Developmental control of spike-timing-dependent plasticity by tonic GABAergic signaling in striatum
Activity-dependent long-term potentiation (LTP) and depression (LTD) of synaptic strength underlie multiple forms of learning and memory. Spike-timing-dependent plasticity (STDP) has been described as a Hebbian synaptic learning rule that could account for experience-dependent changes in neural netw...
Saved in:
Published in | Neuropharmacology Vol. 121; pp. 261 - 277 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
England
Elsevier Ltd
15.07.2017
Elsevier |
Subjects | |
Online Access | Get full text |
ISSN | 0028-3908 1873-7064 1873-7064 |
DOI | 10.1016/j.neuropharm.2017.04.012 |
Cover
Abstract | Activity-dependent long-term potentiation (LTP) and depression (LTD) of synaptic strength underlie multiple forms of learning and memory. Spike-timing-dependent plasticity (STDP) has been described as a Hebbian synaptic learning rule that could account for experience-dependent changes in neural networks, but little is known about whether and how STDP evolves during development. We previously showed that GABAergic signaling governs STDP polarity and thus operates as a Hebbian/anti-Hebbian switch in the striatum. Although GABAergic networks are subject to important developmental maturation, it remains unclear whether STDP is developmentally shaped by GABAergic signaling. Here, we investigated whether STDP rules are developmentally regulated at corticostriatal synapses in the dorsolateral striatum. We found that striatal STDP displays unidirectional plasticity (Hebbian tLTD) in young rats (P7-10) whereas STDP is bidirectional and anti-Hebbian in juvenile (P20-25) and adult (P60-90) rats. We also provide evidence that the appearance of tonic (extrasynaptic) GABAergic signaling from the juvenile stage is a crucial factor in shaping STDP rules during development, establishing bidirectional anti-Hebbian STDP in the adult striatum. Thus, developmental maturation of GABAergic signaling tightly drives the polarity of striatal plasticity.
[Display omitted]
•Striatal STDP is developmentally regulated.•Blockade of GABAAR signaling promotes Hebbian STDP, regardless of the developmental stage.•Tonic GABAergic signaling is crucial in shaping STDP during development. |
---|---|
AbstractList | Activity-dependent long-term potentiation (LTP) and depression (LTD) of synaptic strength underlie multiple forms of learning and memory. Spike-timing-dependent plasticity (STDP) has been described as a Hebbian synaptic learning rule that could account for experience-dependent changes in neural networks, but little is known about whether and how STDP evolves during development. We previously showed that GABAergic signaling governs STDP polarity and thus operates as a Hebbian/anti-Hebbian switch in the striatum. Although GABAergic networks are subject to important developmental maturation, it remains unclear whether STDP is developmentally shaped by GABAergic signaling. Here, we investigated whether STDP rules are developmentally regulated at corticostriatal synapses in the dorsolateral striatum. We found that striatal STDP displays unidirectional plasticity (Hebbian tLTD) in young rats (P7-10) whereas STDP is bidirectional and anti-Hebbian in juvenile (P20-25) and adult (P60-90) rats. We also provide evidence that the appearance of tonic (extrasynaptic) GABAergic signaling from the juvenile stage is a crucial factor in shaping STDP rules during development, establishing bidirectional anti-Hebbian STDP in the adult striatum. Thus, developmental maturation of GABAergic signaling tightly drives the polarity of striatal plasticity.Activity-dependent long-term potentiation (LTP) and depression (LTD) of synaptic strength underlie multiple forms of learning and memory. Spike-timing-dependent plasticity (STDP) has been described as a Hebbian synaptic learning rule that could account for experience-dependent changes in neural networks, but little is known about whether and how STDP evolves during development. We previously showed that GABAergic signaling governs STDP polarity and thus operates as a Hebbian/anti-Hebbian switch in the striatum. Although GABAergic networks are subject to important developmental maturation, it remains unclear whether STDP is developmentally shaped by GABAergic signaling. Here, we investigated whether STDP rules are developmentally regulated at corticostriatal synapses in the dorsolateral striatum. We found that striatal STDP displays unidirectional plasticity (Hebbian tLTD) in young rats (P7-10) whereas STDP is bidirectional and anti-Hebbian in juvenile (P20-25) and adult (P60-90) rats. We also provide evidence that the appearance of tonic (extrasynaptic) GABAergic signaling from the juvenile stage is a crucial factor in shaping STDP rules during development, establishing bidirectional anti-Hebbian STDP in the adult striatum. Thus, developmental maturation of GABAergic signaling tightly drives the polarity of striatal plasticity. Activity-dependent long-term potentiation (LTP) and depression (LTD) of synaptic strength underlie multiple forms of learning and memory. Spike-timing-dependent plasticity (STDP) has been described as a Hebbian synaptic learning rule that could account for experience-dependent changes in neural networks, but little is known about whether and how STDP evolves during development. We previously showed that GABAergic signaling governs STDP polarity and thus operates as a Hebbian/anti-Hebbian switch in the striatum. Although GABAergic networks are subject to important developmental maturation, it remains unclear whether STDP is developmentally shaped by GABAergic signaling. Here, we investigated whether STDP rules are developmentally regulated at corticostriatal synapses in the dorsolateral striatum. We found that striatal STDP displays unidirectional plasticity (Hebbian tLTD) in young rats (P ) whereas STDP is bidirectional and anti-Hebbian in juvenile (P ) and adult (P ) rats. We also provide evidence that the appearance of tonic (extrasynaptic) GABAergic signaling from the juvenile stage is a crucial factor in shaping STDP rules during development, establishing bidirectional anti-Hebbian STDP in the adult striatum. Thus, developmental maturation of GABAergic signaling tightly drives the polarity of striatal plasticity. Activity-dependent long-term potentiation (LTP) and depression (LTD) of synaptic strength underlie multiple forms of learning and memory. Spike-timing-dependent plasticity (STDP) has been described as a Hebbian synaptic learning rule that could account for experience-dependent changes in neural networks, but little is known about whether and how STDP evolves during development. We previously showed that GABAergic signaling governs STDP polarity and thus operates as a Hebbian/anti-Hebbian switch in the striatum. Although GABAergic networks are subject to important developmental maturation, it remains unclear whether STDP is developmentally shaped by GABAergic signaling. Here, we investigated whether STDP rules are developmentally regulated at corticostriatal synapses in the dorsolateral striatum. We found that striatal STDP displays unidirectional plasticity (Hebbian tLTD) in young rats (P7-10) whereas STDP is bidirectional and anti-Hebbian in juvenile (P20-25) and adult (P60-90) rats. We also provide evidence that the appearance of tonic (extrasynaptic) GABAergic signaling from the juvenile stage is a crucial factor in shaping STDP rules during development, establishing bidirectional anti-Hebbian STDP in the adult striatum. Thus, developmental maturation of GABAergic signaling tightly drives the polarity of striatal plasticity. [Display omitted] •Striatal STDP is developmentally regulated.•Blockade of GABAAR signaling promotes Hebbian STDP, regardless of the developmental stage.•Tonic GABAergic signaling is crucial in shaping STDP during development. |
Author | Gangarossa, Giuseppe Valtcheva, Silvana Dembitskaya, Yulia Venance, Laurent Paillé, Vincent Fino, Elodie Perez, Sylvie |
Author_xml | – sequence: 1 givenname: Silvana surname: Valtcheva fullname: Valtcheva, Silvana – sequence: 2 givenname: Vincent surname: Paillé fullname: Paillé, Vincent – sequence: 3 givenname: Yulia surname: Dembitskaya fullname: Dembitskaya, Yulia – sequence: 4 givenname: Sylvie surname: Perez fullname: Perez, Sylvie – sequence: 5 givenname: Giuseppe orcidid: 0000-0001-9045-2139 surname: Gangarossa fullname: Gangarossa, Giuseppe – sequence: 6 givenname: Elodie surname: Fino fullname: Fino, Elodie – sequence: 7 givenname: Laurent surname: Venance fullname: Venance, Laurent email: laurent.venance@college-de-france.fr |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/28408325$$D View this record in MEDLINE/PubMed https://hal.science/hal-02407266$$DView record in HAL |
BookMark | eNqNkUtv3CAUhVGVqJmk_QsVy3ZhB_ADsqk0SZuHNFI37RphfD1hisEFPNL8-2BNkkrZtCvg6jtHl3PO0YnzDhDClJSU0PZyVzqYg58eVRhLRigvSV0Syt6hFRW8Kjhp6xO0IoSJoroi4gydx7gjhNSCivfojImaiIo1K6S_wR6sn0ZwSVmsvUvBW-wHHCfzG4pkRuO2RQ8TuD4zeLIqJqNNOuDugJN3RuO79fUawjbfotk6ZbMCG4djCkalefyATgdlI3x8Pi_Qr9vvP2_ui82Pu4eb9abQeZtU8IprSgTtOsXaqusqzvMLxNBAHg5dx5iAgdK6GjrRVG3T8yp_gjc9Y_oqSy7Ql6Pvo7JyCmZU4SC9MvJ-vZHLjLCacNa2e5rZz0d2Cv7PDDHJ0UQN1ioHfo6SCiFazjlb0E_P6NyN0L86v4SYAXEEdPAxBhheEUrk0pfcyb99yaUvSWqZ-8rSr2-kOVmVzFKDMvZ_DK6PBpCD3RsIMmoDTkNvAugke2_-bfIEIXG4MA |
CitedBy_id | crossref_primary_10_1002_jnr_24560 crossref_primary_10_1016_j_nbd_2024_106569 crossref_primary_10_1038_s41598_019_55842_z crossref_primary_10_1016_j_conb_2018_09_007 crossref_primary_10_1038_s41598_018_26436_y crossref_primary_10_1038_s41467_018_06409_5 crossref_primary_10_1093_cercor_bhz081 crossref_primary_10_1038_s42003_024_06203_8 crossref_primary_10_1093_cercor_bhad307 crossref_primary_10_3389_fncom_2018_00049 crossref_primary_10_1016_j_celrep_2022_110521 crossref_primary_10_1371_journal_pcbi_1006184 crossref_primary_10_1093_cercor_bhaa024 crossref_primary_10_3389_fnmol_2018_00380 |
Cites_doi | 10.1152/physrev.00016.2007 10.3389/fncir.2013.00170 10.1523/JNEUROSCI.4476-05.2005 10.1523/JNEUROSCI.2163-04.2004 10.1016/S0079-6123(06)60015-0 10.1038/nature09582 10.1016/B978-0-444-63327-9.00001-1 10.1113/jphysiol.2010.188466 10.1523/JNEUROSCI.4402-07.2008 10.1038/ncomms13845 10.1113/jphysiol.1995.sp020739 10.1023/A:1008938428112 10.1016/j.neuron.2011.12.012 10.1523/JNEUROSCI.12-11-04151.1992 10.1016/S0021-9258(18)53968-5 10.1152/jn.00598.2005 10.3389/fncel.2011.00015 10.1016/0306-4522(94)90471-5 10.1126/science.1060342 10.1523/JNEUROSCI.3908-07.2008 10.1016/j.conb.2015.05.002 10.1038/nature02116 10.1523/JNEUROSCI.3506-05.2006 10.1523/JNEUROSCI.2506-12.2012 10.1038/387278a0 10.1152/jn.2002.87.5.2624 10.1523/JNEUROSCI.4737-08.2009 10.1016/j.neuron.2012.08.001 10.1038/nature14402 10.1523/JNEUROSCI.4280-15.2016 10.1038/sj.bjp.0700927 10.1113/jphysiol.2008.161943 10.1126/science.1160575 10.1016/j.neuron.2006.06.017 10.3389/fncir.2013.00186 10.1016/j.conb.2011.10.007 10.1523/JNEUROSCI.5139-09.2010 10.1523/JNEUROSCI.3572-12.2013 10.1038/nrn1625 10.1016/j.neuroscience.2010.02.048 10.1016/j.tins.2012.06.008 10.1523/JNEUROSCI.0315-15.2015 10.1038/nature13294 10.1016/j.brainresrev.2007.10.008 10.1113/jphysiol.2002.036459 10.1016/j.neuron.2007.03.026 10.1038/ncomms11552 10.1113/jphysiol.2010.203125 10.1038/sj.bjp.0704795 10.1038/nn.3743 10.1016/j.neuron.2007.11.002 10.1523/JNEUROSCI.5796-12.2013 10.1152/physrev.00017.2006 10.1038/sj.npp.1301559 10.1016/j.brainresrev.2004.03.003 10.1038/8138 10.1111/j.1471-4159.1979.tb04579.x 10.1038/nn1043 10.1113/jphysiol.2004.065672 10.1038/nature12866 10.1152/jn.00066.2014 |
ContentType | Journal Article |
Copyright | 2017 Elsevier Ltd Copyright © 2017 Elsevier Ltd. All rights reserved. Distributed under a Creative Commons Attribution 4.0 International License |
Copyright_xml | – notice: 2017 Elsevier Ltd – notice: Copyright © 2017 Elsevier Ltd. All rights reserved. – notice: Distributed under a Creative Commons Attribution 4.0 International License |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 1XC |
DOI | 10.1016/j.neuropharm.2017.04.012 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic Hyper Article en Ligne (HAL) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Pharmacy, Therapeutics, & Pharmacology |
EISSN | 1873-7064 |
EndPage | 277 |
ExternalDocumentID | oai_HAL_hal_02407266v1 28408325 10_1016_j_neuropharm_2017_04_012 S0028390817301533 |
Genre | Journal Article |
GroupedDBID | --- --K --M -~X .~1 0R~ 123 1B1 1RT 1~. 1~5 4.4 457 4G. 5RE 7-5 71M 8P~ 9JM AABNK AACTN AADPK AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AATCM AAXLA AAXUO ABCQJ ABFRF ABIVO ABJNI ABMAC ABYKQ ABZDS ACDAQ ACGFO ACGFS ACIUM ACRLP ADBBV ADEZE AEBSH AEFWE AEKER AENEX AFKWA AFTJW AFXIZ AGUBO AGWIK AGYEJ AHHHB AIEXJ AIKHN AITUG AJBFU AJOXV ALCLG ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BKOJK BLXMC C45 CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA IHE J1W K-O KOM L7B M2V M34 M41 MO0 MOBAO N9A O-L O9- OAUVE OGGZJ OVD OZT P-8 P-9 P2P PC. Q38 RIG ROL RPZ SCC SDF SDG SDP SES SNS SPCBC SSN SSP SSZ T5K TEORI ~G- .55 .GJ 29N 3O- 41~ 53G 5VS AAQFI AAQXK AATTM AAXKI AAYWO AAYXX ABFNM ABWVN ABXDB ACRPL ACVFH ADCNI ADIYS ADMUD ADNMO AEIPS AEUPX AFJKZ AFPUW AGCQF AGHFR AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN BNPGV CITATION FEDTE FGOYB G-2 HMQ HMT HVGLF HZ~ R2- SEW SPT SSH WUQ X7M XOL ZGI ZXP CGR CUY CVF ECM EIF NPM 7X8 EFKBS 1XC |
ID | FETCH-LOGICAL-c408t-737c1081bba263bb377081e8f5e81bfbb228ef1143fb85365d7383275d22c9263 |
IEDL.DBID | AIKHN |
ISSN | 0028-3908 1873-7064 |
IngestDate | Tue May 13 06:32:04 EDT 2025 Fri Sep 05 08:41:10 EDT 2025 Wed Feb 19 02:15:38 EST 2025 Tue Jul 01 01:51:41 EDT 2025 Thu Apr 24 23:10:36 EDT 2025 Fri Feb 23 02:30:55 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Development Striatum Inhibition Spike-timing-dependent plasticity Tonic GABA |
Language | English |
License | Copyright © 2017 Elsevier Ltd. All rights reserved. Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c408t-737c1081bba263bb377081e8f5e81bfbb228ef1143fb85365d7383275d22c9263 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0001-9045-2139 0000-0003-1453-7784 0000-0003-0738-1662 0000-0003-0424-0821 |
PMID | 28408325 |
PQID | 1888677721 |
PQPubID | 23479 |
PageCount | 17 |
ParticipantIDs | hal_primary_oai_HAL_hal_02407266v1 proquest_miscellaneous_1888677721 pubmed_primary_28408325 crossref_primary_10_1016_j_neuropharm_2017_04_012 crossref_citationtrail_10_1016_j_neuropharm_2017_04_012 elsevier_sciencedirect_doi_10_1016_j_neuropharm_2017_04_012 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2017-07-15 |
PublicationDateYYYYMMDD | 2017-07-15 |
PublicationDate_xml | – month: 07 year: 2017 text: 2017-07-15 day: 15 |
PublicationDecade | 2010 |
PublicationPlace | England |
PublicationPlace_xml | – name: England |
PublicationTitle | Neuropharmacology |
PublicationTitleAlternate | Neuropharmacology |
PublicationYear | 2017 |
Publisher | Elsevier Ltd Elsevier |
Publisher_xml | – name: Elsevier Ltd – name: Elsevier |
References | Fino, Glowinski, Venance (bib17) 2005; 25 Semyanov, Walker, Kullmann (bib52) 2003; 6 Laurie, Wisden, Seeburg (bib37) 1992; 12 Bracci, Panzeri (bib5) 2006; 95 Rossi, Hamann, Attwell (bib49) 2003; 548 Feldman (bib16) 2012; 75 Pouille, Scanziani (bib46) 2001; 293 Venance, Glowinski, Giaume (bib62) 2004; 559 Bennett, Bolam (bib4) 1994; 62 Silberberg, Bolam (bib54) 2015; 33 Mishra, Kim, Guzman, Jonas (bib40) 2016; 7 Janssen, Ade, Fu, Vicini (bib32) 2009; 29 Luo, Partridge, Vicini (bib38) 2013; 7 Brickley, Mody (bib6) 2012; 73 Brown, Kerby, Bonnert, Whiting, Wafford (bib7) 2002; 136 Sjöström, Häusser (bib56) 2006; 51 Higley, Contreras (bib26) 2006; 26 Calabresi, Picconi, Tozzi, Ghiglieri, Di Filippo (bib8) 2014; 17 Kaneda, Farrant, Cull-Candy (bib33) 1995; 485 Pawlak, Kerr (bib44) 2008; 28 Szydlowski, Pollak Dorocic, Planert, Carlén, Meletis, Silberberg (bib57) 2013; 33 Conti, Minelli, Melone (bib12) 2004; 45 Farrant, Nusser (bib15) 2005; 6 Liu, López-Corcuera, Mandiyan, Nelson, Nelson (bib64) 1993; 268 Shen, Flajolet, Greengard, Surmeier (bib53) 2008; 321 Sjostrom, Rancz, Roth, Hausser (bib55) 2008; 88 Takesian, Hensch (bib58) 2013; 207 Donato, Rompani, Caroni (bib13) 2013; 504 Ade, Janssen, Ortinski, Vicini (bib1) 2008; 28 Kirmse, Dvorzhak, Kirischuk, Grantyn (bib34) 2008; 586 Planert, Szydlowski, Hjorth, Grillner, Silberberg (bib45) 2010; 30 Tzounopoulos, Rubio, Keen, Trussell (bib60) 2007; 54 Chesselet, Plotkin, Wu, Levine (bib9) 2007; 160 Egawa, Fukuda (bib14) 2013; 7 Fino, Venance (bib19) 2010; 2 Itami, Kimura (bib29) 2012; 32 Fujiyama, Nakano, Matsuda, Furuta, Udagawa, Kaneko (bib21) 2015 Roberts, Bell (bib47) 2000; 9 Marlin, Mitre, D'amour, Chao, Froemke (bib39) 2015; 520 Ben-Ari, Gaiarsa, Tyzio, Khazipov (bib2) 2007; 87 Itami, Huang, Yamasaki, Watanabe, Lu, Kimura (bib30) 2016; 36 Nusser, Mody (bib42) 2002; 87 Wehr, Zador (bib63) 2003; 426 Groen, Paulsen, Pérez-Garci, Nevian, Wortel, Dekker, Mansvelder, van Ooyen, Meredith (bib25) 2014; 112 Koos, Tepper (bib35) 1999; 2 Rodgers, Zarnowska, Laha, Engin, Zeller, Keist, Rudolph, Pearce (bib48) 2015; 35 Santhakumar, Jones, Mody (bib50) 2010; 167 Paillé, Fino, Du, Morera Herreras, Perez, Hellgren Kotaleski, Venance (bib43) 2013; 33 Citri, Malenka (bib11) 2008; 33 Gittis, Kreitzer (bib22) 2012; 35 Janssen, Yasuda, Vicini (bib31) 2011; 5 Goubard, Fino, Venance (bib24) 2011; 589 Glykys, Mody (bib23) 2007; 56 Schulz, Redgrave, Reynolds (bib51) 2010; 2 Hill-Venning, Belelli, Peters, Lambert (bib27) 1997; 120 Hines, Davies, Moss, Maguire (bib28) 2012; 22 Koos, Tepper, Wilson (bib36) 2004; 24 Schousboe, Hertz, Svenneby, Kvamme (bib65) 1979; 32 Chao, Chen, Samaco, Xue, Chahrour, Yoo, Neul, Gong, Lu, Heintz, Ekker, Rubenstein, Noebels, Rosenmund, Zoghbi (bib10) 2010; 468 Bell, Han, Sugawara, Grant (bib3) 1997; 387 Valtcheva, Venance (bib61) 2016; 7 Nabavi, Fox, Proulx, Lin, Tsien, Malinow (bib41) 2014; 511 Fino, Paille, Cui, Morera-Herreras, Deniau, Venance (bib18) 2010; 588 Froemke, Letzkus, Kampa, Hang, Stuart (bib20) 2010; 2 Tepper, Wilson, Koos (bib59) 2008; 58 Szydlowski (10.1016/j.neuropharm.2017.04.012_bib57) 2013; 33 Egawa (10.1016/j.neuropharm.2017.04.012_bib14) 2013; 7 Koos (10.1016/j.neuropharm.2017.04.012_bib35) 1999; 2 Tepper (10.1016/j.neuropharm.2017.04.012_bib59) 2008; 58 Gittis (10.1016/j.neuropharm.2017.04.012_bib22) 2012; 35 Itami (10.1016/j.neuropharm.2017.04.012_bib29) 2012; 32 Conti (10.1016/j.neuropharm.2017.04.012_bib12) 2004; 45 Bell (10.1016/j.neuropharm.2017.04.012_bib3) 1997; 387 Liu (10.1016/j.neuropharm.2017.04.012_bib64) 1993; 268 Schousboe (10.1016/j.neuropharm.2017.04.012_bib65) 1979; 32 Mishra (10.1016/j.neuropharm.2017.04.012_bib40) 2016; 7 Chao (10.1016/j.neuropharm.2017.04.012_bib10) 2010; 468 Schulz (10.1016/j.neuropharm.2017.04.012_bib51) 2010; 2 Kirmse (10.1016/j.neuropharm.2017.04.012_bib34) 2008; 586 Roberts (10.1016/j.neuropharm.2017.04.012_bib47) 2000; 9 Groen (10.1016/j.neuropharm.2017.04.012_bib25) 2014; 112 Farrant (10.1016/j.neuropharm.2017.04.012_bib15) 2005; 6 Brickley (10.1016/j.neuropharm.2017.04.012_bib6) 2012; 73 Hill-Venning (10.1016/j.neuropharm.2017.04.012_bib27) 1997; 120 Janssen (10.1016/j.neuropharm.2017.04.012_bib31) 2011; 5 Bracci (10.1016/j.neuropharm.2017.04.012_bib5) 2006; 95 Luo (10.1016/j.neuropharm.2017.04.012_bib38) 2013; 7 Froemke (10.1016/j.neuropharm.2017.04.012_bib20) 2010; 2 Rossi (10.1016/j.neuropharm.2017.04.012_bib49) 2003; 548 Goubard (10.1016/j.neuropharm.2017.04.012_bib24) 2011; 589 Valtcheva (10.1016/j.neuropharm.2017.04.012_bib61) 2016; 7 Higley (10.1016/j.neuropharm.2017.04.012_bib26) 2006; 26 Bennett (10.1016/j.neuropharm.2017.04.012_bib4) 1994; 62 Wehr (10.1016/j.neuropharm.2017.04.012_bib63) 2003; 426 Marlin (10.1016/j.neuropharm.2017.04.012_bib39) 2015; 520 Silberberg (10.1016/j.neuropharm.2017.04.012_bib54) 2015; 33 Brown (10.1016/j.neuropharm.2017.04.012_bib7) 2002; 136 Fino (10.1016/j.neuropharm.2017.04.012_bib17) 2005; 25 Feldman (10.1016/j.neuropharm.2017.04.012_bib16) 2012; 75 Paillé (10.1016/j.neuropharm.2017.04.012_bib43) 2013; 33 Fino (10.1016/j.neuropharm.2017.04.012_bib19) 2010; 2 Sjostrom (10.1016/j.neuropharm.2017.04.012_bib55) 2008; 88 Glykys (10.1016/j.neuropharm.2017.04.012_bib23) 2007; 56 Pawlak (10.1016/j.neuropharm.2017.04.012_bib44) 2008; 28 Itami (10.1016/j.neuropharm.2017.04.012_bib30) 2016; 36 Laurie (10.1016/j.neuropharm.2017.04.012_bib37) 1992; 12 Semyanov (10.1016/j.neuropharm.2017.04.012_bib52) 2003; 6 Calabresi (10.1016/j.neuropharm.2017.04.012_bib8) 2014; 17 Citri (10.1016/j.neuropharm.2017.04.012_bib11) 2008; 33 Donato (10.1016/j.neuropharm.2017.04.012_bib13) 2013; 504 Venance (10.1016/j.neuropharm.2017.04.012_bib62) 2004; 559 Ben-Ari (10.1016/j.neuropharm.2017.04.012_bib2) 2007; 87 Hines (10.1016/j.neuropharm.2017.04.012_bib28) 2012; 22 Fujiyama (10.1016/j.neuropharm.2017.04.012_bib21) 2015 Shen (10.1016/j.neuropharm.2017.04.012_bib53) 2008; 321 Chesselet (10.1016/j.neuropharm.2017.04.012_bib9) 2007; 160 Koos (10.1016/j.neuropharm.2017.04.012_bib36) 2004; 24 Fino (10.1016/j.neuropharm.2017.04.012_bib18) 2010; 588 Santhakumar (10.1016/j.neuropharm.2017.04.012_bib50) 2010; 167 Pouille (10.1016/j.neuropharm.2017.04.012_bib46) 2001; 293 Janssen (10.1016/j.neuropharm.2017.04.012_bib32) 2009; 29 Tzounopoulos (10.1016/j.neuropharm.2017.04.012_bib60) 2007; 54 Nusser (10.1016/j.neuropharm.2017.04.012_bib42) 2002; 87 Kaneda (10.1016/j.neuropharm.2017.04.012_bib33) 1995; 485 Planert (10.1016/j.neuropharm.2017.04.012_bib45) 2010; 30 Ade (10.1016/j.neuropharm.2017.04.012_bib1) 2008; 28 Sjöström (10.1016/j.neuropharm.2017.04.012_bib56) 2006; 51 Takesian (10.1016/j.neuropharm.2017.04.012_bib58) 2013; 207 Nabavi (10.1016/j.neuropharm.2017.04.012_bib41) 2014; 511 Rodgers (10.1016/j.neuropharm.2017.04.012_bib48) 2015; 35 |
References_xml | – volume: 54 start-page: 291 year: 2007 end-page: 301 ident: bib60 article-title: Coactivation of pre- and postsynaptic signaling mechanisms determines cell-specific spike-timing-dependent plasticity publication-title: Neuron – volume: 7 start-page: 170 year: 2013 ident: bib14 article-title: Pathophysiological power of improper tonic GABAA conductances in mature and immature models publication-title: Front. Neural Circuits – volume: 87 start-page: 1215 year: 2007 end-page: 1284 ident: bib2 article-title: GABA: a pioneer transmitter that excites immature neurons and generates primitive oscillations publication-title: Physiol. Rev. – volume: 26 start-page: 448 year: 2006 end-page: 457 ident: bib26 article-title: Balanced excitation and inhibition determine spike timing during frequency adaptation publication-title: J. Neurosci. – volume: 485 start-page: 419 year: 1995 end-page: 435 ident: bib33 article-title: Whole-cell and single-channel currents activated by GABA and glycine in granule cells of rat cerebellum publication-title: J. Physiol. – volume: 112 start-page: 287 year: 2014 end-page: 299 ident: bib25 article-title: Development of dendritic tonic GABAergic inhibition regulates excitability and plasticity in CA1 pyramidal neurons publication-title: J. Neurophysiol. – volume: 9 start-page: 67 year: 2000 end-page: 83 ident: bib47 article-title: Computational consequences of temporally asymmetric learning rules: II. Sensory image cancellation publication-title: J. Comput. Neurosci. – volume: 588 start-page: 3045 year: 2010 end-page: 3062 ident: bib18 article-title: Distinct coincidence detectors govern the corticostriatal spike timing-dependent plasticity publication-title: J. Physiol. – volume: 56 start-page: 763 year: 2007 end-page: 770 ident: bib23 article-title: Activation of GABAA receptors: views from outside the synaptic cleft publication-title: Neuron – volume: 293 start-page: 1159 year: 2001 end-page: 1163 ident: bib46 article-title: Enforcement of temporal fidelity in pyramidal cells by somatic feed-forward inhibition publication-title: Science – volume: 511 start-page: 348 year: 2014 end-page: 352 ident: bib41 article-title: Engineering a memory with LTD and LTP publication-title: Nature – volume: 12 start-page: 4151 year: 1992 end-page: 4172 ident: bib37 article-title: The distribution of thirteen GABAA receptor subunit mRNAs in the rat brain. III. Embryonic and postnatal development publication-title: J. Neurosci. – volume: 268 start-page: 2106 year: 1993 end-page: 2112 ident: bib64 article-title: Molecular characterization of four pharmacologically distinct γ-aminobutyric acid transporters in mouse brain publication-title: J. Biol. Chem. – volume: 33 start-page: 182 year: 2015 end-page: 187 ident: bib54 article-title: Local and afferent synaptic pathways in the striatal microcircuitry publication-title: Curr. Opin. Neurobiol. – volume: 87 start-page: 2624 year: 2002 end-page: 2628 ident: bib42 article-title: Selective modulation of tonic and phasic inhibitions in dentate gyrus granule cells publication-title: J. Neurophysiol. – volume: 7 start-page: 13845 year: 2016 ident: bib61 article-title: Astrocytes gate Hebbian synaptic plasticity in striatum publication-title: Nat. Commun. – volume: 2 start-page: 467 year: 1999 end-page: 472 ident: bib35 article-title: Inhibitory control of neostriatal projection neurons by GABAergic interneurons publication-title: Nat. Neurosci. – volume: 35 start-page: 9707 year: 2015 end-page: 9716 ident: bib48 article-title: Etomidate impairs long-term potentiation in vitro by targeting α5-subunit containing GABAA receptors on nonpyramidal cells publication-title: J. Neurosci. – volume: 387 start-page: 278 year: 1997 end-page: 281 ident: bib3 article-title: Synaptic plasticity in a cerebellum-like structure depends on temporal order publication-title: Nature – volume: 62 start-page: 707 year: 1994 end-page: 719 ident: bib4 article-title: Synaptic input and output of parvalbumin-immunoreactive neurons in the neostriatum of the rat publication-title: Neuroscience – volume: 2 start-page: 23 year: 2010 ident: bib51 article-title: Cortico-striatal spike-timing dependent plasticity after activation of subcortical pathways publication-title: Front. Synaptic Neurosci. – volume: 504 start-page: 272 year: 2013 end-page: 276 ident: bib13 article-title: Parvalbumin-expressing basket-cell network plasticity induced by experience regulates adult learning publication-title: Nature – volume: 548 start-page: 97 year: 2003 end-page: 110 ident: bib49 article-title: Multiple modes of GABAergic inhibition of rat cerebellar granule cells publication-title: J. Physiol. – volume: 88 start-page: 769 year: 2008 end-page: 840 ident: bib55 article-title: Dendritic excitability and synaptic plasticity publication-title: Physiol. Rev. – volume: 321 start-page: 848 year: 2008 end-page: 851 ident: bib53 article-title: Dichotomous dopaminergic control of striatal synaptic plasticity publication-title: Science – volume: 32 start-page: 15000 year: 2012 end-page: 15011 ident: bib29 article-title: Developmental switch in spike-timing-dependent plasticity at layers 4-2/3 in the rodent barrel cortex publication-title: J. Neurosci. – volume: 559 start-page: 215 year: 2004 end-page: 230 ident: bib62 article-title: Electrical and chemical transmission between striatal GABAergic output neurones in rat brain slices publication-title: J. Physiol. – volume: 28 start-page: 2435 year: 2008 end-page: 2446 ident: bib44 article-title: Dopamine receptor activation is required for corticostriatal spike-timing-dependent plasticity publication-title: J. Neurosci. – volume: 6 start-page: 215 year: 2005 end-page: 229 ident: bib15 article-title: Variations on an inhibitory theme: phasic and tonic activation of GABA(A) receptors publication-title: Nat. Rev. Neurosci. – volume: 7 start-page: 11552 year: 2016 ident: bib40 article-title: Symmetric spike timing-dependent plasticity at CA3-CA3 synapses optimizes storage and recall in autoassociative networks publication-title: Nat. Commun. – volume: 136 start-page: 965 year: 2002 end-page: 974 ident: bib7 article-title: Pharmacological characterization of a novel cell line expressing human α4β3 GABAA receptors publication-title: Br. J. Pharmacol. – volume: 45 start-page: 196 year: 2004 end-page: 212 ident: bib12 article-title: GABA transporters in the mammalian cerebral cortex: localization, development and pathological implications publication-title: Brain Res. Brain Res. Rev. – volume: 17 start-page: 1022 year: 2014 end-page: 1030 ident: bib8 article-title: Direct and indirect pathways of basal ganglia: a critical reappraisal publication-title: Nat. Neurosci. – volume: 2 start-page: 6 year: 2010 ident: bib19 article-title: Spike-timing dependent plasticity in the striatum publication-title: Front. Synaptic Neurosci. – volume: 207 start-page: 3 year: 2013 end-page: 34 ident: bib58 article-title: Balancing plasticity/stability across brain development publication-title: Prog. Brain Res. – volume: 36 start-page: 7039 year: 2016 end-page: 7054 ident: bib30 article-title: Developmental switch in spike timing-dependent plasticity and cannabinoid-dependent reorganization of the thalamocortical projection in the barrel cortex publication-title: J. Neurosci. – volume: 426 start-page: 442 year: 2003 end-page: 446 ident: bib63 article-title: Balanced inhibition underlies tuning and sharpens spike timing in auditory cortex publication-title: Nature – volume: 5 start-page: 15 year: 2011 ident: bib31 article-title: GABA(A) receptor β3 subunit expression regulates tonic current in developing striatopallidal medium spiny neurons publication-title: Front. Cell Neurosci. – volume: 6 start-page: 484 year: 2003 end-page: 490 ident: bib52 article-title: GABA uptake regulates cortical excitability via cell type-specific tonic inhibition publication-title: Nat. Neurosci. – volume: 520 start-page: 499 year: 2015 end-page: 504 ident: bib39 article-title: Oxytocin enables maternal behaviour by balancing cortical inhibition publication-title: Nature – year: 2015 ident: bib21 article-title: A single-neuron tracing study of arkypallidal and prototypic neurons in healthy rats publication-title: Brain Struct. Funct. – volume: 35 start-page: 557 year: 2012 end-page: 564 ident: bib22 article-title: Striatal microcircuitry and movement disorders publication-title: Trends Neurosci. – volume: 30 start-page: 3499 year: 2010 end-page: 3507 ident: bib45 article-title: Dynamics of synaptic transmission between fast-spiking interneurons and striatal projection neurons of the direct and indirect pathways publication-title: J. Neurosci. – volume: 33 start-page: 18 year: 2008 end-page: 41 ident: bib11 article-title: Synaptic plasticity: multiple forms, functions, and mechanisms publication-title: Neuropsychopharmacology – volume: 33 start-page: 9353 year: 2013 end-page: 9363 ident: bib43 article-title: GABAergic circuits control spike-timing-dependent plasticity publication-title: J. Neurosci. – volume: 32 start-page: 943 year: 1979 end-page: 950 ident: bib65 article-title: Phosphate activated glutaminase activity and glutamine uptake in primary cultures of astrocytes publication-title: J. Neurochem. – volume: 28 start-page: 1185 year: 2008 end-page: 1197 ident: bib1 article-title: Differential tonic GABA conductances in striatal medium spiny neurons publication-title: J. Neurosci. – volume: 120 start-page: 749 year: 1997 end-page: 756 ident: bib27 article-title: Subunit-dependent interaction of the general anaesthetic etomidate with the gamma-aminobutyric acid type A receptor publication-title: Br. J. Pharmacol. – volume: 24 start-page: 7916 year: 2004 end-page: 7922 ident: bib36 article-title: Comparison of IPSCs evoked by spiny and fast-spiking neurons in the neostriatum publication-title: J. Neurosci. – volume: 589 start-page: 2301 year: 2011 end-page: 2319 ident: bib24 article-title: Contribution of astrocytic glutamate and GABA uptake to corticostriatal information processing publication-title: J. Physiol. – volume: 22 start-page: 552 year: 2012 end-page: 558 ident: bib28 article-title: Functional regulation of GABAA receptors in nervous system pathologies publication-title: Curr. Opin. Neurobiol. – volume: 75 start-page: 556 year: 2012 end-page: 571 ident: bib16 article-title: The spike-timing dependence of plasticity publication-title: Neuron – volume: 73 start-page: 23 year: 2012 end-page: 34 ident: bib6 article-title: Extrasynaptic GABA(A) receptors: their function in the CNS and implications for disease publication-title: Neuron – volume: 25 start-page: 11279 year: 2005 end-page: 11287 ident: bib17 article-title: Bidirectional activity-dependent plasticity at corticostriatal synapses publication-title: J. Neurosci. – volume: 51 start-page: 227 year: 2006 end-page: 238 ident: bib56 article-title: A cooperative switch determines the sign of synaptic plasticity in distal dendrites of neocortical pyramidal neurons publication-title: Neuron – volume: 468 start-page: 263 year: 2010 end-page: 269 ident: bib10 article-title: Dysfunction in GABA signalling mediates autismlike stereotypies and Rett syndrome phenotypes publication-title: Nature – volume: 7 start-page: 186 year: 2013 ident: bib38 article-title: Distinct roles of synaptic and extrasynaptic GABAAreceptors in striatal inhibition dynamics publication-title: Front. Neural Circuits – volume: 167 start-page: 644 year: 2010 end-page: 655 ident: bib50 article-title: Developmental regulation and neuroprotective effects of striatal tonic GABAA currents publication-title: Neuroscience – volume: 33 start-page: 1678 year: 2013 end-page: 1683 ident: bib57 article-title: Target selectivity of feedforward inhibition by striatal fast-spiking interneurons publication-title: J. Neurosci. – volume: 95 start-page: 1285 year: 2006 end-page: 1290 ident: bib5 article-title: Excitatory GABAergic effects in striatal projection neurons publication-title: J. Neurophysiol. – volume: 29 start-page: 5116 year: 2009 end-page: 5126 ident: bib32 article-title: Dopamine modulation of GABA tonic conductance in striatal output neurons publication-title: J. Neurosci. – volume: 160 start-page: 261 year: 2007 end-page: 272 ident: bib9 article-title: Development of striatal fast-spiking GABAergic interneurons publication-title: Prog. Brain Res. – volume: 2 start-page: 29 year: 2010 ident: bib20 article-title: Dendritic synapse location and neocortical spike-timing-dependent plasticity publication-title: Front. Synaptic Neurosci. – volume: 586 start-page: 5665 year: 2008 end-page: 5678 ident: bib34 article-title: GABA transporter 1 tunes GABAergic synaptic transmission at output neurons of the mouse neostriatum publication-title: J. Physiol. – volume: 58 start-page: 272 year: 2008 end-page: 328 ident: bib59 article-title: Feedforward and feedback inhibition in neostriatal GABAergic spiny neurons publication-title: Brain Res. Rev. – volume: 88 start-page: 769 year: 2008 ident: 10.1016/j.neuropharm.2017.04.012_bib55 article-title: Dendritic excitability and synaptic plasticity publication-title: Physiol. Rev. doi: 10.1152/physrev.00016.2007 – volume: 2 start-page: 29 year: 2010 ident: 10.1016/j.neuropharm.2017.04.012_bib20 article-title: Dendritic synapse location and neocortical spike-timing-dependent plasticity publication-title: Front. Synaptic Neurosci. – volume: 7 start-page: 170 year: 2013 ident: 10.1016/j.neuropharm.2017.04.012_bib14 article-title: Pathophysiological power of improper tonic GABAA conductances in mature and immature models publication-title: Front. Neural Circuits doi: 10.3389/fncir.2013.00170 – volume: 25 start-page: 11279 year: 2005 ident: 10.1016/j.neuropharm.2017.04.012_bib17 article-title: Bidirectional activity-dependent plasticity at corticostriatal synapses publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.4476-05.2005 – volume: 24 start-page: 7916 issue: 36 year: 2004 ident: 10.1016/j.neuropharm.2017.04.012_bib36 article-title: Comparison of IPSCs evoked by spiny and fast-spiking neurons in the neostriatum publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.2163-04.2004 – volume: 160 start-page: 261 year: 2007 ident: 10.1016/j.neuropharm.2017.04.012_bib9 article-title: Development of striatal fast-spiking GABAergic interneurons publication-title: Prog. Brain Res. doi: 10.1016/S0079-6123(06)60015-0 – volume: 468 start-page: 263 year: 2010 ident: 10.1016/j.neuropharm.2017.04.012_bib10 article-title: Dysfunction in GABA signalling mediates autismlike stereotypies and Rett syndrome phenotypes publication-title: Nature doi: 10.1038/nature09582 – volume: 2 start-page: 23 year: 2010 ident: 10.1016/j.neuropharm.2017.04.012_bib51 article-title: Cortico-striatal spike-timing dependent plasticity after activation of subcortical pathways publication-title: Front. Synaptic Neurosci. – volume: 207 start-page: 3 year: 2013 ident: 10.1016/j.neuropharm.2017.04.012_bib58 article-title: Balancing plasticity/stability across brain development publication-title: Prog. Brain Res. doi: 10.1016/B978-0-444-63327-9.00001-1 – volume: 588 start-page: 3045 year: 2010 ident: 10.1016/j.neuropharm.2017.04.012_bib18 article-title: Distinct coincidence detectors govern the corticostriatal spike timing-dependent plasticity publication-title: J. Physiol. doi: 10.1113/jphysiol.2010.188466 – volume: 28 start-page: 2435 year: 2008 ident: 10.1016/j.neuropharm.2017.04.012_bib44 article-title: Dopamine receptor activation is required for corticostriatal spike-timing-dependent plasticity publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.4402-07.2008 – volume: 7 start-page: 13845 year: 2016 ident: 10.1016/j.neuropharm.2017.04.012_bib61 article-title: Astrocytes gate Hebbian synaptic plasticity in striatum publication-title: Nat. Commun. doi: 10.1038/ncomms13845 – volume: 485 start-page: 419 year: 1995 ident: 10.1016/j.neuropharm.2017.04.012_bib33 article-title: Whole-cell and single-channel currents activated by GABA and glycine in granule cells of rat cerebellum publication-title: J. Physiol. doi: 10.1113/jphysiol.1995.sp020739 – volume: 9 start-page: 67 issue: 1 year: 2000 ident: 10.1016/j.neuropharm.2017.04.012_bib47 article-title: Computational consequences of temporally asymmetric learning rules: II. Sensory image cancellation publication-title: J. Comput. Neurosci. doi: 10.1023/A:1008938428112 – volume: 73 start-page: 23 issue: 1 year: 2012 ident: 10.1016/j.neuropharm.2017.04.012_bib6 article-title: Extrasynaptic GABA(A) receptors: their function in the CNS and implications for disease publication-title: Neuron doi: 10.1016/j.neuron.2011.12.012 – volume: 12 start-page: 4151 year: 1992 ident: 10.1016/j.neuropharm.2017.04.012_bib37 article-title: The distribution of thirteen GABAA receptor subunit mRNAs in the rat brain. III. Embryonic and postnatal development publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.12-11-04151.1992 – volume: 268 start-page: 2106 year: 1993 ident: 10.1016/j.neuropharm.2017.04.012_bib64 article-title: Molecular characterization of four pharmacologically distinct γ-aminobutyric acid transporters in mouse brain publication-title: J. Biol. Chem. doi: 10.1016/S0021-9258(18)53968-5 – volume: 95 start-page: 1285 year: 2006 ident: 10.1016/j.neuropharm.2017.04.012_bib5 article-title: Excitatory GABAergic effects in striatal projection neurons publication-title: J. Neurophysiol. doi: 10.1152/jn.00598.2005 – volume: 5 start-page: 15 year: 2011 ident: 10.1016/j.neuropharm.2017.04.012_bib31 article-title: GABA(A) receptor β3 subunit expression regulates tonic current in developing striatopallidal medium spiny neurons publication-title: Front. Cell Neurosci. doi: 10.3389/fncel.2011.00015 – volume: 62 start-page: 707 year: 1994 ident: 10.1016/j.neuropharm.2017.04.012_bib4 article-title: Synaptic input and output of parvalbumin-immunoreactive neurons in the neostriatum of the rat publication-title: Neuroscience doi: 10.1016/0306-4522(94)90471-5 – volume: 293 start-page: 1159 year: 2001 ident: 10.1016/j.neuropharm.2017.04.012_bib46 article-title: Enforcement of temporal fidelity in pyramidal cells by somatic feed-forward inhibition publication-title: Science doi: 10.1126/science.1060342 – volume: 28 start-page: 1185 year: 2008 ident: 10.1016/j.neuropharm.2017.04.012_bib1 article-title: Differential tonic GABA conductances in striatal medium spiny neurons publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.3908-07.2008 – volume: 33 start-page: 182 year: 2015 ident: 10.1016/j.neuropharm.2017.04.012_bib54 article-title: Local and afferent synaptic pathways in the striatal microcircuitry publication-title: Curr. Opin. Neurobiol. doi: 10.1016/j.conb.2015.05.002 – volume: 426 start-page: 442 year: 2003 ident: 10.1016/j.neuropharm.2017.04.012_bib63 article-title: Balanced inhibition underlies tuning and sharpens spike timing in auditory cortex publication-title: Nature doi: 10.1038/nature02116 – volume: 26 start-page: 448 year: 2006 ident: 10.1016/j.neuropharm.2017.04.012_bib26 article-title: Balanced excitation and inhibition determine spike timing during frequency adaptation publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.3506-05.2006 – volume: 32 start-page: 15000 year: 2012 ident: 10.1016/j.neuropharm.2017.04.012_bib29 article-title: Developmental switch in spike-timing-dependent plasticity at layers 4-2/3 in the rodent barrel cortex publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.2506-12.2012 – volume: 2 start-page: 6 year: 2010 ident: 10.1016/j.neuropharm.2017.04.012_bib19 article-title: Spike-timing dependent plasticity in the striatum publication-title: Front. Synaptic Neurosci. – volume: 387 start-page: 278 issue: 6630 year: 1997 ident: 10.1016/j.neuropharm.2017.04.012_bib3 article-title: Synaptic plasticity in a cerebellum-like structure depends on temporal order publication-title: Nature doi: 10.1038/387278a0 – volume: 87 start-page: 2624 issue: 5 year: 2002 ident: 10.1016/j.neuropharm.2017.04.012_bib42 article-title: Selective modulation of tonic and phasic inhibitions in dentate gyrus granule cells publication-title: J. Neurophysiol. doi: 10.1152/jn.2002.87.5.2624 – volume: 29 start-page: 5116 issue: 16 year: 2009 ident: 10.1016/j.neuropharm.2017.04.012_bib32 article-title: Dopamine modulation of GABA tonic conductance in striatal output neurons publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.4737-08.2009 – volume: 75 start-page: 556 year: 2012 ident: 10.1016/j.neuropharm.2017.04.012_bib16 article-title: The spike-timing dependence of plasticity publication-title: Neuron doi: 10.1016/j.neuron.2012.08.001 – volume: 520 start-page: 499 issue: 7548 year: 2015 ident: 10.1016/j.neuropharm.2017.04.012_bib39 article-title: Oxytocin enables maternal behaviour by balancing cortical inhibition publication-title: Nature doi: 10.1038/nature14402 – volume: 36 start-page: 7039 issue: 26 year: 2016 ident: 10.1016/j.neuropharm.2017.04.012_bib30 article-title: Developmental switch in spike timing-dependent plasticity and cannabinoid-dependent reorganization of the thalamocortical projection in the barrel cortex publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.4280-15.2016 – volume: 120 start-page: 749 issue: 5 year: 1997 ident: 10.1016/j.neuropharm.2017.04.012_bib27 article-title: Subunit-dependent interaction of the general anaesthetic etomidate with the gamma-aminobutyric acid type A receptor publication-title: Br. J. Pharmacol. doi: 10.1038/sj.bjp.0700927 – volume: 586 start-page: 5665 year: 2008 ident: 10.1016/j.neuropharm.2017.04.012_bib34 article-title: GABA transporter 1 tunes GABAergic synaptic transmission at output neurons of the mouse neostriatum publication-title: J. Physiol. doi: 10.1113/jphysiol.2008.161943 – volume: 321 start-page: 848 year: 2008 ident: 10.1016/j.neuropharm.2017.04.012_bib53 article-title: Dichotomous dopaminergic control of striatal synaptic plasticity publication-title: Science doi: 10.1126/science.1160575 – volume: 51 start-page: 227 issue: 2 year: 2006 ident: 10.1016/j.neuropharm.2017.04.012_bib56 article-title: A cooperative switch determines the sign of synaptic plasticity in distal dendrites of neocortical pyramidal neurons publication-title: Neuron doi: 10.1016/j.neuron.2006.06.017 – volume: 7 start-page: 186 year: 2013 ident: 10.1016/j.neuropharm.2017.04.012_bib38 article-title: Distinct roles of synaptic and extrasynaptic GABAAreceptors in striatal inhibition dynamics publication-title: Front. Neural Circuits doi: 10.3389/fncir.2013.00186 – volume: 22 start-page: 552 year: 2012 ident: 10.1016/j.neuropharm.2017.04.012_bib28 article-title: Functional regulation of GABAA receptors in nervous system pathologies publication-title: Curr. Opin. Neurobiol. doi: 10.1016/j.conb.2011.10.007 – volume: 30 start-page: 3499 year: 2010 ident: 10.1016/j.neuropharm.2017.04.012_bib45 article-title: Dynamics of synaptic transmission between fast-spiking interneurons and striatal projection neurons of the direct and indirect pathways publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.5139-09.2010 – volume: 33 start-page: 1678 issue: 4 year: 2013 ident: 10.1016/j.neuropharm.2017.04.012_bib57 article-title: Target selectivity of feedforward inhibition by striatal fast-spiking interneurons publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.3572-12.2013 – volume: 6 start-page: 215 year: 2005 ident: 10.1016/j.neuropharm.2017.04.012_bib15 article-title: Variations on an inhibitory theme: phasic and tonic activation of GABA(A) receptors publication-title: Nat. Rev. Neurosci. doi: 10.1038/nrn1625 – volume: 167 start-page: 644 year: 2010 ident: 10.1016/j.neuropharm.2017.04.012_bib50 article-title: Developmental regulation and neuroprotective effects of striatal tonic GABAA currents publication-title: Neuroscience doi: 10.1016/j.neuroscience.2010.02.048 – volume: 35 start-page: 557 issue: 9 year: 2012 ident: 10.1016/j.neuropharm.2017.04.012_bib22 article-title: Striatal microcircuitry and movement disorders publication-title: Trends Neurosci. doi: 10.1016/j.tins.2012.06.008 – volume: 35 start-page: 9707 issue: 26 year: 2015 ident: 10.1016/j.neuropharm.2017.04.012_bib48 article-title: Etomidate impairs long-term potentiation in vitro by targeting α5-subunit containing GABAA receptors on nonpyramidal cells publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.0315-15.2015 – volume: 511 start-page: 348 year: 2014 ident: 10.1016/j.neuropharm.2017.04.012_bib41 article-title: Engineering a memory with LTD and LTP publication-title: Nature doi: 10.1038/nature13294 – volume: 58 start-page: 272 year: 2008 ident: 10.1016/j.neuropharm.2017.04.012_bib59 article-title: Feedforward and feedback inhibition in neostriatal GABAergic spiny neurons publication-title: Brain Res. Rev. doi: 10.1016/j.brainresrev.2007.10.008 – volume: 548 start-page: 97 issue: Pt 1 year: 2003 ident: 10.1016/j.neuropharm.2017.04.012_bib49 article-title: Multiple modes of GABAergic inhibition of rat cerebellar granule cells publication-title: J. Physiol. doi: 10.1113/jphysiol.2002.036459 – volume: 54 start-page: 291 issue: 2 year: 2007 ident: 10.1016/j.neuropharm.2017.04.012_bib60 article-title: Coactivation of pre- and postsynaptic signaling mechanisms determines cell-specific spike-timing-dependent plasticity publication-title: Neuron doi: 10.1016/j.neuron.2007.03.026 – volume: 7 start-page: 11552 year: 2016 ident: 10.1016/j.neuropharm.2017.04.012_bib40 article-title: Symmetric spike timing-dependent plasticity at CA3-CA3 synapses optimizes storage and recall in autoassociative networks publication-title: Nat. Commun. doi: 10.1038/ncomms11552 – volume: 589 start-page: 2301 year: 2011 ident: 10.1016/j.neuropharm.2017.04.012_bib24 article-title: Contribution of astrocytic glutamate and GABA uptake to corticostriatal information processing publication-title: J. Physiol. doi: 10.1113/jphysiol.2010.203125 – volume: 136 start-page: 965 year: 2002 ident: 10.1016/j.neuropharm.2017.04.012_bib7 article-title: Pharmacological characterization of a novel cell line expressing human α4β3 GABAA receptors publication-title: Br. J. Pharmacol. doi: 10.1038/sj.bjp.0704795 – volume: 17 start-page: 1022 year: 2014 ident: 10.1016/j.neuropharm.2017.04.012_bib8 article-title: Direct and indirect pathways of basal ganglia: a critical reappraisal publication-title: Nat. Neurosci. doi: 10.1038/nn.3743 – volume: 56 start-page: 763 year: 2007 ident: 10.1016/j.neuropharm.2017.04.012_bib23 article-title: Activation of GABAA receptors: views from outside the synaptic cleft publication-title: Neuron doi: 10.1016/j.neuron.2007.11.002 – volume: 33 start-page: 9353 year: 2013 ident: 10.1016/j.neuropharm.2017.04.012_bib43 article-title: GABAergic circuits control spike-timing-dependent plasticity publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.5796-12.2013 – volume: 87 start-page: 1215 year: 2007 ident: 10.1016/j.neuropharm.2017.04.012_bib2 article-title: GABA: a pioneer transmitter that excites immature neurons and generates primitive oscillations publication-title: Physiol. Rev. doi: 10.1152/physrev.00017.2006 – volume: 33 start-page: 18 year: 2008 ident: 10.1016/j.neuropharm.2017.04.012_bib11 article-title: Synaptic plasticity: multiple forms, functions, and mechanisms publication-title: Neuropsychopharmacology doi: 10.1038/sj.npp.1301559 – volume: 45 start-page: 196 issue: 3 year: 2004 ident: 10.1016/j.neuropharm.2017.04.012_bib12 article-title: GABA transporters in the mammalian cerebral cortex: localization, development and pathological implications publication-title: Brain Res. Brain Res. Rev. doi: 10.1016/j.brainresrev.2004.03.003 – year: 2015 ident: 10.1016/j.neuropharm.2017.04.012_bib21 article-title: A single-neuron tracing study of arkypallidal and prototypic neurons in healthy rats publication-title: Brain Struct. Funct. – volume: 2 start-page: 467 year: 1999 ident: 10.1016/j.neuropharm.2017.04.012_bib35 article-title: Inhibitory control of neostriatal projection neurons by GABAergic interneurons publication-title: Nat. Neurosci. doi: 10.1038/8138 – volume: 32 start-page: 943 year: 1979 ident: 10.1016/j.neuropharm.2017.04.012_bib65 article-title: Phosphate activated glutaminase activity and glutamine uptake in primary cultures of astrocytes publication-title: J. Neurochem. doi: 10.1111/j.1471-4159.1979.tb04579.x – volume: 6 start-page: 484 issue: 5 year: 2003 ident: 10.1016/j.neuropharm.2017.04.012_bib52 article-title: GABA uptake regulates cortical excitability via cell type-specific tonic inhibition publication-title: Nat. Neurosci. doi: 10.1038/nn1043 – volume: 559 start-page: 215 issue: Pt 1 year: 2004 ident: 10.1016/j.neuropharm.2017.04.012_bib62 article-title: Electrical and chemical transmission between striatal GABAergic output neurones in rat brain slices publication-title: J. Physiol. doi: 10.1113/jphysiol.2004.065672 – volume: 504 start-page: 272 issue: 7479 year: 2013 ident: 10.1016/j.neuropharm.2017.04.012_bib13 article-title: Parvalbumin-expressing basket-cell network plasticity induced by experience regulates adult learning publication-title: Nature doi: 10.1038/nature12866 – volume: 112 start-page: 287 issue: 2 year: 2014 ident: 10.1016/j.neuropharm.2017.04.012_bib25 article-title: Development of dendritic tonic GABAergic inhibition regulates excitability and plasticity in CA1 pyramidal neurons publication-title: J. Neurophysiol. doi: 10.1152/jn.00066.2014 |
SSID | ssj0004818 |
Score | 2.3002613 |
Snippet | Activity-dependent long-term potentiation (LTP) and depression (LTD) of synaptic strength underlie multiple forms of learning and memory.... |
SourceID | hal proquest pubmed crossref elsevier |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 261 |
SubjectTerms | 2-Amino-5-phosphonovalerate - pharmacology 6-Cyano-7-nitroquinoxaline-2,3-dione - pharmacology Action Potentials - physiology Age Factors Animals Animals, Newborn Biophysics Corpus Striatum - cytology Corpus Striatum - growth & development Development Electric Stimulation Excitatory Amino Acid Antagonists - pharmacology GABA Antagonists - pharmacology GABAergic Neurons - physiology gamma-Aminobutyric Acid - pharmacology In Vitro Techniques Inhibition Life Sciences Long-Term Potentiation - physiology Long-Term Synaptic Depression - physiology Neurons and Cognition Patch-Clamp Techniques Picrotoxin - pharmacology Rats Signal Transduction - physiology Spike-timing-dependent plasticity Striatum Tonic GABA |
Title | Developmental control of spike-timing-dependent plasticity by tonic GABAergic signaling in striatum |
URI | https://dx.doi.org/10.1016/j.neuropharm.2017.04.012 https://www.ncbi.nlm.nih.gov/pubmed/28408325 https://www.proquest.com/docview/1888677721 https://hal.science/hal-02407266 |
Volume | 121 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9swDCaa9LLLsPeyR6ENQ0_1asmWJWMnr1iXvYoeWqA3wbLlLns4RuMUyKW_faQtJ-2hQIEdJYCyIEokZX38CPCuCK0WZR4GFKwGcZpHQY5WL3BVKEqRp5p3_zt-HCXT0_jrmTzbgoMhF4Zgld729za9s9a-Z9-v5n4zm1GOL7rGFF0abVKMWkawLaI0kWPYzr58mx5t0iM11wMZMwl4QE8P8-poIxuiiSacl-p4T7m4zUuNfhJc8rZYtPNJhw_gvg8mWdbP9yFsufoR7B73bNSrPXaySa5a7LFddrzhqV49huIaYAhH8aB1Nq_Yopn9dkFLBb_Og6FMbssajLQJhN2umF2xlkh12efsY-Yu0HwyQoLklNzOZjXrqoG0y79P4PTw08nBNPA1F4IiDnUbqEgVHNfU2lwkkbWRUthyupIOOytrhdCuwktUVFn09IksFd5xhZKlEEWKIk9hXM9r9xyYwONdlbZKVCFjJV2aiDiRuc7pbS4qowmoYY1N4QnJqS7GHzMgz36ZjXYMaceEsUHtTICvJZuelOMOMh8GNZobG8yg77iD9FvU_PpjxMk9zb4b6gs7jrkkueQTeDNsDIOHlF5e8trNlwvDtSbeQLxtT-BZv2PWY2F8gGGwkC_-a4Iv4R616K8zl69g3F4s3WsMl1q7A6P3V3zHH4p_OxEU9A |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB615QCXqjy7tIBBqKeaJk4cO-K0VJQFtlUPW6k3y04c2ALZqJuttBd-OzN57MKhUiWOcWLH8tgzY_ubbwDeZoHTIrcBJ2eVx6mNuEWtx30RiFzYVIfNecfpWTK6iL9cyssNOO5jYQhW2en-Vqc32rorOepG86iaTinGF01jiiaNJil6LZtwL5aRIlzfu99rnEesQ91TMdPnHZynBXk1pJEVkUQTyks1rKehuM1GbX4nsORtnmhjkU52YLtzJdmw7e1D2PDlIzg4b7mol4dssg6tmh-yA3a-ZqlePobsL7gQttJB1tmsYPNq-sPzmtJ9feN9ktyaVehnEwS7XjK3ZDVR6rJPww9Df43KkxEOxFJoO5uWrMkFUi9-PYGLk4-T4xHvMi7wLA50zVWkshBH1Dkrksi5SCl88rqQHgsL54TQvsAtVFQ4tPOJzBXucIWSuRBZilWewlY5K_0uMIGLu8hdkahMxkr6NBFxIq22dDMX5dEAVD_GJuvoyCkrxk_T486uzFo6hqRjgtigdAYQrmpWLSXHHeq878Vo_pleBi3HHWq_QcmvfkaM3KPh2FBZ0DDMJclNOIDX_cQwuETp3sWWfraYm1BrYg3EvfYAnrUzZtUWegfoBAv5_L86-ArujyanYzP-fPZ1Dx7QGzp_DuU-bNXXC_8CHafavWwWxh-YcRW_ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Developmental+control+of+spike-timing-dependent+plasticity+by+tonic+GABAergic+signaling+in+striatum&rft.jtitle=Neuropharmacology&rft.au=Valtcheva%2C+Silvana&rft.au=Paill%C3%A9%2C+Vincent&rft.au=Dembitskaya%2C+Yulia&rft.au=Perez%2C+Sylvie&rft.date=2017-07-15&rft.eissn=1873-7064&rft.volume=121&rft.spage=261&rft_id=info:doi/10.1016%2Fj.neuropharm.2017.04.012&rft_id=info%3Apmid%2F28408325&rft.externalDocID=28408325 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0028-3908&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0028-3908&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0028-3908&client=summon |