A Novel Trajectory Generator Based on a Constrained GAN and a Latent Variables Predictor
Forecasting pedestrian trajectory is critical for versatile applications, such as autonomous driving and social robot, when they work in human-centric environments. However, it is challenging to predict pedestrians' future trajectories due to the inherent human properties and pedestrians'...
Saved in:
Published in | IEEE access Vol. 8; pp. 212529 - 212540 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Piscataway
IEEE
2020
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Forecasting pedestrian trajectory is critical for versatile applications, such as autonomous driving and social robot, when they work in human-centric environments. However, it is challenging to predict pedestrians' future trajectories due to the inherent human properties and pedestrians' social interactions. Recent works predict future trajectories by using a generative model, which captures social interactions with pooling- or graph-based strategies and generates multi-modal outputs with latent variables sampled from random Gaussian noise. Nevertheless, they introduce little human knowledge, which is beneficial for improved prediction performance. In this work, we propose to learn informative latent variables from pedestrians' future trajectories. Moreover, we present a distance-direction pooling module, which captures social interactions in a more intuitive manner. Besides, we introduce an additional constraint on generative adversarial network optimization to generate more realistic results. Two benchmarking datasets, ETH (Pellegrini et al. , 2010) and UCY (Leal-Taixé et al. , 2014), are used to evaluate the proposed method. Comparisons between our method and several state-of-the-art methods demonstrate the superiority of the proposed method in generating more accurate future trajectories. |
---|---|
AbstractList | Forecasting pedestrian trajectory is critical for versatile applications, such as autonomous driving and social robot, when they work in human-centric environments. However, it is challenging to predict pedestrians’ future trajectories due to the inherent human properties and pedestrians’ social interactions. Recent works predict future trajectories by using a generative model, which captures social interactions with pooling- or graph-based strategies and generates multi-modal outputs with latent variables sampled from random Gaussian noise. Nevertheless, they introduce little human knowledge, which is beneficial for improved prediction performance. In this work, we propose to learn informative latent variables from pedestrians’ future trajectories. Moreover, we present a distance-direction pooling module, which captures social interactions in a more intuitive manner. Besides, we introduce an additional constraint on generative adversarial network optimization to generate more realistic results. Two benchmarking datasets, ETH (Pellegrini et al. , 2010) and UCY (Leal-Taixé et al. , 2014), are used to evaluate the proposed method. Comparisons between our method and several state-of-the-art methods demonstrate the superiority of the proposed method in generating more accurate future trajectories. Forecasting pedestrian trajectory is critical for versatile applications, such as autonomous driving and social robot, when they work in human-centric environments. However, it is challenging to predict pedestrians' future trajectories due to the inherent human properties and pedestrians' social interactions. Recent works predict future trajectories by using a generative model, which captures social interactions with pooling- or graph-based strategies and generates multi-modal outputs with latent variables sampled from random Gaussian noise. Nevertheless, they introduce little human knowledge, which is beneficial for improved prediction performance. In this work, we propose to learn informative latent variables from pedestrians' future trajectories. Moreover, we present a distance-direction pooling module, which captures social interactions in a more intuitive manner. Besides, we introduce an additional constraint on generative adversarial network optimization to generate more realistic results. Two benchmarking datasets, ETH (Pellegrini et al., 2010) and UCY (Leal-Taixé et al., 2014), are used to evaluate the proposed method. Comparisons between our method and several state-of-the-art methods demonstrate the superiority of the proposed method in generating more accurate future trajectories. |
Author | Zhang, Weigong Wu, Wei Yang, Biao Wang, Dong |
Author_xml | – sequence: 1 givenname: Wei orcidid: 0000-0003-2530-4337 surname: Wu fullname: Wu, Wei organization: School of Instrument Science and Engineering, Southeast University, Nanjing, China – sequence: 2 givenname: Biao orcidid: 0000-0002-4434-0141 surname: Yang fullname: Yang, Biao organization: School of Microelectronics and Control Engineering, Changzhou University, Changzhou, China – sequence: 3 givenname: Dong orcidid: 0000-0002-4908-1361 surname: Wang fullname: Wang, Dong email: kingeast16@seu.edu.cn organization: School of Instrument Science and Engineering, Southeast University, Nanjing, China – sequence: 4 givenname: Weigong orcidid: 0000-0001-7139-595X surname: Zhang fullname: Zhang, Weigong organization: School of Instrument Science and Engineering, Southeast University, Nanjing, China |
BookMark | eNqFUU1rFEEQHSSCMeYX5NLgedf-mv44rkNcA0sUEsVbUzNdI72M3bF7IuTf25MJIXixoKjiUe9VUe9tcxJTxKa5YHTLGLUfdl13eXOz5ZTTraDCGspeNaecKbsRrVAnL_o3zXkpR1rDVKjVp82PHblOf3AitxmOOMwpP5A9RsxQW_IRCnqSIgHSpVjmDCFWYL-7JhB9RQ8wY5zJd8gB-gkL-ZrRh0XmXfN6hKng-VM9a759urztPm8OX_ZX3e6wGSQ180Yr0ws9Ime9xYEx0zNPLaKFQXrLledSt1Yz1Y7ajtxz1QJXo_C8RRBUibPmatX1CY7uLodfkB9cguAegZR_OshzGCZ0wjBUSkJNKXkrre2hV3oQho8oNa1a71etu5x-32OZ3THd51jPd1wqoxXVZpkS69SQUykZx-etjLrFEbc64hZH3JMjlWX_YQ1hhjmkuHx1-g_3YuUGRHzeVr-jqOTiL56xmEU |
CODEN | IAECCG |
CitedBy_id | crossref_primary_10_1109_ACCESS_2021_3116303 crossref_primary_10_3390_s25030820 crossref_primary_10_1007_s12243_023_00980_9 crossref_primary_10_1049_itr2_12265 |
Cites_doi | 10.1109/CVPR.2019.00038 10.1109/CVPR.2015.7298971 10.1109/CVPR.2019.00144 10.1109/CVPR.2017.233 10.1109/WACV.2018.00135 10.2514/6.2011-1512 10.1016/j.neucom.2020.06.041 10.1109/IVS.2016.7535484 10.1109/TVT.2018.2793889 10.1145/3072959.3073659 10.3233/ICA-200641 10.1109/LRA.2019.2931262 10.1109/CVPR.2018.00240 10.1109/CVPR.2018.00833 10.1109/CVPR.2017.493 10.1109/CVPR.2016.110 10.1109/AVSS.2018.8639163 10.1109/CVPR.2014.453 10.1016/j.asoc.2020.106593 10.1109/MITS.2012.2203229 10.1007/978-3-642-15549-9_33 10.1109/CVPR42600.2020.00635 10.1109/IVS.2018.8500626 10.1109/CVPR42600.2020.00074 10.1109/CVPR.2017.202 10.1109/CVPR.2019.01236 10.1007/978-3-319-96728-8_12 10.1103/PhysRevE.51.4282 10.1007/s00371-019-01774-8 10.1109/TNNLS.2019.2935608 10.1007/978-3-030-01219-9_11 10.1109/LRA.2019.2928202 10.1609/aaai.v33i01.33016120 10.1109/ICCVW.2019.00149 10.1109/ICCV.2019.00637 10.1109/MITS.2011.942779 10.1109/CVPRW.2019.00359 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020 |
DBID | 97E ESBDL RIA RIE AAYXX CITATION 7SC 7SP 7SR 8BQ 8FD JG9 JQ2 L7M L~C L~D DOA |
DOI | 10.1109/ACCESS.2020.3039801 |
DatabaseName | IEEE Xplore (IEEE) IEEE Xplore Open Access Journals IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts METADEX Technology Research Database Materials Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace METADEX Computer and Information Systems Abstracts Professional |
DatabaseTitleList | Materials Research Database |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 2169-3536 |
EndPage | 212540 |
ExternalDocumentID | oai_doaj_org_article_381e664a6644425499bab67c382fe470 10_1109_ACCESS_2020_3039801 9266042 |
Genre | orig-research |
GrantInformation_xml | – fundername: Jiangsu Natural Science Foundation grantid: BK20170681 funderid: 10.13039/501100004608 – fundername: Changzhou Application Foundation Research Project grantid: CJ20200083 – fundername: Scientific Research Project of the 333 Project of Jiangsu grantid: BRA2019310 – fundername: Natural Science Foundation of the Jiangsu Higher Education Institutions of China grantid: 18KJB520003 funderid: 10.13039/501100010023 – fundername: Jiangsu SINO-ISRAEL Industrial Technology Research Institute grantid: JSIITRI202007 funderid: 10.13039/501100003848 |
GroupedDBID | 0R~ 4.4 5VS 6IK 97E AAJGR ABAZT ABVLG ACGFS ADBBV AGSQL ALMA_UNASSIGNED_HOLDINGS BCNDV BEFXN BFFAM BGNUA BKEBE BPEOZ EBS EJD ESBDL GROUPED_DOAJ IPLJI JAVBF KQ8 M43 M~E O9- OCL OK1 RIA RIE RNS AAYXX CITATION RIG 7SC 7SP 7SR 8BQ 8FD JG9 JQ2 L7M L~C L~D |
ID | FETCH-LOGICAL-c408t-768b37fe21b9ec118b1d09ee9ac4d926d247597165f79f2d265a26f3d25ea3063 |
IEDL.DBID | RIE |
ISSN | 2169-3536 |
IngestDate | Wed Aug 27 01:30:32 EDT 2025 Mon Jun 30 15:15:47 EDT 2025 Tue Jul 01 02:56:00 EDT 2025 Thu Apr 24 23:03:45 EDT 2025 Wed Aug 27 02:33:50 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Language | English |
License | https://creativecommons.org/licenses/by/4.0/legalcode |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c408t-768b37fe21b9ec118b1d09ee9ac4d926d247597165f79f2d265a26f3d25ea3063 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0001-7139-595X 0000-0002-4434-0141 0000-0002-4908-1361 0000-0003-2530-4337 |
OpenAccessLink | https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/document/9266042 |
PQID | 2468760780 |
PQPubID | 4845423 |
PageCount | 12 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_381e664a6644425499bab67c382fe470 crossref_primary_10_1109_ACCESS_2020_3039801 proquest_journals_2468760780 ieee_primary_9266042 crossref_citationtrail_10_1109_ACCESS_2020_3039801 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20200000 2020-00-00 20200101 2020-01-01 |
PublicationDateYYYYMMDD | 2020-01-01 |
PublicationDate_xml | – year: 2020 text: 20200000 |
PublicationDecade | 2020 |
PublicationPlace | Piscataway |
PublicationPlace_xml | – name: Piscataway |
PublicationTitle | IEEE access |
PublicationTitleAbbrev | Access |
PublicationYear | 2020 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref13 ref15 ref53 ref52 ref11 ref10 ref17 ref19 ref18 odena (ref48) 2018 goodfellow (ref38) 2014 ref46 ref42 ref41 ref43 van der heiden (ref28) 2019 ref8 ref7 ref9 ref4 ref3 ref6 ref5 yang (ref49) 2018 ref35 ref37 ref36 ref31 ref32 ref2 ref1 ref39 villegas (ref44) 2017 zhu (ref45) 2017 kosaraju (ref12) 2019 li (ref40) 2019 ref24 ref23 ref26 ref25 ref20 ref22 lee (ref47) 2018 ref21 tang (ref34) 2019 ref27 chen (ref14) 2016 zhang (ref33) 2019 ref29 deo (ref16) 2019 caizhen (ref50) 2020 tamar (ref30) 2016 kingma (ref51) 2014 |
References_xml | – start-page: 42 year: 2020 ident: ref50 article-title: An adversarial learned trajectory predictor with knowledge-rich latent variables publication-title: Proc Chin Conf Pattern Recognit Comput Vis – start-page: 465 year: 2017 ident: ref45 article-title: Toward multimodal image-to-image translation publication-title: Proc Adv Neural Inf Process Syst – ident: ref27 doi: 10.1109/CVPR.2019.00038 – year: 2018 ident: ref48 article-title: Is generator conditioning causally related to GAN performance? publication-title: arXiv 1802 08768 – ident: ref35 doi: 10.1109/CVPR.2015.7298971 – year: 2016 ident: ref30 article-title: Value iteration networks publication-title: arXiv 1602 02867 – ident: ref17 doi: 10.1109/CVPR.2019.00144 – ident: ref4 doi: 10.1109/CVPR.2017.233 – ident: ref32 doi: 10.1109/WACV.2018.00135 – ident: ref23 doi: 10.2514/6.2011-1512 – ident: ref10 doi: 10.1016/j.neucom.2020.06.041 – ident: ref5 doi: 10.1109/IVS.2016.7535484 – ident: ref21 doi: 10.1109/TVT.2018.2793889 – ident: ref41 doi: 10.1145/3072959.3073659 – year: 2019 ident: ref28 article-title: SafeCritic: Collision-aware trajectory prediction publication-title: arXiv 1910 06673 – ident: ref8 doi: 10.3233/ICA-200641 – ident: ref18 doi: 10.1109/LRA.2019.2931262 – ident: ref3 doi: 10.1109/CVPR.2018.00240 – year: 2019 ident: ref33 article-title: Stochastic trajectory prediction with social graph network publication-title: arXiv 1907 10233 – year: 2014 ident: ref51 article-title: Adam: A method for stochastic optimization publication-title: arXiv 1412 6980 – ident: ref43 doi: 10.1109/CVPR.2018.00833 – year: 2017 ident: ref44 article-title: Decomposing motion and content for natural video sequence prediction publication-title: arXiv 1706 08033 – ident: ref26 doi: 10.1109/CVPR.2017.493 – ident: ref7 doi: 10.1109/CVPR.2016.110 – year: 2018 ident: ref47 article-title: Stochastic adversarial video prediction publication-title: arXiv 1804 01523 – ident: ref39 doi: 10.1109/AVSS.2018.8639163 – start-page: 2672 year: 2014 ident: ref38 article-title: Generative adversarial nets publication-title: Proc Adv Neural Inf Process Syst – ident: ref2 doi: 10.1109/CVPR.2014.453 – ident: ref6 doi: 10.1016/j.asoc.2020.106593 – ident: ref24 doi: 10.1109/MITS.2012.2203229 – ident: ref1 doi: 10.1007/978-3-642-15549-9_33 – ident: ref11 doi: 10.1109/CVPR42600.2020.00635 – start-page: 137 year: 2019 ident: ref12 article-title: Social-bigat: Multimodal trajectory forecasting using bicycle-GAN and graph attention networks publication-title: Proc Adv Neural Inf Process Syst – ident: ref20 doi: 10.1109/IVS.2018.8500626 – ident: ref37 doi: 10.1109/CVPR42600.2020.00074 – ident: ref42 doi: 10.1109/CVPR.2017.202 – start-page: 2172 year: 2016 ident: ref14 article-title: Infogan: Interpretable representation learning by information maximizing generative adversarial nets publication-title: Proc Adv Neural Inf Process Syst – ident: ref31 doi: 10.1109/CVPR.2019.01236 – year: 2019 ident: ref16 article-title: Scene induced multi-modal trajectory forecasting via planning publication-title: arXiv 1905 09949 – ident: ref19 doi: 10.1007/978-3-319-96728-8_12 – start-page: 15398 year: 2019 ident: ref34 article-title: Multiple futures prediction publication-title: Proc Adv Neural Inf Process Syst – ident: ref36 doi: 10.1103/PhysRevE.51.4282 – ident: ref9 doi: 10.1007/s00371-019-01774-8 – ident: ref53 doi: 10.1109/TNNLS.2019.2935608 – start-page: 46 year: 2019 ident: ref40 article-title: Exposing deepfake videos by detecting face warping artifacts publication-title: Proc IEEE Int Conf Comput Vis Workshops – ident: ref46 doi: 10.1007/978-3-030-01219-9_11 – ident: ref25 doi: 10.1109/LRA.2019.2928202 – ident: ref15 doi: 10.1609/aaai.v33i01.33016120 – ident: ref29 doi: 10.1109/ICCVW.2019.00149 – ident: ref52 doi: 10.1109/ICCV.2019.00637 – year: 2018 ident: ref49 article-title: Diversity-sensitive conditional generative adversarial networks publication-title: arXiv 1901 09024 – ident: ref22 doi: 10.1109/MITS.2011.942779 – ident: ref13 doi: 10.1109/CVPRW.2019.00359 |
SSID | ssj0000816957 |
Score | 2.183595 |
Snippet | Forecasting pedestrian trajectory is critical for versatile applications, such as autonomous driving and social robot, when they work in human-centric... |
SourceID | doaj proquest crossref ieee |
SourceType | Open Website Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 212529 |
SubjectTerms | Constraints future uncertainty generative adversarial network Generative adversarial networks Generators Hidden Markov models latent variable predictor Optimization Pedestrians Predictive models Random noise Random variables Robots Social factors Training Trajectory Trajectory forecasting Uncertainty |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3PS8MwFA6ykx5EneJ0Sg4eLWuTNGmO23AO0eHByW4hadKDjE62Kfjf-5JmYyDoxUOhhPRHXl7f9760_R5CN0VAbmsSUXAKBIVmiXSMJo7lkgm_0G_8esfThI-n7GGWz3ZKfflvwhp54MZwPUAUxznTsDEW2IzRhouSFqRyTAS2Dpi3Q6ZCDC4yLnMRZYayVPb6wyGMCAghAZ6aUlnEMjAbKAqK_bHEyo-4HMBmdIQOY5aI-83dHaM9V5-ggx3twDaa9fFk8enmGNDmLSy9f-FGQxp28QDAyeJFjTX2JTlDIQhouO9PsK4ttD5Cjlmv8StQZf_z1Ao_L_0rGzj2FE1Hdy_DcRLLJCQlS4t1AoTBUFE5khnpSiAMJrOpdE7qkllJuCVe0w94UV4JWRFLeK4Jr6gludPAGOgZatWL2p0jzAVnhXZCp1ayMq_A0sZrChYQniklroPIxmKqjBrifgRzFbhEKlVjZuXNrKKZO-h2e9B7I6Hxe_eBn4ptV69_HRrAK1T0CvWXV3RQ20_k9iRgBg7hqYO6m4lV8VldKcI4QAKkSunFf1z6Eu374TTLNF3UWi8_3BUkLmtzHXz0G8Hc4mQ priority: 102 providerName: Directory of Open Access Journals |
Title | A Novel Trajectory Generator Based on a Constrained GAN and a Latent Variables Predictor |
URI | https://ieeexplore.ieee.org/document/9266042 https://www.proquest.com/docview/2468760780 https://doaj.org/article/381e664a6644425499bab67c382fe470 |
Volume | 8 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1BbxQhFH5pe9KDrVbj1tpw8NjZzgIDw3G7aW2M3XiwZm8EhjcHbWZNO2vS_nofDDsxaoyHSQiBySMPeO97wPcA3tXJcgdf6FoJAihiVhiUokBZGaljoN_HeMf1Ul3dyA-rarUDp-NbGERMl89wGovpLD-sm00MlZ0ZsiY0yXZhl4Db8FZrjKfEBBKm0plYaFaas_liQWMgCMgJmZbC1Dnxy9b4JI7-nFTlj504mZfLfbjeCjbcKvk23fR-2jz-xtn4v5IfwLPsZ7L5MDGeww52L-DpL-yDh7Cas-X6B94ysldfU_D-gQ0s1FRk52TeAlt3zLGY1DOlkqCK9_Mlc12g2o_kpXY9-0JgOz6_umef7uKhD_V9CTeXF58XV0VOtFA0sqz7giCHF7pFPvMGG4IcfhZKg2hcIwOJHnhkBSRkVbXatDxwVTmuWhF4hY4wh3gFe926w9fAlFaydqhdGYxsqtZ55SMrYU0bvBAcJ8C3GrBNZiGPI7i1CY2Uxg5qs1FtNqttAqdjp-8DCce_m59H1Y5NI4N2qiCV2LwgLXkqqJR09EmZULInWXUjat6i1OUEDqMax59kDU7geDtRbF7t95ZLRUaFnK3y6O-93sCTKOAQujmGvf5ug2_Jmen9SQoCnKS5_BMQ9u4d |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Nb9QwEB2VcoAe-CqILQV84NhsE9tx4uN21bLA7opDi_ZmxfHkUKosarOV4Nd37HgjBKjiEMmy7GissT3zxvYbgA9lsNzOJkWpBAEUkSUapUhQ5loWPtBvfbxjsVSzC_l5la924Gh4C4OI4fIZjn0xnOW7db3xobJjTdaEJtkDeEh2P8_611pDRMWnkNB5EamFslQfT6ZTGgWBQE7YNBW6jKlftuYnsPTHtCp_7cXBwJw9hcVWtP5eyffxprPj-tcfrI3_K_szeBI9TTbpp8Zz2MH2Bez9xj-4D6sJW65v8YqRxboM4fufrOehpiI7IQPn2LplFfNpPUMyCar4OFmyqnVUOyc_te3YN4Lb_gHWDft67Y99qO9LuDg7PZ_OkphqIallWnYJgQ4rigZ5ZjXWBDps5lKNqKtaOhLdcc8LSNgqbwrdcMdVXnHVCMdzrAh1iFew265bfA1MFUqWFRZV6rSs86ayynpewpK2eCE4joBvNWDqyEPuR3BlAh5JtenVZrzaTFTbCI6GTj96Go77m5941Q5NPYd2qCCVmLgkDfkqqJSs6JMy4GRLsha1KHmDskhHsO_VOPwkanAEh9uJYuJ6vzFcKjIr5G6lB__u9R4ezc4XczP_tPzyBh57YftAziHsdtcbfEuuTWffhRl9BwUu8HE |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Novel+Trajectory+Generator+Based+on+a+Constrained+GAN+and+a+Latent+Variables+Predictor&rft.jtitle=IEEE+access&rft.au=Wu%2C+Wei&rft.au=Yang%2C+Biao&rft.au=Wang%2C+Dong&rft.au=Zhang%2C+Weigong&rft.date=2020&rft.pub=IEEE&rft.eissn=2169-3536&rft.volume=8&rft.spage=212529&rft.epage=212540&rft_id=info:doi/10.1109%2FACCESS.2020.3039801&rft.externalDocID=9266042 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2169-3536&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2169-3536&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2169-3536&client=summon |