Structure Preserving Non-negative Feature Self-Representation for Unsupervised Feature Selection

Inspired by the importance of self-representation and structure-preserving ability of features, in this paper, we propose a novel unsupervised feature selection algorithm named structure-preserving non-negative feature self-representation (SPNFSR). In this algorithm, each feature in high-dimensional...

Full description

Saved in:
Bibliographic Details
Published inIEEE access Vol. 5; pp. 8792 - 8803
Main Authors Zhou, Wei, Wu, Chengdong, Yi, Yugen, Luo, Guoliang
Format Journal Article
LanguageEnglish
Published Piscataway IEEE 2017
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Inspired by the importance of self-representation and structure-preserving ability of features, in this paper, we propose a novel unsupervised feature selection algorithm named structure-preserving non-negative feature self-representation (SPNFSR). In this algorithm, each feature in high-dimensional data can be represented by the linear combination of other features. Then, to exploit the structure-preserving ability of features, we construct a low-rank representation graph, which takes the local and global structures into consideration to maintain the intrinsic structure of the data space. Finally, an l 2,1 -norm regularization and the non-negative constraint are imposed on the representation coefficient matrix with the goal of achieving feature selection in the batch mode. Moreover, we provide a simple yet efficient iterative update algorithm to solve SPNFSR, as well as the convergence analysis of the proposed algorithm. The performance of the proposed approach is illustrated by six publicly available databases. In comparison with the state-of-the-art approaches, the extensive experimental results show the advantages and effectiveness of our approach.
AbstractList Inspired by the importance of self-representation and structure-preserving ability of features, in this paper, we propose a novel unsupervised feature selection algorithm named structure-preserving non-negative feature self-representation (SPNFSR). In this algorithm, each feature in high-dimensional data can be represented by the linear combination of other features. Then, to exploit the structure-preserving ability of features, we construct a low-rank representation graph, which takes the local and global structures into consideration to maintain the intrinsic structure of the data space. Finally, an l2,1-norm regularization and the non-negative constraint are imposed on the representation coefficient matrix with the goal of achieving feature selection in the batch mode. Moreover, we provide a simple yet efficient iterative update algorithm to solve SPNFSR, as well as the convergence analysis of the proposed algorithm. The performance of the proposed approach is illustrated by six publicly available databases. In comparison with the state-of-the-art approaches, the extensive experimental results show the advantages and effectiveness of our approach.
Inspired by the importance of self-representation and structure-preserving ability of features, in this paper, we propose a novel unsupervised feature selection algorithm named structure-preserving non-negative feature self-representation (SPNFSR). In this algorithm, each feature in high-dimensional data can be represented by the linear combination of other features. Then, to exploit the structure-preserving ability of features, we construct a low-rank representation graph, which takes the local and global structures into consideration to maintain the intrinsic structure of the data space. Finally, an l 2,1 -norm regularization and the non-negative constraint are imposed on the representation coefficient matrix with the goal of achieving feature selection in the batch mode. Moreover, we provide a simple yet efficient iterative update algorithm to solve SPNFSR, as well as the convergence analysis of the proposed algorithm. The performance of the proposed approach is illustrated by six publicly available databases. In comparison with the state-of-the-art approaches, the extensive experimental results show the advantages and effectiveness of our approach.
Author Yugen Yi
Guoliang Luo
Wei Zhou
Chengdong Wu
Author_xml – sequence: 1
  givenname: Wei
  orcidid: 0000-0002-5931-3197
  surname: Zhou
  fullname: Zhou, Wei
– sequence: 2
  givenname: Chengdong
  surname: Wu
  fullname: Wu, Chengdong
– sequence: 3
  givenname: Yugen
  orcidid: 0000-0001-9828-0319
  surname: Yi
  fullname: Yi, Yugen
– sequence: 4
  givenname: Guoliang
  surname: Luo
  fullname: Luo, Guoliang
BookMark eNp9UU1LAzEUDKLg5y_wsuB5a77THKW0WigqVs8xTd6WLTWpya7gv3fXVREP5pIwb2bekDlG-yEGQOic4BEhWF9eTSbT5XJEMVEjKrVWnOyhI0qkLplgcv_X-xCd5bzB3Rl3kFBH6HnZpNY1bYLiPkGG9FaHdXEbQxlgbZv6DYoZ2M_5ErZV-QC7nhaabhZDUcVUPIXc7nphBv-bDK6nnKKDym4znH3dJ-hpNn2c3JSLu-v55GpROo7HTalAYi-F9OAZlcw68IoAcFxVgmI9ZopJ5jWrGMWKU848lb5arZyWwJRl7ATNB18f7cbsUv1i07uJtjafQExrY1NTuy0YzBwRXhPu-Io7R7XQQnAnZQdpAbzzuhi8dim-tpAbs4ltCl18Q7kQmkvF-416YLkUc05QGVcP39IkW28Nwabvxwz9mL4f89VPp2V_tN-J_1edD6oaAH4UqosthWIfybWeEQ
CODEN IAECCG
CitedBy_id crossref_primary_10_1007_s11042_019_08159_y
crossref_primary_10_1109_ACCESS_2021_3058761
crossref_primary_10_1007_s10586_018_2550_z
crossref_primary_10_1109_ACCESS_2018_2863752
crossref_primary_10_1016_j_eswa_2020_113745
crossref_primary_10_1016_j_image_2018_06_005
crossref_primary_10_1007_s10462_019_09682_y
crossref_primary_10_3390_info15010057
crossref_primary_10_1016_j_patrec_2022_01_022
crossref_primary_10_1109_ACCESS_2019_2930355
crossref_primary_10_1007_s11063_020_10225_8
crossref_primary_10_1109_ACCESS_2019_2930470
crossref_primary_10_1109_ACCESS_2018_2878855
crossref_primary_10_1007_s11227_020_03480_y
crossref_primary_10_1186_s13640_018_0287_5
crossref_primary_10_3390_a16010014
crossref_primary_10_1109_ACCESS_2020_3010862
crossref_primary_10_1109_ACCESS_2020_2980079
crossref_primary_10_1109_ACCESS_2019_2894366
crossref_primary_10_1109_TETCI_2023_3301401
crossref_primary_10_1109_ACCESS_2019_2911132
crossref_primary_10_1109_ACCESS_2019_2911530
crossref_primary_10_1109_ACCESS_2017_2724763
crossref_primary_10_1109_ACCESS_2020_2994371
crossref_primary_10_2174_2666255816666220823163913
crossref_primary_10_1109_ACCESS_2020_3024690
crossref_primary_10_1155_2018_1942582
crossref_primary_10_1109_ACCESS_2019_2924520
Cites_doi 10.1155/2014/972125
10.1145/1835804.1835848
10.1109/TPAMI.2012.88
10.1016/j.patcog.2014.08.006
10.1109/TNNLS.2014.2314123
10.1109/TPAMI.2009.190
10.1109/AFGR.1998.670949
10.1016/j.patcog.2014.10.021
10.1016/j.patcog.2012.11.025
10.1109/TNN.2010.2047114
10.1016/j.neucom.2007.06.014
10.1016/j.neucom.2015.10.119
10.1109/TPAMI.2005.92
10.1145/1273496.1273641
10.1007/978-3-319-46654-5_65
10.1016/j.neucom.2016.03.017
10.1109/TCYB.2013.2272642
10.1016/j.patcog.2013.02.012
10.1109/TPAMI.2008.277
10.1109/TPAMI.2005.159
10.1109/TPAMI.2003.1251154
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2017
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2017
DBID 97E
ESBDL
RIA
RIE
AAYXX
CITATION
7SC
7SP
7SR
8BQ
8FD
JG9
JQ2
L7M
L~C
L~D
DOA
DOI 10.1109/ACCESS.2017.2699741
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE Xplore Open Access Journals
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE/IET Electronic Library (IEL)
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
METADEX
Computer and Information Systems Abstracts Professional
DatabaseTitleList

Materials Research Database
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2169-3536
EndPage 8803
ExternalDocumentID oai_doaj_org_article_03c15d914c4b4cc2959554c6691495e4
10_1109_ACCESS_2017_2699741
7914657
Genre orig-research
GrantInformation_xml – fundername: National Natural Science Foundation of China
  grantid: 61471110; 61602221; 61602222; 61403078; 61562044
  funderid: 10.13039/501100001809
– fundername: Fundamental Research Funds for the Central Universities
  grantid: N140403005; N162610004; N160404003
– fundername: Doctoral Fund of Jiangxi Normal University
  grantid: 7525
– fundername: Foundation of Liaoning Educational Department
  grantid: L2014090
GroupedDBID 0R~
4.4
5VS
6IK
97E
AAJGR
ABAZT
ABVLG
ACGFS
ADBBV
AGSQL
ALMA_UNASSIGNED_HOLDINGS
BCNDV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
EJD
ESBDL
GROUPED_DOAJ
IPLJI
JAVBF
KQ8
M43
M~E
O9-
OCL
OK1
RIA
RIE
RNS
AAYXX
CITATION
RIG
7SC
7SP
7SR
8BQ
8FD
JG9
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c408t-7e60d656ded3263aced71ee40ff5209837363d93f32074243d26dfbbc96e37a33
IEDL.DBID RIE
ISSN 2169-3536
IngestDate Wed Aug 27 01:30:32 EDT 2025
Mon Jun 30 07:00:35 EDT 2025
Tue Jul 01 04:10:50 EDT 2025
Thu Apr 24 22:53:17 EDT 2025
Tue Aug 26 16:39:27 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/OAPA.html
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c408t-7e60d656ded3263aced71ee40ff5209837363d93f32074243d26dfbbc96e37a33
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-5931-3197
0000-0001-9828-0319
OpenAccessLink https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/document/7914657
PQID 2455946743
PQPubID 4845423
PageCount 12
ParticipantIDs crossref_citationtrail_10_1109_ACCESS_2017_2699741
ieee_primary_7914657
proquest_journals_2455946743
doaj_primary_oai_doaj_org_article_03c15d914c4b4cc2959554c6691495e4
crossref_primary_10_1109_ACCESS_2017_2699741
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20170000
2017-00-00
20170101
2017-01-01
PublicationDateYYYYMMDD 2017-01-01
PublicationDate_xml – year: 2017
  text: 20170000
PublicationDecade 2010
PublicationPlace Piscataway
PublicationPlace_xml – name: Piscataway
PublicationTitle IEEE access
PublicationTitleAbbrev Access
PublicationYear 2017
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref15
ref30
ref11
ref10
ref2
ref1
ref17
yang (ref18) 2011
li (ref20) 2012
duda (ref3) 2012
he (ref14) 2005
qian (ref19) 2013
ref23
han (ref13) 2015; 26
hou (ref16) 2011
ref25
ref22
ref21
sun (ref6) 2010; 32
martinez (ref24) 1998
ref28
ref27
zhao (ref7) 2011; 25
ref29
ref8
samaria (ref26) 1995; 22
ref9
ref4
ref5
xu (ref12) 2010; 21
References_xml – ident: ref10
  doi: 10.1155/2014/972125
– start-page: 507
  year: 2005
  ident: ref14
  article-title: Laplacian score for feature selection
  publication-title: Proc Adv Neural Inf Process Syst
– year: 1998
  ident: ref24
  article-title: The AR face database
– ident: ref15
  doi: 10.1145/1835804.1835848
– ident: ref27
  doi: 10.1109/TPAMI.2012.88
– ident: ref21
  doi: 10.1016/j.patcog.2014.08.006
– year: 2012
  ident: ref3
  publication-title: Pattern Classification
– start-page: 1621
  year: 2013
  ident: ref19
  article-title: Robust unsupervised feature selection
  publication-title: Proc 23rd Int Joint Conf Artif Intell
– volume: 26
  start-page: 252
  year: 2015
  ident: ref13
  article-title: Semi-supervised feature selection via spline regression for video semantic recognition
  publication-title: IEEE Trans Neural Netw Learn Syst
  doi: 10.1109/TNNLS.2014.2314123
– volume: 32
  start-page: 1610
  year: 2010
  ident: ref6
  article-title: Local-learning-based feature selection for high-dimensional data analysis
  publication-title: IEEE Trans Pattern Anal Mach Intell
  doi: 10.1109/TPAMI.2009.190
– volume: 25
  start-page: 1
  year: 2011
  ident: ref7
  article-title: On similarity preserving feature selection
  publication-title: IEEE Trans Knowl Data Eng
– ident: ref25
  doi: 10.1109/AFGR.1998.670949
– ident: ref2
  doi: 10.1016/j.patcog.2014.10.021
– ident: ref9
  doi: 10.1016/j.patcog.2012.11.025
– start-page: 1589
  year: 2011
  ident: ref18
  article-title: $\ell $ 2,1-norm regularized discriminative feature selection for unsupervised learning
  publication-title: Proc Int Joint Conf Artif Intell
– volume: 21
  start-page: 1033
  year: 2010
  ident: ref12
  article-title: Discriminative semi-supervised feature selection via manifold regularization
  publication-title: IEEE Trans Neural Netw
  doi: 10.1109/TNN.2010.2047114
– ident: ref11
  doi: 10.1016/j.neucom.2007.06.014
– ident: ref29
  doi: 10.1016/j.neucom.2015.10.119
– ident: ref22
  doi: 10.1109/TPAMI.2005.92
– ident: ref5
  doi: 10.1145/1273496.1273641
– volume: 22
  start-page: 138
  year: 1995
  ident: ref26
  article-title: Parameterisation of a stochastic model for human face identification
  publication-title: Proc 2nd IEEE Workshop Appl Comput Vis
– ident: ref30
  doi: 10.1007/978-3-319-46654-5_65
– ident: ref1
  doi: 10.1016/j.neucom.2016.03.017
– ident: ref17
  doi: 10.1109/TCYB.2013.2272642
– start-page: 1026
  year: 2012
  ident: ref20
  article-title: Unsupervised feature selection using non-negative spectral analysis
  publication-title: Proc 26th AAAI Conf Artif Intell
– ident: ref8
  doi: 10.1016/j.patcog.2013.02.012
– ident: ref28
  doi: 10.1109/TPAMI.2008.277
– start-page: 1324
  year: 2011
  ident: ref16
  article-title: Feature selection via joint embedding learning and sparse regression
  publication-title: Proc 22nd Int Joint Conf Artif Intell
– ident: ref4
  doi: 10.1109/TPAMI.2005.159
– ident: ref23
  doi: 10.1109/TPAMI.2003.1251154
SSID ssj0000816957
Score 2.2152529
Snippet Inspired by the importance of self-representation and structure-preserving ability of features, in this paper, we propose a novel unsupervised feature...
SourceID doaj
proquest
crossref
ieee
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 8792
SubjectTerms Algorithm design and analysis
Algorithms
Clustering algorithms
Feature extraction
Feature selection
feature self-representation
Graphical representations
image recognition and clustering
Linear programming
Manifolds
Mathematical model
Regularization
Robustness
structure preserving
Unsupervised feature selection
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LT9wwELYqTvSAWijqFopy6BFDHL_iI12BUA97YLvS3kz84oIMYpf_z4zjXS2q1F56dcZJPDP2fBNNviHkhxqS9EYN1MlBU4h4gfZB9JQ7MwjvemfGaouZul2IX0u53Gn1hTVhIz3wqLjLlnsmg2HCCye874w0EAG9UgaxfSxMoBDzdpKpcgb3TBmpK80Qa83l1XQKK8JaLn3RKQMwmr0LRYWxv7ZY-eNcLsHm5hM5qCixuRrf7jP5EPMh-bjDHXhE7ueF-fX1JTZYRoFbPj80s6dMc3wobN4Nwju8Po-Pid6Vktf6p1FuAKs2i7x6fcaJqxh2hUt1Vv5CFjfXv6e3tLZLoF60_ZrqqNoA8CzEAJiMDz4GzWIUbUpY6wKZKFc8GJ54hwmx4KFTITkHpopcD5wfk738lONX0kgWPWQ2YVApCOmFaYN2HJJlp1liKUxIt9Gc9ZVLHFtaPNqSU7TGjuq2qG5b1T0h59tJzyOVxt_Ff6JJtqLIg10GwDts9Q77L--YkCM06PYmGsaV1BNyujGwrXt2ZTsB2RU2X-Hf_sejT8g-Lmf8XHNK9sAp4ncAMGt3Vnz1DZ876Y4
  priority: 102
  providerName: Directory of Open Access Journals
Title Structure Preserving Non-negative Feature Self-Representation for Unsupervised Feature Selection
URI https://ieeexplore.ieee.org/document/7914657
https://www.proquest.com/docview/2455946743
https://doaj.org/article/03c15d914c4b4cc2959554c6691495e4
Volume 5
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV25btwwEB3YrpIilxNk4wMqUpprSbyWpb2wYQSIizgLuGNEcugihtbw7jb5-nAoruAcCNIJEilQeDzeUI9vAD6qLkpvVMec7DRLK15gsyBmjDvTCe9mzgxqi2t1tRCfbuXtDpyMZ2EQMYvPcEqX-V9-WPoNbZWdapPGtdS7sJsCt-Gs1rifQgkkjNTFWKipzenZfJ6-gdRbetoqk4hz88vikz36S1KVP2bivLxcvoTP24YNqpLv083aTf2P3zwb_7flr-BF4ZnV2dAxXsMO9m_g-RP3wX34dpO9YzePWJEQgyaN_q66Xvasx7vsB14RQaTnN3gf2Zcsmi1nlfoqsd1q0a82D1RxheFp4azv6t_C4vLi6_yKlYQLzIt6tmYaVR0SwQsYEqvjncegG0RRx0hqmRTLcsWD4ZG3FFILHloVonMJbOS64_wd7PXLHt9DJRv0KTYKnYpBSC9MHbTjKdx2uolNDBNot0hYX9zIKSnGvc1RSW3sAJ8l-GyBbwInY6WHwYzj38XPCeKxKDlp5xsJGlsGpq25b2RI8HjhhPetkSYxLK-UodgRxQT2Cc7xJQXJCRxuO4wto35lW5HiM0rfwj_8vdYBPKMGDls4h7CXYMajRGrW7jhvBhznPv0TL471aw
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB6VcgAOvApioUAOHOttEr_Wx7KiWqDdA-1KvZnYnvRAla26u5f-ejyONyoPIW5RYkeOvrFnxvn8DcAH1bTSG9UwJxvNoscLbBLEhHFnGuHdxJmebTFXs4X4ciEvduBgOAuDiIl8hmO6TP_yw9JvaKvsUJs4r6W-B_ej35d1f1pr2FGhEhJG6iwtVJXm8Gg6jV9B_C09rpWJoXP1i_tJKv25rMofa3FyMMdP4HQ7tJ5X8mO8Wbuxv_1NtfF_x_4UHudIszjqTeMZ7GD3HB7d0R_cg-9nST12c4MFUTFo2egui_myYx1eJkXwgkJEen6GVy37lmiz-bRSV8R4t1h0q801dVxhuNs4Mby6F7A4_nQ-nbFccoF5UU7WTKMqQwzxAoYY1_HGY9AVoijblvgyMZvligfDW15TUi14qFVonYtwI9cN5y9ht1t2-AoKWaGP2VFoVBuE9MKUQTseE26nq7ZqwwjqLRLWZz1yKotxZVNeUhrbw2cJPpvhG8HB0Om6l-P4d_OPBPHQlLS0040Ijc1T05bcVzJEeLxwwvvaSBNjLK-UoewRxQj2CM7hJRnJEexvDcbmeb-ydbRLQwVc-Ou_93oPD2bnpyf25PP86xt4SIPtN3T2YTdCjm9jiLN275Jl_wRX7ffA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Structure+Preserving+Non-negative+Feature+Self-Representation+for+Unsupervised+Feature+Selection&rft.jtitle=IEEE+access&rft.au=Wei+Zhou&rft.au=Chengdong+Wu&rft.au=Yugen+Yi&rft.au=Guoliang+Luo&rft.date=2017&rft.pub=IEEE&rft.eissn=2169-3536&rft.volume=5&rft.spage=8792&rft.epage=8803&rft_id=info:doi/10.1109%2FACCESS.2017.2699741&rft.externalDocID=7914657
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2169-3536&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2169-3536&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2169-3536&client=summon