A Novel Trajectory Generator Based on a Constrained GAN and a Latent Variables Predictor

Forecasting pedestrian trajectory is critical for versatile applications, such as autonomous driving and social robot, when they work in human-centric environments. However, it is challenging to predict pedestrians' future trajectories due to the inherent human properties and pedestrians'...

Full description

Saved in:
Bibliographic Details
Published inIEEE access Vol. 8; pp. 212529 - 212540
Main Authors Wu, Wei, Yang, Biao, Wang, Dong, Zhang, Weigong
Format Journal Article
LanguageEnglish
Published Piscataway IEEE 2020
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Forecasting pedestrian trajectory is critical for versatile applications, such as autonomous driving and social robot, when they work in human-centric environments. However, it is challenging to predict pedestrians' future trajectories due to the inherent human properties and pedestrians' social interactions. Recent works predict future trajectories by using a generative model, which captures social interactions with pooling- or graph-based strategies and generates multi-modal outputs with latent variables sampled from random Gaussian noise. Nevertheless, they introduce little human knowledge, which is beneficial for improved prediction performance. In this work, we propose to learn informative latent variables from pedestrians' future trajectories. Moreover, we present a distance-direction pooling module, which captures social interactions in a more intuitive manner. Besides, we introduce an additional constraint on generative adversarial network optimization to generate more realistic results. Two benchmarking datasets, ETH (Pellegrini et al. , 2010) and UCY (Leal-Taixé et al. , 2014), are used to evaluate the proposed method. Comparisons between our method and several state-of-the-art methods demonstrate the superiority of the proposed method in generating more accurate future trajectories.
AbstractList Forecasting pedestrian trajectory is critical for versatile applications, such as autonomous driving and social robot, when they work in human-centric environments. However, it is challenging to predict pedestrians’ future trajectories due to the inherent human properties and pedestrians’ social interactions. Recent works predict future trajectories by using a generative model, which captures social interactions with pooling- or graph-based strategies and generates multi-modal outputs with latent variables sampled from random Gaussian noise. Nevertheless, they introduce little human knowledge, which is beneficial for improved prediction performance. In this work, we propose to learn informative latent variables from pedestrians’ future trajectories. Moreover, we present a distance-direction pooling module, which captures social interactions in a more intuitive manner. Besides, we introduce an additional constraint on generative adversarial network optimization to generate more realistic results. Two benchmarking datasets, ETH (Pellegrini et al. , 2010) and UCY (Leal-Taixé et al. , 2014), are used to evaluate the proposed method. Comparisons between our method and several state-of-the-art methods demonstrate the superiority of the proposed method in generating more accurate future trajectories.
Forecasting pedestrian trajectory is critical for versatile applications, such as autonomous driving and social robot, when they work in human-centric environments. However, it is challenging to predict pedestrians' future trajectories due to the inherent human properties and pedestrians' social interactions. Recent works predict future trajectories by using a generative model, which captures social interactions with pooling- or graph-based strategies and generates multi-modal outputs with latent variables sampled from random Gaussian noise. Nevertheless, they introduce little human knowledge, which is beneficial for improved prediction performance. In this work, we propose to learn informative latent variables from pedestrians' future trajectories. Moreover, we present a distance-direction pooling module, which captures social interactions in a more intuitive manner. Besides, we introduce an additional constraint on generative adversarial network optimization to generate more realistic results. Two benchmarking datasets, ETH (Pellegrini et al., 2010) and UCY (Leal-Taixé et al., 2014), are used to evaluate the proposed method. Comparisons between our method and several state-of-the-art methods demonstrate the superiority of the proposed method in generating more accurate future trajectories.
Author Zhang, Weigong
Wu, Wei
Yang, Biao
Wang, Dong
Author_xml – sequence: 1
  givenname: Wei
  orcidid: 0000-0003-2530-4337
  surname: Wu
  fullname: Wu, Wei
  organization: School of Instrument Science and Engineering, Southeast University, Nanjing, China
– sequence: 2
  givenname: Biao
  orcidid: 0000-0002-4434-0141
  surname: Yang
  fullname: Yang, Biao
  organization: School of Microelectronics and Control Engineering, Changzhou University, Changzhou, China
– sequence: 3
  givenname: Dong
  orcidid: 0000-0002-4908-1361
  surname: Wang
  fullname: Wang, Dong
  email: kingeast16@seu.edu.cn
  organization: School of Instrument Science and Engineering, Southeast University, Nanjing, China
– sequence: 4
  givenname: Weigong
  orcidid: 0000-0001-7139-595X
  surname: Zhang
  fullname: Zhang, Weigong
  organization: School of Instrument Science and Engineering, Southeast University, Nanjing, China
BookMark eNqFUU1rFEEQHSSCMeYX5NLgedf-mv44rkNcA0sUEsVbUzNdI72M3bF7IuTf25MJIXixoKjiUe9VUe9tcxJTxKa5YHTLGLUfdl13eXOz5ZTTraDCGspeNaecKbsRrVAnL_o3zXkpR1rDVKjVp82PHblOf3AitxmOOMwpP5A9RsxQW_IRCnqSIgHSpVjmDCFWYL-7JhB9RQ8wY5zJd8gB-gkL-ZrRh0XmXfN6hKng-VM9a759urztPm8OX_ZX3e6wGSQ180Yr0ws9Ime9xYEx0zNPLaKFQXrLledSt1Yz1Y7ajtxz1QJXo_C8RRBUibPmatX1CY7uLodfkB9cguAegZR_OshzGCZ0wjBUSkJNKXkrre2hV3oQho8oNa1a71etu5x-32OZ3THd51jPd1wqoxXVZpkS69SQUykZx-etjLrFEbc64hZH3JMjlWX_YQ1hhjmkuHx1-g_3YuUGRHzeVr-jqOTiL56xmEU
CODEN IAECCG
CitedBy_id crossref_primary_10_1109_ACCESS_2021_3116303
crossref_primary_10_3390_s25030820
crossref_primary_10_1007_s12243_023_00980_9
crossref_primary_10_1049_itr2_12265
Cites_doi 10.1109/CVPR.2019.00038
10.1109/CVPR.2015.7298971
10.1109/CVPR.2019.00144
10.1109/CVPR.2017.233
10.1109/WACV.2018.00135
10.2514/6.2011-1512
10.1016/j.neucom.2020.06.041
10.1109/IVS.2016.7535484
10.1109/TVT.2018.2793889
10.1145/3072959.3073659
10.3233/ICA-200641
10.1109/LRA.2019.2931262
10.1109/CVPR.2018.00240
10.1109/CVPR.2018.00833
10.1109/CVPR.2017.493
10.1109/CVPR.2016.110
10.1109/AVSS.2018.8639163
10.1109/CVPR.2014.453
10.1016/j.asoc.2020.106593
10.1109/MITS.2012.2203229
10.1007/978-3-642-15549-9_33
10.1109/CVPR42600.2020.00635
10.1109/IVS.2018.8500626
10.1109/CVPR42600.2020.00074
10.1109/CVPR.2017.202
10.1109/CVPR.2019.01236
10.1007/978-3-319-96728-8_12
10.1103/PhysRevE.51.4282
10.1007/s00371-019-01774-8
10.1109/TNNLS.2019.2935608
10.1007/978-3-030-01219-9_11
10.1109/LRA.2019.2928202
10.1609/aaai.v33i01.33016120
10.1109/ICCVW.2019.00149
10.1109/ICCV.2019.00637
10.1109/MITS.2011.942779
10.1109/CVPRW.2019.00359
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020
DBID 97E
ESBDL
RIA
RIE
AAYXX
CITATION
7SC
7SP
7SR
8BQ
8FD
JG9
JQ2
L7M
L~C
L~D
DOA
DOI 10.1109/ACCESS.2020.3039801
DatabaseName IEEE Xplore (IEEE)
IEEE Xplore Open Access Journals
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
METADEX
Computer and Information Systems Abstracts Professional
DatabaseTitleList Materials Research Database


Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2169-3536
EndPage 212540
ExternalDocumentID oai_doaj_org_article_381e664a6644425499bab67c382fe470
10_1109_ACCESS_2020_3039801
9266042
Genre orig-research
GrantInformation_xml – fundername: Jiangsu Natural Science Foundation
  grantid: BK20170681
  funderid: 10.13039/501100004608
– fundername: Changzhou Application Foundation Research Project
  grantid: CJ20200083
– fundername: Scientific Research Project of the 333 Project of Jiangsu
  grantid: BRA2019310
– fundername: Natural Science Foundation of the Jiangsu Higher Education Institutions of China
  grantid: 18KJB520003
  funderid: 10.13039/501100010023
– fundername: Jiangsu SINO-ISRAEL Industrial Technology Research Institute
  grantid: JSIITRI202007
  funderid: 10.13039/501100003848
GroupedDBID 0R~
4.4
5VS
6IK
97E
AAJGR
ABAZT
ABVLG
ACGFS
ADBBV
AGSQL
ALMA_UNASSIGNED_HOLDINGS
BCNDV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
EJD
ESBDL
GROUPED_DOAJ
IPLJI
JAVBF
KQ8
M43
M~E
O9-
OCL
OK1
RIA
RIE
RNS
AAYXX
CITATION
RIG
7SC
7SP
7SR
8BQ
8FD
JG9
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c408t-768b37fe21b9ec118b1d09ee9ac4d926d247597165f79f2d265a26f3d25ea3063
IEDL.DBID RIE
ISSN 2169-3536
IngestDate Wed Aug 27 01:30:32 EDT 2025
Mon Jun 30 15:15:47 EDT 2025
Tue Jul 01 02:56:00 EDT 2025
Thu Apr 24 23:03:45 EDT 2025
Wed Aug 27 02:33:50 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Language English
License https://creativecommons.org/licenses/by/4.0/legalcode
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c408t-768b37fe21b9ec118b1d09ee9ac4d926d247597165f79f2d265a26f3d25ea3063
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-7139-595X
0000-0002-4434-0141
0000-0002-4908-1361
0000-0003-2530-4337
OpenAccessLink https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/document/9266042
PQID 2468760780
PQPubID 4845423
PageCount 12
ParticipantIDs doaj_primary_oai_doaj_org_article_381e664a6644425499bab67c382fe470
crossref_primary_10_1109_ACCESS_2020_3039801
proquest_journals_2468760780
ieee_primary_9266042
crossref_citationtrail_10_1109_ACCESS_2020_3039801
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20200000
2020-00-00
20200101
2020-01-01
PublicationDateYYYYMMDD 2020-01-01
PublicationDate_xml – year: 2020
  text: 20200000
PublicationDecade 2020
PublicationPlace Piscataway
PublicationPlace_xml – name: Piscataway
PublicationTitle IEEE access
PublicationTitleAbbrev Access
PublicationYear 2020
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref15
ref53
ref52
ref11
ref10
ref17
ref19
ref18
odena (ref48) 2018
goodfellow (ref38) 2014
ref46
ref42
ref41
ref43
van der heiden (ref28) 2019
ref8
ref7
ref9
ref4
ref3
ref6
ref5
yang (ref49) 2018
ref35
ref37
ref36
ref31
ref32
ref2
ref1
ref39
villegas (ref44) 2017
zhu (ref45) 2017
kosaraju (ref12) 2019
li (ref40) 2019
ref24
ref23
ref26
ref25
ref20
ref22
lee (ref47) 2018
ref21
tang (ref34) 2019
ref27
chen (ref14) 2016
zhang (ref33) 2019
ref29
deo (ref16) 2019
caizhen (ref50) 2020
tamar (ref30) 2016
kingma (ref51) 2014
References_xml – start-page: 42
  year: 2020
  ident: ref50
  article-title: An adversarial learned trajectory predictor with knowledge-rich latent variables
  publication-title: Proc Chin Conf Pattern Recognit Comput Vis
– start-page: 465
  year: 2017
  ident: ref45
  article-title: Toward multimodal image-to-image translation
  publication-title: Proc Adv Neural Inf Process Syst
– ident: ref27
  doi: 10.1109/CVPR.2019.00038
– year: 2018
  ident: ref48
  article-title: Is generator conditioning causally related to GAN performance?
  publication-title: arXiv 1802 08768
– ident: ref35
  doi: 10.1109/CVPR.2015.7298971
– year: 2016
  ident: ref30
  article-title: Value iteration networks
  publication-title: arXiv 1602 02867
– ident: ref17
  doi: 10.1109/CVPR.2019.00144
– ident: ref4
  doi: 10.1109/CVPR.2017.233
– ident: ref32
  doi: 10.1109/WACV.2018.00135
– ident: ref23
  doi: 10.2514/6.2011-1512
– ident: ref10
  doi: 10.1016/j.neucom.2020.06.041
– ident: ref5
  doi: 10.1109/IVS.2016.7535484
– ident: ref21
  doi: 10.1109/TVT.2018.2793889
– ident: ref41
  doi: 10.1145/3072959.3073659
– year: 2019
  ident: ref28
  article-title: SafeCritic: Collision-aware trajectory prediction
  publication-title: arXiv 1910 06673
– ident: ref8
  doi: 10.3233/ICA-200641
– ident: ref18
  doi: 10.1109/LRA.2019.2931262
– ident: ref3
  doi: 10.1109/CVPR.2018.00240
– year: 2019
  ident: ref33
  article-title: Stochastic trajectory prediction with social graph network
  publication-title: arXiv 1907 10233
– year: 2014
  ident: ref51
  article-title: Adam: A method for stochastic optimization
  publication-title: arXiv 1412 6980
– ident: ref43
  doi: 10.1109/CVPR.2018.00833
– year: 2017
  ident: ref44
  article-title: Decomposing motion and content for natural video sequence prediction
  publication-title: arXiv 1706 08033
– ident: ref26
  doi: 10.1109/CVPR.2017.493
– ident: ref7
  doi: 10.1109/CVPR.2016.110
– year: 2018
  ident: ref47
  article-title: Stochastic adversarial video prediction
  publication-title: arXiv 1804 01523
– ident: ref39
  doi: 10.1109/AVSS.2018.8639163
– start-page: 2672
  year: 2014
  ident: ref38
  article-title: Generative adversarial nets
  publication-title: Proc Adv Neural Inf Process Syst
– ident: ref2
  doi: 10.1109/CVPR.2014.453
– ident: ref6
  doi: 10.1016/j.asoc.2020.106593
– ident: ref24
  doi: 10.1109/MITS.2012.2203229
– ident: ref1
  doi: 10.1007/978-3-642-15549-9_33
– ident: ref11
  doi: 10.1109/CVPR42600.2020.00635
– start-page: 137
  year: 2019
  ident: ref12
  article-title: Social-bigat: Multimodal trajectory forecasting using bicycle-GAN and graph attention networks
  publication-title: Proc Adv Neural Inf Process Syst
– ident: ref20
  doi: 10.1109/IVS.2018.8500626
– ident: ref37
  doi: 10.1109/CVPR42600.2020.00074
– ident: ref42
  doi: 10.1109/CVPR.2017.202
– start-page: 2172
  year: 2016
  ident: ref14
  article-title: Infogan: Interpretable representation learning by information maximizing generative adversarial nets
  publication-title: Proc Adv Neural Inf Process Syst
– ident: ref31
  doi: 10.1109/CVPR.2019.01236
– year: 2019
  ident: ref16
  article-title: Scene induced multi-modal trajectory forecasting via planning
  publication-title: arXiv 1905 09949
– ident: ref19
  doi: 10.1007/978-3-319-96728-8_12
– start-page: 15398
  year: 2019
  ident: ref34
  article-title: Multiple futures prediction
  publication-title: Proc Adv Neural Inf Process Syst
– ident: ref36
  doi: 10.1103/PhysRevE.51.4282
– ident: ref9
  doi: 10.1007/s00371-019-01774-8
– ident: ref53
  doi: 10.1109/TNNLS.2019.2935608
– start-page: 46
  year: 2019
  ident: ref40
  article-title: Exposing deepfake videos by detecting face warping artifacts
  publication-title: Proc IEEE Int Conf Comput Vis Workshops
– ident: ref46
  doi: 10.1007/978-3-030-01219-9_11
– ident: ref25
  doi: 10.1109/LRA.2019.2928202
– ident: ref15
  doi: 10.1609/aaai.v33i01.33016120
– ident: ref29
  doi: 10.1109/ICCVW.2019.00149
– ident: ref52
  doi: 10.1109/ICCV.2019.00637
– year: 2018
  ident: ref49
  article-title: Diversity-sensitive conditional generative adversarial networks
  publication-title: arXiv 1901 09024
– ident: ref22
  doi: 10.1109/MITS.2011.942779
– ident: ref13
  doi: 10.1109/CVPRW.2019.00359
SSID ssj0000816957
Score 2.183595
Snippet Forecasting pedestrian trajectory is critical for versatile applications, such as autonomous driving and social robot, when they work in human-centric...
SourceID doaj
proquest
crossref
ieee
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 212529
SubjectTerms Constraints
future uncertainty
generative adversarial network
Generative adversarial networks
Generators
Hidden Markov models
latent variable predictor
Optimization
Pedestrians
Predictive models
Random noise
Random variables
Robots
Social factors
Training
Trajectory
Trajectory forecasting
Uncertainty
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3PS8MwFA6ykx5EneJ0Sg4eLWuTNGmO23AO0eHByW4hadKDjE62Kfjf-5JmYyDoxUOhhPRHXl7f9760_R5CN0VAbmsSUXAKBIVmiXSMJo7lkgm_0G_8esfThI-n7GGWz3ZKfflvwhp54MZwPUAUxznTsDEW2IzRhouSFqRyTAS2Dpi3Q6ZCDC4yLnMRZYayVPb6wyGMCAghAZ6aUlnEMjAbKAqK_bHEyo-4HMBmdIQOY5aI-83dHaM9V5-ggx3twDaa9fFk8enmGNDmLSy9f-FGQxp28QDAyeJFjTX2JTlDIQhouO9PsK4ttD5Cjlmv8StQZf_z1Ao_L_0rGzj2FE1Hdy_DcRLLJCQlS4t1AoTBUFE5khnpSiAMJrOpdE7qkllJuCVe0w94UV4JWRFLeK4Jr6gludPAGOgZatWL2p0jzAVnhXZCp1ayMq_A0sZrChYQniklroPIxmKqjBrifgRzFbhEKlVjZuXNrKKZO-h2e9B7I6Hxe_eBn4ptV69_HRrAK1T0CvWXV3RQ20_k9iRgBg7hqYO6m4lV8VldKcI4QAKkSunFf1z6Eu374TTLNF3UWi8_3BUkLmtzHXz0G8Hc4mQ
  priority: 102
  providerName: Directory of Open Access Journals
Title A Novel Trajectory Generator Based on a Constrained GAN and a Latent Variables Predictor
URI https://ieeexplore.ieee.org/document/9266042
https://www.proquest.com/docview/2468760780
https://doaj.org/article/381e664a6644425499bab67c382fe470
Volume 8
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1BbxQhFH5pe9KDrVbj1tpw8NjZzgIDw3G7aW2M3XiwZm8EhjcHbWZNO2vS_nofDDsxaoyHSQiBySMPeO97wPcA3tXJcgdf6FoJAihiVhiUokBZGaljoN_HeMf1Ul3dyA-rarUDp-NbGERMl89wGovpLD-sm00MlZ0ZsiY0yXZhl4Db8FZrjKfEBBKm0plYaFaas_liQWMgCMgJmZbC1Dnxy9b4JI7-nFTlj504mZfLfbjeCjbcKvk23fR-2jz-xtn4v5IfwLPsZ7L5MDGeww52L-DpL-yDh7Cas-X6B94ysldfU_D-gQ0s1FRk52TeAlt3zLGY1DOlkqCK9_Mlc12g2o_kpXY9-0JgOz6_umef7uKhD_V9CTeXF58XV0VOtFA0sqz7giCHF7pFPvMGG4IcfhZKg2hcIwOJHnhkBSRkVbXatDxwVTmuWhF4hY4wh3gFe926w9fAlFaydqhdGYxsqtZ55SMrYU0bvBAcJ8C3GrBNZiGPI7i1CY2Uxg5qs1FtNqttAqdjp-8DCce_m59H1Y5NI4N2qiCV2LwgLXkqqJR09EmZULInWXUjat6i1OUEDqMax59kDU7geDtRbF7t95ZLRUaFnK3y6O-93sCTKOAQujmGvf5ug2_Jmen9SQoCnKS5_BMQ9u4d
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Nb9QwEB2VcoAe-CqILQV84NhsE9tx4uN21bLA7opDi_ZmxfHkUKosarOV4Nd37HgjBKjiEMmy7GissT3zxvYbgA9lsNzOJkWpBAEUkSUapUhQ5loWPtBvfbxjsVSzC_l5la924Gh4C4OI4fIZjn0xnOW7db3xobJjTdaEJtkDeEh2P8_611pDRMWnkNB5EamFslQfT6ZTGgWBQE7YNBW6jKlftuYnsPTHtCp_7cXBwJw9hcVWtP5eyffxprPj-tcfrI3_K_szeBI9TTbpp8Zz2MH2Bez9xj-4D6sJW65v8YqRxboM4fufrOehpiI7IQPn2LplFfNpPUMyCar4OFmyqnVUOyc_te3YN4Lb_gHWDft67Y99qO9LuDg7PZ_OkphqIallWnYJgQ4rigZ5ZjXWBDps5lKNqKtaOhLdcc8LSNgqbwrdcMdVXnHVCMdzrAh1iFew265bfA1MFUqWFRZV6rSs86ayynpewpK2eCE4joBvNWDqyEPuR3BlAh5JtenVZrzaTFTbCI6GTj96Go77m5941Q5NPYd2qCCVmLgkDfkqqJSs6JMy4GRLsha1KHmDskhHsO_VOPwkanAEh9uJYuJ6vzFcKjIr5G6lB__u9R4ezc4XczP_tPzyBh57YftAziHsdtcbfEuuTWffhRl9BwUu8HE
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Novel+Trajectory+Generator+Based+on+a+Constrained+GAN+and+a+Latent+Variables+Predictor&rft.jtitle=IEEE+access&rft.au=Wu%2C+Wei&rft.au=Yang%2C+Biao&rft.au=Wang%2C+Dong&rft.au=Zhang%2C+Weigong&rft.date=2020&rft.pub=IEEE&rft.eissn=2169-3536&rft.volume=8&rft.spage=212529&rft.epage=212540&rft_id=info:doi/10.1109%2FACCESS.2020.3039801&rft.externalDocID=9266042
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2169-3536&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2169-3536&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2169-3536&client=summon