Embedded Machine Learning Using Microcontrollers in Wearable and Ambulatory Systems for Health and Care Applications: A Review
The use of machine learning in medical and assistive applications is receiving significant attention thanks to the unique potential it offers to solve complex healthcare problems for which no other solutions had been found. Particularly promising in this field is the combination of machine learning...
Saved in:
Published in | IEEE access Vol. 10; p. 1 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Piscataway
IEEE
2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
ISSN | 2169-3536 2169-3536 |
DOI | 10.1109/ACCESS.2022.3206782 |
Cover
Loading…
Abstract | The use of machine learning in medical and assistive applications is receiving significant attention thanks to the unique potential it offers to solve complex healthcare problems for which no other solutions had been found. Particularly promising in this field is the combination of machine learning with novel wearable devices. Machine learning models, however, suffer from being computationally demanding, which typically has resulted on the acquired data having to be transmitted to remote cloud servers for inference. This is not ideal from the system's requirements point of view. Recently, efforts to replace the cloud servers with an alternative inference device closer to the sensing platform, has given rise to a new area of research Tiny Machine Learning (TinyML). In this work, we investigate the different challenges and specifications trade-offs associated to existing hardware options, as well as recently developed software tools, when trying to use microcontroller units (MCUs) as inference devices for health and care applications. The paper also reviews existing wearable systems incorporating MCUs for monitoring, and management, in the context of different health and care intended uses. Overall, this work can be used as a kick-start for embedding machine learning models on MCUs, focusing on healthcare wearables. |
---|---|
AbstractList | The use of machine learning in medical and assistive applications is receiving significant attention thanks to the unique potential it offers to solve complex healthcare problems for which no other solutions had been found. Particularly promising in this field is the combination of machine learning with novel wearable devices. Machine learning models, however, suffer from being computationally demanding, which typically has resulted on the acquired data having to be transmitted to remote cloud servers for inference. This is not ideal from the system's requirements point of view. Recently, efforts to replace the cloud servers with an alternative inference device closer to the sensing platform, has given rise to a new area of research Tiny Machine Learning (TinyML). In this work, we investigate the different challenges and specifications trade-offs associated to existing hardware options, as well as recently developed software tools, when trying to use microcontroller units (MCUs) as inference devices for health and care applications. The paper also reviews existing wearable systems incorporating MCUs for monitoring, and management, in the context of different health and care intended uses. Overall, this work can be used as a kick-start for embedding machine learning models on MCUs, focusing on healthcare wearables. The use of machine learning in medical and assistive applications is receiving significant attention thanks to the unique potential it offers to solve complex healthcare problems for which no other solutions had been found. Particularly promising in this field is the combination of machine learning with novel wearable devices. Machine learning models, however, suffer from being computationally demanding, which typically has resulted on the acquired data having to be transmitted to remote cloud servers for inference. This is not ideal from the system's requirements point of view. Recently, efforts to replace the cloud servers with an alternative inference device closer to the sensing platform, has given rise to a new area of research Tiny Machine Learning (TinyML). In this work, we investigate the different challenges and specifications trade-offs associated to existing hardware options, as well as recently developed software tools, when trying to use microcontroller units (MCUs) as inference devices for health and care applications. The paper also reviews existing wearable systems incorporating MCUs for monitoring, and management, in the context of different health and care intended uses. Overall, this work addresses the gap in literature targeting the use of MCUs as edge inference devices for healthcare wearables. Thus, can be used as a kick-start for embedding machine learning models on MCUs, focusing on healthcare wearables. |
Author | Diab, Maha S. Rodriguez-Villegas, Esther |
Author_xml | – sequence: 1 givenname: Maha S. surname: Diab fullname: Diab, Maha S. organization: Department of Electrical and Electronic Engineering, Wearable Technologies Lab, Imperial College London, London, United Kingdom – sequence: 2 givenname: Esther orcidid: 0000-0003-1957-2044 surname: Rodriguez-Villegas fullname: Rodriguez-Villegas, Esther organization: Department of Electrical and Electronic Engineering, Wearable Technologies Lab, Imperial College London, London, United Kingdom |
BookMark | eNp9kU9vEzEQxVeoSJTST9CLJc4J_rNre7mtVoFWSoVEqDhatnfcOtrYwXZAufDZ2WQLQhzwwR6N3u9pPO91dRFigKq6IXhJCG7fdX2_2myWFFO6ZBRzIemL6pIS3i5Yw_jFX_Wr6jrnLZ6OnFqNuKx-rnYGhgEGdK_tkw-A1qBT8OERPeTTfe9tijaGkuI4QsrIB_R1kmgzAtJhQN3OHEZdYjqizTEX2GXkYkK3oMfydFb0OgHq9vvRW118DPk96tBn-O7hx5vqpdNjhuvn96p6-LD60t8u1p8-3vXdemFrLMtCsMbw2mKihWOc2dZxqoEwbABj13Bg2GECmnHLidNOtsNg21o4Q2ttGsKuqrvZd4h6q_bJ73Q6qqi9OjdielQ6FW9HUJg3xGFpG8loPe1UG1djJ0zjRG2kdZPX29lrn-K3A-SitvGQwjS-ooII0rSSy0nVzqppfTkncMr6cv5-SdqPimB1Sk_N6alTeuo5vYll_7C_J_4_dTNTHgD-EK1sGWGC_QIl6qhM |
CODEN | IAECCG |
CitedBy_id | crossref_primary_10_3390_a16030149 crossref_primary_10_1109_ACCESS_2023_3294111 crossref_primary_10_3390_s24010162 crossref_primary_10_1016_j_bspc_2024_107361 crossref_primary_10_1109_OJCOMS_2024_3456549 crossref_primary_10_1016_j_compbiomed_2025_109653 crossref_primary_10_1016_j_iot_2023_100729 crossref_primary_10_3390_biomedinformatics5010014 crossref_primary_10_3390_s23177553 crossref_primary_10_1016_j_est_2024_111897 crossref_primary_10_1016_j_compeleceng_2024_110038 crossref_primary_10_3390_s24134317 crossref_primary_10_3390_s24041294 crossref_primary_10_1016_j_compeleceng_2024_109202 crossref_primary_10_3390_fi16110391 crossref_primary_10_3390_electronics13173562 crossref_primary_10_3390_s23167166 crossref_primary_10_1109_JIOT_2023_3338697 |
Cites_doi | 10.3390/app9081526 10.1155/2022/4653923 10.1038/s41746-019-0216-8 10.1002/ett.3710 10.1109/TETC.2020.3027454 10.1109/WF-IoT48130.2020.9221219 10.1109/TMI.2016.2528129 10.1109/ACCESS.2020.2971391 10.1109/DSD.2018.00075 10.1007/s10278-020-00321-5 10.1109/COINS51742.2021.9524188 10.1016/j.engappai.2020.103571 10.1109/TITS.2005.848368 10.1016/S1474-4422(11)70143-0 10.1109/TBCAS.2020.3036081 10.1109/TBCAS.2020.2974154 10.1007/978-3-030-44907-0_9 10.1109/AICAS48895.2020.9073950 10.1109/TC.2021.3066883 10.1109/SAS51076.2021.9530050 10.1109/TMI.2016.2525803 10.3390/s19143079 10.1016/j.cmpb.2019.105282 10.1038/s41586-019-1234-z 10.1016/j.ijcard.2020.04.046 10.1109/EMBC44109.2020.9175339 10.1016/j.dib.2019.105044 10.1016/j.eng.2019.08.015 10.1109/TMI.2016.2535865 10.1109/BioCAS49922.2021.9644949 10.1161/01.CIR.101.23.e215 10.1109/TBME.2004.827072 10.1109/ISCAS.2018.8351728 10.1016/j.ijcard.2020.03.075 10.1109/JSSC.2019.2912307 10.1109/MeMeA49120.2020.9137134 10.1109/TBME.2015.2430895 10.1007/s10278-019-00223-1 10.5121/ijaia.2018.9105 10.1109/ISCAS51556.2021.9401083 10.1109/TBCAS.2019.2959160 10.17226/13297 10.1038/nature21056 10.22489/CinC.2017.065-469 10.1016/j.eswa.2018.08.031 10.3390/s17010198 10.3390/electronics10141715 10.1109/JIOT.2020.2976702 10.23919/DATE48585.2020.9116218 10.3389/fnins.2019.00891 10.1109/ISCAS51556.2021.9401282 10.1016/j.patrec.2020.05.016 10.1002/mp.13886 10.1088/1741-2552/aace8c 10.1016/j.ins.2017.06.027 10.1109/TITB.2009.2036165 10.1109/AICAS51828.2021.9458520 10.1109/SMARTCOMP50058.2020.00067 10.3390/a13050125 10.1016/S2589-7500(20)30064-9 10.1109/ACCESS.2018.2890150 10.1016/j.iot.2021.100461 10.1088/1361-6560/ab5da0 10.1007/978-981-13-7166-0_16 10.1109/ICORR.2017.8009405 10.1109/ICECS46596.2019.8965067 10.1109/CVPR.2018.00171 10.1016/j.neuroimage.2020.116807 10.1109/TBCAS.2019.2927551 10.1016/S0735-1097(86)80478-8 10.1109/MCAS.2020.3005467 10.3390/s20092533 10.1109/RBME.2020.3013489 10.1016/j.bspc.2019.101731 10.3390/s21134412 10.1016/j.inffus.2020.09.006 10.1109/ACCESS.2020.3039858 10.1109/MELECON48756.2020.9140602 10.1007/s10618-014-0388-4 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022 |
DBID | 97E ESBDL RIA RIE AAYXX CITATION 7SC 7SP 7SR 8BQ 8FD JG9 JQ2 L7M L~C L~D DOA |
DOI | 10.1109/ACCESS.2022.3206782 |
DatabaseName | IEEE Xplore (IEEE) IEEE Xplore Open Access Journals IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts METADEX Technology Research Database Materials Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace METADEX Computer and Information Systems Abstracts Professional |
DatabaseTitleList | Materials Research Database |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 2169-3536 |
EndPage | 1 |
ExternalDocumentID | oai_doaj_org_article_0651f08c58324022abf40f7b5f74b8cf 10_1109_ACCESS_2022_3206782 9893137 |
Genre | orig-research |
GrantInformation_xml | – fundername: Engineering and Physical Sciences Research Council grantid: EP/P009794/1 funderid: 10.13039/501100000266 – fundername: European Research Council grantid: 724334 |
GroupedDBID | 0R~ 4.4 5VS 6IK 97E AAJGR ABAZT ABVLG ACGFS ADBBV AGSQL ALMA_UNASSIGNED_HOLDINGS BCNDV BEFXN BFFAM BGNUA BKEBE BPEOZ EBS EJD ESBDL GROUPED_DOAJ IPLJI JAVBF KQ8 M43 M~E O9- OCL OK1 RIA RIE RNS AAYXX CITATION RIG 7SC 7SP 7SR 8BQ 8FD JG9 JQ2 L7M L~C L~D |
ID | FETCH-LOGICAL-c408t-735b64c01a7f363c9f62ae130be00f56e30f01ea36c61faf89ddc947fb24ab513 |
IEDL.DBID | DOA |
ISSN | 2169-3536 |
IngestDate | Wed Aug 27 01:06:02 EDT 2025 Mon Jun 30 02:24:18 EDT 2025 Tue Jul 01 02:48:29 EDT 2025 Thu Apr 24 23:09:28 EDT 2025 Wed Aug 27 02:29:10 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Language | English |
License | https://creativecommons.org/licenses/by/4.0/legalcode |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c408t-735b64c01a7f363c9f62ae130be00f56e30f01ea36c61faf89ddc947fb24ab513 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0003-1957-2044 0000-0003-0485-4882 |
OpenAccessLink | https://doaj.org/article/0651f08c58324022abf40f7b5f74b8cf |
PQID | 2717159868 |
PQPubID | 4845423 |
PageCount | 1 |
ParticipantIDs | proquest_journals_2717159868 crossref_primary_10_1109_ACCESS_2022_3206782 crossref_citationtrail_10_1109_ACCESS_2022_3206782 doaj_primary_oai_doaj_org_article_0651f08c58324022abf40f7b5f74b8cf ieee_primary_9893137 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20220000 2022-00-00 20220101 2022-01-01 |
PublicationDateYYYYMMDD | 2022-01-01 |
PublicationDate_xml | – year: 2022 text: 20220000 |
PublicationDecade | 2020 |
PublicationPlace | Piscataway |
PublicationPlace_xml | – name: Piscataway |
PublicationTitle | IEEE access |
PublicationTitleAbbrev | Access |
PublicationYear | 2022 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref57 ref59 ref58 (ref49) 2019 lai (ref69) 2018 (ref66) 2021 (ref56) 2020 (ref115) 2022 ref46 ref45 ref47 shoeb (ref99) 2009 ref41 ref43 (ref70) 2021 ref8 (ref50) 2016 ref7 (ref1) 2022 ref9 kuyumcu (ref78) 2021 ref3 ref6 ref5 ref100 ref101 (ref53) 2021 ref40 ref35 ref34 ref37 esteva (ref4) 2017; 542 ref36 (ref61) 2021 ref31 (ref114) 2022 ref33 ref32 ref39 ref38 kulkarni (ref64) 2021; 2 krizhevsky (ref65) 2009 (ref54) 2021 (ref44) 2021 wu (ref2) 2019; 23 ref24 ref23 ref26 ref25 nissen (ref77) 2003; 31 ref20 ref22 ref21 gupta (ref108) 2017 ref28 ref27 (ref55) 2020 ref29 (ref103) 2021 conti (ref74) 2020 ref13 ref12 ref15 ref14 ref96 ref11 (ref116) 2022 ref10 ref17 ref16 ref19 ref18 du (ref30) 2017 ref93 ref92 marling (ref98) 2020; 2675 (ref72) 2021 ref95 ref94 (ref67) 2021 ref91 ref90 (ref42) 2021 ref89 ref86 ref85 ref88 ref87 (ref48) 2019 gokul (ref79) 2020 ref82 ref81 dennis (ref71) 0 ref84 (ref62) 2019 ref83 ref80 ref109 ref106 ref107 ref75 ref104 ref105 goldberger (ref97) 2000; 101 ref102 ref76 suda (ref68) 2019 ref111 (ref51) 2016 ref112 ref73 ref110 (ref52) 2021 ref63 ref60 ferguson (ref113) 2018 |
References_xml | – year: 2021 ident: ref67 publication-title: TensorFlow Lite for Microcontrollers – ident: ref35 doi: 10.3390/app9081526 – ident: ref3 doi: 10.1155/2022/4653923 – volume: 31 start-page: 29 year: 2003 ident: ref77 publication-title: Implementation of a Fast Artificial Neural Network Library (Fann) – start-page: 1 year: 2019 ident: ref68 publication-title: Machine Learning on Arm Cortex-M Microcontrollers – ident: ref13 doi: 10.1038/s41746-019-0216-8 – year: 2018 ident: ref69 article-title: CMSIS-NN: Efficient neural network kernels for arm Cortex-M CPUs publication-title: arXiv 1801 06601 [cs] – ident: ref39 doi: 10.1002/ett.3710 – year: 2021 ident: ref103 publication-title: Sisfall Temporally Annotated – volume: 2675 start-page: 71 year: 2020 ident: ref98 article-title: The OhioT1DM dataset for blood glucose level prediction: Update 2020 publication-title: Proc CEUR Workshop – ident: ref85 doi: 10.1109/TETC.2020.3027454 – ident: ref57 doi: 10.1109/WF-IoT48130.2020.9221219 – year: 2022 ident: ref1 publication-title: Wearables |Statista – ident: ref18 doi: 10.1109/TMI.2016.2528129 – year: 2019 ident: ref48 publication-title: STM32L – ident: ref6 doi: 10.1109/ACCESS.2020.2971391 – ident: ref84 doi: 10.1109/DSD.2018.00075 – year: 2018 ident: ref113 publication-title: This AI-Powered Asthma Inhaler Keeps Tabs on Your Dose so You Don't Have to – year: 2021 ident: ref61 publication-title: AVR 8- and 32-bit MCUs – ident: ref16 doi: 10.1007/s10278-020-00321-5 – year: 2020 ident: ref55 publication-title: ATmega 640/V-1280/V-1281/V-2560/V-2561/V – year: 2022 ident: ref115 publication-title: Cortex-m55 – year: 2016 ident: ref51 publication-title: STM32F756xx – ident: ref90 doi: 10.1109/COINS51742.2021.9524188 – ident: ref7 doi: 10.1016/j.engappai.2020.103571 – year: 0 ident: ref71 publication-title: EdgeML Machine Learning for resource-constrained edge devices – ident: ref101 doi: 10.1109/TITS.2005.848368 – year: 2021 ident: ref52 publication-title: STM32F765xx STM32F767xx STM32F768xx STM32F769xx – ident: ref109 doi: 10.1016/S1474-4422(11)70143-0 – ident: ref28 doi: 10.1109/TBCAS.2020.3036081 – year: 2021 ident: ref72 publication-title: NN Quick Start Guide – ident: ref40 doi: 10.1109/TBCAS.2020.2974154 – year: 2019 ident: ref62 publication-title: Pulp Hardware Reference Manual Version 1 6 – ident: ref31 doi: 10.1007/978-3-030-44907-0_9 – ident: ref58 doi: 10.1109/AICAS48895.2020.9073950 – ident: ref75 doi: 10.1109/TC.2021.3066883 – ident: ref91 doi: 10.1109/SAS51076.2021.9530050 – ident: ref22 doi: 10.1109/TMI.2016.2525803 – start-page: 1331 year: 2017 ident: ref108 article-title: ProtoNN: Compressed and accurate kNN for resource-scarce devices publication-title: Proc Int Conf Mach Learn – volume: 23 year: 2019 ident: ref2 article-title: Wearable technology applications in healthcare: A literature review publication-title: Online Journal of Nursing Informatics – ident: ref100 doi: 10.3390/s19143079 – ident: ref20 doi: 10.1016/j.cmpb.2019.105282 – ident: ref92 doi: 10.1038/s41586-019-1234-z – ident: ref14 doi: 10.1016/j.ijcard.2020.04.046 – ident: ref60 doi: 10.1109/EMBC44109.2020.9175339 – year: 2022 ident: ref114 publication-title: Arm Cortex-M Processor Comparison Table – ident: ref104 doi: 10.1016/j.dib.2019.105044 – ident: ref34 doi: 10.1016/j.eng.2019.08.015 – ident: ref9 doi: 10.1109/TMI.2016.2535865 – ident: ref47 doi: 10.1109/BioCAS49922.2021.9644949 – volume: 101 start-page: 215e year: 2000 ident: ref97 article-title: PhysioBank, PhysioToolkit, and PhysioNet: Components of a new research resource for complex physiologic signals publication-title: Circulation doi: 10.1161/01.CIR.101.23.e215 – ident: ref105 doi: 10.1109/TBME.2004.827072 – ident: ref80 doi: 10.1109/ISCAS.2018.8351728 – ident: ref12 doi: 10.1016/j.ijcard.2020.03.075 – ident: ref43 doi: 10.1109/JSSC.2019.2912307 – ident: ref88 doi: 10.1109/MeMeA49120.2020.9137134 – ident: ref21 doi: 10.1109/TBME.2015.2430895 – ident: ref11 doi: 10.1007/s10278-019-00223-1 – ident: ref29 doi: 10.5121/ijaia.2018.9105 – ident: ref59 doi: 10.1109/ISCAS51556.2021.9401083 – ident: ref89 doi: 10.1109/TBCAS.2019.2959160 – ident: ref24 doi: 10.17226/13297 – year: 2021 ident: ref78 publication-title: FANN Tool – volume: 542 start-page: 115 year: 2017 ident: ref4 article-title: Dermatologist-level classification of skin cancer with deep neural networks publication-title: Nature doi: 10.1038/nature21056 – ident: ref94 doi: 10.22489/CinC.2017.065-469 – ident: ref112 doi: 10.1016/j.eswa.2018.08.031 – ident: ref102 doi: 10.3390/s17010198 – ident: ref87 doi: 10.3390/electronics10141715 – ident: ref76 doi: 10.1109/JIOT.2020.2976702 – year: 2017 ident: ref30 article-title: Hardware accelerator design for machine learning publication-title: Machine Learning-Advanced Techniques and Emerging Applications – ident: ref46 doi: 10.23919/DATE48585.2020.9116218 – year: 2021 ident: ref70 publication-title: X-Cube-AI AI Expansion Pack for STM32CubeMX – volume: 2 start-page: 227 year: 2021 ident: ref64 article-title: AI model compression for edge devices using optimization techniques publication-title: Modern Approaches in Machine Learning and Cognitive Science A Walkthrough Latest Trends in AI – ident: ref107 doi: 10.3389/fnins.2019.00891 – year: 2021 ident: ref42 publication-title: RISC-V – start-page: 1 year: 2020 ident: ref79 article-title: Gait recovery system for Parkinson's disease using machine learning on embedded platforms publication-title: Proc IEEE Int Syst Conf (SysCon) – ident: ref82 doi: 10.1109/ISCAS51556.2021.9401282 – year: 2021 ident: ref53 publication-title: nRF52832 – ident: ref25 doi: 10.1016/j.patrec.2020.05.016 – ident: ref8 doi: 10.1002/mp.13886 – year: 2020 ident: ref56 publication-title: ATmega48A/PA/88A/PA/168A/PA/328/P – ident: ref111 doi: 10.1088/1741-2552/aace8c – ident: ref15 doi: 10.1016/j.ins.2017.06.027 – year: 2009 ident: ref65 publication-title: Learning multiple layers of features from tiny images – ident: ref93 doi: 10.1109/TITB.2009.2036165 – ident: ref45 doi: 10.1109/AICAS51828.2021.9458520 – year: 2021 ident: ref66 publication-title: TensorFlow Lite – ident: ref83 doi: 10.1109/SMARTCOMP50058.2020.00067 – ident: ref26 doi: 10.3390/a13050125 – year: 2016 ident: ref50 publication-title: STM32F303xD STM32F303xE – ident: ref10 doi: 10.1016/S2589-7500(20)30064-9 – ident: ref38 doi: 10.1109/ACCESS.2018.2890150 – ident: ref41 doi: 10.1016/j.iot.2021.100461 – year: 2020 ident: ref74 article-title: Technical report: NEMO DNN quantization for deployment model publication-title: arXiv 2004 05930 – ident: ref5 doi: 10.1088/1361-6560/ab5da0 – year: 2009 ident: ref99 publication-title: Application of machine learning to epileptic seizure onset detection and treatment – ident: ref36 doi: 10.1007/978-981-13-7166-0_16 – ident: ref106 doi: 10.1109/ICORR.2017.8009405 – ident: ref73 doi: 10.1109/ICECS46596.2019.8965067 – year: 2021 ident: ref54 publication-title: nRF52840 – ident: ref110 doi: 10.1109/CVPR.2018.00171 – year: 2019 ident: ref49 publication-title: STM32l475xx – ident: ref17 doi: 10.1016/j.neuroimage.2020.116807 – ident: ref81 doi: 10.1109/TBCAS.2019.2927551 – year: 2022 ident: ref116 publication-title: Processors-Microcontrollers – ident: ref96 doi: 10.1016/S0735-1097(86)80478-8 – year: 2021 ident: ref44 publication-title: Greenwaves Technologies Gap8 Next Generation Processor for Smart Sensors – ident: ref27 doi: 10.1109/MCAS.2020.3005467 – ident: ref63 doi: 10.3390/s20092533 – ident: ref37 doi: 10.1109/RBME.2020.3013489 – ident: ref19 doi: 10.1016/j.bspc.2019.101731 – ident: ref32 doi: 10.3390/s21134412 – ident: ref23 doi: 10.1016/j.inffus.2020.09.006 – ident: ref33 doi: 10.1109/ACCESS.2020.3039858 – ident: ref86 doi: 10.1109/MELECON48756.2020.9140602 – ident: ref95 doi: 10.1007/s10618-014-0388-4 |
SSID | ssj0000816957 |
Score | 2.3860877 |
SecondaryResourceType | review_article |
Snippet | The use of machine learning in medical and assistive applications is receiving significant attention thanks to the unique potential it offers to solve complex... |
SourceID | doaj proquest crossref ieee |
SourceType | Open Website Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 1 |
SubjectTerms | Cloud computing Data acquisition Edge ML embedded machine learning Embedding Health care healthcare Inference Machine learning Machine learning algorithms Medical services microcontroller Microcontrollers Power demand Software TinyML wearable Wearable computers Wearable technology |
SummonAdditionalLinks | – databaseName: IEEE Electronic Library (IEL) dbid: RIE link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwELbanuDAqyC2LcgHjs3Wz9juLaxaVUjLiYreLNuxEaLNorJ7KAd-Ox7HG5WHELcomkSOvolnxjPzDUJvqCORi5Y0ibDUCMVV4ySNjQyQVYpBEgG9w8v37cWleHclr3bQ8dQLE2MsxWdxDpcll9-vwgaOyk5MNq6Uq120mwO3sVdrOk-BARJGqkosRIk56RaL_A05BGRszoGlXLNfjE_h6K9DVf7YiYt5OX-MltuFjVUlX-abtZ-H779xNv7vyp-gR9XPxN2oGE_RThyeoYf32Af30Y-zGx_zvtPjZamojLiSrX7CpZAAL6FYr9ayX2c3EX8e8McsAt1W2A097m48TP9a3d7hynyOsw-Mx9amIgHtTbi7lyQ_xR0e8xHP0eX52YfFRVPHMTRBEL1uFJe-FYFQpxJveTCpZS5mG-gjIUm2kZNEaHS8DS1NLmnT98EIlTwTzkvKX6C9YTXElwinaFQIWiVDnVDa6xygJ69bTwP12eWaIbbFyYbKVQ4jM65tiVmIsSO4FsC1FdwZOp4e-jpSdfxb_C0owCQKPNvlRgbO1t_WZgeNJqKD1EBcyJjzSZCkvExKeB3SDO0D2NNLKs4zdLRVJ1v3hG-W5ciZAh2-Pvj7U4foASxwPOA5Qnvr2018lV2etX9ddP0nwAj91w priority: 102 providerName: IEEE |
Title | Embedded Machine Learning Using Microcontrollers in Wearable and Ambulatory Systems for Health and Care Applications: A Review |
URI | https://ieeexplore.ieee.org/document/9893137 https://www.proquest.com/docview/2717159868 https://doaj.org/article/0651f08c58324022abf40f7b5f74b8cf |
Volume | 10 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07bxQxELZQKigQISAOQuSCkiV-P-iWU6II6aiISGfZPg9CSjYoOQoafns8Xud0CAka2tXsw57ZeXhmviHkDY-sSGXYAEzAoKy0Q9S8DDpjVqlkzRT2Dq8-mbNz9fFCX-yM-sKasBkeeN6442oiOTCXtUPoOCFiAsXAJg1WJZcBtW-1eTvBVNPBjhuvbYcZ4swfj8tlXVENCIV4JxGz3InfTFFD7O8jVv7Qy83YnD4hj7uXSMf56_bJgzI9JY92sAMPyK-Tq1Sq1ljTVauHLLRDpX6lrQyArrDUrleiX1Ynj36b6JdKgr1SNE5rOl4lnN11ffOTdtxyWj1YOjcmNQpsTqLjTor7PR3pnE14Rs5PTz4vz4Y-TGHIirnNYKVORmXGowVpZPZgRCzVgqXCGGhTJAPGS5QmGw4RnF-vs1cWklAxaS6fk73peiovCIXibc7OgudRWZdcDa8hOZN45qk6TAsi7vc15I40jgMvLkOLOJgPMzMCMiN0ZizI2-1N32egjb-Tf0CGbUkRJbtdqLITuuyEf8nOghwgu7cP8dV549IuyOE9-0P_o2-DqHEvRzB79_J_vPoVeYjLmQ9zDsne5uZHeV3dm006apJ81DoR7wDmlvTt |
linkProvider | Directory of Open Access Journals |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB6VcgAOvApioYAPHJutn7HDLaxaLdD01IreLNtrI0SbrdrdAxz47diONyoPIW5RNIkcfRPPjGfmG4A3xGDPeI2rgGmouGSyMoL4SriUVfJOYJ56h7vjen7KP5yJsy3YG3thvPe5-MxP02XO5S-Wbp2OyvabaFwJk7fgdrT7ggzdWuOJShoh0QhZqIUIbvbb2Sx-RQwCKZ2yxFOu6C_mJ7P0l7Eqf-zF2cAcPoBus7ShruTrdL2yU_f9N9bG_137Q7hfPE3UDqrxCLZ8_xju3eAf3IEfBxfWx51ngbpcU-lRoVv9jHIpAepSuV6pZj-PjiL60qNPUST1WyHTL1B7YdP8r-XVN1S4z1H0gtHQ3JQlUoMTam-kyd-iFg0ZiSdwenhwMptXZSBD5ThWq0oyYWvuMDEysJq5JtTU-GgFrcc4iNozHDDxhtWuJsEE1SwWruEyWMqNFYQ9he1-2ftngIJvpHNKhoYYLpVVMUQPVtWWOGKj0zUBusFJu8JWnoZmnOscteBGD-DqBK4u4E5gb3zociDr-Lf4u6QAo2hi2s43InC6_Lg6umgkYOWEStSFlBobOA7SiiC5VS5MYCeBPb6k4DyB3Y066bIrXGsaY2eSCPHV878_9RruzE-6I330_vjjC7ibFjsc9-zC9upq7V9GB2hlX2W9_wkdVgEv |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Embedded+Machine+Learning+Using+Microcontrollers+in+Wearable+and+Ambulatory+Systems+for+Health+and+Care+Applications%3A+A+Review&rft.jtitle=IEEE+access&rft.au=Diab%2C+Maha+S.&rft.au=Rodriguez-Villegas%2C+Esther&rft.date=2022&rft.pub=IEEE&rft.eissn=2169-3536&rft.spage=1&rft.epage=1&rft_id=info:doi/10.1109%2FACCESS.2022.3206782&rft.externalDocID=9893137 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2169-3536&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2169-3536&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2169-3536&client=summon |