Classification Epileptic Seizures in EEG Using Time-Frequency Image and Block Texture Features

With the rapid development in technology, computer aided detection or diagnosis has become an indispensable part of the medical industry. Automatic detection of epileptic events is one of the important subjects that have aroused wide interest from more and more investigators. This paper proposes a n...

Full description

Saved in:
Bibliographic Details
Published inIEEE access Vol. 8; pp. 9770 - 9781
Main Authors Li, Mingyang, Sun, Xiaoying, Chen, Wanzhong, Jiang, Yun, Zhang, Tao
Format Journal Article
LanguageEnglish
Published Piscataway IEEE 2020
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract With the rapid development in technology, computer aided detection or diagnosis has become an indispensable part of the medical industry. Automatic detection of epileptic events is one of the important subjects that have aroused wide interest from more and more investigators. This paper proposes a new model in classification of multi-category electroencephalogram (EEG) signals using time-frequency image and block texture features. The one-dimensional EEG is first mapped to time-frequency domain by means of short-time Fourier transform (STFT), which is adapted to obtain a two-dimensional time-frequency image (2D-TFI). With the idea of multi-scale blocking, the obtained phase images and amplitude images are divided into several sub-blocks corresponding to different frequency ranges and time periods. Then the texture features are calculated to describe the behaviour of EEG signals. Particularly, a novel quadratic feature selection method based on kernel entropy component analysis (KECA) and Kruskal-Wallis test (KW) has been proposed for dimension reduction, by which the features that contained most distinctive information were provided. Eventually, the optimal KECA-based features are fed to support vector machine (SVM) for deciding the class of corresponding EEG. The proposed model is found to achieve at least 99.30% accuracy, 98.0% sensitivity and 100% specificity for each of the eight clinical problems. Our scheme is proven to be effective for seizure detection, which can help doctors optimize the diagnosis workflow, reduce workload and improve detection precision.
AbstractList With the rapid development in technology, computer aided detection or diagnosis has become an indispensable part of the medical industry. Automatic detection of epileptic events is one of the important subjects that have aroused wide interest from more and more investigators. This paper proposes a new model in classification of multi-category electroencephalogram (EEG) signals using time-frequency image and block texture features. The one-dimensional EEG is first mapped to time-frequency domain by means of short-time Fourier transform (STFT), which is adapted to obtain a two-dimensional time-frequency image (2D-TFI). With the idea of multi-scale blocking, the obtained phase images and amplitude images are divided into several sub-blocks corresponding to different frequency ranges and time periods. Then the texture features are calculated to describe the behaviour of EEG signals. Particularly, a novel quadratic feature selection method based on kernel entropy component analysis (KECA) and Kruskal-Wallis test (KW) has been proposed for dimension reduction, by which the features that contained most distinctive information were provided. Eventually, the optimal KECA-based features are fed to support vector machine (SVM) for deciding the class of corresponding EEG. The proposed model is found to achieve at least 99.30% accuracy, 98.0% sensitivity and 100% specificity for each of the eight clinical problems. Our scheme is proven to be effective for seizure detection, which can help doctors optimize the diagnosis workflow, reduce workload and improve detection precision.
Author Jiang, Yun
Sun, Xiaoying
Chen, Wanzhong
Li, Mingyang
Zhang, Tao
Author_xml – sequence: 1
  givenname: Mingyang
  orcidid: 0000-0002-4683-4815
  surname: Li
  fullname: Li, Mingyang
  organization: College of Communication Engineering, Jilin University, Changchun, China
– sequence: 2
  givenname: Xiaoying
  orcidid: 0000-0002-9939-7794
  surname: Sun
  fullname: Sun, Xiaoying
  organization: College of Communication Engineering, Jilin University, Changchun, China
– sequence: 3
  givenname: Wanzhong
  orcidid: 0000-0002-7149-7611
  surname: Chen
  fullname: Chen, Wanzhong
  email: chenwz@jlu.edu.cn
  organization: College of Communication Engineering, Jilin University, Changchun, China
– sequence: 4
  givenname: Yun
  orcidid: 0000-0001-7768-5237
  surname: Jiang
  fullname: Jiang, Yun
  organization: College of Communication Engineering, Jilin University, Changchun, China
– sequence: 5
  givenname: Tao
  orcidid: 0000-0002-1997-4329
  surname: Zhang
  fullname: Zhang, Tao
  organization: College of Communication Engineering, Jilin University, Changchun, China
BookMark eNqFUU1rGzEQFSWFpm5-QS6CnteVVh8rHdPFTg2BHuxcKyTtyMhd77rSGpr8-srZEEovncsMj3kz8-Z9RFfDOABCt5QsKSX6y13brrbbZU2oXtZaEsXVO3RdU6krJpi8-qv-gG5yPpASqkCiuUY_2t7mHEP0dorjgFen2MNpih5vIT6fE2QcC7q6x485Dnu8i0eo1gl-nWHwT3hztHvAdujw1370P_EOfk-FhNdgLzl_Qu-D7TPcvOYFelyvdu236uH7_aa9e6g8J2qqmjrwIDQ4x510RUDjGG1qJ2SwXag1l57IhjrgyjPlvFQdDVSKTjsiPQe2QJt5bjfagzmleLTpyYw2mhdgTHtjU1HVg2Gd8A3lhNRUcyeE6qx1jkolHAmqfGmBPs-zTmksMvNkDuM5DeV8U3PBm5o2lJYuNnf5NOacILxtpcRcfDGzL-bii3n1pbD0Pywfp5fPT8nG_j_c25kbAeBtm9JMaqnZHyrtnFc
CODEN IAECCG
CitedBy_id crossref_primary_10_1049_el_2020_2646
crossref_primary_10_1016_j_imu_2021_100721
crossref_primary_10_1016_j_imu_2021_100536
crossref_primary_10_1515_bmt_2022_0098
crossref_primary_10_32604_cmes_2022_019671
crossref_primary_10_1109_TTS_2023_3239526
crossref_primary_10_1109_TNSRE_2023_3347032
crossref_primary_10_1371_journal_pone_0277555
crossref_primary_10_1016_j_knosys_2022_108508
crossref_primary_10_3389_fnhum_2024_1336157
crossref_primary_10_3390_s22218444
crossref_primary_10_1371_journal_pone_0253094
crossref_primary_10_3390_bioengineering9120781
crossref_primary_10_1209_0295_5075_134_50003
crossref_primary_10_1088_1741_2552_aca82c
Cites_doi 10.1109/TNSRE.2015.2441835
10.1186/1475-925X-13-123
10.1016/j.cell.2018.12.015
10.1016/j.bspc.2016.05.004
10.1016/j.bbe.2017.08.003
10.1142/S0219519415500402
10.1016/j.neucom.2014.06.045
10.3390/e19030099
10.1016/j.patcog.2018.11.008
10.1016/j.cmpb.2014.04.012
10.1016/j.bspc.2017.12.005
10.1016/j.cnsns.2017.08.020
10.1016/j.sigpro.2016.12.025
10.1109/ACCESS.2018.2870883
10.1142/S0129065719500217
10.1016/j.amc.2014.05.128
10.1007/s00521-016-2445-y
10.1007/s00138-017-0821-y
10.1109/ICIP.2018.8451472
10.1080/03610918.2013.786781
10.1155/2018/6791683
10.1109/ACCESS.2019.2890895
10.1007/s40846-017-0286-5
10.1016/j.eswa.2011.04.149
10.1007/s00521-016-2646-4
10.3390/app7040385
10.1109/ACCESS.2019.2918650
10.1155/2016/2609856
10.1016/j.eswa.2017.05.052
10.1016/j.neucom.2017.02.053
10.1109/ACCESS.2018.2859267
10.1016/j.neucom.2016.08.050
10.1109/ACCESS.2019.2904400
10.1016/j.neucom.2016.09.080
10.1016/0031-3203(95)00067-4
10.1007/s11760-014-0736-2
10.1016/j.compbiomed.2017.01.017
10.1103/PhysRevE.64.061907
10.1109/TBME.2017.2650259
10.1016/j.neucom.2015.10.070
10.1142/S0129065713500093
10.1016/j.seizure.2017.07.001
10.1109/TBME.2018.2881051
10.1016/j.cmpb.2015.10.001
10.1007/s40708-015-0029-8
10.1016/j.bspc.2014.03.007
10.1109/TNSRE.2016.2611601
10.1007/s13246-017-0610-y
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020
DBID 97E
ESBDL
RIA
RIE
AAYXX
CITATION
7SC
7SP
7SR
8BQ
8FD
JG9
JQ2
L7M
L~C
L~D
DOA
DOI 10.1109/ACCESS.2019.2960848
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE Xplore Open Access Journals
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Xplore Digital Library
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
METADEX
Computer and Information Systems Abstracts Professional
DatabaseTitleList

Materials Research Database
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: RIE
  name: IEEE Xplore Digital Library
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2169-3536
EndPage 9781
ExternalDocumentID oai_doaj_org_article_3d5c714002194b558daabb1685b0f835
10_1109_ACCESS_2019_2960848
8936969
Genre orig-research
GrantInformation_xml – fundername: Science and Technology Development Plan in Jilin Province
  grantid: 20190302034GX
– fundername: China Post-Doctoral Innovative Talents Support Program
  grantid: BX0144
GroupedDBID 0R~
4.4
5VS
6IK
97E
AAJGR
ABAZT
ABVLG
ACGFS
ADBBV
AGSQL
ALMA_UNASSIGNED_HOLDINGS
BCNDV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
EJD
ESBDL
GROUPED_DOAJ
IPLJI
JAVBF
KQ8
M43
M~E
O9-
OCL
OK1
RIA
RIE
RNS
AAYXX
CITATION
RIG
7SC
7SP
7SR
8BQ
8FD
JG9
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c408t-72f4f59ebb4b6b8487b3172b56fadf2946c0671be48c38bc68d1f165d9b06c4e3
IEDL.DBID DOA
ISSN 2169-3536
IngestDate Wed Aug 27 01:28:59 EDT 2025
Mon Jun 30 03:57:44 EDT 2025
Tue Jul 01 01:21:58 EDT 2025
Thu Apr 24 23:44:01 EDT 2025
Wed Aug 27 02:41:44 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Language English
License https://creativecommons.org/licenses/by/4.0/legalcode
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c408t-72f4f59ebb4b6b8487b3172b56fadf2946c0671be48c38bc68d1f165d9b06c4e3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-7768-5237
0000-0002-1997-4329
0000-0002-9939-7794
0000-0002-4683-4815
0000-0002-7149-7611
OpenAccessLink https://doaj.org/article/3d5c714002194b558daabb1685b0f835
PQID 2454721711
PQPubID 4845423
PageCount 12
ParticipantIDs proquest_journals_2454721711
ieee_primary_8936969
doaj_primary_oai_doaj_org_article_3d5c714002194b558daabb1685b0f835
crossref_primary_10_1109_ACCESS_2019_2960848
crossref_citationtrail_10_1109_ACCESS_2019_2960848
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20200000
2020-00-00
20200101
2020-01-01
PublicationDateYYYYMMDD 2020-01-01
PublicationDate_xml – year: 2020
  text: 20200000
PublicationDecade 2020
PublicationPlace Piscataway
PublicationPlace_xml – name: Piscataway
PublicationTitle IEEE access
PublicationTitleAbbrev Access
PublicationYear 2020
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref12
ref15
ref11
ref10
ref17
ref16
ref19
ref18
engür (ref26) 2016; 3
ref51
ref50
ref46
ref45
ref48
ref47
ref42
ref41
ref44
ref43
ref49
ref8
ref7
ref9
ref6
ref5
ref40
ref35
ref34
ref37
ref36
ref31
ref30
ref33
ref32
ref2
ref1
ref39
ref38
peng (ref4) 2018; 13
(ref3) 2005
ref24
ref23
junhui (ref14) 2015; 26
ref25
ref20
ref22
ref21
ref28
ref27
ref29
References_xml – ident: ref45
  doi: 10.1109/TNSRE.2015.2441835
– ident: ref20
  doi: 10.1186/1475-925X-13-123
– ident: ref50
  doi: 10.1016/j.cell.2018.12.015
– ident: ref12
  doi: 10.1016/j.bspc.2016.05.004
– ident: ref43
  doi: 10.1016/j.bbe.2017.08.003
– ident: ref33
  doi: 10.1142/S0219519415500402
– ident: ref31
  doi: 10.1016/j.neucom.2014.06.045
– ident: ref17
  doi: 10.3390/e19030099
– ident: ref28
  doi: 10.1016/j.patcog.2018.11.008
– ident: ref15
  doi: 10.1016/j.cmpb.2014.04.012
– ident: ref36
  doi: 10.1016/j.bspc.2017.12.005
– ident: ref7
  doi: 10.1016/j.cnsns.2017.08.020
– ident: ref22
  doi: 10.1016/j.sigpro.2016.12.025
– ident: ref19
  doi: 10.1109/ACCESS.2018.2870883
– ident: ref27
  doi: 10.1142/S0129065719500217
– volume: 26
  year: 2015
  ident: ref14
  article-title: An improved sparse representation over learned dictionary method for seizure detection
  publication-title: Int J Neural Syst
– ident: ref39
  doi: 10.1016/j.amc.2014.05.128
– ident: ref21
  doi: 10.1007/s00521-016-2445-y
– ident: ref29
  doi: 10.1007/s00138-017-0821-y
– ident: ref51
  doi: 10.1109/ICIP.2018.8451472
– ident: ref32
  doi: 10.1080/03610918.2013.786781
– ident: ref30
  doi: 10.1155/2018/6791683
– ident: ref1
  doi: 10.1109/ACCESS.2019.2890895
– ident: ref40
  doi: 10.1007/s40846-017-0286-5
– ident: ref44
  doi: 10.1016/j.eswa.2011.04.149
– ident: ref8
  doi: 10.1007/s00521-016-2646-4
– ident: ref41
  doi: 10.3390/app7040385
– ident: ref49
  doi: 10.1109/ACCESS.2019.2918650
– ident: ref23
  doi: 10.1155/2016/2609856
– ident: ref9
  doi: 10.1016/j.eswa.2017.05.052
– ident: ref46
  doi: 10.1016/j.neucom.2017.02.053
– year: 2005
  ident: ref3
  publication-title: World Health Organization Epilepsy
– ident: ref34
  doi: 10.1109/ACCESS.2018.2859267
– ident: ref48
  doi: 10.1016/j.neucom.2016.08.050
– ident: ref5
  doi: 10.1109/ACCESS.2019.2904400
– ident: ref10
  doi: 10.1016/j.neucom.2016.09.080
– ident: ref24
  doi: 10.1016/0031-3203(95)00067-4
– ident: ref38
  doi: 10.1007/s11760-014-0736-2
– ident: ref35
  doi: 10.1016/j.compbiomed.2017.01.017
– ident: ref18
  doi: 10.1103/PhysRevE.64.061907
– ident: ref16
  doi: 10.1109/TBME.2017.2650259
– ident: ref13
  doi: 10.1016/j.neucom.2015.10.070
– ident: ref25
  doi: 10.1142/S0129065713500093
– ident: ref11
  doi: 10.1016/j.seizure.2017.07.001
– ident: ref6
  doi: 10.1109/TBME.2018.2881051
– ident: ref2
  doi: 10.1016/j.cmpb.2015.10.001
– volume: 3
  start-page: 101
  year: 2016
  ident: ref26
  article-title: Time-frequency texture descriptors of EEG signals for efficient detection of epileptic seizure
  publication-title: Brain Inform
  doi: 10.1007/s40708-015-0029-8
– ident: ref47
  doi: 10.1016/j.bspc.2014.03.007
– ident: ref42
  doi: 10.1109/TNSRE.2016.2611601
– ident: ref37
  doi: 10.1007/s13246-017-0610-y
– volume: 13
  year: 2018
  ident: ref4
  article-title: Detection of epileptic seizure based on entropy analysis of short-term EEG
  publication-title: PLoS ONE
SSID ssj0000816957
Score 2.2561262
Snippet With the rapid development in technology, computer aided detection or diagnosis has become an indispensable part of the medical industry. Automatic detection...
SourceID doaj
proquest
crossref
ieee
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 9770
SubjectTerms Blocking
Brain modeling
Diagnosis
EEG
Electroencephalography
Entropy
Epilepsy
Feature extraction
Fourier transforms
Frequency ranges
Image classification
kernel entropy component analysis
Medical imaging
multi-scale blocking
Optimization
Physicians
quadratic feature selection
Seizure
Seizures
Support vector machines
Texture
texture features
Time-frequency analysis
two-dimensional time-frequency image
Workflow
SummonAdditionalLinks – databaseName: IEEE Xplore Digital Library
  dbid: RIE
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1NT9wwEB0Bp_bQL1p1C6186JEscWIn9hFWu6WV6KUgcaqVsR0JURZEdw_l1zPjeCPUVlVvkeWJnDx7PDMevwH4qNoSVZBdUdaqL0jh-aKjeVT41tdkj9tOIQf0T782J-fqy4W-2IKD8S5MjDEln8UpP6az_HDj1xwqOzSp-pzdhm1y3Ia7WmM8hQtIWN1mYiFZ2sOj2Yy-gbO37LQiQ91wjZ9Hm0_i6M9FVf7QxGl7WTyH083AhqySq-l6hVN__xtn4_-O_AU8y3amOBomxkvYistX8PQR--AufE8FMTlVKKEj5rekIUiDePEtXt6vyQ8Xl9Q6_yRSXoHg2yLF4m7Ivf4lPl-TKhLdMohj2hCvxBmpeRISbFSy8Gs4X8zPZidFLrdQeFWaVdFWveq1jYgKG6S_1SIZFxXqpu9CX1nVeNraJEZlfG3QNybIXjY6WCwbr2L9BnaWN8v4FoTsbVt3MZYo-ZiPFFljSJG2LBh0rCZQbXBwPnORc0mMHy75JKV1A3iOwXMZvAkcjEK3AxXHv7sfM8BjV-bRTg0EjMvL0tVBe6YsJEvHKtTahK5DlI3RWPZknE5gl8EcX5JxnMD-Zrq4vOZ_uoq50cjDk_Ld36X24EnF3noK4OzDzupuHd-TSbPCD2kuPwCioPHP
  priority: 102
  providerName: IEEE
Title Classification Epileptic Seizures in EEG Using Time-Frequency Image and Block Texture Features
URI https://ieeexplore.ieee.org/document/8936969
https://www.proquest.com/docview/2454721711
https://doaj.org/article/3d5c714002194b558daabb1685b0f835
Volume 8
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07T8MwELYQEwyIpygveWAkECe2Y49QtRQkWACJCSvnOFIFlKq0A_x67pxQVUKChdWyk_h8_u7OOX_H2LEsUpCVKJM0l3WCgOeTEvUo8YXP0R-3pQQ60L-51YMHef2oHhdKfVFOWEMP3AjuLK-UJ1I5tEVWglKmKksAoY2CtEb3gdAXbd5CMBUx2AhtVdHSDInUnp13uzgjyuWypxm67YYq_iyYosjY35ZY-YHL0dj019la6yXy8-brNthSGG2y1QXuwC32FMtZUqJPlC3vjXF_4_73_C4MP2cYRfMhtvYuecwK4HTXI-lPmszpD371ikDCy1HFL9CcPfN7BGkcxMklpMHb7KHfu-8OkrZYQuJlaqZJkdWyVjYASNCAsysAXYMMlK7Lqs6s1B4Nk4Agjc8NeG0qUQutKgup9jLkO2x59DYKu4yL2hZ5GUIKgn7SIQxpgzBY0MBKhazDsm-5Od8yiVNBixcXI4rUukbYjoTtWmF32Ml80Lgh0vi9-wUtyLwrsWDHBtQN1-qG-0s3OmyLlnP-EBOrF9oOO_heXtfu2HeXEbMZxmdC7P3Hq_fZSkaReTysOWDL08ksHKL7MoWjqKlH8abhF7iO6Fk
linkProvider Directory of Open Access Journals
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT9wwEB5Remg59EWrbgutDz2SJU7sxD7CardLy3LpInGqFT8iIdoFwe6h_PrOON4IlQpxiyxP5OSzZ8bj8TcAX0SdW-F5k-WlaDNUeC5rcB5lrnYl-uO6EZYC-rOTanoqvp3Jsw3Y6-_ChBBi8lkY0mM8y_eXbkWhsn0Vq8_pJ_AU7b7k3W2tPqJCJSS0rBO1EM_1_sFohF9B-Vt6WKCrrqjKzx3zE1n6U1mVe7o4GpjJS5ith9bllVwMV0s7dLf_sDY-duyv4EXyNNlBNzVew0ZYvIGtO_yD2_AzlsSkZKGIDxtfoY5AHeLYj3B-u8KdODvH1vFXFjMLGN0XySbXXfb1H3b0G5URaxaeHaJJvGBzVPQoxMitJOG3cDoZz0fTLBVcyJzI1TKri1a0Ugdrha0s_q3aontRWFm1jW8LLSqHxo3bIJQrlXWV8rzllfTa5pUToXwHm4vLRXgPjLe6LpsQcsvpoA9VWaVQldYk6GUoBlCscTAusZFTUYxfJu5Kcm068AyBZxJ4A9jrha46Mo6Hux8SwH1XYtKODQiMSQvTlF46Ii1EX0cLK6XyTWMtr5S0eYvu6QC2Ccz-JQnHAeysp4tJq_7GFMSOhns8zj_8X-ozPJvOZ8fm-Ojk-0d4XtDePYZzdmBzeb0Ku-jgLO2nOK__AmPF9Rg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Classification+Epileptic+Seizures+in+EEG+Using+Time-Frequency+Image+and+Block+Texture+Features&rft.jtitle=IEEE+access&rft.au=Li%2C+Mingyang&rft.au=Sun%2C+Xiaoying&rft.au=Chen%2C+Wanzhong&rft.au=Jiang%2C+Yun&rft.date=2020&rft.issn=2169-3536&rft.eissn=2169-3536&rft.volume=8&rft.spage=9770&rft.epage=9781&rft_id=info:doi/10.1109%2FACCESS.2019.2960848&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_ACCESS_2019_2960848
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2169-3536&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2169-3536&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2169-3536&client=summon