Analysis of daily solar power prediction with data-driven approaches
•We develop daily solar power prediction models with data-driven approaches.•We introduce a parameter selection procedure for reducing dimensions of prediction models.•We report a comparative analysis of data mining algorithms in daily solar power prediction.•Data mining algorithms can perform bette...
Saved in:
Published in | Applied energy Vol. 126; pp. 29 - 37 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Kidlington
Elsevier Ltd
01.08.2014
Elsevier |
Subjects | |
Online Access | Get full text |
ISSN | 0306-2619 1872-9118 |
DOI | 10.1016/j.apenergy.2014.03.084 |
Cover
Loading…
Abstract | •We develop daily solar power prediction models with data-driven approaches.•We introduce a parameter selection procedure for reducing dimensions of prediction models.•We report a comparative analysis of data mining algorithms in daily solar power prediction.•Data mining algorithms can perform better than persistent methods.•None of data mining algorithms can dominate others in all prediction scenarios.
Daily solar power prediction using data-driven approaches is studied. Four famous data-driven approaches, the Artificial Neural Network (ANN), the Support Vector Machine (SVM), the k-nearest neighbor (kNN), and the multivariate linear regression (MLR), are applied to develop the prediction models. The persistent model is considered as a baseline for evaluating the effectiveness of data-driven approaches. A procedure of selecting input parameters for solar power prediction models is addressed. Two modeling scenarios, including and excluding meteorological parameters as inputs, are assessed in the model development. A comparative analysis of the data-driven algorithms is conducted. The capability of data-driven models in multi-step ahead prediction is examined. The computational results indicate that none of the algorithms can outperform others in all considered prediction scenarios. |
---|---|
AbstractList | Daily solar power prediction using data-driven approaches is studied. Four famous data-driven approaches, the Artificial Neural Network (ANN), the Support Vector Machine (SVM), the k-nearest neighbor (kNN), and the multivariate linear regression (MLR), are applied to develop the prediction models. The persistent model is considered as a baseline for evaluating the effectiveness of data-driven approaches. A procedure of selecting input parameters for solar power prediction models is addressed. Two modeling scenarios, including and excluding meteorological parameters as inputs, are assessed in the model development. A comparative analysis of the data-driven algorithms is conducted. The capability of data-driven models in multi-step ahead prediction is examined. The computational results indicate that none of the algorithms can outperform others in all considered prediction scenarios. •We develop daily solar power prediction models with data-driven approaches.•We introduce a parameter selection procedure for reducing dimensions of prediction models.•We report a comparative analysis of data mining algorithms in daily solar power prediction.•Data mining algorithms can perform better than persistent methods.•None of data mining algorithms can dominate others in all prediction scenarios. Daily solar power prediction using data-driven approaches is studied. Four famous data-driven approaches, the Artificial Neural Network (ANN), the Support Vector Machine (SVM), the k-nearest neighbor (kNN), and the multivariate linear regression (MLR), are applied to develop the prediction models. The persistent model is considered as a baseline for evaluating the effectiveness of data-driven approaches. A procedure of selecting input parameters for solar power prediction models is addressed. Two modeling scenarios, including and excluding meteorological parameters as inputs, are assessed in the model development. A comparative analysis of the data-driven algorithms is conducted. The capability of data-driven models in multi-step ahead prediction is examined. The computational results indicate that none of the algorithms can outperform others in all considered prediction scenarios. |
Author | Zhang, Zijun Su, Yan Long, Huan |
Author_xml | – sequence: 1 givenname: Huan orcidid: 0000-0002-6578-9140 surname: Long fullname: Long, Huan organization: Department of Systems Engineering and Engineering Management, City University of Hong Kong, P6600, 6/F, Academic 1, Hong Kong – sequence: 2 givenname: Zijun surname: Zhang fullname: Zhang, Zijun email: zijzhang@cityu.edu.hk organization: Department of Systems Engineering and Engineering Management, City University of Hong Kong, P6600, 6/F, Academic 1, Hong Kong – sequence: 3 givenname: Yan surname: Su fullname: Su, Yan email: yansu@umac.mo organization: Department of Electromechanical Engineering, University of Macau, Macau |
BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=28499765$$DView record in Pascal Francis |
BookMark | eNqFkU1LxDAQhoMouH78BelF8NI6-WjSggfFbxC86Dlk06lmqUlNqrL_3iyrHrzsZebyvDPwPntk2wePhBxRqChQebqozIge48uyYkBFBbyCRmyRGW0UK1tKm20yAw6yZJK2u2QvpQUAMMpgRq4uvBmWyaUi9EVn3LAsUhhMLMbwhXlG7JydXPDFl5teMzGZsovuE31hxjEGY18xHZCd3gwJD3_2Pnm-uX66vCsfHm_vLy8eSiugmUql0KJgjaplDfPOUuQdzGUPbV1zbGyvhKgl9D1yOeeNnQsJQlFUnHOmlOH75GR9Nz9-_8A06TeXLA6D8Rg-kma5Dy4YA7URpXVNQYDgbUaPf1CTrBn6aLx1SY_RvZm41KwRbatknTm55mwMKUXs_xAKemVCL_SvCb0yoYHrbCIHz_4FrZvMqtQp5sY3x8_XcczVfjqMOlmH3mYzEe2ku-A2nfgGtuGqVA |
CODEN | APENDX |
CitedBy_id | crossref_primary_10_1016_j_apenergy_2017_07_124 crossref_primary_10_1016_j_solener_2019_07_061 crossref_primary_10_1016_j_energy_2017_05_124 crossref_primary_10_1109_TIA_2022_3212999 crossref_primary_10_1016_j_engappai_2024_108426 crossref_primary_10_1016_j_apenergy_2015_09_013 crossref_primary_10_1016_j_eswa_2022_117690 crossref_primary_10_1016_j_renene_2021_05_099 crossref_primary_10_1016_j_egyr_2024_10_060 crossref_primary_10_1016_j_rser_2020_110114 crossref_primary_10_20965_jaciii_2017_p0785 crossref_primary_10_1002_cpe_7190 crossref_primary_10_3390_en16041963 crossref_primary_10_3390_en11051107 crossref_primary_10_1088_2631_8695_ad4e07 crossref_primary_10_3390_app9173593 crossref_primary_10_1016_j_segan_2019_100286 crossref_primary_10_1007_s00500_024_10394_x crossref_primary_10_3390_en11051188 crossref_primary_10_1002_er_5608 crossref_primary_10_1016_j_energy_2021_119887 crossref_primary_10_3390_en18020403 crossref_primary_10_1016_j_enconman_2023_116900 crossref_primary_10_1016_j_engappai_2019_103409 crossref_primary_10_1109_JPHOTOV_2020_2981810 crossref_primary_10_1109_TSTE_2017_2694551 crossref_primary_10_7763_IJCTE_2024_V16_1355 crossref_primary_10_1088_1755_1315_446_4_042014 crossref_primary_10_1016_j_segan_2022_100698 crossref_primary_10_1016_j_ijleo_2023_170957 crossref_primary_10_1109_TIA_2022_3206731 crossref_primary_10_1016_j_ijepes_2021_107176 crossref_primary_10_1002_dac_4366 crossref_primary_10_1016_j_apenergy_2018_02_160 crossref_primary_10_1109_TSMC_2021_3131031 crossref_primary_10_1016_j_susmat_2022_e00429 crossref_primary_10_1109_TSTE_2014_2381224 crossref_primary_10_1016_j_apenergy_2017_10_044 crossref_primary_10_1016_j_rser_2024_114581 crossref_primary_10_1109_ACCESS_2023_3270041 crossref_primary_10_2478_amns_2020_2_00032 crossref_primary_10_1007_s12667_024_00657_9 crossref_primary_10_1109_ACCESS_2022_3222986 crossref_primary_10_1007_s13762_023_05110_5 crossref_primary_10_1109_ICJECE_2021_3093369 crossref_primary_10_1016_j_rser_2024_114691 crossref_primary_10_1016_j_renene_2019_09_102 crossref_primary_10_1016_j_energy_2019_07_168 crossref_primary_10_1016_j_jclepro_2021_128566 crossref_primary_10_1016_j_ijrefrig_2024_05_017 crossref_primary_10_1016_j_ecoinf_2022_101643 crossref_primary_10_3390_en12101856 crossref_primary_10_1016_j_renene_2022_02_051 crossref_primary_10_1109_JIOT_2021_3064384 crossref_primary_10_1016_j_apenergy_2016_08_079 crossref_primary_10_1016_j_engappai_2023_106480 crossref_primary_10_1016_j_swevo_2016_12_004 crossref_primary_10_1109_ACCESS_2020_3024167 crossref_primary_10_1007_s40998_024_00716_y crossref_primary_10_1016_j_jclepro_2019_119476 crossref_primary_10_3390_en12020215 crossref_primary_10_1016_j_solener_2018_01_005 crossref_primary_10_2174_2666255813666201218160223 crossref_primary_10_1016_j_apenergy_2020_114561 crossref_primary_10_1016_j_enconman_2019_112441 crossref_primary_10_1049_tje2_12015 crossref_primary_10_1109_TPWRS_2016_2616902 crossref_primary_10_1016_j_apenergy_2016_07_052 crossref_primary_10_1080_02626667_2021_1928673 crossref_primary_10_1016_j_rineng_2024_103226 crossref_primary_10_1155_2020_8701368 crossref_primary_10_1016_j_enconman_2022_116049 crossref_primary_10_1016_j_solener_2016_06_069 crossref_primary_10_3390_en15030928 crossref_primary_10_1016_j_apenergy_2019_114001 crossref_primary_10_32604_ee_2023_025404 crossref_primary_10_1016_j_rineng_2024_102141 crossref_primary_10_3390_app12010134 crossref_primary_10_1140_epjp_s13360_022_02666_y crossref_primary_10_1016_j_heliyon_2019_e02692 crossref_primary_10_1016_j_enpol_2019_06_011 crossref_primary_10_1007_s00704_021_03726_6 crossref_primary_10_1049_iet_gtd_2020_0625 crossref_primary_10_1016_j_renene_2016_12_095 crossref_primary_10_1155_2020_8843620 crossref_primary_10_1016_j_energy_2014_10_012 crossref_primary_10_1016_j_apenergy_2022_119069 crossref_primary_10_1016_j_jenvman_2024_120392 crossref_primary_10_1007_s13762_019_02344_0 crossref_primary_10_1007_s13369_019_04183_0 crossref_primary_10_1016_j_suscom_2024_101041 crossref_primary_10_1007_s00202_020_01153_w crossref_primary_10_1371_journal_pone_0308002 crossref_primary_10_1109_ACCESS_2021_3131185 crossref_primary_10_1142_S0219691320500745 crossref_primary_10_1016_j_renene_2017_05_089 crossref_primary_10_1109_TIA_2024_3351613 crossref_primary_10_1016_j_rser_2017_04_078 crossref_primary_10_1007_s11356_018_1748_1 crossref_primary_10_1016_j_apenergy_2021_117155 |
Cites_doi | 10.1016/j.solener.2004.12.006 10.1016/j.solener.2008.08.007 10.1016/S0306-2619(02)00016-8 10.1016/j.atmosres.2012.04.011 10.1016/j.apenergy.2005.06.003 10.1016/0168-1923(84)90017-0 10.1016/j.apenergy.2014.01.074 10.1016/S0196-8904(99)00035-7 10.1109/72.870050 10.1016/j.renene.2012.04.020 10.1016/j.apenergy.2014.02.057 10.1016/j.apenergy.2013.09.039 10.1016/S0038-092X(98)00078-4 10.1002/joc.2267 10.1016/j.solener.2010.07.002 10.1016/j.renene.2010.06.024 10.1016/S1364-0321(01)00006-5 10.1016/j.solener.2010.08.011 10.1016/j.apenergy.2013.05.049 10.1016/j.apenergy.2012.04.037 10.1016/j.apenergy.2013.06.020 10.1016/j.solener.2011.11.013 10.1016/j.solener.2009.05.016 10.1016/S0168-1923(98)00126-9 10.1016/j.apenergy.2012.08.042 10.1016/0741-983X(89)90076-3 10.1016/j.solener.2010.02.006 10.1007/BF00153759 10.1023/B:STCO.0000035301.49549.88 10.1016/j.apenergy.2013.09.051 10.1109/5.537115 10.1016/j.enpol.2008.06.030 10.1016/0038-092X(86)90075-7 10.1016/j.solener.2011.08.027 |
ContentType | Journal Article |
Copyright | 2014 Elsevier Ltd 2015 INIST-CNRS |
Copyright_xml | – notice: 2014 Elsevier Ltd – notice: 2015 INIST-CNRS |
DBID | AAYXX CITATION IQODW 7ST 7TG 7U6 C1K KL. 7S9 L.6 |
DOI | 10.1016/j.apenergy.2014.03.084 |
DatabaseName | CrossRef Pascal-Francis Environment Abstracts Meteorological & Geoastrophysical Abstracts Sustainability Science Abstracts Environmental Sciences and Pollution Management Meteorological & Geoastrophysical Abstracts - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef Meteorological & Geoastrophysical Abstracts Environment Abstracts Meteorological & Geoastrophysical Abstracts - Academic Sustainability Science Abstracts Environmental Sciences and Pollution Management AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA Meteorological & Geoastrophysical Abstracts |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Environmental Sciences Applied Sciences |
EISSN | 1872-9118 |
EndPage | 37 |
ExternalDocumentID | 28499765 10_1016_j_apenergy_2014_03_084 S0306261914003249 |
GroupedDBID | --K --M .~1 0R~ 1B1 1~. 1~5 23M 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AABNK AACTN AAEDT AAEDW AAHCO AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AARJD AAXUO ABJNI ABMAC ABXDB ABYKQ ACDAQ ACGFS ACRLP ADBBV ADEZE ADTZH AEBSH AECPX AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHIDL AHJVU AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BELTK BJAXD BKOJK BLXMC CS3 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 FDB FIRID FNPLU FYGXN G-Q GBLVA IHE J1W JARJE JJJVA KOM LY6 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 RIG ROL RPZ SDF SDG SES SPC SPCBC SSR SST SSZ T5K TN5 ~02 ~G- AAHBH AAQXK AATTM AAXKI AAYOK AAYWO AAYXX ABEFU ABFNM ABWVN ACNNM ACRPL ACVFH ADCNI ADMUD ADNMO AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN BNPGV CITATION FEDTE FGOYB G-2 HVGLF HZ~ R2- SAC SEW SSH WUQ ZY4 ABTAH IQODW 7ST 7TG 7U6 C1K KL. 7S9 EFKBS L.6 |
ID | FETCH-LOGICAL-c408t-77ece42875650bdc1e3d0b6f09553e8cf744560ffe36b38cb460471e7333277a3 |
IEDL.DBID | .~1 |
ISSN | 0306-2619 |
IngestDate | Tue Aug 05 09:56:04 EDT 2025 Thu Jul 10 19:58:31 EDT 2025 Wed Apr 02 07:37:52 EDT 2025 Tue Jul 01 03:05:23 EDT 2025 Thu Apr 24 22:57:10 EDT 2025 Fri Feb 23 02:37:00 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Solar power prediction Data mining Time-series model Support Vector Machine (SVM) Artificial Neural Network (ANN) Solar energy Time series Models Electric power production Neural network Modeling |
Language | English |
License | CC BY 4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c408t-77ece42875650bdc1e3d0b6f09553e8cf744560ffe36b38cb460471e7333277a3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0002-6578-9140 |
PQID | 1551040439 |
PQPubID | 23462 |
PageCount | 9 |
ParticipantIDs | proquest_miscellaneous_2101342207 proquest_miscellaneous_1551040439 pascalfrancis_primary_28499765 crossref_primary_10_1016_j_apenergy_2014_03_084 crossref_citationtrail_10_1016_j_apenergy_2014_03_084 elsevier_sciencedirect_doi_10_1016_j_apenergy_2014_03_084 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2014-08-01 |
PublicationDateYYYYMMDD | 2014-08-01 |
PublicationDate_xml | – month: 08 year: 2014 text: 2014-08-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | Kidlington |
PublicationPlace_xml | – name: Kidlington |
PublicationTitle | Applied energy |
PublicationYear | 2014 |
Publisher | Elsevier Ltd Elsevier |
Publisher_xml | – name: Elsevier Ltd – name: Elsevier |
References | Mellit, Pavan (b0150) 2010; 84 Voyant, Darras, Muselli, Paoli, Nivet, Poggi (b0110) 2014; 114 Wu, Liu (b0160) 2012; 32 Chen, Liu, Wu, Xie (b0105) 2011; 36 Avila-Marin, Fernandez-Reche, Tellez (b0005) 2013; 112 Bacher, Madsen, Nielsen (b0125) 2009; 83 Izgi, Öztopal, Yerli, Kaymak, Şahin (b0120) 2012; 86 Paoli, Voyant, Muselli, Nivet (b0085) 2010; 84 Marvuglia, Messineo (b0035) 2012; 98 Smola, Schölkopf (b0175) 2004; 14 Bristow, Campbell (b0135) 1984; 31 Maafi, Adane (b0065) 1989; 6 Boata, Gravila (b0140) 2012; 112 Reikard (b0060) 2009; 83 Jain, Smith, Culligan, Taylor (b0040) 2014; 123 Draper Harry (b0165) 1966 Chen, Duan, Cai, Liu (b0100) 2011; 85 Martín, Zarzalejo, Polo, Navarro, Marchante, Cony (b0075) 2010; 84 Patterson (b0180) 1998 Kalogirou (b0080) 2001; 5 Mellit, Benghanem, Arab, Guessoum (b0145) 2005; 79 Mellit, Benghanem, Kalogirou (b0090) 2006; 83 Rizvi, Wang, Nasrabadi (b0045) 1996; 84 Amato, Andretta, Bartoli, Coluzzi, Cuomo, Fontana (b0070) 1986; 37 Türk Toğrul, Onat (b0050) 1999; 40 Iverson, Conboy, Pasch, Kruizenga (b0025) 2013; 111 Thornton, Running (b0130) 1999; 93 Ziviani, Beyene, Venturini (b0010) 2014; 121 Dorvlo, Jervase, Al-Lawati (b0095) 2002; 71 Aha, Kibler, Albert (b0185) 1991; 6 Shevade, Keerthi, Bhattacharyya, Murthy (b0190) 2000; 11 Lukač, Žlaus, Seme, Žalik, Štumberger (b0015) 2013; 102 Panaras, Mathioulakis, Belessiotis (b0020) 2014; 114 Kusiak, Verma (b0030) 2012; 48 Jiang (b0155) 2008; 36 Lorenz E, Remund J, Müller SC, Traunmüller W, Steinmaurer G, Pozo D, Antonio J, Ruiz-Arias VLF, Ramirez L, Romeo MG. Benchmarking of different approaches to forecast solar irradiance. In: 24th European photovoltaic solar energy conference, 2009. p. 1–10. Wang Y. A new approach to fitting linear models in high dimensional spaces, Ph.D. dissertation, University of Waikato; 2000. 204 p. Mora-Lopez, Sidrach-de-Cardona (b0055) 1998; 63 Chen (10.1016/j.apenergy.2014.03.084_b0105) 2011; 36 Draper Harry (10.1016/j.apenergy.2014.03.084_b0165) 1966 Mellit (10.1016/j.apenergy.2014.03.084_b0090) 2006; 83 Mellit (10.1016/j.apenergy.2014.03.084_b0150) 2010; 84 10.1016/j.apenergy.2014.03.084_b0170 Iverson (10.1016/j.apenergy.2014.03.084_b0025) 2013; 111 Kalogirou (10.1016/j.apenergy.2014.03.084_b0080) 2001; 5 Aha (10.1016/j.apenergy.2014.03.084_b0185) 1991; 6 Shevade (10.1016/j.apenergy.2014.03.084_b0190) 2000; 11 Panaras (10.1016/j.apenergy.2014.03.084_b0020) 2014; 114 10.1016/j.apenergy.2014.03.084_b0115 Wu (10.1016/j.apenergy.2014.03.084_b0160) 2012; 32 Marvuglia (10.1016/j.apenergy.2014.03.084_b0035) 2012; 98 Amato (10.1016/j.apenergy.2014.03.084_b0070) 1986; 37 Thornton (10.1016/j.apenergy.2014.03.084_b0130) 1999; 93 Boata (10.1016/j.apenergy.2014.03.084_b0140) 2012; 112 Avila-Marin (10.1016/j.apenergy.2014.03.084_b0005) 2013; 112 Bacher (10.1016/j.apenergy.2014.03.084_b0125) 2009; 83 Jain (10.1016/j.apenergy.2014.03.084_b0040) 2014; 123 Rizvi (10.1016/j.apenergy.2014.03.084_b0045) 1996; 84 Lukač (10.1016/j.apenergy.2014.03.084_b0015) 2013; 102 Voyant (10.1016/j.apenergy.2014.03.084_b0110) 2014; 114 Ziviani (10.1016/j.apenergy.2014.03.084_b0010) 2014; 121 Izgi (10.1016/j.apenergy.2014.03.084_b0120) 2012; 86 Martín (10.1016/j.apenergy.2014.03.084_b0075) 2010; 84 Paoli (10.1016/j.apenergy.2014.03.084_b0085) 2010; 84 Smola (10.1016/j.apenergy.2014.03.084_b0175) 2004; 14 Bristow (10.1016/j.apenergy.2014.03.084_b0135) 1984; 31 Kusiak (10.1016/j.apenergy.2014.03.084_b0030) 2012; 48 Türk Toğrul (10.1016/j.apenergy.2014.03.084_b0050) 1999; 40 Reikard (10.1016/j.apenergy.2014.03.084_b0060) 2009; 83 Patterson (10.1016/j.apenergy.2014.03.084_b0180) 1998 Mellit (10.1016/j.apenergy.2014.03.084_b0145) 2005; 79 Dorvlo (10.1016/j.apenergy.2014.03.084_b0095) 2002; 71 Chen (10.1016/j.apenergy.2014.03.084_b0100) 2011; 85 Maafi (10.1016/j.apenergy.2014.03.084_b0065) 1989; 6 Mora-Lopez (10.1016/j.apenergy.2014.03.084_b0055) 1998; 63 Jiang (10.1016/j.apenergy.2014.03.084_b0155) 2008; 36 |
References_xml | – volume: 85 start-page: 2856 year: 2011 end-page: 2870 ident: b0100 article-title: Online 24-h solar power forecasting based on weather type classification using artificial neural network publication-title: Sol Energy – volume: 36 start-page: 413 year: 2011 end-page: 420 ident: b0105 article-title: Estimation of monthly solar radiation from measured temperatures using support vector machines – a case study publication-title: Renew Energy – volume: 84 start-page: 807 year: 2010 end-page: 821 ident: b0150 article-title: A 24-h forecast of solar irradiance using artificial neural network: application for performance prediction of a grid-connected PV plant at Trieste, Italy publication-title: Sol Energy – volume: 32 start-page: 274 year: 2012 end-page: 285 ident: b0160 article-title: Assessment of monthly solar radiation estimates using support vector machines and air temperatures publication-title: Int J Climatol – reference: Wang Y. A new approach to fitting linear models in high dimensional spaces, Ph.D. dissertation, University of Waikato; 2000. 204 p. – volume: 121 start-page: 79 year: 2014 end-page: 95 ident: b0010 article-title: Advances and challenges in ORC systems modeling for low grade thermal energy recovery publication-title: Appl Energy – volume: 112 start-page: 79 year: 2012 end-page: 88 ident: b0140 article-title: Functional fuzzy approach for forecasting daily global solar irradiation publication-title: Atmos Res – volume: 114 start-page: 218 year: 2014 end-page: 226 ident: b0110 article-title: Bayesian rules and stochastic models for high accuracy prediction of solar radiation publication-title: Appl Energy – volume: 11 start-page: 1188 year: 2000 end-page: 1193 ident: b0190 article-title: Improvements to the SMO algorithm for SVM regression publication-title: Neural Networks, IEEE Trans – volume: 112 start-page: 274 year: 2013 end-page: 288 ident: b0005 article-title: Evaluation of the potential of central receiver solar power plants: configuration, optimization and trends publication-title: Appl Energy – volume: 6 start-page: 37 year: 1991 end-page: 66 ident: b0185 article-title: Instance-based learning algorithms publication-title: Mach Learning – volume: 114 start-page: 124 year: 2014 end-page: 134 ident: b0020 article-title: A method for the dynamic testing and evaluation of the performance of combined solar thermal heat pump hot water systems publication-title: Appl Energy – volume: 102 start-page: 803 year: 2013 end-page: 812 ident: b0015 article-title: Rating of roofs’ surfaces regarding their solar potential and suitability for PV systems, based on LiDAR data publication-title: Appl Energy – volume: 63 start-page: 283 year: 1998 end-page: 291 ident: b0055 article-title: Multiplicative ARMA models to generate hourly series of global irradiation publication-title: Sol Energy – volume: 93 start-page: 211 year: 1999 end-page: 228 ident: b0130 article-title: An improved algorithm for estimating incident daily solar radiation from measurements of temperature, humidity, and precipitation publication-title: Agric Forest Meteorol – volume: 71 start-page: 307 year: 2002 end-page: 319 ident: b0095 article-title: Solar radiation estimation using artificial neural networks publication-title: Appl Energy – volume: 31 start-page: 159 year: 1984 end-page: 166 ident: b0135 article-title: On the relationship between incoming solar radiation and daily maximum and minimum temperature publication-title: Agric Forest Meteorol – volume: 79 start-page: 469 year: 2005 end-page: 482 ident: b0145 article-title: A simplified model for generating sequences of global solar radiation data for isolated sites: using artificial neural network and a library of Markov transition matrices approach publication-title: Sol Energy – volume: 84 start-page: 1772 year: 2010 end-page: 1781 ident: b0075 article-title: Prediction of global solar irradiance based on time series analysis: application to solar thermal power plants energy production planning publication-title: Sol Energy – volume: 36 start-page: 3833 year: 2008 end-page: 3837 ident: b0155 article-title: Prediction of monthly mean daily diffuse solar radiation using artificial neural networks and comparison with other empirical models publication-title: Energy Policy – volume: 14 start-page: 199 year: 2004 end-page: 222 ident: b0175 article-title: A tutorial on support vector regression publication-title: Stat Comput – volume: 84 start-page: 1513 year: 1996 end-page: 1528 ident: b0045 article-title: Neural network architectures for vector prediction publication-title: Proc IEEE – volume: 83 start-page: 342 year: 2009 end-page: 349 ident: b0060 article-title: Predicting solar radiation at high resolutions: a comparison of time series forecasts publication-title: Sol Energy – year: 1966 ident: b0165 article-title: Applied regression analysis – volume: 83 start-page: 705 year: 2006 end-page: 722 ident: b0090 article-title: An adaptive wavelet-network model for forecasting daily total solar-radiation publication-title: Appl Energy – volume: 98 start-page: 574 year: 2012 end-page: 583 ident: b0035 article-title: Monitoring of wind farms’ power curves using machine learning techniques publication-title: Appl Energy – volume: 123 start-page: 168 year: 2014 end-page: 178 ident: b0040 article-title: Forecasting energy consumption of multi-family residential buildings using support vector regression: investigating the impact of temporal and spatial monitoring granularity on performance accuracy publication-title: Appl Energy – volume: 84 start-page: 2146 year: 2010 end-page: 2160 ident: b0085 article-title: Forecasting of preprocessed daily solar radiation time series using neural networks publication-title: Sol Energy – volume: 86 start-page: 725 year: 2012 end-page: 733 ident: b0120 article-title: Short-mid-term solar power prediction by using artificial neural networks publication-title: Sol Energy – volume: 83 start-page: 1772 year: 2009 end-page: 1783 ident: b0125 article-title: Online short-term solar power forecasting publication-title: Sol Energy – year: 1998 ident: b0180 article-title: Artificial neural networks: theory and applications – volume: 40 start-page: 1577 year: 1999 end-page: 1584 ident: b0050 article-title: A study for estimating solar radiation in Elaziğ using geographical and meteorological data publication-title: Energy Convers Manage – volume: 6 start-page: 247 year: 1989 end-page: 252 ident: b0065 article-title: A two-state Markovian model of global irradiation suitable for photovoltaic conversion publication-title: Sol Wind Technol – volume: 37 start-page: 179 year: 1986 end-page: 194 ident: b0070 article-title: Markov processes and Fourier analysis as a tool to describe and simulate daily solar irradiance publication-title: Sol Energy – reference: Lorenz E, Remund J, Müller SC, Traunmüller W, Steinmaurer G, Pozo D, Antonio J, Ruiz-Arias VLF, Ramirez L, Romeo MG. Benchmarking of different approaches to forecast solar irradiance. In: 24th European photovoltaic solar energy conference, 2009. p. 1–10. – volume: 48 start-page: 110 year: 2012 end-page: 116 ident: b0030 article-title: Analyzing bearing faults in wind turbines: a data-mining approach publication-title: Renew Energy – volume: 111 start-page: 957 year: 2013 end-page: 970 ident: b0025 article-title: Supercritical CO publication-title: Appl Energy – volume: 5 start-page: 373 year: 2001 end-page: 401 ident: b0080 article-title: Artificial neural networks in renewable energy systems applications: a review publication-title: Renew Sust Energy Rev – volume: 79 start-page: 469 year: 2005 ident: 10.1016/j.apenergy.2014.03.084_b0145 article-title: A simplified model for generating sequences of global solar radiation data for isolated sites: using artificial neural network and a library of Markov transition matrices approach publication-title: Sol Energy doi: 10.1016/j.solener.2004.12.006 – volume: 83 start-page: 342 year: 2009 ident: 10.1016/j.apenergy.2014.03.084_b0060 article-title: Predicting solar radiation at high resolutions: a comparison of time series forecasts publication-title: Sol Energy doi: 10.1016/j.solener.2008.08.007 – volume: 71 start-page: 307 year: 2002 ident: 10.1016/j.apenergy.2014.03.084_b0095 article-title: Solar radiation estimation using artificial neural networks publication-title: Appl Energy doi: 10.1016/S0306-2619(02)00016-8 – volume: 112 start-page: 79 year: 2012 ident: 10.1016/j.apenergy.2014.03.084_b0140 article-title: Functional fuzzy approach for forecasting daily global solar irradiation publication-title: Atmos Res doi: 10.1016/j.atmosres.2012.04.011 – volume: 83 start-page: 705 year: 2006 ident: 10.1016/j.apenergy.2014.03.084_b0090 article-title: An adaptive wavelet-network model for forecasting daily total solar-radiation publication-title: Appl Energy doi: 10.1016/j.apenergy.2005.06.003 – volume: 31 start-page: 159 year: 1984 ident: 10.1016/j.apenergy.2014.03.084_b0135 article-title: On the relationship between incoming solar radiation and daily maximum and minimum temperature publication-title: Agric Forest Meteorol doi: 10.1016/0168-1923(84)90017-0 – volume: 121 start-page: 79 year: 2014 ident: 10.1016/j.apenergy.2014.03.084_b0010 article-title: Advances and challenges in ORC systems modeling for low grade thermal energy recovery publication-title: Appl Energy doi: 10.1016/j.apenergy.2014.01.074 – volume: 40 start-page: 1577 year: 1999 ident: 10.1016/j.apenergy.2014.03.084_b0050 article-title: A study for estimating solar radiation in Elaziğ using geographical and meteorological data publication-title: Energy Convers Manage doi: 10.1016/S0196-8904(99)00035-7 – volume: 11 start-page: 1188 year: 2000 ident: 10.1016/j.apenergy.2014.03.084_b0190 article-title: Improvements to the SMO algorithm for SVM regression publication-title: Neural Networks, IEEE Trans doi: 10.1109/72.870050 – volume: 48 start-page: 110 year: 2012 ident: 10.1016/j.apenergy.2014.03.084_b0030 article-title: Analyzing bearing faults in wind turbines: a data-mining approach publication-title: Renew Energy doi: 10.1016/j.renene.2012.04.020 – volume: 123 start-page: 168 year: 2014 ident: 10.1016/j.apenergy.2014.03.084_b0040 article-title: Forecasting energy consumption of multi-family residential buildings using support vector regression: investigating the impact of temporal and spatial monitoring granularity on performance accuracy publication-title: Appl Energy doi: 10.1016/j.apenergy.2014.02.057 – year: 1966 ident: 10.1016/j.apenergy.2014.03.084_b0165 – volume: 114 start-page: 124 year: 2014 ident: 10.1016/j.apenergy.2014.03.084_b0020 article-title: A method for the dynamic testing and evaluation of the performance of combined solar thermal heat pump hot water systems publication-title: Appl Energy doi: 10.1016/j.apenergy.2013.09.039 – volume: 63 start-page: 283 year: 1998 ident: 10.1016/j.apenergy.2014.03.084_b0055 article-title: Multiplicative ARMA models to generate hourly series of global irradiation publication-title: Sol Energy doi: 10.1016/S0038-092X(98)00078-4 – volume: 32 start-page: 274 year: 2012 ident: 10.1016/j.apenergy.2014.03.084_b0160 article-title: Assessment of monthly solar radiation estimates using support vector machines and air temperatures publication-title: Int J Climatol doi: 10.1002/joc.2267 – volume: 84 start-page: 1772 year: 2010 ident: 10.1016/j.apenergy.2014.03.084_b0075 article-title: Prediction of global solar irradiance based on time series analysis: application to solar thermal power plants energy production planning publication-title: Sol Energy doi: 10.1016/j.solener.2010.07.002 – volume: 36 start-page: 413 year: 2011 ident: 10.1016/j.apenergy.2014.03.084_b0105 article-title: Estimation of monthly solar radiation from measured temperatures using support vector machines – a case study publication-title: Renew Energy doi: 10.1016/j.renene.2010.06.024 – volume: 5 start-page: 373 year: 2001 ident: 10.1016/j.apenergy.2014.03.084_b0080 article-title: Artificial neural networks in renewable energy systems applications: a review publication-title: Renew Sust Energy Rev doi: 10.1016/S1364-0321(01)00006-5 – volume: 84 start-page: 2146 year: 2010 ident: 10.1016/j.apenergy.2014.03.084_b0085 article-title: Forecasting of preprocessed daily solar radiation time series using neural networks publication-title: Sol Energy doi: 10.1016/j.solener.2010.08.011 – volume: 112 start-page: 274 year: 2013 ident: 10.1016/j.apenergy.2014.03.084_b0005 article-title: Evaluation of the potential of central receiver solar power plants: configuration, optimization and trends publication-title: Appl Energy doi: 10.1016/j.apenergy.2013.05.049 – volume: 98 start-page: 574 year: 2012 ident: 10.1016/j.apenergy.2014.03.084_b0035 article-title: Monitoring of wind farms’ power curves using machine learning techniques publication-title: Appl Energy doi: 10.1016/j.apenergy.2012.04.037 – year: 1998 ident: 10.1016/j.apenergy.2014.03.084_b0180 – volume: 111 start-page: 957 year: 2013 ident: 10.1016/j.apenergy.2014.03.084_b0025 article-title: Supercritical CO2 Brayton cycles for solar-thermal energy publication-title: Appl Energy doi: 10.1016/j.apenergy.2013.06.020 – ident: 10.1016/j.apenergy.2014.03.084_b0115 – volume: 86 start-page: 725 year: 2012 ident: 10.1016/j.apenergy.2014.03.084_b0120 article-title: Short-mid-term solar power prediction by using artificial neural networks publication-title: Sol Energy doi: 10.1016/j.solener.2011.11.013 – volume: 83 start-page: 1772 year: 2009 ident: 10.1016/j.apenergy.2014.03.084_b0125 article-title: Online short-term solar power forecasting publication-title: Sol Energy doi: 10.1016/j.solener.2009.05.016 – volume: 93 start-page: 211 year: 1999 ident: 10.1016/j.apenergy.2014.03.084_b0130 article-title: An improved algorithm for estimating incident daily solar radiation from measurements of temperature, humidity, and precipitation publication-title: Agric Forest Meteorol doi: 10.1016/S0168-1923(98)00126-9 – volume: 102 start-page: 803 year: 2013 ident: 10.1016/j.apenergy.2014.03.084_b0015 article-title: Rating of roofs’ surfaces regarding their solar potential and suitability for PV systems, based on LiDAR data publication-title: Appl Energy doi: 10.1016/j.apenergy.2012.08.042 – volume: 6 start-page: 247 year: 1989 ident: 10.1016/j.apenergy.2014.03.084_b0065 article-title: A two-state Markovian model of global irradiation suitable for photovoltaic conversion publication-title: Sol Wind Technol doi: 10.1016/0741-983X(89)90076-3 – volume: 84 start-page: 807 year: 2010 ident: 10.1016/j.apenergy.2014.03.084_b0150 article-title: A 24-h forecast of solar irradiance using artificial neural network: application for performance prediction of a grid-connected PV plant at Trieste, Italy publication-title: Sol Energy doi: 10.1016/j.solener.2010.02.006 – volume: 6 start-page: 37 year: 1991 ident: 10.1016/j.apenergy.2014.03.084_b0185 article-title: Instance-based learning algorithms publication-title: Mach Learning doi: 10.1007/BF00153759 – volume: 14 start-page: 199 year: 2004 ident: 10.1016/j.apenergy.2014.03.084_b0175 article-title: A tutorial on support vector regression publication-title: Stat Comput doi: 10.1023/B:STCO.0000035301.49549.88 – volume: 114 start-page: 218 year: 2014 ident: 10.1016/j.apenergy.2014.03.084_b0110 article-title: Bayesian rules and stochastic models for high accuracy prediction of solar radiation publication-title: Appl Energy doi: 10.1016/j.apenergy.2013.09.051 – volume: 84 start-page: 1513 year: 1996 ident: 10.1016/j.apenergy.2014.03.084_b0045 article-title: Neural network architectures for vector prediction publication-title: Proc IEEE doi: 10.1109/5.537115 – ident: 10.1016/j.apenergy.2014.03.084_b0170 – volume: 36 start-page: 3833 year: 2008 ident: 10.1016/j.apenergy.2014.03.084_b0155 article-title: Prediction of monthly mean daily diffuse solar radiation using artificial neural networks and comparison with other empirical models publication-title: Energy Policy doi: 10.1016/j.enpol.2008.06.030 – volume: 37 start-page: 179 year: 1986 ident: 10.1016/j.apenergy.2014.03.084_b0070 article-title: Markov processes and Fourier analysis as a tool to describe and simulate daily solar irradiance publication-title: Sol Energy doi: 10.1016/0038-092X(86)90075-7 – volume: 85 start-page: 2856 year: 2011 ident: 10.1016/j.apenergy.2014.03.084_b0100 article-title: Online 24-h solar power forecasting based on weather type classification using artificial neural network publication-title: Sol Energy doi: 10.1016/j.solener.2011.08.027 |
SSID | ssj0002120 |
Score | 2.469265 |
Snippet | •We develop daily solar power prediction models with data-driven approaches.•We introduce a parameter selection procedure for reducing dimensions of prediction... Daily solar power prediction using data-driven approaches is studied. Four famous data-driven approaches, the Artificial Neural Network (ANN), the Support... |
SourceID | proquest pascalfrancis crossref elsevier |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 29 |
SubjectTerms | Applied sciences Artificial Neural Network (ANN) Data mining Energy Exact sciences and technology meteorological parameters neural networks prediction regression analysis solar energy Solar power prediction Support Vector Machine (SVM) support vector machines Time-series model |
Title | Analysis of daily solar power prediction with data-driven approaches |
URI | https://dx.doi.org/10.1016/j.apenergy.2014.03.084 https://www.proquest.com/docview/1551040439 https://www.proquest.com/docview/2101342207 |
Volume | 126 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1JSywxEC5EL8pD1Ke8cRkieG0n00lvR3FhVPTiE7yFdLoCIzLTTM8cvPjbrerFBREPHrup0KEqqfqqU_UF4KhI4xgp7AY-RRdolFGQRjIP8lhb5Qufhci9wze38eheXz1ED0tw2vXCcFll6_sbn1576_bNoNXmoByPB3eMdhn_U4ogCRZwEx-z19GaPn55L_MIW2pGEg5Y-kOX8OOxLbHusOMSL12Tnab6uwD1p7QVqc039118cd11PLrYgPUWSIqTZq6bsISTLVj7QC-4BTvn711sJNpu4-ovnHVUJGLqRWHHT8-i4hRXlHxnmihnfHrDFhP8m1ZwFWlQzNgvio6DHKttuL84_386CtrrFAKnZTonHI0OOUMiDCfzwg1RFTKPPZPQKUydTzShKek9qjhXqct1LCl0YaKUCpPEqh1Ynkwn-A-EiiyiK6R1OtPKautJ1A8jG2nHCV4Pok6HxrVc43zlxZPpisoeTad7w7o3UhnSfQ8Gb-PKhm3jxxFZZyLzad0YCgk_ju1_sunbJylkZwTToh4cdkY2tOv4KMVOcLqoDANNycRE2fcylEwPlQ5Dmez-YpJ7sMpPTc3hPizPZws8IBw0z_v1Qu_Dysnl9ej2FbinCWE |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwEB7R5dAihFpaxAKlrtRrut7YeR0RDy0F9lKQuFmOM5YWod1osxz498xsnAVUIQ69JmPFGtsz38Qz3wD8qvI0RXK7kc_RRRplEuWJLKMy1Vb5yhcxcu3w1Tgd3eg_t8ntGhx3tTCcVhlsf2vTl9Y6PBkEbQ7qyWTwl9Eu438KESTBguIDrDM7le7B-tH5xWi8MshxYGck-YgHvCgUvvtta1wW2XGWl17yneb6LR-1WduGNOfblhf_WO-lSzr7DFsBS4qjdrpfYA2n27DxgmFwG3ZOnwvZSDSc5OYrnHRsJGLmRWUn94-i4ShX1Nw2TdRzvsDhRRP8p1ZwImlUzdk0io6GHJtvcHN2en08ikJHhchpmS8ISqNDDpIIxsmyckNUlSxTzzx0CnPnM02ASnqPKi1V7kqdSvJemCml4iyzagd609kUd0GoxCK6SlqnC62stp5E_TCxiXYc4_Uh6XRoXKAb564X96bLK7szne4N695IZUj3fRisxtUt4ca7I4puicyrrWPIK7w79vDVmq4-SV67IKSW9OFnt8iGDh7fptgpzh4aw1hTMjdR8bYMxdNDpeNYZnv_Mckf8HF0fXVpLs_HF_vwid-0KYgH0FvMH_A7waJFeRi2_RPDrQwS |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Analysis+of+daily+solar+power+prediction+with+data-driven+approaches&rft.jtitle=Applied+energy&rft.au=Long%2C+Huan&rft.au=Zhang%2C+Zijun&rft.au=Su%2C+Yan&rft.date=2014-08-01&rft.issn=0306-2619&rft.volume=126&rft.spage=29&rft.epage=37&rft_id=info:doi/10.1016%2Fj.apenergy.2014.03.084&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_apenergy_2014_03_084 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0306-2619&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0306-2619&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0306-2619&client=summon |