Analysis of daily solar power prediction with data-driven approaches

•We develop daily solar power prediction models with data-driven approaches.•We introduce a parameter selection procedure for reducing dimensions of prediction models.•We report a comparative analysis of data mining algorithms in daily solar power prediction.•Data mining algorithms can perform bette...

Full description

Saved in:
Bibliographic Details
Published inApplied energy Vol. 126; pp. 29 - 37
Main Authors Long, Huan, Zhang, Zijun, Su, Yan
Format Journal Article
LanguageEnglish
Published Kidlington Elsevier Ltd 01.08.2014
Elsevier
Subjects
Online AccessGet full text
ISSN0306-2619
1872-9118
DOI10.1016/j.apenergy.2014.03.084

Cover

Loading…
Abstract •We develop daily solar power prediction models with data-driven approaches.•We introduce a parameter selection procedure for reducing dimensions of prediction models.•We report a comparative analysis of data mining algorithms in daily solar power prediction.•Data mining algorithms can perform better than persistent methods.•None of data mining algorithms can dominate others in all prediction scenarios. Daily solar power prediction using data-driven approaches is studied. Four famous data-driven approaches, the Artificial Neural Network (ANN), the Support Vector Machine (SVM), the k-nearest neighbor (kNN), and the multivariate linear regression (MLR), are applied to develop the prediction models. The persistent model is considered as a baseline for evaluating the effectiveness of data-driven approaches. A procedure of selecting input parameters for solar power prediction models is addressed. Two modeling scenarios, including and excluding meteorological parameters as inputs, are assessed in the model development. A comparative analysis of the data-driven algorithms is conducted. The capability of data-driven models in multi-step ahead prediction is examined. The computational results indicate that none of the algorithms can outperform others in all considered prediction scenarios.
AbstractList Daily solar power prediction using data-driven approaches is studied. Four famous data-driven approaches, the Artificial Neural Network (ANN), the Support Vector Machine (SVM), the k-nearest neighbor (kNN), and the multivariate linear regression (MLR), are applied to develop the prediction models. The persistent model is considered as a baseline for evaluating the effectiveness of data-driven approaches. A procedure of selecting input parameters for solar power prediction models is addressed. Two modeling scenarios, including and excluding meteorological parameters as inputs, are assessed in the model development. A comparative analysis of the data-driven algorithms is conducted. The capability of data-driven models in multi-step ahead prediction is examined. The computational results indicate that none of the algorithms can outperform others in all considered prediction scenarios.
•We develop daily solar power prediction models with data-driven approaches.•We introduce a parameter selection procedure for reducing dimensions of prediction models.•We report a comparative analysis of data mining algorithms in daily solar power prediction.•Data mining algorithms can perform better than persistent methods.•None of data mining algorithms can dominate others in all prediction scenarios. Daily solar power prediction using data-driven approaches is studied. Four famous data-driven approaches, the Artificial Neural Network (ANN), the Support Vector Machine (SVM), the k-nearest neighbor (kNN), and the multivariate linear regression (MLR), are applied to develop the prediction models. The persistent model is considered as a baseline for evaluating the effectiveness of data-driven approaches. A procedure of selecting input parameters for solar power prediction models is addressed. Two modeling scenarios, including and excluding meteorological parameters as inputs, are assessed in the model development. A comparative analysis of the data-driven algorithms is conducted. The capability of data-driven models in multi-step ahead prediction is examined. The computational results indicate that none of the algorithms can outperform others in all considered prediction scenarios.
Author Zhang, Zijun
Su, Yan
Long, Huan
Author_xml – sequence: 1
  givenname: Huan
  orcidid: 0000-0002-6578-9140
  surname: Long
  fullname: Long, Huan
  organization: Department of Systems Engineering and Engineering Management, City University of Hong Kong, P6600, 6/F, Academic 1, Hong Kong
– sequence: 2
  givenname: Zijun
  surname: Zhang
  fullname: Zhang, Zijun
  email: zijzhang@cityu.edu.hk
  organization: Department of Systems Engineering and Engineering Management, City University of Hong Kong, P6600, 6/F, Academic 1, Hong Kong
– sequence: 3
  givenname: Yan
  surname: Su
  fullname: Su, Yan
  email: yansu@umac.mo
  organization: Department of Electromechanical Engineering, University of Macau, Macau
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=28499765$$DView record in Pascal Francis
BookMark eNqFkU1LxDAQhoMouH78BelF8NI6-WjSggfFbxC86Dlk06lmqUlNqrL_3iyrHrzsZebyvDPwPntk2wePhBxRqChQebqozIge48uyYkBFBbyCRmyRGW0UK1tKm20yAw6yZJK2u2QvpQUAMMpgRq4uvBmWyaUi9EVn3LAsUhhMLMbwhXlG7JydXPDFl5teMzGZsovuE31hxjEGY18xHZCd3gwJD3_2Pnm-uX66vCsfHm_vLy8eSiugmUql0KJgjaplDfPOUuQdzGUPbV1zbGyvhKgl9D1yOeeNnQsJQlFUnHOmlOH75GR9Nz9-_8A06TeXLA6D8Rg-kma5Dy4YA7URpXVNQYDgbUaPf1CTrBn6aLx1SY_RvZm41KwRbatknTm55mwMKUXs_xAKemVCL_SvCb0yoYHrbCIHz_4FrZvMqtQp5sY3x8_XcczVfjqMOlmH3mYzEe2ku-A2nfgGtuGqVA
CODEN APENDX
CitedBy_id crossref_primary_10_1016_j_apenergy_2017_07_124
crossref_primary_10_1016_j_solener_2019_07_061
crossref_primary_10_1016_j_energy_2017_05_124
crossref_primary_10_1109_TIA_2022_3212999
crossref_primary_10_1016_j_engappai_2024_108426
crossref_primary_10_1016_j_apenergy_2015_09_013
crossref_primary_10_1016_j_eswa_2022_117690
crossref_primary_10_1016_j_renene_2021_05_099
crossref_primary_10_1016_j_egyr_2024_10_060
crossref_primary_10_1016_j_rser_2020_110114
crossref_primary_10_20965_jaciii_2017_p0785
crossref_primary_10_1002_cpe_7190
crossref_primary_10_3390_en16041963
crossref_primary_10_3390_en11051107
crossref_primary_10_1088_2631_8695_ad4e07
crossref_primary_10_3390_app9173593
crossref_primary_10_1016_j_segan_2019_100286
crossref_primary_10_1007_s00500_024_10394_x
crossref_primary_10_3390_en11051188
crossref_primary_10_1002_er_5608
crossref_primary_10_1016_j_energy_2021_119887
crossref_primary_10_3390_en18020403
crossref_primary_10_1016_j_enconman_2023_116900
crossref_primary_10_1016_j_engappai_2019_103409
crossref_primary_10_1109_JPHOTOV_2020_2981810
crossref_primary_10_1109_TSTE_2017_2694551
crossref_primary_10_7763_IJCTE_2024_V16_1355
crossref_primary_10_1088_1755_1315_446_4_042014
crossref_primary_10_1016_j_segan_2022_100698
crossref_primary_10_1016_j_ijleo_2023_170957
crossref_primary_10_1109_TIA_2022_3206731
crossref_primary_10_1016_j_ijepes_2021_107176
crossref_primary_10_1002_dac_4366
crossref_primary_10_1016_j_apenergy_2018_02_160
crossref_primary_10_1109_TSMC_2021_3131031
crossref_primary_10_1016_j_susmat_2022_e00429
crossref_primary_10_1109_TSTE_2014_2381224
crossref_primary_10_1016_j_apenergy_2017_10_044
crossref_primary_10_1016_j_rser_2024_114581
crossref_primary_10_1109_ACCESS_2023_3270041
crossref_primary_10_2478_amns_2020_2_00032
crossref_primary_10_1007_s12667_024_00657_9
crossref_primary_10_1109_ACCESS_2022_3222986
crossref_primary_10_1007_s13762_023_05110_5
crossref_primary_10_1109_ICJECE_2021_3093369
crossref_primary_10_1016_j_rser_2024_114691
crossref_primary_10_1016_j_renene_2019_09_102
crossref_primary_10_1016_j_energy_2019_07_168
crossref_primary_10_1016_j_jclepro_2021_128566
crossref_primary_10_1016_j_ijrefrig_2024_05_017
crossref_primary_10_1016_j_ecoinf_2022_101643
crossref_primary_10_3390_en12101856
crossref_primary_10_1016_j_renene_2022_02_051
crossref_primary_10_1109_JIOT_2021_3064384
crossref_primary_10_1016_j_apenergy_2016_08_079
crossref_primary_10_1016_j_engappai_2023_106480
crossref_primary_10_1016_j_swevo_2016_12_004
crossref_primary_10_1109_ACCESS_2020_3024167
crossref_primary_10_1007_s40998_024_00716_y
crossref_primary_10_1016_j_jclepro_2019_119476
crossref_primary_10_3390_en12020215
crossref_primary_10_1016_j_solener_2018_01_005
crossref_primary_10_2174_2666255813666201218160223
crossref_primary_10_1016_j_apenergy_2020_114561
crossref_primary_10_1016_j_enconman_2019_112441
crossref_primary_10_1049_tje2_12015
crossref_primary_10_1109_TPWRS_2016_2616902
crossref_primary_10_1016_j_apenergy_2016_07_052
crossref_primary_10_1080_02626667_2021_1928673
crossref_primary_10_1016_j_rineng_2024_103226
crossref_primary_10_1155_2020_8701368
crossref_primary_10_1016_j_enconman_2022_116049
crossref_primary_10_1016_j_solener_2016_06_069
crossref_primary_10_3390_en15030928
crossref_primary_10_1016_j_apenergy_2019_114001
crossref_primary_10_32604_ee_2023_025404
crossref_primary_10_1016_j_rineng_2024_102141
crossref_primary_10_3390_app12010134
crossref_primary_10_1140_epjp_s13360_022_02666_y
crossref_primary_10_1016_j_heliyon_2019_e02692
crossref_primary_10_1016_j_enpol_2019_06_011
crossref_primary_10_1007_s00704_021_03726_6
crossref_primary_10_1049_iet_gtd_2020_0625
crossref_primary_10_1016_j_renene_2016_12_095
crossref_primary_10_1155_2020_8843620
crossref_primary_10_1016_j_energy_2014_10_012
crossref_primary_10_1016_j_apenergy_2022_119069
crossref_primary_10_1016_j_jenvman_2024_120392
crossref_primary_10_1007_s13762_019_02344_0
crossref_primary_10_1007_s13369_019_04183_0
crossref_primary_10_1016_j_suscom_2024_101041
crossref_primary_10_1007_s00202_020_01153_w
crossref_primary_10_1371_journal_pone_0308002
crossref_primary_10_1109_ACCESS_2021_3131185
crossref_primary_10_1142_S0219691320500745
crossref_primary_10_1016_j_renene_2017_05_089
crossref_primary_10_1109_TIA_2024_3351613
crossref_primary_10_1016_j_rser_2017_04_078
crossref_primary_10_1007_s11356_018_1748_1
crossref_primary_10_1016_j_apenergy_2021_117155
Cites_doi 10.1016/j.solener.2004.12.006
10.1016/j.solener.2008.08.007
10.1016/S0306-2619(02)00016-8
10.1016/j.atmosres.2012.04.011
10.1016/j.apenergy.2005.06.003
10.1016/0168-1923(84)90017-0
10.1016/j.apenergy.2014.01.074
10.1016/S0196-8904(99)00035-7
10.1109/72.870050
10.1016/j.renene.2012.04.020
10.1016/j.apenergy.2014.02.057
10.1016/j.apenergy.2013.09.039
10.1016/S0038-092X(98)00078-4
10.1002/joc.2267
10.1016/j.solener.2010.07.002
10.1016/j.renene.2010.06.024
10.1016/S1364-0321(01)00006-5
10.1016/j.solener.2010.08.011
10.1016/j.apenergy.2013.05.049
10.1016/j.apenergy.2012.04.037
10.1016/j.apenergy.2013.06.020
10.1016/j.solener.2011.11.013
10.1016/j.solener.2009.05.016
10.1016/S0168-1923(98)00126-9
10.1016/j.apenergy.2012.08.042
10.1016/0741-983X(89)90076-3
10.1016/j.solener.2010.02.006
10.1007/BF00153759
10.1023/B:STCO.0000035301.49549.88
10.1016/j.apenergy.2013.09.051
10.1109/5.537115
10.1016/j.enpol.2008.06.030
10.1016/0038-092X(86)90075-7
10.1016/j.solener.2011.08.027
ContentType Journal Article
Copyright 2014 Elsevier Ltd
2015 INIST-CNRS
Copyright_xml – notice: 2014 Elsevier Ltd
– notice: 2015 INIST-CNRS
DBID AAYXX
CITATION
IQODW
7ST
7TG
7U6
C1K
KL.
7S9
L.6
DOI 10.1016/j.apenergy.2014.03.084
DatabaseName CrossRef
Pascal-Francis
Environment Abstracts
Meteorological & Geoastrophysical Abstracts
Sustainability Science Abstracts
Environmental Sciences and Pollution Management
Meteorological & Geoastrophysical Abstracts - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
Meteorological & Geoastrophysical Abstracts
Environment Abstracts
Meteorological & Geoastrophysical Abstracts - Academic
Sustainability Science Abstracts
Environmental Sciences and Pollution Management
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList AGRICOLA
Meteorological & Geoastrophysical Abstracts

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Environmental Sciences
Applied Sciences
EISSN 1872-9118
EndPage 37
ExternalDocumentID 28499765
10_1016_j_apenergy_2014_03_084
S0306261914003249
GroupedDBID --K
--M
.~1
0R~
1B1
1~.
1~5
23M
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAHCO
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AARJD
AAXUO
ABJNI
ABMAC
ABXDB
ABYKQ
ACDAQ
ACGFS
ACRLP
ADBBV
ADEZE
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHIDL
AHJVU
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BELTK
BJAXD
BKOJK
BLXMC
CS3
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
JARJE
JJJVA
KOM
LY6
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RIG
ROL
RPZ
SDF
SDG
SES
SPC
SPCBC
SSR
SST
SSZ
T5K
TN5
~02
~G-
AAHBH
AAQXK
AATTM
AAXKI
AAYOK
AAYWO
AAYXX
ABEFU
ABFNM
ABWVN
ACNNM
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
BNPGV
CITATION
FEDTE
FGOYB
G-2
HVGLF
HZ~
R2-
SAC
SEW
SSH
WUQ
ZY4
ABTAH
IQODW
7ST
7TG
7U6
C1K
KL.
7S9
EFKBS
L.6
ID FETCH-LOGICAL-c408t-77ece42875650bdc1e3d0b6f09553e8cf744560ffe36b38cb460471e7333277a3
IEDL.DBID .~1
ISSN 0306-2619
IngestDate Tue Aug 05 09:56:04 EDT 2025
Thu Jul 10 19:58:31 EDT 2025
Wed Apr 02 07:37:52 EDT 2025
Tue Jul 01 03:05:23 EDT 2025
Thu Apr 24 22:57:10 EDT 2025
Fri Feb 23 02:37:00 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Solar power prediction
Data mining
Time-series model
Support Vector Machine (SVM)
Artificial Neural Network (ANN)
Solar energy
Time series
Models
Electric power production
Neural network
Modeling
Language English
License CC BY 4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c408t-77ece42875650bdc1e3d0b6f09553e8cf744560ffe36b38cb460471e7333277a3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-6578-9140
PQID 1551040439
PQPubID 23462
PageCount 9
ParticipantIDs proquest_miscellaneous_2101342207
proquest_miscellaneous_1551040439
pascalfrancis_primary_28499765
crossref_primary_10_1016_j_apenergy_2014_03_084
crossref_citationtrail_10_1016_j_apenergy_2014_03_084
elsevier_sciencedirect_doi_10_1016_j_apenergy_2014_03_084
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2014-08-01
PublicationDateYYYYMMDD 2014-08-01
PublicationDate_xml – month: 08
  year: 2014
  text: 2014-08-01
  day: 01
PublicationDecade 2010
PublicationPlace Kidlington
PublicationPlace_xml – name: Kidlington
PublicationTitle Applied energy
PublicationYear 2014
Publisher Elsevier Ltd
Elsevier
Publisher_xml – name: Elsevier Ltd
– name: Elsevier
References Mellit, Pavan (b0150) 2010; 84
Voyant, Darras, Muselli, Paoli, Nivet, Poggi (b0110) 2014; 114
Wu, Liu (b0160) 2012; 32
Chen, Liu, Wu, Xie (b0105) 2011; 36
Avila-Marin, Fernandez-Reche, Tellez (b0005) 2013; 112
Bacher, Madsen, Nielsen (b0125) 2009; 83
Izgi, Öztopal, Yerli, Kaymak, Şahin (b0120) 2012; 86
Paoli, Voyant, Muselli, Nivet (b0085) 2010; 84
Marvuglia, Messineo (b0035) 2012; 98
Smola, Schölkopf (b0175) 2004; 14
Bristow, Campbell (b0135) 1984; 31
Maafi, Adane (b0065) 1989; 6
Boata, Gravila (b0140) 2012; 112
Reikard (b0060) 2009; 83
Jain, Smith, Culligan, Taylor (b0040) 2014; 123
Draper Harry (b0165) 1966
Chen, Duan, Cai, Liu (b0100) 2011; 85
Martín, Zarzalejo, Polo, Navarro, Marchante, Cony (b0075) 2010; 84
Patterson (b0180) 1998
Kalogirou (b0080) 2001; 5
Mellit, Benghanem, Arab, Guessoum (b0145) 2005; 79
Mellit, Benghanem, Kalogirou (b0090) 2006; 83
Rizvi, Wang, Nasrabadi (b0045) 1996; 84
Amato, Andretta, Bartoli, Coluzzi, Cuomo, Fontana (b0070) 1986; 37
Türk Toğrul, Onat (b0050) 1999; 40
Iverson, Conboy, Pasch, Kruizenga (b0025) 2013; 111
Thornton, Running (b0130) 1999; 93
Ziviani, Beyene, Venturini (b0010) 2014; 121
Dorvlo, Jervase, Al-Lawati (b0095) 2002; 71
Aha, Kibler, Albert (b0185) 1991; 6
Shevade, Keerthi, Bhattacharyya, Murthy (b0190) 2000; 11
Lukač, Žlaus, Seme, Žalik, Štumberger (b0015) 2013; 102
Panaras, Mathioulakis, Belessiotis (b0020) 2014; 114
Kusiak, Verma (b0030) 2012; 48
Jiang (b0155) 2008; 36
Lorenz E, Remund J, Müller SC, Traunmüller W, Steinmaurer G, Pozo D, Antonio J, Ruiz-Arias VLF, Ramirez L, Romeo MG. Benchmarking of different approaches to forecast solar irradiance. In: 24th European photovoltaic solar energy conference, 2009. p. 1–10.
Wang Y. A new approach to fitting linear models in high dimensional spaces, Ph.D. dissertation, University of Waikato; 2000. 204 p.
Mora-Lopez, Sidrach-de-Cardona (b0055) 1998; 63
Chen (10.1016/j.apenergy.2014.03.084_b0105) 2011; 36
Draper Harry (10.1016/j.apenergy.2014.03.084_b0165) 1966
Mellit (10.1016/j.apenergy.2014.03.084_b0090) 2006; 83
Mellit (10.1016/j.apenergy.2014.03.084_b0150) 2010; 84
10.1016/j.apenergy.2014.03.084_b0170
Iverson (10.1016/j.apenergy.2014.03.084_b0025) 2013; 111
Kalogirou (10.1016/j.apenergy.2014.03.084_b0080) 2001; 5
Aha (10.1016/j.apenergy.2014.03.084_b0185) 1991; 6
Shevade (10.1016/j.apenergy.2014.03.084_b0190) 2000; 11
Panaras (10.1016/j.apenergy.2014.03.084_b0020) 2014; 114
10.1016/j.apenergy.2014.03.084_b0115
Wu (10.1016/j.apenergy.2014.03.084_b0160) 2012; 32
Marvuglia (10.1016/j.apenergy.2014.03.084_b0035) 2012; 98
Amato (10.1016/j.apenergy.2014.03.084_b0070) 1986; 37
Thornton (10.1016/j.apenergy.2014.03.084_b0130) 1999; 93
Boata (10.1016/j.apenergy.2014.03.084_b0140) 2012; 112
Avila-Marin (10.1016/j.apenergy.2014.03.084_b0005) 2013; 112
Bacher (10.1016/j.apenergy.2014.03.084_b0125) 2009; 83
Jain (10.1016/j.apenergy.2014.03.084_b0040) 2014; 123
Rizvi (10.1016/j.apenergy.2014.03.084_b0045) 1996; 84
Lukač (10.1016/j.apenergy.2014.03.084_b0015) 2013; 102
Voyant (10.1016/j.apenergy.2014.03.084_b0110) 2014; 114
Ziviani (10.1016/j.apenergy.2014.03.084_b0010) 2014; 121
Izgi (10.1016/j.apenergy.2014.03.084_b0120) 2012; 86
Martín (10.1016/j.apenergy.2014.03.084_b0075) 2010; 84
Paoli (10.1016/j.apenergy.2014.03.084_b0085) 2010; 84
Smola (10.1016/j.apenergy.2014.03.084_b0175) 2004; 14
Bristow (10.1016/j.apenergy.2014.03.084_b0135) 1984; 31
Kusiak (10.1016/j.apenergy.2014.03.084_b0030) 2012; 48
Türk Toğrul (10.1016/j.apenergy.2014.03.084_b0050) 1999; 40
Reikard (10.1016/j.apenergy.2014.03.084_b0060) 2009; 83
Patterson (10.1016/j.apenergy.2014.03.084_b0180) 1998
Mellit (10.1016/j.apenergy.2014.03.084_b0145) 2005; 79
Dorvlo (10.1016/j.apenergy.2014.03.084_b0095) 2002; 71
Chen (10.1016/j.apenergy.2014.03.084_b0100) 2011; 85
Maafi (10.1016/j.apenergy.2014.03.084_b0065) 1989; 6
Mora-Lopez (10.1016/j.apenergy.2014.03.084_b0055) 1998; 63
Jiang (10.1016/j.apenergy.2014.03.084_b0155) 2008; 36
References_xml – volume: 85
  start-page: 2856
  year: 2011
  end-page: 2870
  ident: b0100
  article-title: Online 24-h solar power forecasting based on weather type classification using artificial neural network
  publication-title: Sol Energy
– volume: 36
  start-page: 413
  year: 2011
  end-page: 420
  ident: b0105
  article-title: Estimation of monthly solar radiation from measured temperatures using support vector machines – a case study
  publication-title: Renew Energy
– volume: 84
  start-page: 807
  year: 2010
  end-page: 821
  ident: b0150
  article-title: A 24-h forecast of solar irradiance using artificial neural network: application for performance prediction of a grid-connected PV plant at Trieste, Italy
  publication-title: Sol Energy
– volume: 32
  start-page: 274
  year: 2012
  end-page: 285
  ident: b0160
  article-title: Assessment of monthly solar radiation estimates using support vector machines and air temperatures
  publication-title: Int J Climatol
– reference: Wang Y. A new approach to fitting linear models in high dimensional spaces, Ph.D. dissertation, University of Waikato; 2000. 204 p.
– volume: 121
  start-page: 79
  year: 2014
  end-page: 95
  ident: b0010
  article-title: Advances and challenges in ORC systems modeling for low grade thermal energy recovery
  publication-title: Appl Energy
– volume: 112
  start-page: 79
  year: 2012
  end-page: 88
  ident: b0140
  article-title: Functional fuzzy approach for forecasting daily global solar irradiation
  publication-title: Atmos Res
– volume: 114
  start-page: 218
  year: 2014
  end-page: 226
  ident: b0110
  article-title: Bayesian rules and stochastic models for high accuracy prediction of solar radiation
  publication-title: Appl Energy
– volume: 11
  start-page: 1188
  year: 2000
  end-page: 1193
  ident: b0190
  article-title: Improvements to the SMO algorithm for SVM regression
  publication-title: Neural Networks, IEEE Trans
– volume: 112
  start-page: 274
  year: 2013
  end-page: 288
  ident: b0005
  article-title: Evaluation of the potential of central receiver solar power plants: configuration, optimization and trends
  publication-title: Appl Energy
– volume: 6
  start-page: 37
  year: 1991
  end-page: 66
  ident: b0185
  article-title: Instance-based learning algorithms
  publication-title: Mach Learning
– volume: 114
  start-page: 124
  year: 2014
  end-page: 134
  ident: b0020
  article-title: A method for the dynamic testing and evaluation of the performance of combined solar thermal heat pump hot water systems
  publication-title: Appl Energy
– volume: 102
  start-page: 803
  year: 2013
  end-page: 812
  ident: b0015
  article-title: Rating of roofs’ surfaces regarding their solar potential and suitability for PV systems, based on LiDAR data
  publication-title: Appl Energy
– volume: 63
  start-page: 283
  year: 1998
  end-page: 291
  ident: b0055
  article-title: Multiplicative ARMA models to generate hourly series of global irradiation
  publication-title: Sol Energy
– volume: 93
  start-page: 211
  year: 1999
  end-page: 228
  ident: b0130
  article-title: An improved algorithm for estimating incident daily solar radiation from measurements of temperature, humidity, and precipitation
  publication-title: Agric Forest Meteorol
– volume: 71
  start-page: 307
  year: 2002
  end-page: 319
  ident: b0095
  article-title: Solar radiation estimation using artificial neural networks
  publication-title: Appl Energy
– volume: 31
  start-page: 159
  year: 1984
  end-page: 166
  ident: b0135
  article-title: On the relationship between incoming solar radiation and daily maximum and minimum temperature
  publication-title: Agric Forest Meteorol
– volume: 79
  start-page: 469
  year: 2005
  end-page: 482
  ident: b0145
  article-title: A simplified model for generating sequences of global solar radiation data for isolated sites: using artificial neural network and a library of Markov transition matrices approach
  publication-title: Sol Energy
– volume: 84
  start-page: 1772
  year: 2010
  end-page: 1781
  ident: b0075
  article-title: Prediction of global solar irradiance based on time series analysis: application to solar thermal power plants energy production planning
  publication-title: Sol Energy
– volume: 36
  start-page: 3833
  year: 2008
  end-page: 3837
  ident: b0155
  article-title: Prediction of monthly mean daily diffuse solar radiation using artificial neural networks and comparison with other empirical models
  publication-title: Energy Policy
– volume: 14
  start-page: 199
  year: 2004
  end-page: 222
  ident: b0175
  article-title: A tutorial on support vector regression
  publication-title: Stat Comput
– volume: 84
  start-page: 1513
  year: 1996
  end-page: 1528
  ident: b0045
  article-title: Neural network architectures for vector prediction
  publication-title: Proc IEEE
– volume: 83
  start-page: 342
  year: 2009
  end-page: 349
  ident: b0060
  article-title: Predicting solar radiation at high resolutions: a comparison of time series forecasts
  publication-title: Sol Energy
– year: 1966
  ident: b0165
  article-title: Applied regression analysis
– volume: 83
  start-page: 705
  year: 2006
  end-page: 722
  ident: b0090
  article-title: An adaptive wavelet-network model for forecasting daily total solar-radiation
  publication-title: Appl Energy
– volume: 98
  start-page: 574
  year: 2012
  end-page: 583
  ident: b0035
  article-title: Monitoring of wind farms’ power curves using machine learning techniques
  publication-title: Appl Energy
– volume: 123
  start-page: 168
  year: 2014
  end-page: 178
  ident: b0040
  article-title: Forecasting energy consumption of multi-family residential buildings using support vector regression: investigating the impact of temporal and spatial monitoring granularity on performance accuracy
  publication-title: Appl Energy
– volume: 84
  start-page: 2146
  year: 2010
  end-page: 2160
  ident: b0085
  article-title: Forecasting of preprocessed daily solar radiation time series using neural networks
  publication-title: Sol Energy
– volume: 86
  start-page: 725
  year: 2012
  end-page: 733
  ident: b0120
  article-title: Short-mid-term solar power prediction by using artificial neural networks
  publication-title: Sol Energy
– volume: 83
  start-page: 1772
  year: 2009
  end-page: 1783
  ident: b0125
  article-title: Online short-term solar power forecasting
  publication-title: Sol Energy
– year: 1998
  ident: b0180
  article-title: Artificial neural networks: theory and applications
– volume: 40
  start-page: 1577
  year: 1999
  end-page: 1584
  ident: b0050
  article-title: A study for estimating solar radiation in Elaziğ using geographical and meteorological data
  publication-title: Energy Convers Manage
– volume: 6
  start-page: 247
  year: 1989
  end-page: 252
  ident: b0065
  article-title: A two-state Markovian model of global irradiation suitable for photovoltaic conversion
  publication-title: Sol Wind Technol
– volume: 37
  start-page: 179
  year: 1986
  end-page: 194
  ident: b0070
  article-title: Markov processes and Fourier analysis as a tool to describe and simulate daily solar irradiance
  publication-title: Sol Energy
– reference: Lorenz E, Remund J, Müller SC, Traunmüller W, Steinmaurer G, Pozo D, Antonio J, Ruiz-Arias VLF, Ramirez L, Romeo MG. Benchmarking of different approaches to forecast solar irradiance. In: 24th European photovoltaic solar energy conference, 2009. p. 1–10.
– volume: 48
  start-page: 110
  year: 2012
  end-page: 116
  ident: b0030
  article-title: Analyzing bearing faults in wind turbines: a data-mining approach
  publication-title: Renew Energy
– volume: 111
  start-page: 957
  year: 2013
  end-page: 970
  ident: b0025
  article-title: Supercritical CO
  publication-title: Appl Energy
– volume: 5
  start-page: 373
  year: 2001
  end-page: 401
  ident: b0080
  article-title: Artificial neural networks in renewable energy systems applications: a review
  publication-title: Renew Sust Energy Rev
– volume: 79
  start-page: 469
  year: 2005
  ident: 10.1016/j.apenergy.2014.03.084_b0145
  article-title: A simplified model for generating sequences of global solar radiation data for isolated sites: using artificial neural network and a library of Markov transition matrices approach
  publication-title: Sol Energy
  doi: 10.1016/j.solener.2004.12.006
– volume: 83
  start-page: 342
  year: 2009
  ident: 10.1016/j.apenergy.2014.03.084_b0060
  article-title: Predicting solar radiation at high resolutions: a comparison of time series forecasts
  publication-title: Sol Energy
  doi: 10.1016/j.solener.2008.08.007
– volume: 71
  start-page: 307
  year: 2002
  ident: 10.1016/j.apenergy.2014.03.084_b0095
  article-title: Solar radiation estimation using artificial neural networks
  publication-title: Appl Energy
  doi: 10.1016/S0306-2619(02)00016-8
– volume: 112
  start-page: 79
  year: 2012
  ident: 10.1016/j.apenergy.2014.03.084_b0140
  article-title: Functional fuzzy approach for forecasting daily global solar irradiation
  publication-title: Atmos Res
  doi: 10.1016/j.atmosres.2012.04.011
– volume: 83
  start-page: 705
  year: 2006
  ident: 10.1016/j.apenergy.2014.03.084_b0090
  article-title: An adaptive wavelet-network model for forecasting daily total solar-radiation
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2005.06.003
– volume: 31
  start-page: 159
  year: 1984
  ident: 10.1016/j.apenergy.2014.03.084_b0135
  article-title: On the relationship between incoming solar radiation and daily maximum and minimum temperature
  publication-title: Agric Forest Meteorol
  doi: 10.1016/0168-1923(84)90017-0
– volume: 121
  start-page: 79
  year: 2014
  ident: 10.1016/j.apenergy.2014.03.084_b0010
  article-title: Advances and challenges in ORC systems modeling for low grade thermal energy recovery
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2014.01.074
– volume: 40
  start-page: 1577
  year: 1999
  ident: 10.1016/j.apenergy.2014.03.084_b0050
  article-title: A study for estimating solar radiation in Elaziğ using geographical and meteorological data
  publication-title: Energy Convers Manage
  doi: 10.1016/S0196-8904(99)00035-7
– volume: 11
  start-page: 1188
  year: 2000
  ident: 10.1016/j.apenergy.2014.03.084_b0190
  article-title: Improvements to the SMO algorithm for SVM regression
  publication-title: Neural Networks, IEEE Trans
  doi: 10.1109/72.870050
– volume: 48
  start-page: 110
  year: 2012
  ident: 10.1016/j.apenergy.2014.03.084_b0030
  article-title: Analyzing bearing faults in wind turbines: a data-mining approach
  publication-title: Renew Energy
  doi: 10.1016/j.renene.2012.04.020
– volume: 123
  start-page: 168
  year: 2014
  ident: 10.1016/j.apenergy.2014.03.084_b0040
  article-title: Forecasting energy consumption of multi-family residential buildings using support vector regression: investigating the impact of temporal and spatial monitoring granularity on performance accuracy
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2014.02.057
– year: 1966
  ident: 10.1016/j.apenergy.2014.03.084_b0165
– volume: 114
  start-page: 124
  year: 2014
  ident: 10.1016/j.apenergy.2014.03.084_b0020
  article-title: A method for the dynamic testing and evaluation of the performance of combined solar thermal heat pump hot water systems
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2013.09.039
– volume: 63
  start-page: 283
  year: 1998
  ident: 10.1016/j.apenergy.2014.03.084_b0055
  article-title: Multiplicative ARMA models to generate hourly series of global irradiation
  publication-title: Sol Energy
  doi: 10.1016/S0038-092X(98)00078-4
– volume: 32
  start-page: 274
  year: 2012
  ident: 10.1016/j.apenergy.2014.03.084_b0160
  article-title: Assessment of monthly solar radiation estimates using support vector machines and air temperatures
  publication-title: Int J Climatol
  doi: 10.1002/joc.2267
– volume: 84
  start-page: 1772
  year: 2010
  ident: 10.1016/j.apenergy.2014.03.084_b0075
  article-title: Prediction of global solar irradiance based on time series analysis: application to solar thermal power plants energy production planning
  publication-title: Sol Energy
  doi: 10.1016/j.solener.2010.07.002
– volume: 36
  start-page: 413
  year: 2011
  ident: 10.1016/j.apenergy.2014.03.084_b0105
  article-title: Estimation of monthly solar radiation from measured temperatures using support vector machines – a case study
  publication-title: Renew Energy
  doi: 10.1016/j.renene.2010.06.024
– volume: 5
  start-page: 373
  year: 2001
  ident: 10.1016/j.apenergy.2014.03.084_b0080
  article-title: Artificial neural networks in renewable energy systems applications: a review
  publication-title: Renew Sust Energy Rev
  doi: 10.1016/S1364-0321(01)00006-5
– volume: 84
  start-page: 2146
  year: 2010
  ident: 10.1016/j.apenergy.2014.03.084_b0085
  article-title: Forecasting of preprocessed daily solar radiation time series using neural networks
  publication-title: Sol Energy
  doi: 10.1016/j.solener.2010.08.011
– volume: 112
  start-page: 274
  year: 2013
  ident: 10.1016/j.apenergy.2014.03.084_b0005
  article-title: Evaluation of the potential of central receiver solar power plants: configuration, optimization and trends
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2013.05.049
– volume: 98
  start-page: 574
  year: 2012
  ident: 10.1016/j.apenergy.2014.03.084_b0035
  article-title: Monitoring of wind farms’ power curves using machine learning techniques
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2012.04.037
– year: 1998
  ident: 10.1016/j.apenergy.2014.03.084_b0180
– volume: 111
  start-page: 957
  year: 2013
  ident: 10.1016/j.apenergy.2014.03.084_b0025
  article-title: Supercritical CO2 Brayton cycles for solar-thermal energy
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2013.06.020
– ident: 10.1016/j.apenergy.2014.03.084_b0115
– volume: 86
  start-page: 725
  year: 2012
  ident: 10.1016/j.apenergy.2014.03.084_b0120
  article-title: Short-mid-term solar power prediction by using artificial neural networks
  publication-title: Sol Energy
  doi: 10.1016/j.solener.2011.11.013
– volume: 83
  start-page: 1772
  year: 2009
  ident: 10.1016/j.apenergy.2014.03.084_b0125
  article-title: Online short-term solar power forecasting
  publication-title: Sol Energy
  doi: 10.1016/j.solener.2009.05.016
– volume: 93
  start-page: 211
  year: 1999
  ident: 10.1016/j.apenergy.2014.03.084_b0130
  article-title: An improved algorithm for estimating incident daily solar radiation from measurements of temperature, humidity, and precipitation
  publication-title: Agric Forest Meteorol
  doi: 10.1016/S0168-1923(98)00126-9
– volume: 102
  start-page: 803
  year: 2013
  ident: 10.1016/j.apenergy.2014.03.084_b0015
  article-title: Rating of roofs’ surfaces regarding their solar potential and suitability for PV systems, based on LiDAR data
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2012.08.042
– volume: 6
  start-page: 247
  year: 1989
  ident: 10.1016/j.apenergy.2014.03.084_b0065
  article-title: A two-state Markovian model of global irradiation suitable for photovoltaic conversion
  publication-title: Sol Wind Technol
  doi: 10.1016/0741-983X(89)90076-3
– volume: 84
  start-page: 807
  year: 2010
  ident: 10.1016/j.apenergy.2014.03.084_b0150
  article-title: A 24-h forecast of solar irradiance using artificial neural network: application for performance prediction of a grid-connected PV plant at Trieste, Italy
  publication-title: Sol Energy
  doi: 10.1016/j.solener.2010.02.006
– volume: 6
  start-page: 37
  year: 1991
  ident: 10.1016/j.apenergy.2014.03.084_b0185
  article-title: Instance-based learning algorithms
  publication-title: Mach Learning
  doi: 10.1007/BF00153759
– volume: 14
  start-page: 199
  year: 2004
  ident: 10.1016/j.apenergy.2014.03.084_b0175
  article-title: A tutorial on support vector regression
  publication-title: Stat Comput
  doi: 10.1023/B:STCO.0000035301.49549.88
– volume: 114
  start-page: 218
  year: 2014
  ident: 10.1016/j.apenergy.2014.03.084_b0110
  article-title: Bayesian rules and stochastic models for high accuracy prediction of solar radiation
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2013.09.051
– volume: 84
  start-page: 1513
  year: 1996
  ident: 10.1016/j.apenergy.2014.03.084_b0045
  article-title: Neural network architectures for vector prediction
  publication-title: Proc IEEE
  doi: 10.1109/5.537115
– ident: 10.1016/j.apenergy.2014.03.084_b0170
– volume: 36
  start-page: 3833
  year: 2008
  ident: 10.1016/j.apenergy.2014.03.084_b0155
  article-title: Prediction of monthly mean daily diffuse solar radiation using artificial neural networks and comparison with other empirical models
  publication-title: Energy Policy
  doi: 10.1016/j.enpol.2008.06.030
– volume: 37
  start-page: 179
  year: 1986
  ident: 10.1016/j.apenergy.2014.03.084_b0070
  article-title: Markov processes and Fourier analysis as a tool to describe and simulate daily solar irradiance
  publication-title: Sol Energy
  doi: 10.1016/0038-092X(86)90075-7
– volume: 85
  start-page: 2856
  year: 2011
  ident: 10.1016/j.apenergy.2014.03.084_b0100
  article-title: Online 24-h solar power forecasting based on weather type classification using artificial neural network
  publication-title: Sol Energy
  doi: 10.1016/j.solener.2011.08.027
SSID ssj0002120
Score 2.469265
Snippet •We develop daily solar power prediction models with data-driven approaches.•We introduce a parameter selection procedure for reducing dimensions of prediction...
Daily solar power prediction using data-driven approaches is studied. Four famous data-driven approaches, the Artificial Neural Network (ANN), the Support...
SourceID proquest
pascalfrancis
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 29
SubjectTerms Applied sciences
Artificial Neural Network (ANN)
Data mining
Energy
Exact sciences and technology
meteorological parameters
neural networks
prediction
regression analysis
solar energy
Solar power prediction
Support Vector Machine (SVM)
support vector machines
Time-series model
Title Analysis of daily solar power prediction with data-driven approaches
URI https://dx.doi.org/10.1016/j.apenergy.2014.03.084
https://www.proquest.com/docview/1551040439
https://www.proquest.com/docview/2101342207
Volume 126
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1JSywxEC5EL8pD1Ke8cRkieG0n00lvR3FhVPTiE7yFdLoCIzLTTM8cvPjbrerFBREPHrup0KEqqfqqU_UF4KhI4xgp7AY-RRdolFGQRjIP8lhb5Qufhci9wze38eheXz1ED0tw2vXCcFll6_sbn1576_bNoNXmoByPB3eMdhn_U4ogCRZwEx-z19GaPn55L_MIW2pGEg5Y-kOX8OOxLbHusOMSL12Tnab6uwD1p7QVqc039118cd11PLrYgPUWSIqTZq6bsISTLVj7QC-4BTvn711sJNpu4-ovnHVUJGLqRWHHT8-i4hRXlHxnmihnfHrDFhP8m1ZwFWlQzNgvio6DHKttuL84_386CtrrFAKnZTonHI0OOUMiDCfzwg1RFTKPPZPQKUydTzShKek9qjhXqct1LCl0YaKUCpPEqh1Ynkwn-A-EiiyiK6R1OtPKautJ1A8jG2nHCV4Pok6HxrVc43zlxZPpisoeTad7w7o3UhnSfQ8Gb-PKhm3jxxFZZyLzad0YCgk_ju1_sunbJylkZwTToh4cdkY2tOv4KMVOcLqoDANNycRE2fcylEwPlQ5Dmez-YpJ7sMpPTc3hPizPZws8IBw0z_v1Qu_Dysnl9ej2FbinCWE
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwEB7R5dAihFpaxAKlrtRrut7YeR0RDy0F9lKQuFmOM5YWod1osxz498xsnAVUIQ69JmPFGtsz38Qz3wD8qvI0RXK7kc_RRRplEuWJLKMy1Vb5yhcxcu3w1Tgd3eg_t8ntGhx3tTCcVhlsf2vTl9Y6PBkEbQ7qyWTwl9Eu438KESTBguIDrDM7le7B-tH5xWi8MshxYGck-YgHvCgUvvtta1wW2XGWl17yneb6LR-1WduGNOfblhf_WO-lSzr7DFsBS4qjdrpfYA2n27DxgmFwG3ZOnwvZSDSc5OYrnHRsJGLmRWUn94-i4ShX1Nw2TdRzvsDhRRP8p1ZwImlUzdk0io6GHJtvcHN2en08ikJHhchpmS8ISqNDDpIIxsmyckNUlSxTzzx0CnPnM02ASnqPKi1V7kqdSvJemCml4iyzagd609kUd0GoxCK6SlqnC62stp5E_TCxiXYc4_Uh6XRoXKAb564X96bLK7szne4N695IZUj3fRisxtUt4ca7I4puicyrrWPIK7w79vDVmq4-SV67IKSW9OFnt8iGDh7fptgpzh4aw1hTMjdR8bYMxdNDpeNYZnv_Mckf8HF0fXVpLs_HF_vwid-0KYgH0FvMH_A7waJFeRi2_RPDrQwS
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Analysis+of+daily+solar+power+prediction+with+data-driven+approaches&rft.jtitle=Applied+energy&rft.au=Long%2C+Huan&rft.au=Zhang%2C+Zijun&rft.au=Su%2C+Yan&rft.date=2014-08-01&rft.issn=0306-2619&rft.volume=126&rft.spage=29&rft.epage=37&rft_id=info:doi/10.1016%2Fj.apenergy.2014.03.084&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_apenergy_2014_03_084
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0306-2619&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0306-2619&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0306-2619&client=summon