SIRT6-CBP-dependent nuclear Tau accumulation and its role in protein synthesis
Several neurodegenerative diseases present Tau accumulation as the main pathological marker. Tau post-translational modifications such as phosphorylation and acetylation are increased in neurodegeneration. Here, we show that Tau hyper-acetylation at residue 174 increases its own nuclear presence and...
Saved in:
Published in | Cell reports (Cambridge) Vol. 35; no. 4; p. 109035 |
---|---|
Main Authors | , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
Elsevier Inc
27.04.2021
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Several neurodegenerative diseases present Tau accumulation as the main pathological marker. Tau post-translational modifications such as phosphorylation and acetylation are increased in neurodegeneration. Here, we show that Tau hyper-acetylation at residue 174 increases its own nuclear presence and is the result of DNA damage signaling or the lack of SIRT6, both causative of neurodegeneration. Tau-K174ac is deacetylated in the nucleus by SIRT6. However, lack of SIRT6 or chronic DNA damage results in nuclear Tau-K174ac accumulation. Once there, it induces global changes in gene expression, affecting protein translation, synthesis, and energy production. Concomitantly, Alzheimer’s disease (AD) case subjects show increased nucleolin and a decrease in SIRT6 levels. AD case subjects present increased levels of nuclear Tau, particularly Tau-K174ac. Our results suggest that increased Tau-K174ac in AD case subjects is the result of DNA damage signaling and SIRT6 depletion. We propose that Tau-K174ac toxicity is due to its increased stability, nuclear accumulation, and nucleolar dysfunction.
[Display omitted]
•DNA damage or SIRT6 absence leads to acetylation of Tau-K174 via CBP•Tau174ac shuttles to the nucleus, where it induces nucleolar activation•SIRT6 regulates Tau-174ac nuclear functions through its deacetylation•Tau174Q increases nucleolar activity and protein synthesis, leading to ATP depletion
Portillo et al. show that acetylation of Tau-174 by CBP leads to its nuclear translocation, increasing nucleolar activity and protein synthesis capacity and resulting in ATP depletion. SIRT6 deacetylates nuclear Tau-174ac, preventing its accumulation. SIRT6 depletion, as in Alzheimer’s disease, increases Tau-174ac through the DNA damage response and impaired deacetylation. |
---|---|
AbstractList | Several neurodegenerative diseases present Tau accumulation as the main pathological marker. Tau post-translational modifications such as phosphorylation and acetylation are increased in neurodegeneration. Here, we show that Tau hyper-acetylation at residue 174 increases its own nuclear presence and is the result of DNA damage signaling or the lack of SIRT6, both causative of neurodegeneration. Tau-K174ac is deacetylated in the nucleus by SIRT6. However, lack of SIRT6 or chronic DNA damage results in nuclear Tau-K174ac accumulation. Once there, it induces global changes in gene expression, affecting protein translation, synthesis, and energy production. Concomitantly, Alzheimer's disease (AD) case subjects show increased nucleolin and a decrease in SIRT6 levels. AD case subjects present increased levels of nuclear Tau, particularly Tau-K174ac. Our results suggest that increased Tau-K174ac in AD case subjects is the result of DNA damage signaling and SIRT6 depletion. We propose that Tau-K174ac toxicity is due to its increased stability, nuclear accumulation, and nucleolar dysfunction.Several neurodegenerative diseases present Tau accumulation as the main pathological marker. Tau post-translational modifications such as phosphorylation and acetylation are increased in neurodegeneration. Here, we show that Tau hyper-acetylation at residue 174 increases its own nuclear presence and is the result of DNA damage signaling or the lack of SIRT6, both causative of neurodegeneration. Tau-K174ac is deacetylated in the nucleus by SIRT6. However, lack of SIRT6 or chronic DNA damage results in nuclear Tau-K174ac accumulation. Once there, it induces global changes in gene expression, affecting protein translation, synthesis, and energy production. Concomitantly, Alzheimer's disease (AD) case subjects show increased nucleolin and a decrease in SIRT6 levels. AD case subjects present increased levels of nuclear Tau, particularly Tau-K174ac. Our results suggest that increased Tau-K174ac in AD case subjects is the result of DNA damage signaling and SIRT6 depletion. We propose that Tau-K174ac toxicity is due to its increased stability, nuclear accumulation, and nucleolar dysfunction. Several neurodegenerative diseases present Tau accumulation as the main pathological marker. Tau post-translational modifications such as phosphorylation and acetylation are increased in neurodegeneration. Here, we show that Tau hyper-acetylation at residue 174 increases its own nuclear presence and is the result of DNA damage signaling or the lack of SIRT6, both causative of neurodegeneration. Tau-K174ac is deacetylated in the nucleus by SIRT6. However, lack of SIRT6 or chronic DNA damage results in nuclear Tau-K174ac accumulation. Once there, it induces global changes in gene expression, affecting protein translation, synthesis, and energy production. Concomitantly, Alzheimer's disease (AD) case subjects show increased nucleolin and a decrease in SIRT6 levels. AD case subjects present increased levels of nuclear Tau, particularly Tau-K174ac. Our results suggest that increased Tau-K174ac in AD case subjects is the result of DNA damage signaling and SIRT6 depletion. We propose that Tau-K174ac toxicity is due to its increased stability, nuclear accumulation, and nucleolar dysfunction. Several neurodegenerative diseases present Tau accumulation as the main pathological marker. Tau post-translational modifications such as phosphorylation and acetylation are increased in neurodegeneration. Here, we show that Tau hyper-acetylation at residue 174 increases its own nuclear presence and is the result of DNA damage signaling or the lack of SIRT6, both causative of neurodegeneration. Tau-K174ac is deacetylated in the nucleus by SIRT6. However, lack of SIRT6 or chronic DNA damage results in nuclear Tau-K174ac accumulation. Once there, it induces global changes in gene expression, affecting protein translation, synthesis, and energy production. Concomitantly, Alzheimer’s disease (AD) case subjects show increased nucleolin and a decrease in SIRT6 levels. AD case subjects present increased levels of nuclear Tau, particularly Tau-K174ac. Our results suggest that increased Tau-K174ac in AD case subjects is the result of DNA damage signaling and SIRT6 depletion. We propose that Tau-K174ac toxicity is due to its increased stability, nuclear accumulation, and nucleolar dysfunction. [Display omitted] •DNA damage or SIRT6 absence leads to acetylation of Tau-K174 via CBP•Tau174ac shuttles to the nucleus, where it induces nucleolar activation•SIRT6 regulates Tau-174ac nuclear functions through its deacetylation•Tau174Q increases nucleolar activity and protein synthesis, leading to ATP depletion Portillo et al. show that acetylation of Tau-174 by CBP leads to its nuclear translocation, increasing nucleolar activity and protein synthesis capacity and resulting in ATP depletion. SIRT6 deacetylates nuclear Tau-174ac, preventing its accumulation. SIRT6 depletion, as in Alzheimer’s disease, increases Tau-174ac through the DNA damage response and impaired deacetylation. |
ArticleNumber | 109035 |
Author | Garcia-Venzor, Alfredo Slobodnik, Zeev Eremenko, Ekaterina Onn, Lior Zaretsky, Adam Kaluski, Shai Toiber, Debra Einav, Monica Ueberham, Uwe Arendt, Thomas Stein, Daniel Brückner, Martina K. Portillo, Miguel |
Author_xml | – sequence: 1 givenname: Miguel surname: Portillo fullname: Portillo, Miguel organization: Department of Life Sciences, Ben-Gurion University of the Negev, Beer Sheva 84105, Israel – sequence: 2 givenname: Ekaterina surname: Eremenko fullname: Eremenko, Ekaterina organization: Department of Life Sciences, Ben-Gurion University of the Negev, Beer Sheva 84105, Israel – sequence: 3 givenname: Shai surname: Kaluski fullname: Kaluski, Shai organization: Department of Life Sciences, Ben-Gurion University of the Negev, Beer Sheva 84105, Israel – sequence: 4 givenname: Alfredo surname: Garcia-Venzor fullname: Garcia-Venzor, Alfredo organization: Department of Life Sciences, Ben-Gurion University of the Negev, Beer Sheva 84105, Israel – sequence: 5 givenname: Lior surname: Onn fullname: Onn, Lior organization: Department of Life Sciences, Ben-Gurion University of the Negev, Beer Sheva 84105, Israel – sequence: 6 givenname: Daniel surname: Stein fullname: Stein, Daniel organization: Department of Life Sciences, Ben-Gurion University of the Negev, Beer Sheva 84105, Israel – sequence: 7 givenname: Zeev surname: Slobodnik fullname: Slobodnik, Zeev organization: Department of Life Sciences, Ben-Gurion University of the Negev, Beer Sheva 84105, Israel – sequence: 8 givenname: Adam surname: Zaretsky fullname: Zaretsky, Adam organization: Department of Life Sciences, Ben-Gurion University of the Negev, Beer Sheva 84105, Israel – sequence: 9 givenname: Uwe surname: Ueberham fullname: Ueberham, Uwe organization: Paul Flechsig Institute for Brain Research, University of Leipzig, Liebigstrasse 19, 04103 Leipzig, Germany – sequence: 10 givenname: Monica surname: Einav fullname: Einav, Monica organization: Department of Life Sciences, Ben-Gurion University of the Negev, Beer Sheva 84105, Israel – sequence: 11 givenname: Martina K. surname: Brückner fullname: Brückner, Martina K. organization: Paul Flechsig Institute for Brain Research, University of Leipzig, Liebigstrasse 19, 04103 Leipzig, Germany – sequence: 12 givenname: Thomas surname: Arendt fullname: Arendt, Thomas organization: Paul Flechsig Institute for Brain Research, University of Leipzig, Liebigstrasse 19, 04103 Leipzig, Germany – sequence: 13 givenname: Debra surname: Toiber fullname: Toiber, Debra email: toiber@bgu.ac.il organization: Department of Life Sciences, Ben-Gurion University of the Negev, Beer Sheva 84105, Israel |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/33910019$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkE1LxDAQhoMofu4_EOnRS9dM-pV4EHTxC0RF13NI0xGzdNM1SQX_vVm7injQucwwPO8wPDtk3XYWCdkHOgYK5dFsrLF1uBgzyiCuBM2KNbLNGEAKLK_Wf8xbZOT9jMYqKYDIN8lWlgmgFMQ2uX28fpiW6eTsPm1wgbZBGxLb6xaVS6aqT5TW_bxvVTCdTZRtEhN84roWE2OThesCxu7fbXhBb_we2XhWrcfRqu-Sp4vz6eQqvbm7vJ6c3qQ6pzykVdXE78pKF1AoRmsOmuU8E6xWXGiBOaMZKzhSJVSJgmsUNc8UZHXDai4g2yWHw934wWuPPsi58VFJqyx2vZesAMFpkVdVRA9WaF_PsZELZ-bKvcsvBxHIB0C7znuHz98IULm0LWdysC2XtuVgO8aOf8W0CZ-aglOm_S98MoQxSnoz6KTXBq3GxjjUQTad-fvAB5lZmmU |
CitedBy_id | crossref_primary_10_3389_fnagi_2021_747989 crossref_primary_10_3390_antiox12030714 crossref_primary_10_1016_j_genrep_2021_101442 crossref_primary_10_1038_s41580_024_00753_9 crossref_primary_10_1038_s41419_024_07160_0 crossref_primary_10_1186_s40478_023_01702_x crossref_primary_10_3390_ijms221810145 crossref_primary_10_1007_s00401_024_02729_7 crossref_primary_10_1186_s12974_024_03241_1 crossref_primary_10_1016_j_pneurobio_2022_102386 crossref_primary_10_18632_aging_203766 crossref_primary_10_3389_fragi_2023_1164057 crossref_primary_10_3389_fnagi_2021_786897 crossref_primary_10_3389_fcell_2023_1129281 crossref_primary_10_3390_ijms221910283 crossref_primary_10_1111_acel_14245 crossref_primary_10_3389_fnagi_2021_710683 crossref_primary_10_4103_1673_5374_373682 crossref_primary_10_1016_j_bcp_2023_115439 crossref_primary_10_1016_j_neuroscience_2022_07_015 crossref_primary_10_1126_scisignal_ado1035 crossref_primary_10_7717_peerj_14752 crossref_primary_10_3390_cells11050840 crossref_primary_10_1016_j_brainres_2024_149347 crossref_primary_10_1016_j_jbc_2022_101977 crossref_primary_10_3390_cells12040663 crossref_primary_10_1038_s41419_022_05542_w crossref_primary_10_3389_fgene_2021_769723 |
Cites_doi | 10.1038/srep22685 10.3389/fncel.2014.00107 10.1016/j.neuron.2010.08.044 10.1093/hmg/ddt402 10.1038/ncb1446 10.1016/j.neuron.2016.03.005 10.1016/j.brainresbull.2016.08.018 10.1016/j.cell.2005.11.044 10.1073/pnas.1718819115 10.1038/ncomms6011 10.1186/alzrt259 10.1007/s00401-019-01970-9 10.1038/nn.3639 10.1038/ncomms1255 10.1016/j.tem.2016.10.002 10.1016/j.molcel.2017.05.032 10.1021/bi500006v 10.1038/npjamd.2016.17 10.1016/j.cell.2013.05.039 10.1007/s00018-017-2717-4 10.1038/nm.3951 10.1038/s41467-017-00322-z 10.1242/jcs.02907 10.1016/j.molcel.2013.06.018 10.1093/brain/aws013 10.3390/biom6010009 10.1016/j.neuron.2008.10.055 10.1016/j.celrep.2018.05.004 10.1523/JNEUROSCI.2369-17.2018 10.1016/j.celrep.2017.03.008 10.3389/fncel.2018.00220 10.1038/nrm.2016.93 10.1080/15384101.2016.1176815 10.1038/s41593-018-0291-1 10.1016/j.neuint.2010.12.023 10.1038/nmeth.1314 10.1002/bies.201600224 10.1111/acel.13081 10.7554/eLife.51636 10.1186/s13024-016-0109-0 10.1002/wrna.1325 10.1038/s41586-018-0437-z 10.3389/fncel.2014.00084 10.1038/ncomms16083 10.1016/j.neuron.2014.06.034 10.1074/jbc.M110.199976 10.1371/journal.pone.0158470 10.1038/nrn.2015.1 10.1093/nar/gks720 10.4103/1673-5374.215254 |
ContentType | Journal Article |
Copyright | 2021 The Author(s) Copyright © 2021 The Author(s). Published by Elsevier Inc. All rights reserved. |
Copyright_xml | – notice: 2021 The Author(s) – notice: Copyright © 2021 The Author(s). Published by Elsevier Inc. All rights reserved. |
DBID | 6I. AAFTH AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 |
DOI | 10.1016/j.celrep.2021.109035 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 2211-1247 |
ExternalDocumentID | 33910019 10_1016_j_celrep_2021_109035 S221112472100351X |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | 0R~ 4.4 457 53G 5VS 6I. AACTN AAEDT AAEDW AAFTH AAIKJ AAKRW AALRI AAMRU AAXUO ABMAC ACGFO ACGFS ADBBV ADEZE ADVLN AENEX AEXQZ AFTJW AGHFR AITUG AKRWK ALMA_UNASSIGNED_HOLDINGS AMRAJ APXCP BAWUL BCNDV DIK EBS EJD FCP FDB FRP GROUPED_DOAJ GX1 IXB KQ8 M41 M48 O-L O9- OK1 ROL SSZ AAYWO AAYXX ACVFH ADCNI AEUPX AFPUW AIGII AKBMS AKYEP CITATION HZ~ IPNFZ RIG CGR CUY CVF ECM EIF NPM 7X8 |
ID | FETCH-LOGICAL-c408t-77d21167c515a20b81c248392ba89c9e4203258e0a9a6e98ce9b83a13bd2b8913 |
IEDL.DBID | M48 |
ISSN | 2211-1247 |
IngestDate | Fri Jul 11 15:01:06 EDT 2025 Mon Apr 28 11:35:43 EDT 2025 Tue Jul 01 04:55:32 EDT 2025 Thu Apr 24 23:12:46 EDT 2025 Sat Apr 12 15:21:46 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Keywords | acetylation CBP protein translation Alzheimer’s disease nuclear translocation DNA damage Tau SIRT6 nucleoli |
Language | English |
License | This is an open access article under the CC BY-NC-ND license. Copyright © 2021 The Author(s). Published by Elsevier Inc. All rights reserved. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c408t-77d21167c515a20b81c248392ba89c9e4203258e0a9a6e98ce9b83a13bd2b8913 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
OpenAccessLink | https://www.sciencedirect.com/science/article/pii/S221112472100351X |
PMID | 33910019 |
PQID | 2519805477 |
PQPubID | 23479 |
ParticipantIDs | proquest_miscellaneous_2519805477 pubmed_primary_33910019 crossref_primary_10_1016_j_celrep_2021_109035 crossref_citationtrail_10_1016_j_celrep_2021_109035 elsevier_sciencedirect_doi_10_1016_j_celrep_2021_109035 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-04-27 |
PublicationDateYYYYMMDD | 2021-04-27 |
PublicationDate_xml | – month: 04 year: 2021 text: 2021-04-27 day: 27 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | Cell reports (Cambridge) |
PublicationTitleAlternate | Cell Rep |
PublicationYear | 2021 |
Publisher | Elsevier Inc |
Publisher_xml | – name: Elsevier Inc |
References | Schmidt, Clavarino, Ceppi, Pierre (bib36) 2009; 6 Choi, Kim, Yang, Chae, Lee, Chung, Kim, Choi, Song, Lee (bib6) 2020; 19 Cook, Stankowski, Carlomagno, Stetler, Petrucelli (bib11) 2014; 6 Tiku, Jain, Raz, Nakamura, Heestand, Liu, Späth, Suchiman, Müller, Slagboom (bib42) 2017; 8 Ziv, Bielopolski, Galanty, Lukas, Taya, Schultz, Lukas, Bekker-Jensen, Bartek, Shiloh (bib50) 2006; 8 Sjöberg, Shestakova, Mansuroglu, Maccioni, Bonnefoy (bib37) 2006; 119 Min, Sohn, Li, Devidze, Johnson, Krogan, Masliah, Mok, Gestwicki, Gan (bib32) 2018; 38 Cong, Das, Ugrinova, Kumar, Mongelard, Wong, Bouvet (bib9) 2012; 40 Zhang, Wan, Feng, Qu, Wang, Jing, Ren, Liu, Zhang, Chen (bib49) 2018; 560 Frost, Hemberg, Lewis, Feany (bib14) 2014; 17 Bukar Maina, Al-Hilaly, Serpell (bib5) 2016; 6 Madabhushi, Pan, Tsai (bib27) 2014; 83 Irwin, Cohen, Grossman, Arnold, Xie, Lee, Trojanowski (bib20) 2012; 135 Arendt, Stieler, Holzer (bib2) 2016; 126 Cohen, Guo, Hurtado, Kwong, Mills, Trojanowski, Lee (bib7) 2011; 2 Koren, Hamm, Meier, Weiss, Nation, Chishti, Arango, Chen, Zhu, Blalock, Abisambra (bib24) 2019; 137 Andreska, Aufmkolk, Sauer, Blum (bib1) 2014; 8 Tasselli, Zheng, Chua (bib41) 2017; 28 Hou, Lautrup, Cordonnier, Wang, Croteau, Zavala, Zhang, Moritoh, O’Connell, Baptiste (bib18) 2018; 115 Toiber, Erdel, Bouazoune, Silberman, Zhong, Mulligan, Sebastian, Cosentino, Martinez-Pastor, Giacosa (bib43) 2013; 51 Wang, Mandelkow (bib48) 2016; 17 Piekna-Przybylska, Bambara, Balakrishnan (bib35) 2016; 15 Martin, Latypova, Terro (bib29) 2011; 58 López-Otín, Blasco, Partridge, Serrano, Kroemer (bib25) 2013; 153 Dutto, Scalera, Prosperi (bib13) 2018; 75 Sultan, Nesslany, Violet, Bégard, Loyens, Talahari, Mansuroglu, Marzin, Sergeant, Humez (bib40) 2011; 286 Buchwalter, Hetzer (bib4) 2017; 8 Mostoslavsky, Chua, Lombard, Pang, Fischer, Gellon, Liu, Mostoslavsky, Franco, Murphy (bib33) 2006; 124 Bonkowski, Sinclair (bib3) 2016; 17 Kamah, Huvent, Cantrelle, Qi, Lippens, Landrieu, Smet-Nocca (bib22) 2014; 53 Tracy, Gan (bib44) 2017; 39 Violet, Delattre, Tardivel, Sultan, Chauderlier, Caillierez, Talahari, Nesslany, Lefebvre, Bonnefoy (bib47) 2014; 8 Min, Cho, Zhou, Schroeder, Haroutunian, Seeley, Huang, Shen, Masliah, Mukherjee (bib30) 2010; 67 Onn, Portillo, Ilic, Cleitman, Stein, Kaluski, Shirat, Slobodnik, Einav, Erdel (bib34) 2020; 9 Gorsky, Burnouf, Dols, Mandelkow, Partridge (bib16) 2016; 6 Sohn, Tracy, Son, Zhou, Leite, Miller, Seeley, Grinberg, Gan (bib38) 2016; 11 Guo, Jeong, Hsieh, Klein, Bennett, De Jager, Liu, Shulman (bib17) 2018; 23 Cohen, Constance, Hwang, James, Yuan (bib8) 2016; 11 Van Meter, Kashyap, Rezazadeh, Geneva, Morello, Seluanov, Gorbunova (bib46) 2014; 5 Costa-Mattioli, Sossin, Klann, Sonenberg (bib12) 2009; 61 Kaluski, Portillo, Besnard, Stein, Einav, Zhong, Ueberham, Arendt, Mostoslavsky, Sahay, Toiber (bib21) 2017; 18 Klein, McCabe, Gjoneska, Sullivan, Kaskow, Tang, Smith, Xu, Pfenning, Bernstein (bib23) 2019; 22 Min, Chen, Tracy, Li, Zhou, Wang, Shirakawa, Minami, Defensor, Mok (bib31) 2015; 21 Garcia, Shaw (bib15) 2017; 66 Maina, Bailey, Doherty, Serpell (bib28) 2018; 12 Stein, Toiber (bib39) 2017; 12 Tracy, Sohn, Minami, Wang, Min, Li, Zhou, Le, Lo, Ponnusamy (bib45) 2016; 90 Imai, Guarente (bib19) 2016; 2 MacInnes (bib26) 2016; 7 Cook, Carlomagno, Gendron, Dunmore, Scheffel, Stetler, Davis, Dickson, Jarpe, DeTure, Petrucelli (bib10) 2014; 23 Bukar Maina (10.1016/j.celrep.2021.109035_bib5) 2016; 6 Irwin (10.1016/j.celrep.2021.109035_bib20) 2012; 135 Maina (10.1016/j.celrep.2021.109035_bib28) 2018; 12 Cook (10.1016/j.celrep.2021.109035_bib11) 2014; 6 Garcia (10.1016/j.celrep.2021.109035_bib15) 2017; 66 Martin (10.1016/j.celrep.2021.109035_bib29) 2011; 58 Guo (10.1016/j.celrep.2021.109035_bib17) 2018; 23 Gorsky (10.1016/j.celrep.2021.109035_bib16) 2016; 6 Choi (10.1016/j.celrep.2021.109035_bib6) 2020; 19 Tasselli (10.1016/j.celrep.2021.109035_bib41) 2017; 28 Sultan (10.1016/j.celrep.2021.109035_bib40) 2011; 286 Toiber (10.1016/j.celrep.2021.109035_bib43) 2013; 51 Piekna-Przybylska (10.1016/j.celrep.2021.109035_bib35) 2016; 15 Tiku (10.1016/j.celrep.2021.109035_bib42) 2017; 8 Zhang (10.1016/j.celrep.2021.109035_bib49) 2018; 560 MacInnes (10.1016/j.celrep.2021.109035_bib26) 2016; 7 Tracy (10.1016/j.celrep.2021.109035_bib44) 2017; 39 Onn (10.1016/j.celrep.2021.109035_bib34) 2020; 9 Dutto (10.1016/j.celrep.2021.109035_bib13) 2018; 75 Sohn (10.1016/j.celrep.2021.109035_bib38) 2016; 11 Stein (10.1016/j.celrep.2021.109035_bib39) 2017; 12 Wang (10.1016/j.celrep.2021.109035_bib48) 2016; 17 Frost (10.1016/j.celrep.2021.109035_bib14) 2014; 17 Kaluski (10.1016/j.celrep.2021.109035_bib21) 2017; 18 Cohen (10.1016/j.celrep.2021.109035_bib7) 2011; 2 Madabhushi (10.1016/j.celrep.2021.109035_bib27) 2014; 83 López-Otín (10.1016/j.celrep.2021.109035_bib25) 2013; 153 Van Meter (10.1016/j.celrep.2021.109035_bib46) 2014; 5 Imai (10.1016/j.celrep.2021.109035_bib19) 2016; 2 Min (10.1016/j.celrep.2021.109035_bib32) 2018; 38 Violet (10.1016/j.celrep.2021.109035_bib47) 2014; 8 Min (10.1016/j.celrep.2021.109035_bib30) 2010; 67 Bonkowski (10.1016/j.celrep.2021.109035_bib3) 2016; 17 Cohen (10.1016/j.celrep.2021.109035_bib8) 2016; 11 Arendt (10.1016/j.celrep.2021.109035_bib2) 2016; 126 Costa-Mattioli (10.1016/j.celrep.2021.109035_bib12) 2009; 61 Tracy (10.1016/j.celrep.2021.109035_bib45) 2016; 90 Schmidt (10.1016/j.celrep.2021.109035_bib36) 2009; 6 Andreska (10.1016/j.celrep.2021.109035_bib1) 2014; 8 Cong (10.1016/j.celrep.2021.109035_bib9) 2012; 40 Kamah (10.1016/j.celrep.2021.109035_bib22) 2014; 53 Mostoslavsky (10.1016/j.celrep.2021.109035_bib33) 2006; 124 Min (10.1016/j.celrep.2021.109035_bib31) 2015; 21 Hou (10.1016/j.celrep.2021.109035_bib18) 2018; 115 Sjöberg (10.1016/j.celrep.2021.109035_bib37) 2006; 119 Buchwalter (10.1016/j.celrep.2021.109035_bib4) 2017; 8 Koren (10.1016/j.celrep.2021.109035_bib24) 2019; 137 Cook (10.1016/j.celrep.2021.109035_bib10) 2014; 23 Ziv (10.1016/j.celrep.2021.109035_bib50) 2006; 8 Klein (10.1016/j.celrep.2021.109035_bib23) 2019; 22 |
References_xml | – volume: 6 start-page: 22685 year: 2016 ident: bib16 article-title: Acetylation mimic of lysine 280 exacerbates human Tau neurotoxicity in vivo publication-title: Sci. Rep. – volume: 22 start-page: 37 year: 2019 end-page: 46 ident: bib23 article-title: Epigenome-wide study uncovers large-scale changes in histone acetylation driven by tau pathology in aging and Alzheimer’s human brains publication-title: Nat. Neurosci. – volume: 6 start-page: 9 year: 2016 ident: bib5 article-title: Nuclear Tau and Its Potential Role in Alzheimer’s Disease publication-title: Biomolecules – volume: 135 start-page: 807 year: 2012 end-page: 818 ident: bib20 article-title: Acetylated tau, a novel pathological signature in Alzheimer’s disease and other tauopathies publication-title: Brain – volume: 38 start-page: 3680 year: 2018 end-page: 3688 ident: bib32 article-title: SIRT1 Deacetylates Tau and Reduces Pathogenic Tau Spread in a Mouse Model of Tauopathy publication-title: J. Neurosci. – volume: 560 start-page: 661 year: 2018 end-page: 665 ident: bib49 article-title: SIRT6 deficiency results in developmental retardation in cynomolgus monkeys publication-title: Nature – volume: 53 start-page: 3020 year: 2014 end-page: 3032 ident: bib22 article-title: Nuclear magnetic resonance analysis of the acetylation pattern of the neuronal Tau protein publication-title: Biochemistry – volume: 286 start-page: 4566 year: 2011 end-page: 4575 ident: bib40 article-title: Nuclear tau, a key player in neuronal DNA protection publication-title: J. Biol. Chem. – volume: 18 start-page: 3052 year: 2017 end-page: 3062 ident: bib21 article-title: Neuroprotective Functions for the Histone Deacetylase SIRT6 publication-title: Cell Rep. – volume: 83 start-page: 266 year: 2014 end-page: 282 ident: bib27 article-title: DNA damage and its links to neurodegeneration publication-title: Neuron – volume: 9 start-page: e51636 year: 2020 ident: bib34 article-title: SIRT6 is a DNA double-strand break sensor publication-title: eLife – volume: 6 start-page: 275 year: 2009 end-page: 277 ident: bib36 article-title: SUnSET, a nonradioactive method to monitor protein synthesis publication-title: Nat. Methods – volume: 51 start-page: 454 year: 2013 end-page: 468 ident: bib43 article-title: SIRT6 recruits SNF2H to DNA break sites, preventing genomic instability through chromatin remodeling publication-title: Mol. Cell – volume: 61 start-page: 10 year: 2009 end-page: 26 ident: bib12 article-title: Translational control of long-lasting synaptic plasticity and memory publication-title: Neuron – volume: 115 start-page: E1876 year: 2018 end-page: E1885 ident: bib18 article-title: NAD publication-title: Proc. Natl. Acad. Sci. USA – volume: 12 start-page: 1441 year: 2017 end-page: 1442 ident: bib39 article-title: DNA damage and neurodegeneration: the unusual suspect publication-title: Neural Regen. Res. – volume: 39 year: 2017 ident: bib44 article-title: Acetylated tau in Alzheimer’s disease: An instigator of synaptic dysfunction underlying memory loss: Increased levels of acetylated tau blocks the postsynaptic signaling required for plasticity and promotes memory deficits associated with tauopathy publication-title: BioEssays – volume: 8 start-page: 107 year: 2014 ident: bib1 article-title: High abundance of BDNF within glutamatergic presynapses of cultured hippocampal neurons publication-title: Front. Cell. Neurosci. – volume: 6 start-page: 29 year: 2014 ident: bib11 article-title: Acetylation: a new key to unlock tau’s role in neurodegeneration publication-title: Alzheimers Res. Ther. – volume: 15 start-page: 1506 year: 2016 end-page: 1517 ident: bib35 article-title: Acetylation regulates DNA repair mechanisms in human cells publication-title: Cell Cycle – volume: 2 start-page: 16017 year: 2016 ident: bib19 article-title: It takes two to tango: NAD publication-title: NPJ Aging Mech. Dis. – volume: 17 start-page: 5 year: 2016 end-page: 21 ident: bib48 article-title: Tau in physiology and pathology publication-title: Nat. Rev. Neurosci. – volume: 90 start-page: 245 year: 2016 end-page: 260 ident: bib45 article-title: Acetylated Tau Obstructs KIBRA-Mediated Signaling in Synaptic Plasticity and Promotes Tauopathy-Related Memory Loss publication-title: Neuron – volume: 8 start-page: 16083 year: 2017 ident: bib42 article-title: Small nucleoli are a cellular hallmark of longevity publication-title: Nat. Commun. – volume: 12 start-page: 220 year: 2018 ident: bib28 article-title: The Involvement of Aβ42 and Tau in Nucleolar and Protein Synthesis Machinery Dysfunction publication-title: Front. Cell. Neurosci. – volume: 75 start-page: 1325 year: 2018 end-page: 1338 ident: bib13 article-title: CREBBP and p300 lysine acetyl transferases in the DNA damage response publication-title: Cell. Mol. Life Sci. – volume: 124 start-page: 315 year: 2006 end-page: 329 ident: bib33 article-title: Genomic instability and aging-like phenotype in the absence of mammalian SIRT6 publication-title: Cell – volume: 40 start-page: 9441 year: 2012 end-page: 9454 ident: bib9 article-title: Interaction of nucleolin with ribosomal RNA genes and its role in RNA polymerase I transcription publication-title: Nucleic Acids Res. – volume: 17 start-page: 679 year: 2016 end-page: 690 ident: bib3 article-title: Slowing ageing by design: the rise of NAD publication-title: Nat. Rev. Mol. Cell Biol. – volume: 11 start-page: 47 year: 2016 ident: bib38 article-title: Acetylated tau destabilizes the cytoskeleton in the axon initial segment and is mislocalized to the somatodendritic compartment publication-title: Mol. Neurodegener. – volume: 5 start-page: 5011 year: 2014 ident: bib46 article-title: SIRT6 represses LINE1 retrotransposons by ribosylating KAP1 but this repression fails with stress and age publication-title: Nat. Commun. – volume: 67 start-page: 953 year: 2010 end-page: 966 ident: bib30 article-title: Acetylation of tau inhibits its degradation and contributes to tauopathy publication-title: Neuron – volume: 21 start-page: 1154 year: 2015 end-page: 1162 ident: bib31 article-title: Critical role of acetylation in tau-mediated neurodegeneration and cognitive deficits publication-title: Nat. Med. – volume: 8 start-page: 870 year: 2006 end-page: 876 ident: bib50 article-title: Chromatin relaxation in response to DNA double-strand breaks is modulated by a novel ATM- and KAP-1 dependent pathway publication-title: Nat. Cell Biol. – volume: 126 start-page: 238 year: 2016 end-page: 292 ident: bib2 article-title: Tau and tauopathies publication-title: Brain Res. Bull. – volume: 17 start-page: 357 year: 2014 end-page: 366 ident: bib14 article-title: Tau promotes neurodegeneration through global chromatin relaxation publication-title: Nat. Neurosci. – volume: 23 start-page: 104 year: 2014 end-page: 116 ident: bib10 article-title: Acetylation of the KXGS motifs in tau is a critical determinant in modulation of tau aggregation and clearance publication-title: Hum. Mol. Genet. – volume: 137 start-page: 571 year: 2019 end-page: 583 ident: bib24 article-title: Tau drives translational selectivity by interacting with ribosomal proteins publication-title: Acta Neuropathol. – volume: 7 start-page: 198 year: 2016 end-page: 212 ident: bib26 article-title: The role of the ribosome in the regulation of longevity and lifespan extension publication-title: Wiley Interdiscip. Rev. RNA – volume: 28 start-page: 168 year: 2017 end-page: 185 ident: bib41 article-title: SIRT6: Novel Mechanisms and Links to Aging and Disease publication-title: Trends Endocrinol. Metab. – volume: 8 start-page: 84 year: 2014 ident: bib47 article-title: A major role for Tau in neuronal DNA and RNA protection in vivo under physiological and hyperthermic conditions publication-title: Front. Cell. Neurosci. – volume: 8 start-page: 328 year: 2017 ident: bib4 article-title: Nucleolar expansion and elevated protein translation in premature aging publication-title: Nat. Commun. – volume: 2 start-page: 252 year: 2011 ident: bib7 article-title: The acetylation of tau inhibits its function and promotes pathological tau aggregation publication-title: Nat. Commun. – volume: 11 start-page: e0158470 year: 2016 ident: bib8 article-title: Intrinsic Tau Acetylation Is Coupled to Auto-Proteolytic Tau Fragmentation publication-title: PLoS ONE – volume: 58 start-page: 458 year: 2011 end-page: 471 ident: bib29 article-title: Post-translational modifications of tau protein: implications for Alzheimer’s disease publication-title: Neurochem. Int. – volume: 66 start-page: 789 year: 2017 end-page: 800 ident: bib15 article-title: AMPK: Mechanisms of Cellular Energy Sensing and Restoration of Metabolic Balance publication-title: Mol. Cell – volume: 19 start-page: e13081 year: 2020 ident: bib6 article-title: Acetylation changes tau interactome to degrade tau in Alzheimer’s disease animal and organoid models publication-title: Aging Cell – volume: 153 start-page: 1194 year: 2013 end-page: 1217 ident: bib25 article-title: The hallmarks of aging publication-title: Cell – volume: 23 start-page: 2874 year: 2018 end-page: 2880 ident: bib17 article-title: Tau Activates Transposable Elements in Alzheimer’s Disease publication-title: Cell Rep. – volume: 119 start-page: 2025 year: 2006 end-page: 2034 ident: bib37 article-title: Tau protein binds to pericentromeric DNA: a putative role for nuclear tau in nucleolar organization publication-title: J. Cell Sci. – volume: 6 start-page: 22685 year: 2016 ident: 10.1016/j.celrep.2021.109035_bib16 article-title: Acetylation mimic of lysine 280 exacerbates human Tau neurotoxicity in vivo publication-title: Sci. Rep. doi: 10.1038/srep22685 – volume: 8 start-page: 107 year: 2014 ident: 10.1016/j.celrep.2021.109035_bib1 article-title: High abundance of BDNF within glutamatergic presynapses of cultured hippocampal neurons publication-title: Front. Cell. Neurosci. doi: 10.3389/fncel.2014.00107 – volume: 67 start-page: 953 year: 2010 ident: 10.1016/j.celrep.2021.109035_bib30 article-title: Acetylation of tau inhibits its degradation and contributes to tauopathy publication-title: Neuron doi: 10.1016/j.neuron.2010.08.044 – volume: 23 start-page: 104 year: 2014 ident: 10.1016/j.celrep.2021.109035_bib10 article-title: Acetylation of the KXGS motifs in tau is a critical determinant in modulation of tau aggregation and clearance publication-title: Hum. Mol. Genet. doi: 10.1093/hmg/ddt402 – volume: 8 start-page: 870 year: 2006 ident: 10.1016/j.celrep.2021.109035_bib50 article-title: Chromatin relaxation in response to DNA double-strand breaks is modulated by a novel ATM- and KAP-1 dependent pathway publication-title: Nat. Cell Biol. doi: 10.1038/ncb1446 – volume: 90 start-page: 245 year: 2016 ident: 10.1016/j.celrep.2021.109035_bib45 article-title: Acetylated Tau Obstructs KIBRA-Mediated Signaling in Synaptic Plasticity and Promotes Tauopathy-Related Memory Loss publication-title: Neuron doi: 10.1016/j.neuron.2016.03.005 – volume: 126 start-page: 238 year: 2016 ident: 10.1016/j.celrep.2021.109035_bib2 article-title: Tau and tauopathies publication-title: Brain Res. Bull. doi: 10.1016/j.brainresbull.2016.08.018 – volume: 124 start-page: 315 year: 2006 ident: 10.1016/j.celrep.2021.109035_bib33 article-title: Genomic instability and aging-like phenotype in the absence of mammalian SIRT6 publication-title: Cell doi: 10.1016/j.cell.2005.11.044 – volume: 115 start-page: E1876 year: 2018 ident: 10.1016/j.celrep.2021.109035_bib18 article-title: NAD+ supplementation normalizes key Alzheimer’s features and DNA damage responses in a new AD mouse model with introduced DNA repair deficiency publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.1718819115 – volume: 5 start-page: 5011 year: 2014 ident: 10.1016/j.celrep.2021.109035_bib46 article-title: SIRT6 represses LINE1 retrotransposons by ribosylating KAP1 but this repression fails with stress and age publication-title: Nat. Commun. doi: 10.1038/ncomms6011 – volume: 6 start-page: 29 year: 2014 ident: 10.1016/j.celrep.2021.109035_bib11 article-title: Acetylation: a new key to unlock tau’s role in neurodegeneration publication-title: Alzheimers Res. Ther. doi: 10.1186/alzrt259 – volume: 137 start-page: 571 year: 2019 ident: 10.1016/j.celrep.2021.109035_bib24 article-title: Tau drives translational selectivity by interacting with ribosomal proteins publication-title: Acta Neuropathol. doi: 10.1007/s00401-019-01970-9 – volume: 17 start-page: 357 year: 2014 ident: 10.1016/j.celrep.2021.109035_bib14 article-title: Tau promotes neurodegeneration through global chromatin relaxation publication-title: Nat. Neurosci. doi: 10.1038/nn.3639 – volume: 2 start-page: 252 year: 2011 ident: 10.1016/j.celrep.2021.109035_bib7 article-title: The acetylation of tau inhibits its function and promotes pathological tau aggregation publication-title: Nat. Commun. doi: 10.1038/ncomms1255 – volume: 28 start-page: 168 year: 2017 ident: 10.1016/j.celrep.2021.109035_bib41 article-title: SIRT6: Novel Mechanisms and Links to Aging and Disease publication-title: Trends Endocrinol. Metab. doi: 10.1016/j.tem.2016.10.002 – volume: 66 start-page: 789 year: 2017 ident: 10.1016/j.celrep.2021.109035_bib15 article-title: AMPK: Mechanisms of Cellular Energy Sensing and Restoration of Metabolic Balance publication-title: Mol. Cell doi: 10.1016/j.molcel.2017.05.032 – volume: 53 start-page: 3020 year: 2014 ident: 10.1016/j.celrep.2021.109035_bib22 article-title: Nuclear magnetic resonance analysis of the acetylation pattern of the neuronal Tau protein publication-title: Biochemistry doi: 10.1021/bi500006v – volume: 2 start-page: 16017 year: 2016 ident: 10.1016/j.celrep.2021.109035_bib19 article-title: It takes two to tango: NAD+ and sirtuins in aging/longevity control publication-title: NPJ Aging Mech. Dis. doi: 10.1038/npjamd.2016.17 – volume: 153 start-page: 1194 year: 2013 ident: 10.1016/j.celrep.2021.109035_bib25 article-title: The hallmarks of aging publication-title: Cell doi: 10.1016/j.cell.2013.05.039 – volume: 75 start-page: 1325 year: 2018 ident: 10.1016/j.celrep.2021.109035_bib13 article-title: CREBBP and p300 lysine acetyl transferases in the DNA damage response publication-title: Cell. Mol. Life Sci. doi: 10.1007/s00018-017-2717-4 – volume: 21 start-page: 1154 year: 2015 ident: 10.1016/j.celrep.2021.109035_bib31 article-title: Critical role of acetylation in tau-mediated neurodegeneration and cognitive deficits publication-title: Nat. Med. doi: 10.1038/nm.3951 – volume: 8 start-page: 328 year: 2017 ident: 10.1016/j.celrep.2021.109035_bib4 article-title: Nucleolar expansion and elevated protein translation in premature aging publication-title: Nat. Commun. doi: 10.1038/s41467-017-00322-z – volume: 119 start-page: 2025 year: 2006 ident: 10.1016/j.celrep.2021.109035_bib37 article-title: Tau protein binds to pericentromeric DNA: a putative role for nuclear tau in nucleolar organization publication-title: J. Cell Sci. doi: 10.1242/jcs.02907 – volume: 51 start-page: 454 year: 2013 ident: 10.1016/j.celrep.2021.109035_bib43 article-title: SIRT6 recruits SNF2H to DNA break sites, preventing genomic instability through chromatin remodeling publication-title: Mol. Cell doi: 10.1016/j.molcel.2013.06.018 – volume: 135 start-page: 807 year: 2012 ident: 10.1016/j.celrep.2021.109035_bib20 article-title: Acetylated tau, a novel pathological signature in Alzheimer’s disease and other tauopathies publication-title: Brain doi: 10.1093/brain/aws013 – volume: 6 start-page: 9 year: 2016 ident: 10.1016/j.celrep.2021.109035_bib5 article-title: Nuclear Tau and Its Potential Role in Alzheimer’s Disease publication-title: Biomolecules doi: 10.3390/biom6010009 – volume: 61 start-page: 10 year: 2009 ident: 10.1016/j.celrep.2021.109035_bib12 article-title: Translational control of long-lasting synaptic plasticity and memory publication-title: Neuron doi: 10.1016/j.neuron.2008.10.055 – volume: 23 start-page: 2874 year: 2018 ident: 10.1016/j.celrep.2021.109035_bib17 article-title: Tau Activates Transposable Elements in Alzheimer’s Disease publication-title: Cell Rep. doi: 10.1016/j.celrep.2018.05.004 – volume: 38 start-page: 3680 year: 2018 ident: 10.1016/j.celrep.2021.109035_bib32 article-title: SIRT1 Deacetylates Tau and Reduces Pathogenic Tau Spread in a Mouse Model of Tauopathy publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.2369-17.2018 – volume: 18 start-page: 3052 year: 2017 ident: 10.1016/j.celrep.2021.109035_bib21 article-title: Neuroprotective Functions for the Histone Deacetylase SIRT6 publication-title: Cell Rep. doi: 10.1016/j.celrep.2017.03.008 – volume: 12 start-page: 220 year: 2018 ident: 10.1016/j.celrep.2021.109035_bib28 article-title: The Involvement of Aβ42 and Tau in Nucleolar and Protein Synthesis Machinery Dysfunction publication-title: Front. Cell. Neurosci. doi: 10.3389/fncel.2018.00220 – volume: 17 start-page: 679 year: 2016 ident: 10.1016/j.celrep.2021.109035_bib3 article-title: Slowing ageing by design: the rise of NAD+ and sirtuin-activating compounds publication-title: Nat. Rev. Mol. Cell Biol. doi: 10.1038/nrm.2016.93 – volume: 15 start-page: 1506 year: 2016 ident: 10.1016/j.celrep.2021.109035_bib35 article-title: Acetylation regulates DNA repair mechanisms in human cells publication-title: Cell Cycle doi: 10.1080/15384101.2016.1176815 – volume: 22 start-page: 37 year: 2019 ident: 10.1016/j.celrep.2021.109035_bib23 article-title: Epigenome-wide study uncovers large-scale changes in histone acetylation driven by tau pathology in aging and Alzheimer’s human brains publication-title: Nat. Neurosci. doi: 10.1038/s41593-018-0291-1 – volume: 58 start-page: 458 year: 2011 ident: 10.1016/j.celrep.2021.109035_bib29 article-title: Post-translational modifications of tau protein: implications for Alzheimer’s disease publication-title: Neurochem. Int. doi: 10.1016/j.neuint.2010.12.023 – volume: 6 start-page: 275 year: 2009 ident: 10.1016/j.celrep.2021.109035_bib36 article-title: SUnSET, a nonradioactive method to monitor protein synthesis publication-title: Nat. Methods doi: 10.1038/nmeth.1314 – volume: 39 year: 2017 ident: 10.1016/j.celrep.2021.109035_bib44 article-title: Acetylated tau in Alzheimer’s disease: An instigator of synaptic dysfunction underlying memory loss: Increased levels of acetylated tau blocks the postsynaptic signaling required for plasticity and promotes memory deficits associated with tauopathy publication-title: BioEssays doi: 10.1002/bies.201600224 – volume: 19 start-page: e13081 year: 2020 ident: 10.1016/j.celrep.2021.109035_bib6 article-title: Acetylation changes tau interactome to degrade tau in Alzheimer’s disease animal and organoid models publication-title: Aging Cell doi: 10.1111/acel.13081 – volume: 9 start-page: e51636 year: 2020 ident: 10.1016/j.celrep.2021.109035_bib34 article-title: SIRT6 is a DNA double-strand break sensor publication-title: eLife doi: 10.7554/eLife.51636 – volume: 11 start-page: 47 year: 2016 ident: 10.1016/j.celrep.2021.109035_bib38 article-title: Acetylated tau destabilizes the cytoskeleton in the axon initial segment and is mislocalized to the somatodendritic compartment publication-title: Mol. Neurodegener. doi: 10.1186/s13024-016-0109-0 – volume: 7 start-page: 198 year: 2016 ident: 10.1016/j.celrep.2021.109035_bib26 article-title: The role of the ribosome in the regulation of longevity and lifespan extension publication-title: Wiley Interdiscip. Rev. RNA doi: 10.1002/wrna.1325 – volume: 560 start-page: 661 year: 2018 ident: 10.1016/j.celrep.2021.109035_bib49 article-title: SIRT6 deficiency results in developmental retardation in cynomolgus monkeys publication-title: Nature doi: 10.1038/s41586-018-0437-z – volume: 8 start-page: 84 year: 2014 ident: 10.1016/j.celrep.2021.109035_bib47 article-title: A major role for Tau in neuronal DNA and RNA protection in vivo under physiological and hyperthermic conditions publication-title: Front. Cell. Neurosci. doi: 10.3389/fncel.2014.00084 – volume: 8 start-page: 16083 year: 2017 ident: 10.1016/j.celrep.2021.109035_bib42 article-title: Small nucleoli are a cellular hallmark of longevity publication-title: Nat. Commun. doi: 10.1038/ncomms16083 – volume: 83 start-page: 266 year: 2014 ident: 10.1016/j.celrep.2021.109035_bib27 article-title: DNA damage and its links to neurodegeneration publication-title: Neuron doi: 10.1016/j.neuron.2014.06.034 – volume: 286 start-page: 4566 year: 2011 ident: 10.1016/j.celrep.2021.109035_bib40 article-title: Nuclear tau, a key player in neuronal DNA protection publication-title: J. Biol. Chem. doi: 10.1074/jbc.M110.199976 – volume: 11 start-page: e0158470 year: 2016 ident: 10.1016/j.celrep.2021.109035_bib8 article-title: Intrinsic Tau Acetylation Is Coupled to Auto-Proteolytic Tau Fragmentation publication-title: PLoS ONE doi: 10.1371/journal.pone.0158470 – volume: 17 start-page: 5 year: 2016 ident: 10.1016/j.celrep.2021.109035_bib48 article-title: Tau in physiology and pathology publication-title: Nat. Rev. Neurosci. doi: 10.1038/nrn.2015.1 – volume: 40 start-page: 9441 year: 2012 ident: 10.1016/j.celrep.2021.109035_bib9 article-title: Interaction of nucleolin with ribosomal RNA genes and its role in RNA polymerase I transcription publication-title: Nucleic Acids Res. doi: 10.1093/nar/gks720 – volume: 12 start-page: 1441 year: 2017 ident: 10.1016/j.celrep.2021.109035_bib39 article-title: DNA damage and neurodegeneration: the unusual suspect publication-title: Neural Regen. Res. doi: 10.4103/1673-5374.215254 |
SSID | ssj0000601194 |
Score | 2.4383872 |
Snippet | Several neurodegenerative diseases present Tau accumulation as the main pathological marker. Tau post-translational modifications such as phosphorylation and... |
SourceID | proquest pubmed crossref elsevier |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 109035 |
SubjectTerms | acetylation Alzheimer Disease - genetics Alzheimer’s disease CBP DNA damage Humans nuclear translocation nucleoli Protein Biosynthesis - genetics protein translation SIRT6 Sirtuins - genetics Sirtuins - metabolism Tau tau Proteins - metabolism |
SummonAdditionalLinks | – databaseName: ScienceDirect Free and Delayed Access Titles dbid: IXB link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dS8MwEA9jIPgifju_iOBr2Jp-pY9uOKbgELfB3kKSRajMbqztw_5779J2ICiCT6VtQsNdevkld_c7Qu692PdgmecsAnzMglBpJiyy7huehEZzvnBHAy_jaDQLnufhvEUGTS4MhlXWtr-y6c5a10-6tTS76zTtTjjsXWB1gi2Mc4fNwQ77gXBJfPP-7pwF-UY8Vw8R2zPs0GTQuTAvY5cbi8SV3ENqpZ6r-_bjCvUbAnUr0fCQHNQQkj5UozwiLZsdk72qqOT2hIwnT2_TiA36r6ypcFvQDGmL1YZOVUmVMeVnXbWLqmxB0yKnGGVI04w63ga45tsMoGGe5qdkNnycDkasrprATNATBcDlBUfnigGkonhPCxB7gDBIK5GYxAZYMz0EhahERTYRxiZa-Mrz9YJrdFqekXa2yuwFoT2rAwVvTYj-T61FwFVouI7ePdiQR7ZD_EZS0tSU4ljZYimb2LEPWclXonxlJd8OYbte64pS44_2caME-W1qSLD6f_S8a3Qm4a9BV4jK7KrMJebrCkCrcdwh55Uyd2Px_QSJqZLLf3_3iuzjHTqdeHxN2sWmtDeAXQp96ybnF8Kx6I4 priority: 102 providerName: Elsevier |
Title | SIRT6-CBP-dependent nuclear Tau accumulation and its role in protein synthesis |
URI | https://dx.doi.org/10.1016/j.celrep.2021.109035 https://www.ncbi.nlm.nih.gov/pubmed/33910019 https://www.proquest.com/docview/2519805477 |
Volume | 35 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LS8NAEF5qRfAivq2PsoLXSLJ5H0RssbRCi2gLvS27mxUqNdU8wP57Z_KoF0u9JIdkkzCzm_l2Z_b7CLmxfNuCMM8MD_Cx4bhCGoFG1n3FQldJxqJiaWA48voT52nqThuk1mytDJj-ObVDPalJMr_9_lrew4C_-63VUnqeaGSfZBbyI5m2u0W2ITb5OFSHFeAv_83IcYapZsawlos5fr2fbs2D1sWrdXi0iEu9fbJXAUr6UPaAA9LQ8SHZKSUml0dk9Dp4GXtGt_Ns1Hq3GY2RxFgkdCxyKpTKPyoNLyriiM6ylGLNIZ3FtGBxgHO6jAEoprP0mEx6j-Nu36g0FAzlmEEG4DlimGpRgFsEM2UATnAQFEkRhCrUDiqou-AeEQpPh4HSoQxsYdkyYhJTmCekGS9ifUaoqaUj4KpyMRsqZeAw4SomvTcLpueebhG7thRXFcE46lzMeV1J9s5L-3K0Ly_t2yLGqtVnSbCx4X6_dgKvQEIZ_Dl0iQ0tr2ufcRhDmBgRsV7kKcfduwFgV99vkdPSmatvse0QaarC83-0viC7-D5MNjH_kjSzJNdXgFky2S7m-nAcTDvtokv-AJGh58A |
linkProvider | Scholars Portal |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEB58IHoR367PCF7DbtP3URdl18ciusLeQpKNUFmrbLsH_70zabsgKIKnQtOhZZJOvmQm3wdw7sW-h9O84BHiYx6ESvPEEuu-EWlotBBjtzVwP4h6z8HNKBwtQLc5C0NllXXsr2K6i9b1nXbtzfZHlrWfBK5dcHbCJYxLh40WYRnRQEz6Df3R5XyjhQhHPCeISAacLJojdK7Oy9jJ1BJzpfCIW6njhN9-nKJ-g6BuKrregPUaQ7KL6jM3YcHmW7BSqUp-bsPgqf84jHj38oE3Ercly4m3WE3ZUM2YMmb2Vst2MZWPWVYWjMoMWZYzR9yA1-IzR2xYZMUOPF9fDbs9XssmcBN0khLx8lhQdsUgVFGioxP0e0A4SKskNakNSDQ9xB5RqYpsmhib6sRXnq_HQlPWcheW8vfc7gPrWB0obDUhJUC1TgKhQiN09OLhijyyLfAbT0lTc4qTtMVENsVjr7LyryT_ysq_LeBzq4-KU-OP5-OmE-S3sSEx7P9hedb0mcTfhnIhKrfvs0LSgd0E4Woct2Cv6sz5t_h-SsxU6cG_33sKq73h_Z286w9uD2GNWigDJeIjWCqnM3uMQKbUJ26gfgF7_Out |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=SIRT6-CBP-dependent+nuclear+Tau+accumulation+and+its+role+in+protein+synthesis&rft.jtitle=Cell+reports+%28Cambridge%29&rft.au=Portillo%2C+Miguel&rft.au=Eremenko%2C+Ekaterina&rft.au=Kaluski%2C+Shai&rft.au=Garcia-Venzor%2C+Alfredo&rft.date=2021-04-27&rft.issn=2211-1247&rft.eissn=2211-1247&rft.volume=35&rft.issue=4&rft.spage=109035&rft_id=info:doi/10.1016%2Fj.celrep.2021.109035&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2211-1247&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2211-1247&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2211-1247&client=summon |