28 doi: 10.1109/TPAMI.2008.277 – start-page: 1324 year: 2011 ident: ref16 article-title: Feature selection via joint embedding learning and sparse regression publication-title: Proc 22nd Int Joint Conf Artif Intell – ident: ref4 doi: 10.1109/TPAMI.2005.159 – ident: ref23 doi: 10.1109/TPAMI.2003.1251154 |
SSID | ssj0000816957 |
Score | 2.2152529 |
Snippet | Inspired by the importance of self-representation and structure-preserving ability of features, in this paper, we propose a novel unsupervised feature... |
SourceID | doaj proquest crossref ieee |
SourceType | Open Website Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 8792 |
SubjectTerms | Algorithm design and analysis Algorithms Clustering algorithms Feature extraction Feature selection feature self-representation Graphical representations image recognition and clustering Linear programming Manifolds Mathematical model Regularization Robustness structure preserving Unsupervised feature selection |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LT9wwELYqTvSAWijqFopy6BFDHL_iI12BUA97YLvS3kz84oIMYpf_z4zjXS2q1F56dcZJPDP2fBNNviHkhxqS9EYN1MlBU4h4gfZB9JQ7MwjvemfGaouZul2IX0u53Gn1hTVhIz3wqLjLlnsmg2HCCye874w0EAG9UgaxfSxMoBDzdpKpcgb3TBmpK80Qa83l1XQKK8JaLn3RKQMwmr0LRYWxv7ZY-eNcLsHm5hM5qCixuRrf7jP5EPMh-bjDHXhE7ueF-fX1JTZYRoFbPj80s6dMc3wobN4Nwju8Po-Pid6Vktf6p1FuAKs2i7x6fcaJqxh2hUt1Vv5CFjfXv6e3tLZLoF60_ZrqqNoA8CzEAJiMDz4GzWIUbUpY6wKZKFc8GJ54hwmx4KFTITkHpopcD5wfk738lONX0kgWPWQ2YVApCOmFaYN2HJJlp1liKUxIt9Gc9ZVLHFtaPNqSU7TGjuq2qG5b1T0h59tJzyOVxt_Ff6JJtqLIg10GwDts9Q77L--YkCM06PYmGsaV1BNyujGwrXt2ZTsB2RU2X-Hf_sejT8g-Lmf8XHNK9sAp4ncAMGt3Vnz1DZ876Y4 priority: 102 providerName: Directory of Open Access Journals |
Title | Structure Preserving Non-negative Feature Self-Representation for Unsupervised Feature Selection |
URI | https://ieeexplore.ieee.org/document/7914657 https://www.proquest.com/docview/2455946743 https://doaj.org/article/03c15d914c4b4cc2959554c6691495e4 |
Volume | 5 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV25btwwEB3YrpIilxNk4wMqUpprSbyWpb2wYQSIizgLuGNEcugihtbw7jb5-nAoruAcCNIJEilQeDzeUI9vAD6qLkpvVMec7DRLK15gsyBmjDvTCe9mzgxqi2t1tRCfbuXtDpyMZ2EQMYvPcEqX-V9-WPoNbZWdapPGtdS7sJsCt-Gs1rifQgkkjNTFWKipzenZfJ6-gdRbetoqk4hz88vikz36S1KVP2bivLxcvoTP24YNqpLv083aTf2P3zwb_7flr-BF4ZnV2dAxXsMO9m_g-RP3wX34dpO9YzePWJEQgyaN_q66Xvasx7vsB14RQaTnN3gf2Zcsmi1nlfoqsd1q0a82D1RxheFp4azv6t_C4vLi6_yKlYQLzIt6tmYaVR0SwQsYEqvjncegG0RRx0hqmRTLcsWD4ZG3FFILHloVonMJbOS64_wd7PXLHt9DJRv0KTYKnYpBSC9MHbTjKdx2uolNDBNot0hYX9zIKSnGvc1RSW3sAJ8l-GyBbwInY6WHwYzj38XPCeKxKDlp5xsJGlsGpq25b2RI8HjhhPetkSYxLK-UodgRxQT2Cc7xJQXJCRxuO4wto35lW5HiM0rfwj_8vdYBPKMGDls4h7CXYMajRGrW7jhvBhznPv0TL471aw |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB6VcgAOvApioUAOHOttEr_Wx7KiWqDdA-1KvZnYnvRAla26u5f-ejyONyoPIW5RYkeOvrFnxvn8DcAH1bTSG9UwJxvNoscLbBLEhHFnGuHdxJmebTFXs4X4ciEvduBgOAuDiIl8hmO6TP_yw9JvaKvsUJs4r6W-B_ej35d1f1pr2FGhEhJG6iwtVJXm8Gg6jV9B_C09rpWJoXP1i_tJKv25rMofa3FyMMdP4HQ7tJ5X8mO8Wbuxv_1NtfF_x_4UHudIszjqTeMZ7GD3HB7d0R_cg-9nST12c4MFUTFo2egui_myYx1eJkXwgkJEen6GVy37lmiz-bRSV8R4t1h0q801dVxhuNs4Mby6F7A4_nQ-nbFccoF5UU7WTKMqQwzxAoYY1_HGY9AVoijblvgyMZvligfDW15TUi14qFVonYtwI9cN5y9ht1t2-AoKWaGP2VFoVBuE9MKUQTseE26nq7ZqwwjqLRLWZz1yKotxZVNeUhrbw2cJPpvhG8HB0Om6l-P4d_OPBPHQlLS0040Ijc1T05bcVzJEeLxwwvvaSBNjLK-UoewRxQj2CM7hJRnJEexvDcbmeb-ydbRLQwVc-Ou_93oPD2bnpyf25PP86xt4SIPtN3T2YTdCjm9jiLN275Jl_wRX7ffA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Structure+Preserving+Non-negative+Feature+Self-Representation+for+Unsupervised+Feature+Selection&rft.jtitle=IEEE+access&rft.au=Wei+Zhou&rft.au=Chengdong+Wu&rft.au=Yugen+Yi&rft.au=Guoliang+Luo&rft.date=2017&rft.pub=IEEE&rft.eissn=2169-3536&rft.volume=5&rft.spage=8792&rft.epage=8803&rft_id=info:doi/10.1109%2FACCESS.2017.2699741&rft.externalDocID=7914657 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2169-3536&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2169-3536&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2169-3536&client=summon |