SIRT6-CBP-dependent nuclear Tau accumulation and its role in protein synthesis

Several neurodegenerative diseases present Tau accumulation as the main pathological marker. Tau post-translational modifications such as phosphorylation and acetylation are increased in neurodegeneration. Here, we show that Tau hyper-acetylation at residue 174 increases its own nuclear presence and...

Full description

Saved in:
Bibliographic Details
Published inCell reports (Cambridge) Vol. 35; no. 4; p. 109035
Main Authors Portillo, Miguel, Eremenko, Ekaterina, Kaluski, Shai, Garcia-Venzor, Alfredo, Onn, Lior, Stein, Daniel, Slobodnik, Zeev, Zaretsky, Adam, Ueberham, Uwe, Einav, Monica, Brückner, Martina K., Arendt, Thomas, Toiber, Debra
Format Journal Article
LanguageEnglish
Published United States Elsevier Inc 27.04.2021
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Several neurodegenerative diseases present Tau accumulation as the main pathological marker. Tau post-translational modifications such as phosphorylation and acetylation are increased in neurodegeneration. Here, we show that Tau hyper-acetylation at residue 174 increases its own nuclear presence and is the result of DNA damage signaling or the lack of SIRT6, both causative of neurodegeneration. Tau-K174ac is deacetylated in the nucleus by SIRT6. However, lack of SIRT6 or chronic DNA damage results in nuclear Tau-K174ac accumulation. Once there, it induces global changes in gene expression, affecting protein translation, synthesis, and energy production. Concomitantly, Alzheimer’s disease (AD) case subjects show increased nucleolin and a decrease in SIRT6 levels. AD case subjects present increased levels of nuclear Tau, particularly Tau-K174ac. Our results suggest that increased Tau-K174ac in AD case subjects is the result of DNA damage signaling and SIRT6 depletion. We propose that Tau-K174ac toxicity is due to its increased stability, nuclear accumulation, and nucleolar dysfunction. [Display omitted] •DNA damage or SIRT6 absence leads to acetylation of Tau-K174 via CBP•Tau174ac shuttles to the nucleus, where it induces nucleolar activation•SIRT6 regulates Tau-174ac nuclear functions through its deacetylation•Tau174Q increases nucleolar activity and protein synthesis, leading to ATP depletion Portillo et al. show that acetylation of Tau-174 by CBP leads to its nuclear translocation, increasing nucleolar activity and protein synthesis capacity and resulting in ATP depletion. SIRT6 deacetylates nuclear Tau-174ac, preventing its accumulation. SIRT6 depletion, as in Alzheimer’s disease, increases Tau-174ac through the DNA damage response and impaired deacetylation.
AbstractList Several neurodegenerative diseases present Tau accumulation as the main pathological marker. Tau post-translational modifications such as phosphorylation and acetylation are increased in neurodegeneration. Here, we show that Tau hyper-acetylation at residue 174 increases its own nuclear presence and is the result of DNA damage signaling or the lack of SIRT6, both causative of neurodegeneration. Tau-K174ac is deacetylated in the nucleus by SIRT6. However, lack of SIRT6 or chronic DNA damage results in nuclear Tau-K174ac accumulation. Once there, it induces global changes in gene expression, affecting protein translation, synthesis, and energy production. Concomitantly, Alzheimer's disease (AD) case subjects show increased nucleolin and a decrease in SIRT6 levels. AD case subjects present increased levels of nuclear Tau, particularly Tau-K174ac. Our results suggest that increased Tau-K174ac in AD case subjects is the result of DNA damage signaling and SIRT6 depletion. We propose that Tau-K174ac toxicity is due to its increased stability, nuclear accumulation, and nucleolar dysfunction.Several neurodegenerative diseases present Tau accumulation as the main pathological marker. Tau post-translational modifications such as phosphorylation and acetylation are increased in neurodegeneration. Here, we show that Tau hyper-acetylation at residue 174 increases its own nuclear presence and is the result of DNA damage signaling or the lack of SIRT6, both causative of neurodegeneration. Tau-K174ac is deacetylated in the nucleus by SIRT6. However, lack of SIRT6 or chronic DNA damage results in nuclear Tau-K174ac accumulation. Once there, it induces global changes in gene expression, affecting protein translation, synthesis, and energy production. Concomitantly, Alzheimer's disease (AD) case subjects show increased nucleolin and a decrease in SIRT6 levels. AD case subjects present increased levels of nuclear Tau, particularly Tau-K174ac. Our results suggest that increased Tau-K174ac in AD case subjects is the result of DNA damage signaling and SIRT6 depletion. We propose that Tau-K174ac toxicity is due to its increased stability, nuclear accumulation, and nucleolar dysfunction.
Several neurodegenerative diseases present Tau accumulation as the main pathological marker. Tau post-translational modifications such as phosphorylation and acetylation are increased in neurodegeneration. Here, we show that Tau hyper-acetylation at residue 174 increases its own nuclear presence and is the result of DNA damage signaling or the lack of SIRT6, both causative of neurodegeneration. Tau-K174ac is deacetylated in the nucleus by SIRT6. However, lack of SIRT6 or chronic DNA damage results in nuclear Tau-K174ac accumulation. Once there, it induces global changes in gene expression, affecting protein translation, synthesis, and energy production. Concomitantly, Alzheimer's disease (AD) case subjects show increased nucleolin and a decrease in SIRT6 levels. AD case subjects present increased levels of nuclear Tau, particularly Tau-K174ac. Our results suggest that increased Tau-K174ac in AD case subjects is the result of DNA damage signaling and SIRT6 depletion. We propose that Tau-K174ac toxicity is due to its increased stability, nuclear accumulation, and nucleolar dysfunction.
Several neurodegenerative diseases present Tau accumulation as the main pathological marker. Tau post-translational modifications such as phosphorylation and acetylation are increased in neurodegeneration. Here, we show that Tau hyper-acetylation at residue 174 increases its own nuclear presence and is the result of DNA damage signaling or the lack of SIRT6, both causative of neurodegeneration. Tau-K174ac is deacetylated in the nucleus by SIRT6. However, lack of SIRT6 or chronic DNA damage results in nuclear Tau-K174ac accumulation. Once there, it induces global changes in gene expression, affecting protein translation, synthesis, and energy production. Concomitantly, Alzheimer’s disease (AD) case subjects show increased nucleolin and a decrease in SIRT6 levels. AD case subjects present increased levels of nuclear Tau, particularly Tau-K174ac. Our results suggest that increased Tau-K174ac in AD case subjects is the result of DNA damage signaling and SIRT6 depletion. We propose that Tau-K174ac toxicity is due to its increased stability, nuclear accumulation, and nucleolar dysfunction. [Display omitted] •DNA damage or SIRT6 absence leads to acetylation of Tau-K174 via CBP•Tau174ac shuttles to the nucleus, where it induces nucleolar activation•SIRT6 regulates Tau-174ac nuclear functions through its deacetylation•Tau174Q increases nucleolar activity and protein synthesis, leading to ATP depletion Portillo et al. show that acetylation of Tau-174 by CBP leads to its nuclear translocation, increasing nucleolar activity and protein synthesis capacity and resulting in ATP depletion. SIRT6 deacetylates nuclear Tau-174ac, preventing its accumulation. SIRT6 depletion, as in Alzheimer’s disease, increases Tau-174ac through the DNA damage response and impaired deacetylation.
ArticleNumber 109035
Author Garcia-Venzor, Alfredo
Slobodnik, Zeev
Eremenko, Ekaterina
Onn, Lior
Zaretsky, Adam
Kaluski, Shai
Toiber, Debra
Einav, Monica
Ueberham, Uwe
Arendt, Thomas
Stein, Daniel
Brückner, Martina K.
Portillo, Miguel
Author_xml – sequence: 1
  givenname: Miguel
  surname: Portillo
  fullname: Portillo, Miguel
  organization: Department of Life Sciences, Ben-Gurion University of the Negev, Beer Sheva 84105, Israel
– sequence: 2
  givenname: Ekaterina
  surname: Eremenko
  fullname: Eremenko, Ekaterina
  organization: Department of Life Sciences, Ben-Gurion University of the Negev, Beer Sheva 84105, Israel
– sequence: 3
  givenname: Shai
  surname: Kaluski
  fullname: Kaluski, Shai
  organization: Department of Life Sciences, Ben-Gurion University of the Negev, Beer Sheva 84105, Israel
– sequence: 4
  givenname: Alfredo
  surname: Garcia-Venzor
  fullname: Garcia-Venzor, Alfredo
  organization: Department of Life Sciences, Ben-Gurion University of the Negev, Beer Sheva 84105, Israel
– sequence: 5
  givenname: Lior
  surname: Onn
  fullname: Onn, Lior
  organization: Department of Life Sciences, Ben-Gurion University of the Negev, Beer Sheva 84105, Israel
– sequence: 6
  givenname: Daniel
  surname: Stein
  fullname: Stein, Daniel
  organization: Department of Life Sciences, Ben-Gurion University of the Negev, Beer Sheva 84105, Israel
– sequence: 7
  givenname: Zeev
  surname: Slobodnik
  fullname: Slobodnik, Zeev
  organization: Department of Life Sciences, Ben-Gurion University of the Negev, Beer Sheva 84105, Israel
– sequence: 8
  givenname: Adam
  surname: Zaretsky
  fullname: Zaretsky, Adam
  organization: Department of Life Sciences, Ben-Gurion University of the Negev, Beer Sheva 84105, Israel
– sequence: 9
  givenname: Uwe
  surname: Ueberham
  fullname: Ueberham, Uwe
  organization: Paul Flechsig Institute for Brain Research, University of Leipzig, Liebigstrasse 19, 04103 Leipzig, Germany
– sequence: 10
  givenname: Monica
  surname: Einav
  fullname: Einav, Monica
  organization: Department of Life Sciences, Ben-Gurion University of the Negev, Beer Sheva 84105, Israel
– sequence: 11
  givenname: Martina K.
  surname: Brückner
  fullname: Brückner, Martina K.
  organization: Paul Flechsig Institute for Brain Research, University of Leipzig, Liebigstrasse 19, 04103 Leipzig, Germany
– sequence: 12
  givenname: Thomas
  surname: Arendt
  fullname: Arendt, Thomas
  organization: Paul Flechsig Institute for Brain Research, University of Leipzig, Liebigstrasse 19, 04103 Leipzig, Germany
– sequence: 13
  givenname: Debra
  surname: Toiber
  fullname: Toiber, Debra
  email: toiber@bgu.ac.il
  organization: Department of Life Sciences, Ben-Gurion University of the Negev, Beer Sheva 84105, Israel
BackLink https://www.ncbi.nlm.nih.gov/pubmed/33910019$$D View this record in MEDLINE/PubMed
BookMark eNqFkE1LxDAQhoMofu4_EOnRS9dM-pV4EHTxC0RF13NI0xGzdNM1SQX_vVm7injQucwwPO8wPDtk3XYWCdkHOgYK5dFsrLF1uBgzyiCuBM2KNbLNGEAKLK_Wf8xbZOT9jMYqKYDIN8lWlgmgFMQ2uX28fpiW6eTsPm1wgbZBGxLb6xaVS6aqT5TW_bxvVTCdTZRtEhN84roWE2OThesCxu7fbXhBb_we2XhWrcfRqu-Sp4vz6eQqvbm7vJ6c3qQ6pzykVdXE78pKF1AoRmsOmuU8E6xWXGiBOaMZKzhSJVSJgmsUNc8UZHXDai4g2yWHw934wWuPPsi58VFJqyx2vZesAMFpkVdVRA9WaF_PsZELZ-bKvcsvBxHIB0C7znuHz98IULm0LWdysC2XtuVgO8aOf8W0CZ-aglOm_S98MoQxSnoz6KTXBq3GxjjUQTad-fvAB5lZmmU
CitedBy_id crossref_primary_10_3389_fnagi_2021_747989
crossref_primary_10_3390_antiox12030714
crossref_primary_10_1016_j_genrep_2021_101442
crossref_primary_10_1038_s41580_024_00753_9
crossref_primary_10_1038_s41419_024_07160_0
crossref_primary_10_1186_s40478_023_01702_x
crossref_primary_10_3390_ijms221810145
crossref_primary_10_1007_s00401_024_02729_7
crossref_primary_10_1186_s12974_024_03241_1
crossref_primary_10_1016_j_pneurobio_2022_102386
crossref_primary_10_18632_aging_203766
crossref_primary_10_3389_fragi_2023_1164057
crossref_primary_10_3389_fnagi_2021_786897
crossref_primary_10_3389_fcell_2023_1129281
crossref_primary_10_3390_ijms221910283
crossref_primary_10_1111_acel_14245
crossref_primary_10_3389_fnagi_2021_710683
crossref_primary_10_4103_1673_5374_373682
crossref_primary_10_1016_j_bcp_2023_115439
crossref_primary_10_1016_j_neuroscience_2022_07_015
crossref_primary_10_1126_scisignal_ado1035
crossref_primary_10_7717_peerj_14752
crossref_primary_10_3390_cells11050840
crossref_primary_10_1016_j_brainres_2024_149347
crossref_primary_10_1016_j_jbc_2022_101977
crossref_primary_10_3390_cells12040663
crossref_primary_10_1038_s41419_022_05542_w
crossref_primary_10_3389_fgene_2021_769723
Cites_doi 10.1038/srep22685
10.3389/fncel.2014.00107
10.1016/j.neuron.2010.08.044
10.1093/hmg/ddt402
10.1038/ncb1446
10.1016/j.neuron.2016.03.005
10.1016/j.brainresbull.2016.08.018
10.1016/j.cell.2005.11.044
10.1073/pnas.1718819115
10.1038/ncomms6011
10.1186/alzrt259
10.1007/s00401-019-01970-9
10.1038/nn.3639
10.1038/ncomms1255
10.1016/j.tem.2016.10.002
10.1016/j.molcel.2017.05.032
10.1021/bi500006v
10.1038/npjamd.2016.17
10.1016/j.cell.2013.05.039
10.1007/s00018-017-2717-4
10.1038/nm.3951
10.1038/s41467-017-00322-z
10.1242/jcs.02907
10.1016/j.molcel.2013.06.018
10.1093/brain/aws013
10.3390/biom6010009
10.1016/j.neuron.2008.10.055
10.1016/j.celrep.2018.05.004
10.1523/JNEUROSCI.2369-17.2018
10.1016/j.celrep.2017.03.008
10.3389/fncel.2018.00220
10.1038/nrm.2016.93
10.1080/15384101.2016.1176815
10.1038/s41593-018-0291-1
10.1016/j.neuint.2010.12.023
10.1038/nmeth.1314
10.1002/bies.201600224
10.1111/acel.13081
10.7554/eLife.51636
10.1186/s13024-016-0109-0
10.1002/wrna.1325
10.1038/s41586-018-0437-z
10.3389/fncel.2014.00084
10.1038/ncomms16083
10.1016/j.neuron.2014.06.034
10.1074/jbc.M110.199976
10.1371/journal.pone.0158470
10.1038/nrn.2015.1
10.1093/nar/gks720
10.4103/1673-5374.215254
ContentType Journal Article
Copyright 2021 The Author(s)
Copyright © 2021 The Author(s). Published by Elsevier Inc. All rights reserved.
Copyright_xml – notice: 2021 The Author(s)
– notice: Copyright © 2021 The Author(s). Published by Elsevier Inc. All rights reserved.
DBID 6I.
AAFTH
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOI 10.1016/j.celrep.2021.109035
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
MEDLINE

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 2211-1247
ExternalDocumentID 33910019
10_1016_j_celrep_2021_109035
S221112472100351X
Genre Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID 0R~
4.4
457
53G
5VS
6I.
AACTN
AAEDT
AAEDW
AAFTH
AAIKJ
AAKRW
AALRI
AAMRU
AAXUO
ABMAC
ACGFO
ACGFS
ADBBV
ADEZE
ADVLN
AENEX
AEXQZ
AFTJW
AGHFR
AITUG
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
APXCP
BAWUL
BCNDV
DIK
EBS
EJD
FCP
FDB
FRP
GROUPED_DOAJ
GX1
IXB
KQ8
M41
M48
O-L
O9-
OK1
ROL
SSZ
AAYWO
AAYXX
ACVFH
ADCNI
AEUPX
AFPUW
AIGII
AKBMS
AKYEP
CITATION
HZ~
IPNFZ
RIG
CGR
CUY
CVF
ECM
EIF
NPM
7X8
ID FETCH-LOGICAL-c408t-77d21167c515a20b81c248392ba89c9e4203258e0a9a6e98ce9b83a13bd2b8913
IEDL.DBID M48
ISSN 2211-1247
IngestDate Fri Jul 11 15:01:06 EDT 2025
Mon Apr 28 11:35:43 EDT 2025
Tue Jul 01 04:55:32 EDT 2025
Thu Apr 24 23:12:46 EDT 2025
Sat Apr 12 15:21:46 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords acetylation
CBP
protein translation
Alzheimer’s disease
nuclear translocation
DNA damage
Tau
SIRT6
nucleoli
Language English
License This is an open access article under the CC BY-NC-ND license.
Copyright © 2021 The Author(s). Published by Elsevier Inc. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c408t-77d21167c515a20b81c248392ba89c9e4203258e0a9a6e98ce9b83a13bd2b8913
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://www.sciencedirect.com/science/article/pii/S221112472100351X
PMID 33910019
PQID 2519805477
PQPubID 23479
ParticipantIDs proquest_miscellaneous_2519805477
pubmed_primary_33910019
crossref_primary_10_1016_j_celrep_2021_109035
crossref_citationtrail_10_1016_j_celrep_2021_109035
elsevier_sciencedirect_doi_10_1016_j_celrep_2021_109035
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-04-27
PublicationDateYYYYMMDD 2021-04-27
PublicationDate_xml – month: 04
  year: 2021
  text: 2021-04-27
  day: 27
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Cell reports (Cambridge)
PublicationTitleAlternate Cell Rep
PublicationYear 2021
Publisher Elsevier Inc
Publisher_xml – name: Elsevier Inc
References Schmidt, Clavarino, Ceppi, Pierre (bib36) 2009; 6
Choi, Kim, Yang, Chae, Lee, Chung, Kim, Choi, Song, Lee (bib6) 2020; 19
Cook, Stankowski, Carlomagno, Stetler, Petrucelli (bib11) 2014; 6
Tiku, Jain, Raz, Nakamura, Heestand, Liu, Späth, Suchiman, Müller, Slagboom (bib42) 2017; 8
Ziv, Bielopolski, Galanty, Lukas, Taya, Schultz, Lukas, Bekker-Jensen, Bartek, Shiloh (bib50) 2006; 8
Sjöberg, Shestakova, Mansuroglu, Maccioni, Bonnefoy (bib37) 2006; 119
Min, Sohn, Li, Devidze, Johnson, Krogan, Masliah, Mok, Gestwicki, Gan (bib32) 2018; 38
Cong, Das, Ugrinova, Kumar, Mongelard, Wong, Bouvet (bib9) 2012; 40
Zhang, Wan, Feng, Qu, Wang, Jing, Ren, Liu, Zhang, Chen (bib49) 2018; 560
Frost, Hemberg, Lewis, Feany (bib14) 2014; 17
Bukar Maina, Al-Hilaly, Serpell (bib5) 2016; 6
Madabhushi, Pan, Tsai (bib27) 2014; 83
Irwin, Cohen, Grossman, Arnold, Xie, Lee, Trojanowski (bib20) 2012; 135
Arendt, Stieler, Holzer (bib2) 2016; 126
Cohen, Guo, Hurtado, Kwong, Mills, Trojanowski, Lee (bib7) 2011; 2
Koren, Hamm, Meier, Weiss, Nation, Chishti, Arango, Chen, Zhu, Blalock, Abisambra (bib24) 2019; 137
Andreska, Aufmkolk, Sauer, Blum (bib1) 2014; 8
Tasselli, Zheng, Chua (bib41) 2017; 28
Hou, Lautrup, Cordonnier, Wang, Croteau, Zavala, Zhang, Moritoh, O’Connell, Baptiste (bib18) 2018; 115
Toiber, Erdel, Bouazoune, Silberman, Zhong, Mulligan, Sebastian, Cosentino, Martinez-Pastor, Giacosa (bib43) 2013; 51
Wang, Mandelkow (bib48) 2016; 17
Piekna-Przybylska, Bambara, Balakrishnan (bib35) 2016; 15
Martin, Latypova, Terro (bib29) 2011; 58
López-Otín, Blasco, Partridge, Serrano, Kroemer (bib25) 2013; 153
Dutto, Scalera, Prosperi (bib13) 2018; 75
Sultan, Nesslany, Violet, Bégard, Loyens, Talahari, Mansuroglu, Marzin, Sergeant, Humez (bib40) 2011; 286
Buchwalter, Hetzer (bib4) 2017; 8
Mostoslavsky, Chua, Lombard, Pang, Fischer, Gellon, Liu, Mostoslavsky, Franco, Murphy (bib33) 2006; 124
Bonkowski, Sinclair (bib3) 2016; 17
Kamah, Huvent, Cantrelle, Qi, Lippens, Landrieu, Smet-Nocca (bib22) 2014; 53
Tracy, Gan (bib44) 2017; 39
Violet, Delattre, Tardivel, Sultan, Chauderlier, Caillierez, Talahari, Nesslany, Lefebvre, Bonnefoy (bib47) 2014; 8
Min, Cho, Zhou, Schroeder, Haroutunian, Seeley, Huang, Shen, Masliah, Mukherjee (bib30) 2010; 67
Onn, Portillo, Ilic, Cleitman, Stein, Kaluski, Shirat, Slobodnik, Einav, Erdel (bib34) 2020; 9
Gorsky, Burnouf, Dols, Mandelkow, Partridge (bib16) 2016; 6
Sohn, Tracy, Son, Zhou, Leite, Miller, Seeley, Grinberg, Gan (bib38) 2016; 11
Guo, Jeong, Hsieh, Klein, Bennett, De Jager, Liu, Shulman (bib17) 2018; 23
Cohen, Constance, Hwang, James, Yuan (bib8) 2016; 11
Van Meter, Kashyap, Rezazadeh, Geneva, Morello, Seluanov, Gorbunova (bib46) 2014; 5
Costa-Mattioli, Sossin, Klann, Sonenberg (bib12) 2009; 61
Kaluski, Portillo, Besnard, Stein, Einav, Zhong, Ueberham, Arendt, Mostoslavsky, Sahay, Toiber (bib21) 2017; 18
Klein, McCabe, Gjoneska, Sullivan, Kaskow, Tang, Smith, Xu, Pfenning, Bernstein (bib23) 2019; 22
Min, Chen, Tracy, Li, Zhou, Wang, Shirakawa, Minami, Defensor, Mok (bib31) 2015; 21
Garcia, Shaw (bib15) 2017; 66
Maina, Bailey, Doherty, Serpell (bib28) 2018; 12
Stein, Toiber (bib39) 2017; 12
Tracy, Sohn, Minami, Wang, Min, Li, Zhou, Le, Lo, Ponnusamy (bib45) 2016; 90
Imai, Guarente (bib19) 2016; 2
MacInnes (bib26) 2016; 7
Cook, Carlomagno, Gendron, Dunmore, Scheffel, Stetler, Davis, Dickson, Jarpe, DeTure, Petrucelli (bib10) 2014; 23
Bukar Maina (10.1016/j.celrep.2021.109035_bib5) 2016; 6
Irwin (10.1016/j.celrep.2021.109035_bib20) 2012; 135
Maina (10.1016/j.celrep.2021.109035_bib28) 2018; 12
Cook (10.1016/j.celrep.2021.109035_bib11) 2014; 6
Garcia (10.1016/j.celrep.2021.109035_bib15) 2017; 66
Martin (10.1016/j.celrep.2021.109035_bib29) 2011; 58
Guo (10.1016/j.celrep.2021.109035_bib17) 2018; 23
Gorsky (10.1016/j.celrep.2021.109035_bib16) 2016; 6
Choi (10.1016/j.celrep.2021.109035_bib6) 2020; 19
Tasselli (10.1016/j.celrep.2021.109035_bib41) 2017; 28
Sultan (10.1016/j.celrep.2021.109035_bib40) 2011; 286
Toiber (10.1016/j.celrep.2021.109035_bib43) 2013; 51
Piekna-Przybylska (10.1016/j.celrep.2021.109035_bib35) 2016; 15
Tiku (10.1016/j.celrep.2021.109035_bib42) 2017; 8
Zhang (10.1016/j.celrep.2021.109035_bib49) 2018; 560
MacInnes (10.1016/j.celrep.2021.109035_bib26) 2016; 7
Tracy (10.1016/j.celrep.2021.109035_bib44) 2017; 39
Onn (10.1016/j.celrep.2021.109035_bib34) 2020; 9
Dutto (10.1016/j.celrep.2021.109035_bib13) 2018; 75
Sohn (10.1016/j.celrep.2021.109035_bib38) 2016; 11
Stein (10.1016/j.celrep.2021.109035_bib39) 2017; 12
Wang (10.1016/j.celrep.2021.109035_bib48) 2016; 17
Frost (10.1016/j.celrep.2021.109035_bib14) 2014; 17
Kaluski (10.1016/j.celrep.2021.109035_bib21) 2017; 18
Cohen (10.1016/j.celrep.2021.109035_bib7) 2011; 2
Madabhushi (10.1016/j.celrep.2021.109035_bib27) 2014; 83
López-Otín (10.1016/j.celrep.2021.109035_bib25) 2013; 153
Van Meter (10.1016/j.celrep.2021.109035_bib46) 2014; 5
Imai (10.1016/j.celrep.2021.109035_bib19) 2016; 2
Min (10.1016/j.celrep.2021.109035_bib32) 2018; 38
Violet (10.1016/j.celrep.2021.109035_bib47) 2014; 8
Min (10.1016/j.celrep.2021.109035_bib30) 2010; 67
Bonkowski (10.1016/j.celrep.2021.109035_bib3) 2016; 17
Cohen (10.1016/j.celrep.2021.109035_bib8) 2016; 11
Arendt (10.1016/j.celrep.2021.109035_bib2) 2016; 126
Costa-Mattioli (10.1016/j.celrep.2021.109035_bib12) 2009; 61
Tracy (10.1016/j.celrep.2021.109035_bib45) 2016; 90
Schmidt (10.1016/j.celrep.2021.109035_bib36) 2009; 6
Andreska (10.1016/j.celrep.2021.109035_bib1) 2014; 8
Cong (10.1016/j.celrep.2021.109035_bib9) 2012; 40
Kamah (10.1016/j.celrep.2021.109035_bib22) 2014; 53
Mostoslavsky (10.1016/j.celrep.2021.109035_bib33) 2006; 124
Min (10.1016/j.celrep.2021.109035_bib31) 2015; 21
Hou (10.1016/j.celrep.2021.109035_bib18) 2018; 115
Sjöberg (10.1016/j.celrep.2021.109035_bib37) 2006; 119
Buchwalter (10.1016/j.celrep.2021.109035_bib4) 2017; 8
Koren (10.1016/j.celrep.2021.109035_bib24) 2019; 137
Cook (10.1016/j.celrep.2021.109035_bib10) 2014; 23
Ziv (10.1016/j.celrep.2021.109035_bib50) 2006; 8
Klein (10.1016/j.celrep.2021.109035_bib23) 2019; 22
References_xml – volume: 6
  start-page: 22685
  year: 2016
  ident: bib16
  article-title: Acetylation mimic of lysine 280 exacerbates human Tau neurotoxicity in vivo
  publication-title: Sci. Rep.
– volume: 22
  start-page: 37
  year: 2019
  end-page: 46
  ident: bib23
  article-title: Epigenome-wide study uncovers large-scale changes in histone acetylation driven by tau pathology in aging and Alzheimer’s human brains
  publication-title: Nat. Neurosci.
– volume: 6
  start-page: 9
  year: 2016
  ident: bib5
  article-title: Nuclear Tau and Its Potential Role in Alzheimer’s Disease
  publication-title: Biomolecules
– volume: 135
  start-page: 807
  year: 2012
  end-page: 818
  ident: bib20
  article-title: Acetylated tau, a novel pathological signature in Alzheimer’s disease and other tauopathies
  publication-title: Brain
– volume: 38
  start-page: 3680
  year: 2018
  end-page: 3688
  ident: bib32
  article-title: SIRT1 Deacetylates Tau and Reduces Pathogenic Tau Spread in a Mouse Model of Tauopathy
  publication-title: J. Neurosci.
– volume: 560
  start-page: 661
  year: 2018
  end-page: 665
  ident: bib49
  article-title: SIRT6 deficiency results in developmental retardation in cynomolgus monkeys
  publication-title: Nature
– volume: 53
  start-page: 3020
  year: 2014
  end-page: 3032
  ident: bib22
  article-title: Nuclear magnetic resonance analysis of the acetylation pattern of the neuronal Tau protein
  publication-title: Biochemistry
– volume: 286
  start-page: 4566
  year: 2011
  end-page: 4575
  ident: bib40
  article-title: Nuclear tau, a key player in neuronal DNA protection
  publication-title: J. Biol. Chem.
– volume: 18
  start-page: 3052
  year: 2017
  end-page: 3062
  ident: bib21
  article-title: Neuroprotective Functions for the Histone Deacetylase SIRT6
  publication-title: Cell Rep.
– volume: 83
  start-page: 266
  year: 2014
  end-page: 282
  ident: bib27
  article-title: DNA damage and its links to neurodegeneration
  publication-title: Neuron
– volume: 9
  start-page: e51636
  year: 2020
  ident: bib34
  article-title: SIRT6 is a DNA double-strand break sensor
  publication-title: eLife
– volume: 6
  start-page: 275
  year: 2009
  end-page: 277
  ident: bib36
  article-title: SUnSET, a nonradioactive method to monitor protein synthesis
  publication-title: Nat. Methods
– volume: 51
  start-page: 454
  year: 2013
  end-page: 468
  ident: bib43
  article-title: SIRT6 recruits SNF2H to DNA break sites, preventing genomic instability through chromatin remodeling
  publication-title: Mol. Cell
– volume: 61
  start-page: 10
  year: 2009
  end-page: 26
  ident: bib12
  article-title: Translational control of long-lasting synaptic plasticity and memory
  publication-title: Neuron
– volume: 115
  start-page: E1876
  year: 2018
  end-page: E1885
  ident: bib18
  article-title: NAD
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 12
  start-page: 1441
  year: 2017
  end-page: 1442
  ident: bib39
  article-title: DNA damage and neurodegeneration: the unusual suspect
  publication-title: Neural Regen. Res.
– volume: 39
  year: 2017
  ident: bib44
  article-title: Acetylated tau in Alzheimer’s disease: An instigator of synaptic dysfunction underlying memory loss: Increased levels of acetylated tau blocks the postsynaptic signaling required for plasticity and promotes memory deficits associated with tauopathy
  publication-title: BioEssays
– volume: 8
  start-page: 107
  year: 2014
  ident: bib1
  article-title: High abundance of BDNF within glutamatergic presynapses of cultured hippocampal neurons
  publication-title: Front. Cell. Neurosci.
– volume: 6
  start-page: 29
  year: 2014
  ident: bib11
  article-title: Acetylation: a new key to unlock tau’s role in neurodegeneration
  publication-title: Alzheimers Res. Ther.
– volume: 15
  start-page: 1506
  year: 2016
  end-page: 1517
  ident: bib35
  article-title: Acetylation regulates DNA repair mechanisms in human cells
  publication-title: Cell Cycle
– volume: 2
  start-page: 16017
  year: 2016
  ident: bib19
  article-title: It takes two to tango: NAD
  publication-title: NPJ Aging Mech. Dis.
– volume: 17
  start-page: 5
  year: 2016
  end-page: 21
  ident: bib48
  article-title: Tau in physiology and pathology
  publication-title: Nat. Rev. Neurosci.
– volume: 90
  start-page: 245
  year: 2016
  end-page: 260
  ident: bib45
  article-title: Acetylated Tau Obstructs KIBRA-Mediated Signaling in Synaptic Plasticity and Promotes Tauopathy-Related Memory Loss
  publication-title: Neuron
– volume: 8
  start-page: 16083
  year: 2017
  ident: bib42
  article-title: Small nucleoli are a cellular hallmark of longevity
  publication-title: Nat. Commun.
– volume: 12
  start-page: 220
  year: 2018
  ident: bib28
  article-title: The Involvement of Aβ42 and Tau in Nucleolar and Protein Synthesis Machinery Dysfunction
  publication-title: Front. Cell. Neurosci.
– volume: 75
  start-page: 1325
  year: 2018
  end-page: 1338
  ident: bib13
  article-title: CREBBP and p300 lysine acetyl transferases in the DNA damage response
  publication-title: Cell. Mol. Life Sci.
– volume: 124
  start-page: 315
  year: 2006
  end-page: 329
  ident: bib33
  article-title: Genomic instability and aging-like phenotype in the absence of mammalian SIRT6
  publication-title: Cell
– volume: 40
  start-page: 9441
  year: 2012
  end-page: 9454
  ident: bib9
  article-title: Interaction of nucleolin with ribosomal RNA genes and its role in RNA polymerase I transcription
  publication-title: Nucleic Acids Res.
– volume: 17
  start-page: 679
  year: 2016
  end-page: 690
  ident: bib3
  article-title: Slowing ageing by design: the rise of NAD
  publication-title: Nat. Rev. Mol. Cell Biol.
– volume: 11
  start-page: 47
  year: 2016
  ident: bib38
  article-title: Acetylated tau destabilizes the cytoskeleton in the axon initial segment and is mislocalized to the somatodendritic compartment
  publication-title: Mol. Neurodegener.
– volume: 5
  start-page: 5011
  year: 2014
  ident: bib46
  article-title: SIRT6 represses LINE1 retrotransposons by ribosylating KAP1 but this repression fails with stress and age
  publication-title: Nat. Commun.
– volume: 67
  start-page: 953
  year: 2010
  end-page: 966
  ident: bib30
  article-title: Acetylation of tau inhibits its degradation and contributes to tauopathy
  publication-title: Neuron
– volume: 21
  start-page: 1154
  year: 2015
  end-page: 1162
  ident: bib31
  article-title: Critical role of acetylation in tau-mediated neurodegeneration and cognitive deficits
  publication-title: Nat. Med.
– volume: 8
  start-page: 870
  year: 2006
  end-page: 876
  ident: bib50
  article-title: Chromatin relaxation in response to DNA double-strand breaks is modulated by a novel ATM- and KAP-1 dependent pathway
  publication-title: Nat. Cell Biol.
– volume: 126
  start-page: 238
  year: 2016
  end-page: 292
  ident: bib2
  article-title: Tau and tauopathies
  publication-title: Brain Res. Bull.
– volume: 17
  start-page: 357
  year: 2014
  end-page: 366
  ident: bib14
  article-title: Tau promotes neurodegeneration through global chromatin relaxation
  publication-title: Nat. Neurosci.
– volume: 23
  start-page: 104
  year: 2014
  end-page: 116
  ident: bib10
  article-title: Acetylation of the KXGS motifs in tau is a critical determinant in modulation of tau aggregation and clearance
  publication-title: Hum. Mol. Genet.
– volume: 137
  start-page: 571
  year: 2019
  end-page: 583
  ident: bib24
  article-title: Tau drives translational selectivity by interacting with ribosomal proteins
  publication-title: Acta Neuropathol.
– volume: 7
  start-page: 198
  year: 2016
  end-page: 212
  ident: bib26
  article-title: The role of the ribosome in the regulation of longevity and lifespan extension
  publication-title: Wiley Interdiscip. Rev. RNA
– volume: 28
  start-page: 168
  year: 2017
  end-page: 185
  ident: bib41
  article-title: SIRT6: Novel Mechanisms and Links to Aging and Disease
  publication-title: Trends Endocrinol. Metab.
– volume: 8
  start-page: 84
  year: 2014
  ident: bib47
  article-title: A major role for Tau in neuronal DNA and RNA protection in vivo under physiological and hyperthermic conditions
  publication-title: Front. Cell. Neurosci.
– volume: 8
  start-page: 328
  year: 2017
  ident: bib4
  article-title: Nucleolar expansion and elevated protein translation in premature aging
  publication-title: Nat. Commun.
– volume: 2
  start-page: 252
  year: 2011
  ident: bib7
  article-title: The acetylation of tau inhibits its function and promotes pathological tau aggregation
  publication-title: Nat. Commun.
– volume: 11
  start-page: e0158470
  year: 2016
  ident: bib8
  article-title: Intrinsic Tau Acetylation Is Coupled to Auto-Proteolytic Tau Fragmentation
  publication-title: PLoS ONE
– volume: 58
  start-page: 458
  year: 2011
  end-page: 471
  ident: bib29
  article-title: Post-translational modifications of tau protein: implications for Alzheimer’s disease
  publication-title: Neurochem. Int.
– volume: 66
  start-page: 789
  year: 2017
  end-page: 800
  ident: bib15
  article-title: AMPK: Mechanisms of Cellular Energy Sensing and Restoration of Metabolic Balance
  publication-title: Mol. Cell
– volume: 19
  start-page: e13081
  year: 2020
  ident: bib6
  article-title: Acetylation changes tau interactome to degrade tau in Alzheimer’s disease animal and organoid models
  publication-title: Aging Cell
– volume: 153
  start-page: 1194
  year: 2013
  end-page: 1217
  ident: bib25
  article-title: The hallmarks of aging
  publication-title: Cell
– volume: 23
  start-page: 2874
  year: 2018
  end-page: 2880
  ident: bib17
  article-title: Tau Activates Transposable Elements in Alzheimer’s Disease
  publication-title: Cell Rep.
– volume: 119
  start-page: 2025
  year: 2006
  end-page: 2034
  ident: bib37
  article-title: Tau protein binds to pericentromeric DNA: a putative role for nuclear tau in nucleolar organization
  publication-title: J. Cell Sci.
– volume: 6
  start-page: 22685
  year: 2016
  ident: 10.1016/j.celrep.2021.109035_bib16
  article-title: Acetylation mimic of lysine 280 exacerbates human Tau neurotoxicity in vivo
  publication-title: Sci. Rep.
  doi: 10.1038/srep22685
– volume: 8
  start-page: 107
  year: 2014
  ident: 10.1016/j.celrep.2021.109035_bib1
  article-title: High abundance of BDNF within glutamatergic presynapses of cultured hippocampal neurons
  publication-title: Front. Cell. Neurosci.
  doi: 10.3389/fncel.2014.00107
– volume: 67
  start-page: 953
  year: 2010
  ident: 10.1016/j.celrep.2021.109035_bib30
  article-title: Acetylation of tau inhibits its degradation and contributes to tauopathy
  publication-title: Neuron
  doi: 10.1016/j.neuron.2010.08.044
– volume: 23
  start-page: 104
  year: 2014
  ident: 10.1016/j.celrep.2021.109035_bib10
  article-title: Acetylation of the KXGS motifs in tau is a critical determinant in modulation of tau aggregation and clearance
  publication-title: Hum. Mol. Genet.
  doi: 10.1093/hmg/ddt402
– volume: 8
  start-page: 870
  year: 2006
  ident: 10.1016/j.celrep.2021.109035_bib50
  article-title: Chromatin relaxation in response to DNA double-strand breaks is modulated by a novel ATM- and KAP-1 dependent pathway
  publication-title: Nat. Cell Biol.
  doi: 10.1038/ncb1446
– volume: 90
  start-page: 245
  year: 2016
  ident: 10.1016/j.celrep.2021.109035_bib45
  article-title: Acetylated Tau Obstructs KIBRA-Mediated Signaling in Synaptic Plasticity and Promotes Tauopathy-Related Memory Loss
  publication-title: Neuron
  doi: 10.1016/j.neuron.2016.03.005
– volume: 126
  start-page: 238
  year: 2016
  ident: 10.1016/j.celrep.2021.109035_bib2
  article-title: Tau and tauopathies
  publication-title: Brain Res. Bull.
  doi: 10.1016/j.brainresbull.2016.08.018
– volume: 124
  start-page: 315
  year: 2006
  ident: 10.1016/j.celrep.2021.109035_bib33
  article-title: Genomic instability and aging-like phenotype in the absence of mammalian SIRT6
  publication-title: Cell
  doi: 10.1016/j.cell.2005.11.044
– volume: 115
  start-page: E1876
  year: 2018
  ident: 10.1016/j.celrep.2021.109035_bib18
  article-title: NAD+ supplementation normalizes key Alzheimer’s features and DNA damage responses in a new AD mouse model with introduced DNA repair deficiency
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.1718819115
– volume: 5
  start-page: 5011
  year: 2014
  ident: 10.1016/j.celrep.2021.109035_bib46
  article-title: SIRT6 represses LINE1 retrotransposons by ribosylating KAP1 but this repression fails with stress and age
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms6011
– volume: 6
  start-page: 29
  year: 2014
  ident: 10.1016/j.celrep.2021.109035_bib11
  article-title: Acetylation: a new key to unlock tau’s role in neurodegeneration
  publication-title: Alzheimers Res. Ther.
  doi: 10.1186/alzrt259
– volume: 137
  start-page: 571
  year: 2019
  ident: 10.1016/j.celrep.2021.109035_bib24
  article-title: Tau drives translational selectivity by interacting with ribosomal proteins
  publication-title: Acta Neuropathol.
  doi: 10.1007/s00401-019-01970-9
– volume: 17
  start-page: 357
  year: 2014
  ident: 10.1016/j.celrep.2021.109035_bib14
  article-title: Tau promotes neurodegeneration through global chromatin relaxation
  publication-title: Nat. Neurosci.
  doi: 10.1038/nn.3639
– volume: 2
  start-page: 252
  year: 2011
  ident: 10.1016/j.celrep.2021.109035_bib7
  article-title: The acetylation of tau inhibits its function and promotes pathological tau aggregation
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms1255
– volume: 28
  start-page: 168
  year: 2017
  ident: 10.1016/j.celrep.2021.109035_bib41
  article-title: SIRT6: Novel Mechanisms and Links to Aging and Disease
  publication-title: Trends Endocrinol. Metab.
  doi: 10.1016/j.tem.2016.10.002
– volume: 66
  start-page: 789
  year: 2017
  ident: 10.1016/j.celrep.2021.109035_bib15
  article-title: AMPK: Mechanisms of Cellular Energy Sensing and Restoration of Metabolic Balance
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2017.05.032
– volume: 53
  start-page: 3020
  year: 2014
  ident: 10.1016/j.celrep.2021.109035_bib22
  article-title: Nuclear magnetic resonance analysis of the acetylation pattern of the neuronal Tau protein
  publication-title: Biochemistry
  doi: 10.1021/bi500006v
– volume: 2
  start-page: 16017
  year: 2016
  ident: 10.1016/j.celrep.2021.109035_bib19
  article-title: It takes two to tango: NAD+ and sirtuins in aging/longevity control
  publication-title: NPJ Aging Mech. Dis.
  doi: 10.1038/npjamd.2016.17
– volume: 153
  start-page: 1194
  year: 2013
  ident: 10.1016/j.celrep.2021.109035_bib25
  article-title: The hallmarks of aging
  publication-title: Cell
  doi: 10.1016/j.cell.2013.05.039
– volume: 75
  start-page: 1325
  year: 2018
  ident: 10.1016/j.celrep.2021.109035_bib13
  article-title: CREBBP and p300 lysine acetyl transferases in the DNA damage response
  publication-title: Cell. Mol. Life Sci.
  doi: 10.1007/s00018-017-2717-4
– volume: 21
  start-page: 1154
  year: 2015
  ident: 10.1016/j.celrep.2021.109035_bib31
  article-title: Critical role of acetylation in tau-mediated neurodegeneration and cognitive deficits
  publication-title: Nat. Med.
  doi: 10.1038/nm.3951
– volume: 8
  start-page: 328
  year: 2017
  ident: 10.1016/j.celrep.2021.109035_bib4
  article-title: Nucleolar expansion and elevated protein translation in premature aging
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-017-00322-z
– volume: 119
  start-page: 2025
  year: 2006
  ident: 10.1016/j.celrep.2021.109035_bib37
  article-title: Tau protein binds to pericentromeric DNA: a putative role for nuclear tau in nucleolar organization
  publication-title: J. Cell Sci.
  doi: 10.1242/jcs.02907
– volume: 51
  start-page: 454
  year: 2013
  ident: 10.1016/j.celrep.2021.109035_bib43
  article-title: SIRT6 recruits SNF2H to DNA break sites, preventing genomic instability through chromatin remodeling
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2013.06.018
– volume: 135
  start-page: 807
  year: 2012
  ident: 10.1016/j.celrep.2021.109035_bib20
  article-title: Acetylated tau, a novel pathological signature in Alzheimer’s disease and other tauopathies
  publication-title: Brain
  doi: 10.1093/brain/aws013
– volume: 6
  start-page: 9
  year: 2016
  ident: 10.1016/j.celrep.2021.109035_bib5
  article-title: Nuclear Tau and Its Potential Role in Alzheimer’s Disease
  publication-title: Biomolecules
  doi: 10.3390/biom6010009
– volume: 61
  start-page: 10
  year: 2009
  ident: 10.1016/j.celrep.2021.109035_bib12
  article-title: Translational control of long-lasting synaptic plasticity and memory
  publication-title: Neuron
  doi: 10.1016/j.neuron.2008.10.055
– volume: 23
  start-page: 2874
  year: 2018
  ident: 10.1016/j.celrep.2021.109035_bib17
  article-title: Tau Activates Transposable Elements in Alzheimer’s Disease
  publication-title: Cell Rep.
  doi: 10.1016/j.celrep.2018.05.004
– volume: 38
  start-page: 3680
  year: 2018
  ident: 10.1016/j.celrep.2021.109035_bib32
  article-title: SIRT1 Deacetylates Tau and Reduces Pathogenic Tau Spread in a Mouse Model of Tauopathy
  publication-title: J. Neurosci.
  doi: 10.1523/JNEUROSCI.2369-17.2018
– volume: 18
  start-page: 3052
  year: 2017
  ident: 10.1016/j.celrep.2021.109035_bib21
  article-title: Neuroprotective Functions for the Histone Deacetylase SIRT6
  publication-title: Cell Rep.
  doi: 10.1016/j.celrep.2017.03.008
– volume: 12
  start-page: 220
  year: 2018
  ident: 10.1016/j.celrep.2021.109035_bib28
  article-title: The Involvement of Aβ42 and Tau in Nucleolar and Protein Synthesis Machinery Dysfunction
  publication-title: Front. Cell. Neurosci.
  doi: 10.3389/fncel.2018.00220
– volume: 17
  start-page: 679
  year: 2016
  ident: 10.1016/j.celrep.2021.109035_bib3
  article-title: Slowing ageing by design: the rise of NAD+ and sirtuin-activating compounds
  publication-title: Nat. Rev. Mol. Cell Biol.
  doi: 10.1038/nrm.2016.93
– volume: 15
  start-page: 1506
  year: 2016
  ident: 10.1016/j.celrep.2021.109035_bib35
  article-title: Acetylation regulates DNA repair mechanisms in human cells
  publication-title: Cell Cycle
  doi: 10.1080/15384101.2016.1176815
– volume: 22
  start-page: 37
  year: 2019
  ident: 10.1016/j.celrep.2021.109035_bib23
  article-title: Epigenome-wide study uncovers large-scale changes in histone acetylation driven by tau pathology in aging and Alzheimer’s human brains
  publication-title: Nat. Neurosci.
  doi: 10.1038/s41593-018-0291-1
– volume: 58
  start-page: 458
  year: 2011
  ident: 10.1016/j.celrep.2021.109035_bib29
  article-title: Post-translational modifications of tau protein: implications for Alzheimer’s disease
  publication-title: Neurochem. Int.
  doi: 10.1016/j.neuint.2010.12.023
– volume: 6
  start-page: 275
  year: 2009
  ident: 10.1016/j.celrep.2021.109035_bib36
  article-title: SUnSET, a nonradioactive method to monitor protein synthesis
  publication-title: Nat. Methods
  doi: 10.1038/nmeth.1314
– volume: 39
  year: 2017
  ident: 10.1016/j.celrep.2021.109035_bib44
  article-title: Acetylated tau in Alzheimer’s disease: An instigator of synaptic dysfunction underlying memory loss: Increased levels of acetylated tau blocks the postsynaptic signaling required for plasticity and promotes memory deficits associated with tauopathy
  publication-title: BioEssays
  doi: 10.1002/bies.201600224
– volume: 19
  start-page: e13081
  year: 2020
  ident: 10.1016/j.celrep.2021.109035_bib6
  article-title: Acetylation changes tau interactome to degrade tau in Alzheimer’s disease animal and organoid models
  publication-title: Aging Cell
  doi: 10.1111/acel.13081
– volume: 9
  start-page: e51636
  year: 2020
  ident: 10.1016/j.celrep.2021.109035_bib34
  article-title: SIRT6 is a DNA double-strand break sensor
  publication-title: eLife
  doi: 10.7554/eLife.51636
– volume: 11
  start-page: 47
  year: 2016
  ident: 10.1016/j.celrep.2021.109035_bib38
  article-title: Acetylated tau destabilizes the cytoskeleton in the axon initial segment and is mislocalized to the somatodendritic compartment
  publication-title: Mol. Neurodegener.
  doi: 10.1186/s13024-016-0109-0
– volume: 7
  start-page: 198
  year: 2016
  ident: 10.1016/j.celrep.2021.109035_bib26
  article-title: The role of the ribosome in the regulation of longevity and lifespan extension
  publication-title: Wiley Interdiscip. Rev. RNA
  doi: 10.1002/wrna.1325
– volume: 560
  start-page: 661
  year: 2018
  ident: 10.1016/j.celrep.2021.109035_bib49
  article-title: SIRT6 deficiency results in developmental retardation in cynomolgus monkeys
  publication-title: Nature
  doi: 10.1038/s41586-018-0437-z
– volume: 8
  start-page: 84
  year: 2014
  ident: 10.1016/j.celrep.2021.109035_bib47
  article-title: A major role for Tau in neuronal DNA and RNA protection in vivo under physiological and hyperthermic conditions
  publication-title: Front. Cell. Neurosci.
  doi: 10.3389/fncel.2014.00084
– volume: 8
  start-page: 16083
  year: 2017
  ident: 10.1016/j.celrep.2021.109035_bib42
  article-title: Small nucleoli are a cellular hallmark of longevity
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms16083
– volume: 83
  start-page: 266
  year: 2014
  ident: 10.1016/j.celrep.2021.109035_bib27
  article-title: DNA damage and its links to neurodegeneration
  publication-title: Neuron
  doi: 10.1016/j.neuron.2014.06.034
– volume: 286
  start-page: 4566
  year: 2011
  ident: 10.1016/j.celrep.2021.109035_bib40
  article-title: Nuclear tau, a key player in neuronal DNA protection
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M110.199976
– volume: 11
  start-page: e0158470
  year: 2016
  ident: 10.1016/j.celrep.2021.109035_bib8
  article-title: Intrinsic Tau Acetylation Is Coupled to Auto-Proteolytic Tau Fragmentation
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0158470
– volume: 17
  start-page: 5
  year: 2016
  ident: 10.1016/j.celrep.2021.109035_bib48
  article-title: Tau in physiology and pathology
  publication-title: Nat. Rev. Neurosci.
  doi: 10.1038/nrn.2015.1
– volume: 40
  start-page: 9441
  year: 2012
  ident: 10.1016/j.celrep.2021.109035_bib9
  article-title: Interaction of nucleolin with ribosomal RNA genes and its role in RNA polymerase I transcription
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gks720
– volume: 12
  start-page: 1441
  year: 2017
  ident: 10.1016/j.celrep.2021.109035_bib39
  article-title: DNA damage and neurodegeneration: the unusual suspect
  publication-title: Neural Regen. Res.
  doi: 10.4103/1673-5374.215254
SSID ssj0000601194
Score 2.4383872
Snippet Several neurodegenerative diseases present Tau accumulation as the main pathological marker. Tau post-translational modifications such as phosphorylation and...
SourceID proquest
pubmed
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 109035
SubjectTerms acetylation
Alzheimer Disease - genetics
Alzheimer’s disease
CBP
DNA damage
Humans
nuclear translocation
nucleoli
Protein Biosynthesis - genetics
protein translation
SIRT6
Sirtuins - genetics
Sirtuins - metabolism
Tau
tau Proteins - metabolism
SummonAdditionalLinks – databaseName: ScienceDirect Free and Delayed Access Titles
  dbid: IXB
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dS8MwEA9jIPgifju_iOBr2Jp-pY9uOKbgELfB3kKSRajMbqztw_5779J2ICiCT6VtQsNdevkld_c7Qu692PdgmecsAnzMglBpJiyy7huehEZzvnBHAy_jaDQLnufhvEUGTS4MhlXWtr-y6c5a10-6tTS76zTtTjjsXWB1gi2Mc4fNwQ77gXBJfPP-7pwF-UY8Vw8R2zPs0GTQuTAvY5cbi8SV3ENqpZ6r-_bjCvUbAnUr0fCQHNQQkj5UozwiLZsdk72qqOT2hIwnT2_TiA36r6ypcFvQDGmL1YZOVUmVMeVnXbWLqmxB0yKnGGVI04w63ga45tsMoGGe5qdkNnycDkasrprATNATBcDlBUfnigGkonhPCxB7gDBIK5GYxAZYMz0EhahERTYRxiZa-Mrz9YJrdFqekXa2yuwFoT2rAwVvTYj-T61FwFVouI7ePdiQR7ZD_EZS0tSU4ljZYimb2LEPWclXonxlJd8OYbte64pS44_2caME-W1qSLD6f_S8a3Qm4a9BV4jK7KrMJebrCkCrcdwh55Uyd2Px_QSJqZLLf3_3iuzjHTqdeHxN2sWmtDeAXQp96ybnF8Kx6I4
  priority: 102
  providerName: Elsevier
Title SIRT6-CBP-dependent nuclear Tau accumulation and its role in protein synthesis
URI https://dx.doi.org/10.1016/j.celrep.2021.109035
https://www.ncbi.nlm.nih.gov/pubmed/33910019
https://www.proquest.com/docview/2519805477
Volume 35
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LS8NAEF5qRfAivq2PsoLXSLJ5H0RssbRCi2gLvS27mxUqNdU8wP57Z_KoF0u9JIdkkzCzm_l2Z_b7CLmxfNuCMM8MD_Cx4bhCGoFG1n3FQldJxqJiaWA48voT52nqThuk1mytDJj-ObVDPalJMr_9_lrew4C_-63VUnqeaGSfZBbyI5m2u0W2ITb5OFSHFeAv_83IcYapZsawlos5fr2fbs2D1sWrdXi0iEu9fbJXAUr6UPaAA9LQ8SHZKSUml0dk9Dp4GXtGt_Ns1Hq3GY2RxFgkdCxyKpTKPyoNLyriiM6ylGLNIZ3FtGBxgHO6jAEoprP0mEx6j-Nu36g0FAzlmEEG4DlimGpRgFsEM2UATnAQFEkRhCrUDiqou-AeEQpPh4HSoQxsYdkyYhJTmCekGS9ifUaoqaUj4KpyMRsqZeAw4SomvTcLpueebhG7thRXFcE46lzMeV1J9s5L-3K0Ly_t2yLGqtVnSbCx4X6_dgKvQEIZ_Dl0iQ0tr2ufcRhDmBgRsV7kKcfduwFgV99vkdPSmatvse0QaarC83-0viC7-D5MNjH_kjSzJNdXgFky2S7m-nAcTDvtokv-AJGh58A
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEB58IHoR367PCF7DbtP3URdl18ciusLeQpKNUFmrbLsH_70zabsgKIKnQtOhZZJOvmQm3wdw7sW-h9O84BHiYx6ESvPEEuu-EWlotBBjtzVwP4h6z8HNKBwtQLc5C0NllXXsr2K6i9b1nXbtzfZHlrWfBK5dcHbCJYxLh40WYRnRQEz6Df3R5XyjhQhHPCeISAacLJojdK7Oy9jJ1BJzpfCIW6njhN9-nKJ-g6BuKrregPUaQ7KL6jM3YcHmW7BSqUp-bsPgqf84jHj38oE3Ercly4m3WE3ZUM2YMmb2Vst2MZWPWVYWjMoMWZYzR9yA1-IzR2xYZMUOPF9fDbs9XssmcBN0khLx8lhQdsUgVFGioxP0e0A4SKskNakNSDQ9xB5RqYpsmhib6sRXnq_HQlPWcheW8vfc7gPrWB0obDUhJUC1TgKhQiN09OLhijyyLfAbT0lTc4qTtMVENsVjr7LyryT_ysq_LeBzq4-KU-OP5-OmE-S3sSEx7P9hedb0mcTfhnIhKrfvs0LSgd0E4Woct2Cv6sz5t_h-SsxU6cG_33sKq73h_Z286w9uD2GNWigDJeIjWCqnM3uMQKbUJ26gfgF7_Out
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=SIRT6-CBP-dependent+nuclear+Tau+accumulation+and+its+role+in+protein+synthesis&rft.jtitle=Cell+reports+%28Cambridge%29&rft.au=Portillo%2C+Miguel&rft.au=Eremenko%2C+Ekaterina&rft.au=Kaluski%2C+Shai&rft.au=Garcia-Venzor%2C+Alfredo&rft.date=2021-04-27&rft.issn=2211-1247&rft.eissn=2211-1247&rft.volume=35&rft.issue=4&rft.spage=109035&rft_id=info:doi/10.1016%2Fj.celrep.2021.109035&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2211-1247&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2211-1247&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2211-1247&client=summon