Embedded Machine Learning Using Microcontrollers in Wearable and Ambulatory Systems for Health and Care Applications: A Review

The use of machine learning in medical and assistive applications is receiving significant attention thanks to the unique potential it offers to solve complex healthcare problems for which no other solutions had been found. Particularly promising in this field is the combination of machine learning...

Full description

Saved in:
Bibliographic Details
Published inIEEE access Vol. 10; p. 1
Main Authors Diab, Maha S., Rodriguez-Villegas, Esther
Format Journal Article
LanguageEnglish
Published Piscataway IEEE 2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN2169-3536
2169-3536
DOI10.1109/ACCESS.2022.3206782

Cover

Loading…
Abstract The use of machine learning in medical and assistive applications is receiving significant attention thanks to the unique potential it offers to solve complex healthcare problems for which no other solutions had been found. Particularly promising in this field is the combination of machine learning with novel wearable devices. Machine learning models, however, suffer from being computationally demanding, which typically has resulted on the acquired data having to be transmitted to remote cloud servers for inference. This is not ideal from the system's requirements point of view. Recently, efforts to replace the cloud servers with an alternative inference device closer to the sensing platform, has given rise to a new area of research Tiny Machine Learning (TinyML). In this work, we investigate the different challenges and specifications trade-offs associated to existing hardware options, as well as recently developed software tools, when trying to use microcontroller units (MCUs) as inference devices for health and care applications. The paper also reviews existing wearable systems incorporating MCUs for monitoring, and management, in the context of different health and care intended uses. Overall, this work can be used as a kick-start for embedding machine learning models on MCUs, focusing on healthcare wearables.
AbstractList The use of machine learning in medical and assistive applications is receiving significant attention thanks to the unique potential it offers to solve complex healthcare problems for which no other solutions had been found. Particularly promising in this field is the combination of machine learning with novel wearable devices. Machine learning models, however, suffer from being computationally demanding, which typically has resulted on the acquired data having to be transmitted to remote cloud servers for inference. This is not ideal from the system's requirements point of view. Recently, efforts to replace the cloud servers with an alternative inference device closer to the sensing platform, has given rise to a new area of research Tiny Machine Learning (TinyML). In this work, we investigate the different challenges and specifications trade-offs associated to existing hardware options, as well as recently developed software tools, when trying to use microcontroller units (MCUs) as inference devices for health and care applications. The paper also reviews existing wearable systems incorporating MCUs for monitoring, and management, in the context of different health and care intended uses. Overall, this work can be used as a kick-start for embedding machine learning models on MCUs, focusing on healthcare wearables.
The use of machine learning in medical and assistive applications is receiving significant attention thanks to the unique potential it offers to solve complex healthcare problems for which no other solutions had been found. Particularly promising in this field is the combination of machine learning with novel wearable devices. Machine learning models, however, suffer from being computationally demanding, which typically has resulted on the acquired data having to be transmitted to remote cloud servers for inference. This is not ideal from the system's requirements point of view. Recently, efforts to replace the cloud servers with an alternative inference device closer to the sensing platform, has given rise to a new area of research Tiny Machine Learning (TinyML). In this work, we investigate the different challenges and specifications trade-offs associated to existing hardware options, as well as recently developed software tools, when trying to use microcontroller units (MCUs) as inference devices for health and care applications. The paper also reviews existing wearable systems incorporating MCUs for monitoring, and management, in the context of different health and care intended uses. Overall, this work addresses the gap in literature targeting the use of MCUs as edge inference devices for healthcare wearables. Thus, can be used as a kick-start for embedding machine learning models on MCUs, focusing on healthcare wearables.
Author Diab, Maha S.
Rodriguez-Villegas, Esther
Author_xml – sequence: 1
  givenname: Maha S.
  surname: Diab
  fullname: Diab, Maha S.
  organization: Department of Electrical and Electronic Engineering, Wearable Technologies Lab, Imperial College London, London, United Kingdom
– sequence: 2
  givenname: Esther
  orcidid: 0000-0003-1957-2044
  surname: Rodriguez-Villegas
  fullname: Rodriguez-Villegas, Esther
  organization: Department of Electrical and Electronic Engineering, Wearable Technologies Lab, Imperial College London, London, United Kingdom
BookMark eNp9kU9vEzEQxVeoSJTST9CLJc4J_rNre7mtVoFWSoVEqDhatnfcOtrYwXZAufDZ2WQLQhzwwR6N3u9pPO91dRFigKq6IXhJCG7fdX2_2myWFFO6ZBRzIemL6pIS3i5Yw_jFX_Wr6jrnLZ6OnFqNuKx-rnYGhgEGdK_tkw-A1qBT8OERPeTTfe9tijaGkuI4QsrIB_R1kmgzAtJhQN3OHEZdYjqizTEX2GXkYkK3oMfydFb0OgHq9vvRW118DPk96tBn-O7hx5vqpdNjhuvn96p6-LD60t8u1p8-3vXdemFrLMtCsMbw2mKihWOc2dZxqoEwbABj13Bg2GECmnHLidNOtsNg21o4Q2ttGsKuqrvZd4h6q_bJ73Q6qqi9OjdielQ6FW9HUJg3xGFpG8loPe1UG1djJ0zjRG2kdZPX29lrn-K3A-SitvGQwjS-ooII0rSSy0nVzqppfTkncMr6cv5-SdqPimB1Sk_N6alTeuo5vYll_7C_J_4_dTNTHgD-EK1sGWGC_QIl6qhM
CODEN IAECCG
CitedBy_id crossref_primary_10_3390_a16030149
crossref_primary_10_1109_ACCESS_2023_3294111
crossref_primary_10_3390_s24010162
crossref_primary_10_1016_j_bspc_2024_107361
crossref_primary_10_1109_OJCOMS_2024_3456549
crossref_primary_10_1016_j_compbiomed_2025_109653
crossref_primary_10_1016_j_iot_2023_100729
crossref_primary_10_3390_biomedinformatics5010014
crossref_primary_10_3390_s23177553
crossref_primary_10_1016_j_est_2024_111897
crossref_primary_10_1016_j_compeleceng_2024_110038
crossref_primary_10_3390_s24134317
crossref_primary_10_3390_s24041294
crossref_primary_10_1016_j_compeleceng_2024_109202
crossref_primary_10_3390_fi16110391
crossref_primary_10_3390_electronics13173562
crossref_primary_10_3390_s23167166
crossref_primary_10_1109_JIOT_2023_3338697
Cites_doi 10.3390/app9081526
10.1155/2022/4653923
10.1038/s41746-019-0216-8
10.1002/ett.3710
10.1109/TETC.2020.3027454
10.1109/WF-IoT48130.2020.9221219
10.1109/TMI.2016.2528129
10.1109/ACCESS.2020.2971391
10.1109/DSD.2018.00075
10.1007/s10278-020-00321-5
10.1109/COINS51742.2021.9524188
10.1016/j.engappai.2020.103571
10.1109/TITS.2005.848368
10.1016/S1474-4422(11)70143-0
10.1109/TBCAS.2020.3036081
10.1109/TBCAS.2020.2974154
10.1007/978-3-030-44907-0_9
10.1109/AICAS48895.2020.9073950
10.1109/TC.2021.3066883
10.1109/SAS51076.2021.9530050
10.1109/TMI.2016.2525803
10.3390/s19143079
10.1016/j.cmpb.2019.105282
10.1038/s41586-019-1234-z
10.1016/j.ijcard.2020.04.046
10.1109/EMBC44109.2020.9175339
10.1016/j.dib.2019.105044
10.1016/j.eng.2019.08.015
10.1109/TMI.2016.2535865
10.1109/BioCAS49922.2021.9644949
10.1161/01.CIR.101.23.e215
10.1109/TBME.2004.827072
10.1109/ISCAS.2018.8351728
10.1016/j.ijcard.2020.03.075
10.1109/JSSC.2019.2912307
10.1109/MeMeA49120.2020.9137134
10.1109/TBME.2015.2430895
10.1007/s10278-019-00223-1
10.5121/ijaia.2018.9105
10.1109/ISCAS51556.2021.9401083
10.1109/TBCAS.2019.2959160
10.17226/13297
10.1038/nature21056
10.22489/CinC.2017.065-469
10.1016/j.eswa.2018.08.031
10.3390/s17010198
10.3390/electronics10141715
10.1109/JIOT.2020.2976702
10.23919/DATE48585.2020.9116218
10.3389/fnins.2019.00891
10.1109/ISCAS51556.2021.9401282
10.1016/j.patrec.2020.05.016
10.1002/mp.13886
10.1088/1741-2552/aace8c
10.1016/j.ins.2017.06.027
10.1109/TITB.2009.2036165
10.1109/AICAS51828.2021.9458520
10.1109/SMARTCOMP50058.2020.00067
10.3390/a13050125
10.1016/S2589-7500(20)30064-9
10.1109/ACCESS.2018.2890150
10.1016/j.iot.2021.100461
10.1088/1361-6560/ab5da0
10.1007/978-981-13-7166-0_16
10.1109/ICORR.2017.8009405
10.1109/ICECS46596.2019.8965067
10.1109/CVPR.2018.00171
10.1016/j.neuroimage.2020.116807
10.1109/TBCAS.2019.2927551
10.1016/S0735-1097(86)80478-8
10.1109/MCAS.2020.3005467
10.3390/s20092533
10.1109/RBME.2020.3013489
10.1016/j.bspc.2019.101731
10.3390/s21134412
10.1016/j.inffus.2020.09.006
10.1109/ACCESS.2020.3039858
10.1109/MELECON48756.2020.9140602
10.1007/s10618-014-0388-4
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022
DBID 97E
ESBDL
RIA
RIE
AAYXX
CITATION
7SC
7SP
7SR
8BQ
8FD
JG9
JQ2
L7M
L~C
L~D
DOA
DOI 10.1109/ACCESS.2022.3206782
DatabaseName IEEE Xplore (IEEE)
IEEE Xplore Open Access Journals
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
METADEX
Computer and Information Systems Abstracts Professional
DatabaseTitleList

Materials Research Database
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2169-3536
EndPage 1
ExternalDocumentID oai_doaj_org_article_0651f08c58324022abf40f7b5f74b8cf
10_1109_ACCESS_2022_3206782
9893137
Genre orig-research
GrantInformation_xml – fundername: Engineering and Physical Sciences Research Council
  grantid: EP/P009794/1
  funderid: 10.13039/501100000266
– fundername: European Research Council
  grantid: 724334
GroupedDBID 0R~
4.4
5VS
6IK
97E
AAJGR
ABAZT
ABVLG
ACGFS
ADBBV
AGSQL
ALMA_UNASSIGNED_HOLDINGS
BCNDV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
EJD
ESBDL
GROUPED_DOAJ
IPLJI
JAVBF
KQ8
M43
M~E
O9-
OCL
OK1
RIA
RIE
RNS
AAYXX
CITATION
RIG
7SC
7SP
7SR
8BQ
8FD
JG9
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c408t-735b64c01a7f363c9f62ae130be00f56e30f01ea36c61faf89ddc947fb24ab513
IEDL.DBID DOA
ISSN 2169-3536
IngestDate Wed Aug 27 01:06:02 EDT 2025
Mon Jun 30 02:24:18 EDT 2025
Tue Jul 01 02:48:29 EDT 2025
Thu Apr 24 23:09:28 EDT 2025
Wed Aug 27 02:29:10 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Language English
License https://creativecommons.org/licenses/by/4.0/legalcode
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c408t-735b64c01a7f363c9f62ae130be00f56e30f01ea36c61faf89ddc947fb24ab513
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-1957-2044
0000-0003-0485-4882
OpenAccessLink https://doaj.org/article/0651f08c58324022abf40f7b5f74b8cf
PQID 2717159868
PQPubID 4845423
PageCount 1
ParticipantIDs proquest_journals_2717159868
crossref_primary_10_1109_ACCESS_2022_3206782
crossref_citationtrail_10_1109_ACCESS_2022_3206782
doaj_primary_oai_doaj_org_article_0651f08c58324022abf40f7b5f74b8cf
ieee_primary_9893137
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20220000
2022-00-00
20220101
2022-01-01
PublicationDateYYYYMMDD 2022-01-01
PublicationDate_xml – year: 2022
  text: 20220000
PublicationDecade 2020
PublicationPlace Piscataway
PublicationPlace_xml – name: Piscataway
PublicationTitle IEEE access
PublicationTitleAbbrev Access
PublicationYear 2022
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref57
ref59
ref58
(ref49) 2019
lai (ref69) 2018
(ref66) 2021
(ref56) 2020
(ref115) 2022
ref46
ref45
ref47
shoeb (ref99) 2009
ref41
ref43
(ref70) 2021
ref8
(ref50) 2016
ref7
(ref1) 2022
ref9
kuyumcu (ref78) 2021
ref3
ref6
ref5
ref100
ref101
(ref53) 2021
ref40
ref35
ref34
ref37
esteva (ref4) 2017; 542
ref36
(ref61) 2021
ref31
(ref114) 2022
ref33
ref32
ref39
ref38
kulkarni (ref64) 2021; 2
krizhevsky (ref65) 2009
(ref54) 2021
(ref44) 2021
wu (ref2) 2019; 23
ref24
ref23
ref26
ref25
nissen (ref77) 2003; 31
ref20
ref22
ref21
gupta (ref108) 2017
ref28
ref27
(ref55) 2020
ref29
(ref103) 2021
conti (ref74) 2020
ref13
ref12
ref15
ref14
ref96
ref11
(ref116) 2022
ref10
ref17
ref16
ref19
ref18
du (ref30) 2017
ref93
ref92
marling (ref98) 2020; 2675
(ref72) 2021
ref95
ref94
(ref67) 2021
ref91
ref90
(ref42) 2021
ref89
ref86
ref85
ref88
ref87
(ref48) 2019
gokul (ref79) 2020
ref82
ref81
dennis (ref71) 0
ref84
(ref62) 2019
ref83
ref80
ref109
ref106
ref107
ref75
ref104
ref105
goldberger (ref97) 2000; 101
ref102
ref76
suda (ref68) 2019
ref111
(ref51) 2016
ref112
ref73
ref110
(ref52) 2021
ref63
ref60
ferguson (ref113) 2018
References_xml – year: 2021
  ident: ref67
  publication-title: TensorFlow Lite for Microcontrollers
– ident: ref35
  doi: 10.3390/app9081526
– ident: ref3
  doi: 10.1155/2022/4653923
– volume: 31
  start-page: 29
  year: 2003
  ident: ref77
  publication-title: Implementation of a Fast Artificial Neural Network Library (Fann)
– start-page: 1
  year: 2019
  ident: ref68
  publication-title: Machine Learning on Arm Cortex-M Microcontrollers
– ident: ref13
  doi: 10.1038/s41746-019-0216-8
– year: 2018
  ident: ref69
  article-title: CMSIS-NN: Efficient neural network kernels for arm Cortex-M CPUs
  publication-title: arXiv 1801 06601 [cs]
– ident: ref39
  doi: 10.1002/ett.3710
– year: 2021
  ident: ref103
  publication-title: Sisfall Temporally Annotated
– volume: 2675
  start-page: 71
  year: 2020
  ident: ref98
  article-title: The OhioT1DM dataset for blood glucose level prediction: Update 2020
  publication-title: Proc CEUR Workshop
– ident: ref85
  doi: 10.1109/TETC.2020.3027454
– ident: ref57
  doi: 10.1109/WF-IoT48130.2020.9221219
– year: 2022
  ident: ref1
  publication-title: Wearables |Statista
– ident: ref18
  doi: 10.1109/TMI.2016.2528129
– year: 2019
  ident: ref48
  publication-title: STM32L
– ident: ref6
  doi: 10.1109/ACCESS.2020.2971391
– ident: ref84
  doi: 10.1109/DSD.2018.00075
– year: 2018
  ident: ref113
  publication-title: This AI-Powered Asthma Inhaler Keeps Tabs on Your Dose so You Don't Have to
– year: 2021
  ident: ref61
  publication-title: AVR 8- and 32-bit MCUs
– ident: ref16
  doi: 10.1007/s10278-020-00321-5
– year: 2020
  ident: ref55
  publication-title: ATmega 640/V-1280/V-1281/V-2560/V-2561/V
– year: 2022
  ident: ref115
  publication-title: Cortex-m55
– year: 2016
  ident: ref51
  publication-title: STM32F756xx
– ident: ref90
  doi: 10.1109/COINS51742.2021.9524188
– ident: ref7
  doi: 10.1016/j.engappai.2020.103571
– year: 0
  ident: ref71
  publication-title: EdgeML Machine Learning for resource-constrained edge devices
– ident: ref101
  doi: 10.1109/TITS.2005.848368
– year: 2021
  ident: ref52
  publication-title: STM32F765xx STM32F767xx STM32F768xx STM32F769xx
– ident: ref109
  doi: 10.1016/S1474-4422(11)70143-0
– ident: ref28
  doi: 10.1109/TBCAS.2020.3036081
– year: 2021
  ident: ref72
  publication-title: NN Quick Start Guide
– ident: ref40
  doi: 10.1109/TBCAS.2020.2974154
– year: 2019
  ident: ref62
  publication-title: Pulp Hardware Reference Manual Version 1 6
– ident: ref31
  doi: 10.1007/978-3-030-44907-0_9
– ident: ref58
  doi: 10.1109/AICAS48895.2020.9073950
– ident: ref75
  doi: 10.1109/TC.2021.3066883
– ident: ref91
  doi: 10.1109/SAS51076.2021.9530050
– ident: ref22
  doi: 10.1109/TMI.2016.2525803
– start-page: 1331
  year: 2017
  ident: ref108
  article-title: ProtoNN: Compressed and accurate kNN for resource-scarce devices
  publication-title: Proc Int Conf Mach Learn
– volume: 23
  year: 2019
  ident: ref2
  article-title: Wearable technology applications in healthcare: A literature review
  publication-title: Online Journal of Nursing Informatics
– ident: ref100
  doi: 10.3390/s19143079
– ident: ref20
  doi: 10.1016/j.cmpb.2019.105282
– ident: ref92
  doi: 10.1038/s41586-019-1234-z
– ident: ref14
  doi: 10.1016/j.ijcard.2020.04.046
– ident: ref60
  doi: 10.1109/EMBC44109.2020.9175339
– year: 2022
  ident: ref114
  publication-title: Arm Cortex-M Processor Comparison Table
– ident: ref104
  doi: 10.1016/j.dib.2019.105044
– ident: ref34
  doi: 10.1016/j.eng.2019.08.015
– ident: ref9
  doi: 10.1109/TMI.2016.2535865
– ident: ref47
  doi: 10.1109/BioCAS49922.2021.9644949
– volume: 101
  start-page: 215e
  year: 2000
  ident: ref97
  article-title: PhysioBank, PhysioToolkit, and PhysioNet: Components of a new research resource for complex physiologic signals
  publication-title: Circulation
  doi: 10.1161/01.CIR.101.23.e215
– ident: ref105
  doi: 10.1109/TBME.2004.827072
– ident: ref80
  doi: 10.1109/ISCAS.2018.8351728
– ident: ref12
  doi: 10.1016/j.ijcard.2020.03.075
– ident: ref43
  doi: 10.1109/JSSC.2019.2912307
– ident: ref88
  doi: 10.1109/MeMeA49120.2020.9137134
– ident: ref21
  doi: 10.1109/TBME.2015.2430895
– ident: ref11
  doi: 10.1007/s10278-019-00223-1
– ident: ref29
  doi: 10.5121/ijaia.2018.9105
– ident: ref59
  doi: 10.1109/ISCAS51556.2021.9401083
– ident: ref89
  doi: 10.1109/TBCAS.2019.2959160
– ident: ref24
  doi: 10.17226/13297
– year: 2021
  ident: ref78
  publication-title: FANN Tool
– volume: 542
  start-page: 115
  year: 2017
  ident: ref4
  article-title: Dermatologist-level classification of skin cancer with deep neural networks
  publication-title: Nature
  doi: 10.1038/nature21056
– ident: ref94
  doi: 10.22489/CinC.2017.065-469
– ident: ref112
  doi: 10.1016/j.eswa.2018.08.031
– ident: ref102
  doi: 10.3390/s17010198
– ident: ref87
  doi: 10.3390/electronics10141715
– ident: ref76
  doi: 10.1109/JIOT.2020.2976702
– year: 2017
  ident: ref30
  article-title: Hardware accelerator design for machine learning
  publication-title: Machine Learning-Advanced Techniques and Emerging Applications
– ident: ref46
  doi: 10.23919/DATE48585.2020.9116218
– year: 2021
  ident: ref70
  publication-title: X-Cube-AI AI Expansion Pack for STM32CubeMX
– volume: 2
  start-page: 227
  year: 2021
  ident: ref64
  article-title: AI model compression for edge devices using optimization techniques
  publication-title: Modern Approaches in Machine Learning and Cognitive Science A Walkthrough Latest Trends in AI
– ident: ref107
  doi: 10.3389/fnins.2019.00891
– year: 2021
  ident: ref42
  publication-title: RISC-V
– start-page: 1
  year: 2020
  ident: ref79
  article-title: Gait recovery system for Parkinson's disease using machine learning on embedded platforms
  publication-title: Proc IEEE Int Syst Conf (SysCon)
– ident: ref82
  doi: 10.1109/ISCAS51556.2021.9401282
– year: 2021
  ident: ref53
  publication-title: nRF52832
– ident: ref25
  doi: 10.1016/j.patrec.2020.05.016
– ident: ref8
  doi: 10.1002/mp.13886
– year: 2020
  ident: ref56
  publication-title: ATmega48A/PA/88A/PA/168A/PA/328/P
– ident: ref111
  doi: 10.1088/1741-2552/aace8c
– ident: ref15
  doi: 10.1016/j.ins.2017.06.027
– year: 2009
  ident: ref65
  publication-title: Learning multiple layers of features from tiny images
– ident: ref93
  doi: 10.1109/TITB.2009.2036165
– ident: ref45
  doi: 10.1109/AICAS51828.2021.9458520
– year: 2021
  ident: ref66
  publication-title: TensorFlow Lite
– ident: ref83
  doi: 10.1109/SMARTCOMP50058.2020.00067
– ident: ref26
  doi: 10.3390/a13050125
– year: 2016
  ident: ref50
  publication-title: STM32F303xD STM32F303xE
– ident: ref10
  doi: 10.1016/S2589-7500(20)30064-9
– ident: ref38
  doi: 10.1109/ACCESS.2018.2890150
– ident: ref41
  doi: 10.1016/j.iot.2021.100461
– year: 2020
  ident: ref74
  article-title: Technical report: NEMO DNN quantization for deployment model
  publication-title: arXiv 2004 05930
– ident: ref5
  doi: 10.1088/1361-6560/ab5da0
– year: 2009
  ident: ref99
  publication-title: Application of machine learning to epileptic seizure onset detection and treatment
– ident: ref36
  doi: 10.1007/978-981-13-7166-0_16
– ident: ref106
  doi: 10.1109/ICORR.2017.8009405
– ident: ref73
  doi: 10.1109/ICECS46596.2019.8965067
– year: 2021
  ident: ref54
  publication-title: nRF52840
– ident: ref110
  doi: 10.1109/CVPR.2018.00171
– year: 2019
  ident: ref49
  publication-title: STM32l475xx
– ident: ref17
  doi: 10.1016/j.neuroimage.2020.116807
– ident: ref81
  doi: 10.1109/TBCAS.2019.2927551
– year: 2022
  ident: ref116
  publication-title: Processors-Microcontrollers
– ident: ref96
  doi: 10.1016/S0735-1097(86)80478-8
– year: 2021
  ident: ref44
  publication-title: Greenwaves Technologies Gap8 Next Generation Processor for Smart Sensors
– ident: ref27
  doi: 10.1109/MCAS.2020.3005467
– ident: ref63
  doi: 10.3390/s20092533
– ident: ref37
  doi: 10.1109/RBME.2020.3013489
– ident: ref19
  doi: 10.1016/j.bspc.2019.101731
– ident: ref32
  doi: 10.3390/s21134412
– ident: ref23
  doi: 10.1016/j.inffus.2020.09.006
– ident: ref33
  doi: 10.1109/ACCESS.2020.3039858
– ident: ref86
  doi: 10.1109/MELECON48756.2020.9140602
– ident: ref95
  doi: 10.1007/s10618-014-0388-4
SSID ssj0000816957
Score 2.3860877
SecondaryResourceType review_article
Snippet The use of machine learning in medical and assistive applications is receiving significant attention thanks to the unique potential it offers to solve complex...
SourceID doaj
proquest
crossref
ieee
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1
SubjectTerms Cloud computing
Data acquisition
Edge ML
embedded machine learning
Embedding
Health care
healthcare
Inference
Machine learning
Machine learning algorithms
Medical services
microcontroller
Microcontrollers
Power demand
Software
TinyML
wearable
Wearable computers
Wearable technology
SummonAdditionalLinks – databaseName: IEEE Electronic Library (IEL)
  dbid: RIE
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwELbanuDAqyC2LcgHjs3Wz9juLaxaVUjLiYreLNuxEaLNorJ7KAd-Ox7HG5WHELcomkSOvolnxjPzDUJvqCORi5Y0ibDUCMVV4ySNjQyQVYpBEgG9w8v37cWleHclr3bQ8dQLE2MsxWdxDpcll9-vwgaOyk5MNq6Uq120mwO3sVdrOk-BARJGqkosRIk56RaL_A05BGRszoGlXLNfjE_h6K9DVf7YiYt5OX-MltuFjVUlX-abtZ-H779xNv7vyp-gR9XPxN2oGE_RThyeoYf32Af30Y-zGx_zvtPjZamojLiSrX7CpZAAL6FYr9ayX2c3EX8e8McsAt1W2A097m48TP9a3d7hynyOsw-Mx9amIgHtTbi7lyQ_xR0e8xHP0eX52YfFRVPHMTRBEL1uFJe-FYFQpxJveTCpZS5mG-gjIUm2kZNEaHS8DS1NLmnT98EIlTwTzkvKX6C9YTXElwinaFQIWiVDnVDa6xygJ69bTwP12eWaIbbFyYbKVQ4jM65tiVmIsSO4FsC1FdwZOp4e-jpSdfxb_C0owCQKPNvlRgbO1t_WZgeNJqKD1EBcyJjzSZCkvExKeB3SDO0D2NNLKs4zdLRVJ1v3hG-W5ciZAh2-Pvj7U4foASxwPOA5Qnvr2018lV2etX9ddP0nwAj91w
  priority: 102
  providerName: IEEE
Title Embedded Machine Learning Using Microcontrollers in Wearable and Ambulatory Systems for Health and Care Applications: A Review
URI https://ieeexplore.ieee.org/document/9893137
https://www.proquest.com/docview/2717159868
https://doaj.org/article/0651f08c58324022abf40f7b5f74b8cf
Volume 10
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07bxQxELZQKigQISAOQuSCkiV-P-iWU6II6aiISGfZPg9CSjYoOQoafns8Xud0CAka2tXsw57ZeXhmviHkDY-sSGXYAEzAoKy0Q9S8DDpjVqlkzRT2Dq8-mbNz9fFCX-yM-sKasBkeeN6442oiOTCXtUPoOCFiAsXAJg1WJZcBtW-1eTvBVNPBjhuvbYcZ4swfj8tlXVENCIV4JxGz3InfTFFD7O8jVv7Qy83YnD4hj7uXSMf56_bJgzI9JY92sAMPyK-Tq1Sq1ljTVauHLLRDpX6lrQyArrDUrleiX1Ynj36b6JdKgr1SNE5rOl4lnN11ffOTdtxyWj1YOjcmNQpsTqLjTor7PR3pnE14Rs5PTz4vz4Y-TGHIirnNYKVORmXGowVpZPZgRCzVgqXCGGhTJAPGS5QmGw4RnF-vs1cWklAxaS6fk73peiovCIXibc7OgudRWZdcDa8hOZN45qk6TAsi7vc15I40jgMvLkOLOJgPMzMCMiN0ZizI2-1N32egjb-Tf0CGbUkRJbtdqLITuuyEf8nOghwgu7cP8dV549IuyOE9-0P_o2-DqHEvRzB79_J_vPoVeYjLmQ9zDsne5uZHeV3dm006apJ81DoR7wDmlvTt
linkProvider Directory of Open Access Journals
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB6VcgAOvApioYAPHJutn7HDLaxaLdD01IreLNtrI0SbrdrdAxz47diONyoPIW5RNIkcfRPPjGfmG4A3xGDPeI2rgGmouGSyMoL4SriUVfJOYJ56h7vjen7KP5yJsy3YG3thvPe5-MxP02XO5S-Wbp2OyvabaFwJk7fgdrT7ggzdWuOJShoh0QhZqIUIbvbb2Sx-RQwCKZ2yxFOu6C_mJ7P0l7Eqf-zF2cAcPoBus7ShruTrdL2yU_f9N9bG_137Q7hfPE3UDqrxCLZ8_xju3eAf3IEfBxfWx51ngbpcU-lRoVv9jHIpAepSuV6pZj-PjiL60qNPUST1WyHTL1B7YdP8r-XVN1S4z1H0gtHQ3JQlUoMTam-kyd-iFg0ZiSdwenhwMptXZSBD5ThWq0oyYWvuMDEysJq5JtTU-GgFrcc4iNozHDDxhtWuJsEE1SwWruEyWMqNFYQ9he1-2ftngIJvpHNKhoYYLpVVMUQPVtWWOGKj0zUBusFJu8JWnoZmnOscteBGD-DqBK4u4E5gb3zociDr-Lf4u6QAo2hi2s43InC6_Lg6umgkYOWEStSFlBobOA7SiiC5VS5MYCeBPb6k4DyB3Y066bIrXGsaY2eSCPHV878_9RruzE-6I330_vjjC7ibFjsc9-zC9upq7V9GB2hlX2W9_wkdVgEv
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Embedded+Machine+Learning+Using+Microcontrollers+in+Wearable+and+Ambulatory+Systems+for+Health+and+Care+Applications%3A+A+Review&rft.jtitle=IEEE+access&rft.au=Diab%2C+Maha+S.&rft.au=Rodriguez-Villegas%2C+Esther&rft.date=2022&rft.pub=IEEE&rft.eissn=2169-3536&rft.spage=1&rft.epage=1&rft_id=info:doi/10.1109%2FACCESS.2022.3206782&rft.externalDocID=9893137
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2169-3536&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2169-3536&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2169-3536&client=summon