Classification Epileptic Seizures in EEG Using Time-Frequency Image and Block Texture Features
With the rapid development in technology, computer aided detection or diagnosis has become an indispensable part of the medical industry. Automatic detection of epileptic events is one of the important subjects that have aroused wide interest from more and more investigators. This paper proposes a n...
Saved in:
Published in | IEEE access Vol. 8; pp. 9770 - 9781 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Piscataway
IEEE
2020
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | With the rapid development in technology, computer aided detection or diagnosis has become an indispensable part of the medical industry. Automatic detection of epileptic events is one of the important subjects that have aroused wide interest from more and more investigators. This paper proposes a new model in classification of multi-category electroencephalogram (EEG) signals using time-frequency image and block texture features. The one-dimensional EEG is first mapped to time-frequency domain by means of short-time Fourier transform (STFT), which is adapted to obtain a two-dimensional time-frequency image (2D-TFI). With the idea of multi-scale blocking, the obtained phase images and amplitude images are divided into several sub-blocks corresponding to different frequency ranges and time periods. Then the texture features are calculated to describe the behaviour of EEG signals. Particularly, a novel quadratic feature selection method based on kernel entropy component analysis (KECA) and Kruskal-Wallis test (KW) has been proposed for dimension reduction, by which the features that contained most distinctive information were provided. Eventually, the optimal KECA-based features are fed to support vector machine (SVM) for deciding the class of corresponding EEG. The proposed model is found to achieve at least 99.30% accuracy, 98.0% sensitivity and 100% specificity for each of the eight clinical problems. Our scheme is proven to be effective for seizure detection, which can help doctors optimize the diagnosis workflow, reduce workload and improve detection precision. |
---|---|
AbstractList | With the rapid development in technology, computer aided detection or diagnosis has become an indispensable part of the medical industry. Automatic detection of epileptic events is one of the important subjects that have aroused wide interest from more and more investigators. This paper proposes a new model in classification of multi-category electroencephalogram (EEG) signals using time-frequency image and block texture features. The one-dimensional EEG is first mapped to time-frequency domain by means of short-time Fourier transform (STFT), which is adapted to obtain a two-dimensional time-frequency image (2D-TFI). With the idea of multi-scale blocking, the obtained phase images and amplitude images are divided into several sub-blocks corresponding to different frequency ranges and time periods. Then the texture features are calculated to describe the behaviour of EEG signals. Particularly, a novel quadratic feature selection method based on kernel entropy component analysis (KECA) and Kruskal-Wallis test (KW) has been proposed for dimension reduction, by which the features that contained most distinctive information were provided. Eventually, the optimal KECA-based features are fed to support vector machine (SVM) for deciding the class of corresponding EEG. The proposed model is found to achieve at least 99.30% accuracy, 98.0% sensitivity and 100% specificity for each of the eight clinical problems. Our scheme is proven to be effective for seizure detection, which can help doctors optimize the diagnosis workflow, reduce workload and improve detection precision. |
Author | Jiang, Yun Sun, Xiaoying Chen, Wanzhong Li, Mingyang Zhang, Tao |
Author_xml | – sequence: 1 givenname: Mingyang orcidid: 0000-0002-4683-4815 surname: Li fullname: Li, Mingyang organization: College of Communication Engineering, Jilin University, Changchun, China – sequence: 2 givenname: Xiaoying orcidid: 0000-0002-9939-7794 surname: Sun fullname: Sun, Xiaoying organization: College of Communication Engineering, Jilin University, Changchun, China – sequence: 3 givenname: Wanzhong orcidid: 0000-0002-7149-7611 surname: Chen fullname: Chen, Wanzhong email: chenwz@jlu.edu.cn organization: College of Communication Engineering, Jilin University, Changchun, China – sequence: 4 givenname: Yun orcidid: 0000-0001-7768-5237 surname: Jiang fullname: Jiang, Yun organization: College of Communication Engineering, Jilin University, Changchun, China – sequence: 5 givenname: Tao orcidid: 0000-0002-1997-4329 surname: Zhang fullname: Zhang, Tao organization: College of Communication Engineering, Jilin University, Changchun, China |
BookMark | eNqFUU1rGzEQFSWFpm5-QS6CnteVVh8rHdPFTg2BHuxcKyTtyMhd77rSGpr8-srZEEovncsMj3kz8-Z9RFfDOABCt5QsKSX6y13brrbbZU2oXtZaEsXVO3RdU6krJpi8-qv-gG5yPpASqkCiuUY_2t7mHEP0dorjgFen2MNpih5vIT6fE2QcC7q6x485Dnu8i0eo1gl-nWHwT3hztHvAdujw1370P_EOfk-FhNdgLzl_Qu-D7TPcvOYFelyvdu236uH7_aa9e6g8J2qqmjrwIDQ4x510RUDjGG1qJ2SwXag1l57IhjrgyjPlvFQdDVSKTjsiPQe2QJt5bjfagzmleLTpyYw2mhdgTHtjU1HVg2Gd8A3lhNRUcyeE6qx1jkolHAmqfGmBPs-zTmksMvNkDuM5DeV8U3PBm5o2lJYuNnf5NOacILxtpcRcfDGzL-bii3n1pbD0Pywfp5fPT8nG_j_c25kbAeBtm9JMaqnZHyrtnFc |
CODEN | IAECCG |
CitedBy_id | crossref_primary_10_1049_el_2020_2646 crossref_primary_10_1016_j_imu_2021_100721 crossref_primary_10_1016_j_imu_2021_100536 crossref_primary_10_1515_bmt_2022_0098 crossref_primary_10_32604_cmes_2022_019671 crossref_primary_10_1109_TTS_2023_3239526 crossref_primary_10_1109_TNSRE_2023_3347032 crossref_primary_10_1371_journal_pone_0277555 crossref_primary_10_1016_j_knosys_2022_108508 crossref_primary_10_3389_fnhum_2024_1336157 crossref_primary_10_3390_s22218444 crossref_primary_10_1371_journal_pone_0253094 crossref_primary_10_3390_bioengineering9120781 crossref_primary_10_1209_0295_5075_134_50003 crossref_primary_10_1088_1741_2552_aca82c |
Cites_doi | 10.1109/TNSRE.2015.2441835 10.1186/1475-925X-13-123 10.1016/j.cell.2018.12.015 10.1016/j.bspc.2016.05.004 10.1016/j.bbe.2017.08.003 10.1142/S0219519415500402 10.1016/j.neucom.2014.06.045 10.3390/e19030099 10.1016/j.patcog.2018.11.008 10.1016/j.cmpb.2014.04.012 10.1016/j.bspc.2017.12.005 10.1016/j.cnsns.2017.08.020 10.1016/j.sigpro.2016.12.025 10.1109/ACCESS.2018.2870883 10.1142/S0129065719500217 10.1016/j.amc.2014.05.128 10.1007/s00521-016-2445-y 10.1007/s00138-017-0821-y 10.1109/ICIP.2018.8451472 10.1080/03610918.2013.786781 10.1155/2018/6791683 10.1109/ACCESS.2019.2890895 10.1007/s40846-017-0286-5 10.1016/j.eswa.2011.04.149 10.1007/s00521-016-2646-4 10.3390/app7040385 10.1109/ACCESS.2019.2918650 10.1155/2016/2609856 10.1016/j.eswa.2017.05.052 10.1016/j.neucom.2017.02.053 10.1109/ACCESS.2018.2859267 10.1016/j.neucom.2016.08.050 10.1109/ACCESS.2019.2904400 10.1016/j.neucom.2016.09.080 10.1016/0031-3203(95)00067-4 10.1007/s11760-014-0736-2 10.1016/j.compbiomed.2017.01.017 10.1103/PhysRevE.64.061907 10.1109/TBME.2017.2650259 10.1016/j.neucom.2015.10.070 10.1142/S0129065713500093 10.1016/j.seizure.2017.07.001 10.1109/TBME.2018.2881051 10.1016/j.cmpb.2015.10.001 10.1007/s40708-015-0029-8 10.1016/j.bspc.2014.03.007 10.1109/TNSRE.2016.2611601 10.1007/s13246-017-0610-y |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020 |
DBID | 97E ESBDL RIA RIE AAYXX CITATION 7SC 7SP 7SR 8BQ 8FD JG9 JQ2 L7M L~C L~D DOA |
DOI | 10.1109/ACCESS.2019.2960848 |
DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE Xplore Open Access Journals IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Xplore Digital Library CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts METADEX Technology Research Database Materials Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace METADEX Computer and Information Systems Abstracts Professional |
DatabaseTitleList | Materials Research Database |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: RIE name: IEEE Xplore Digital Library url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 2169-3536 |
EndPage | 9781 |
ExternalDocumentID | oai_doaj_org_article_3d5c714002194b558daabb1685b0f835 10_1109_ACCESS_2019_2960848 8936969 |
Genre | orig-research |
GrantInformation_xml | – fundername: Science and Technology Development Plan in Jilin Province grantid: 20190302034GX – fundername: China Post-Doctoral Innovative Talents Support Program grantid: BX0144 |
GroupedDBID | 0R~ 4.4 5VS 6IK 97E AAJGR ABAZT ABVLG ACGFS ADBBV AGSQL ALMA_UNASSIGNED_HOLDINGS BCNDV BEFXN BFFAM BGNUA BKEBE BPEOZ EBS EJD ESBDL GROUPED_DOAJ IPLJI JAVBF KQ8 M43 M~E O9- OCL OK1 RIA RIE RNS AAYXX CITATION RIG 7SC 7SP 7SR 8BQ 8FD JG9 JQ2 L7M L~C L~D |
ID | FETCH-LOGICAL-c408t-72f4f59ebb4b6b8487b3172b56fadf2946c0671be48c38bc68d1f165d9b06c4e3 |
IEDL.DBID | DOA |
ISSN | 2169-3536 |
IngestDate | Wed Aug 27 01:28:59 EDT 2025 Mon Jun 30 03:57:44 EDT 2025 Tue Jul 01 01:21:58 EDT 2025 Thu Apr 24 23:44:01 EDT 2025 Wed Aug 27 02:41:44 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Language | English |
License | https://creativecommons.org/licenses/by/4.0/legalcode |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c408t-72f4f59ebb4b6b8487b3172b56fadf2946c0671be48c38bc68d1f165d9b06c4e3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0001-7768-5237 0000-0002-1997-4329 0000-0002-9939-7794 0000-0002-4683-4815 0000-0002-7149-7611 |
OpenAccessLink | https://doaj.org/article/3d5c714002194b558daabb1685b0f835 |
PQID | 2454721711 |
PQPubID | 4845423 |
PageCount | 12 |
ParticipantIDs | proquest_journals_2454721711 ieee_primary_8936969 doaj_primary_oai_doaj_org_article_3d5c714002194b558daabb1685b0f835 crossref_primary_10_1109_ACCESS_2019_2960848 crossref_citationtrail_10_1109_ACCESS_2019_2960848 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20200000 2020-00-00 20200101 2020-01-01 |
PublicationDateYYYYMMDD | 2020-01-01 |
PublicationDate_xml | – year: 2020 text: 20200000 |
PublicationDecade | 2020 |
PublicationPlace | Piscataway |
PublicationPlace_xml | – name: Piscataway |
PublicationTitle | IEEE access |
PublicationTitleAbbrev | Access |
PublicationYear | 2020 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref13 ref12 ref15 ref11 ref10 ref17 ref16 ref19 ref18 engür (ref26) 2016; 3 ref51 ref50 ref46 ref45 ref48 ref47 ref42 ref41 ref44 ref43 ref49 ref8 ref7 ref9 ref6 ref5 ref40 ref35 ref34 ref37 ref36 ref31 ref30 ref33 ref32 ref2 ref1 ref39 ref38 peng (ref4) 2018; 13 (ref3) 2005 ref24 ref23 junhui (ref14) 2015; 26 ref25 ref20 ref22 ref21 ref28 ref27 ref29 |
References_xml | – ident: ref45 doi: 10.1109/TNSRE.2015.2441835 – ident: ref20 doi: 10.1186/1475-925X-13-123 – ident: ref50 doi: 10.1016/j.cell.2018.12.015 – ident: ref12 doi: 10.1016/j.bspc.2016.05.004 – ident: ref43 doi: 10.1016/j.bbe.2017.08.003 – ident: ref33 doi: 10.1142/S0219519415500402 – ident: ref31 doi: 10.1016/j.neucom.2014.06.045 – ident: ref17 doi: 10.3390/e19030099 – ident: ref28 doi: 10.1016/j.patcog.2018.11.008 – ident: ref15 doi: 10.1016/j.cmpb.2014.04.012 – ident: ref36 doi: 10.1016/j.bspc.2017.12.005 – ident: ref7 doi: 10.1016/j.cnsns.2017.08.020 – ident: ref22 doi: 10.1016/j.sigpro.2016.12.025 – ident: ref19 doi: 10.1109/ACCESS.2018.2870883 – ident: ref27 doi: 10.1142/S0129065719500217 – volume: 26 year: 2015 ident: ref14 article-title: An improved sparse representation over learned dictionary method for seizure detection publication-title: Int J Neural Syst – ident: ref39 doi: 10.1016/j.amc.2014.05.128 – ident: ref21 doi: 10.1007/s00521-016-2445-y – ident: ref29 doi: 10.1007/s00138-017-0821-y – ident: ref51 doi: 10.1109/ICIP.2018.8451472 – ident: ref32 doi: 10.1080/03610918.2013.786781 – ident: ref30 doi: 10.1155/2018/6791683 – ident: ref1 doi: 10.1109/ACCESS.2019.2890895 – ident: ref40 doi: 10.1007/s40846-017-0286-5 – ident: ref44 doi: 10.1016/j.eswa.2011.04.149 – ident: ref8 doi: 10.1007/s00521-016-2646-4 – ident: ref41 doi: 10.3390/app7040385 – ident: ref49 doi: 10.1109/ACCESS.2019.2918650 – ident: ref23 doi: 10.1155/2016/2609856 – ident: ref9 doi: 10.1016/j.eswa.2017.05.052 – ident: ref46 doi: 10.1016/j.neucom.2017.02.053 – year: 2005 ident: ref3 publication-title: World Health Organization Epilepsy – ident: ref34 doi: 10.1109/ACCESS.2018.2859267 – ident: ref48 doi: 10.1016/j.neucom.2016.08.050 – ident: ref5 doi: 10.1109/ACCESS.2019.2904400 – ident: ref10 doi: 10.1016/j.neucom.2016.09.080 – ident: ref24 doi: 10.1016/0031-3203(95)00067-4 – ident: ref38 doi: 10.1007/s11760-014-0736-2 – ident: ref35 doi: 10.1016/j.compbiomed.2017.01.017 – ident: ref18 doi: 10.1103/PhysRevE.64.061907 – ident: ref16 doi: 10.1109/TBME.2017.2650259 – ident: ref13 doi: 10.1016/j.neucom.2015.10.070 – ident: ref25 doi: 10.1142/S0129065713500093 – ident: ref11 doi: 10.1016/j.seizure.2017.07.001 – ident: ref6 doi: 10.1109/TBME.2018.2881051 – ident: ref2 doi: 10.1016/j.cmpb.2015.10.001 – volume: 3 start-page: 101 year: 2016 ident: ref26 article-title: Time-frequency texture descriptors of EEG signals for efficient detection of epileptic seizure publication-title: Brain Inform doi: 10.1007/s40708-015-0029-8 – ident: ref47 doi: 10.1016/j.bspc.2014.03.007 – ident: ref42 doi: 10.1109/TNSRE.2016.2611601 – ident: ref37 doi: 10.1007/s13246-017-0610-y – volume: 13 year: 2018 ident: ref4 article-title: Detection of epileptic seizure based on entropy analysis of short-term EEG publication-title: PLoS ONE |
SSID | ssj0000816957 |
Score | 2.2561262 |
Snippet | With the rapid development in technology, computer aided detection or diagnosis has become an indispensable part of the medical industry. Automatic detection... |
SourceID | doaj proquest crossref ieee |
SourceType | Open Website Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 9770 |
SubjectTerms | Blocking Brain modeling Diagnosis EEG Electroencephalography Entropy Epilepsy Feature extraction Fourier transforms Frequency ranges Image classification kernel entropy component analysis Medical imaging multi-scale blocking Optimization Physicians quadratic feature selection Seizure Seizures Support vector machines Texture texture features Time-frequency analysis two-dimensional time-frequency image Workflow |
SummonAdditionalLinks | – databaseName: IEEE Xplore Digital Library dbid: RIE link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1NT9wwEB0Bp_bQL1p1C6186JEscWIn9hFWu6WV6KUgcaqVsR0JURZEdw_l1zPjeCPUVlVvkeWJnDx7PDMevwH4qNoSVZBdUdaqL0jh-aKjeVT41tdkj9tOIQf0T782J-fqy4W-2IKD8S5MjDEln8UpP6az_HDj1xwqOzSp-pzdhm1y3Ia7WmM8hQtIWN1mYiFZ2sOj2Yy-gbO37LQiQ91wjZ9Hm0_i6M9FVf7QxGl7WTyH083AhqySq-l6hVN__xtn4_-O_AU8y3amOBomxkvYistX8PQR--AufE8FMTlVKKEj5rekIUiDePEtXt6vyQ8Xl9Q6_yRSXoHg2yLF4m7Ivf4lPl-TKhLdMohj2hCvxBmpeRISbFSy8Gs4X8zPZidFLrdQeFWaVdFWveq1jYgKG6S_1SIZFxXqpu9CX1nVeNraJEZlfG3QNybIXjY6WCwbr2L9BnaWN8v4FoTsbVt3MZYo-ZiPFFljSJG2LBh0rCZQbXBwPnORc0mMHy75JKV1A3iOwXMZvAkcjEK3AxXHv7sfM8BjV-bRTg0EjMvL0tVBe6YsJEvHKtTahK5DlI3RWPZknE5gl8EcX5JxnMD-Zrq4vOZ_uoq50cjDk_Ld36X24EnF3noK4OzDzupuHd-TSbPCD2kuPwCioPHP priority: 102 providerName: IEEE |
Title | Classification Epileptic Seizures in EEG Using Time-Frequency Image and Block Texture Features |
URI | https://ieeexplore.ieee.org/document/8936969 https://www.proquest.com/docview/2454721711 https://doaj.org/article/3d5c714002194b558daabb1685b0f835 |
Volume | 8 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07T8MwELYQEwyIpygveWAkECe2Y49QtRQkWACJCSvnOFIFlKq0A_x67pxQVUKChdWyk_h8_u7OOX_H2LEsUpCVKJM0l3WCgOeTEvUo8YXP0R-3pQQ60L-51YMHef2oHhdKfVFOWEMP3AjuLK-UJ1I5tEVWglKmKksAoY2CtEb3gdAXbd5CMBUx2AhtVdHSDInUnp13uzgjyuWypxm67YYq_iyYosjY35ZY-YHL0dj019la6yXy8-brNthSGG2y1QXuwC32FMtZUqJPlC3vjXF_4_73_C4MP2cYRfMhtvYuecwK4HTXI-lPmszpD371ikDCy1HFL9CcPfN7BGkcxMklpMHb7KHfu-8OkrZYQuJlaqZJkdWyVjYASNCAsysAXYMMlK7Lqs6s1B4Nk4Agjc8NeG0qUQutKgup9jLkO2x59DYKu4yL2hZ5GUIKgn7SIQxpgzBY0MBKhazDsm-5Od8yiVNBixcXI4rUukbYjoTtWmF32Ml80Lgh0vi9-wUtyLwrsWDHBtQN1-qG-0s3OmyLlnP-EBOrF9oOO_heXtfu2HeXEbMZxmdC7P3Hq_fZSkaReTysOWDL08ksHKL7MoWjqKlH8abhF7iO6Fk |
linkProvider | Directory of Open Access Journals |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT9wwEB5Remg59EWrbgutDz2SJU7sxD7CardLy3LpInGqFT8iIdoFwe6h_PrOON4IlQpxiyxP5OSzZ8bj8TcAX0SdW-F5k-WlaDNUeC5rcB5lrnYl-uO6EZYC-rOTanoqvp3Jsw3Y6-_ChBBi8lkY0mM8y_eXbkWhsn0Vq8_pJ_AU7b7k3W2tPqJCJSS0rBO1EM_1_sFohF9B-Vt6WKCrrqjKzx3zE1n6U1mVe7o4GpjJS5ith9bllVwMV0s7dLf_sDY-duyv4EXyNNlBNzVew0ZYvIGtO_yD2_AzlsSkZKGIDxtfoY5AHeLYj3B-u8KdODvH1vFXFjMLGN0XySbXXfb1H3b0G5URaxaeHaJJvGBzVPQoxMitJOG3cDoZz0fTLBVcyJzI1TKri1a0Ugdrha0s_q3aontRWFm1jW8LLSqHxo3bIJQrlXWV8rzllfTa5pUToXwHm4vLRXgPjLe6LpsQcsvpoA9VWaVQldYk6GUoBlCscTAusZFTUYxfJu5Kcm068AyBZxJ4A9jrha46Mo6Hux8SwH1XYtKODQiMSQvTlF46Ii1EX0cLK6XyTWMtr5S0eYvu6QC2Ccz-JQnHAeysp4tJq_7GFMSOhns8zj_8X-ozPJvOZ8fm-Ojk-0d4XtDePYZzdmBzeb0Ku-jgLO2nOK__AmPF9Rg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Classification+Epileptic+Seizures+in+EEG+Using+Time-Frequency+Image+and+Block+Texture+Features&rft.jtitle=IEEE+access&rft.au=Li%2C+Mingyang&rft.au=Sun%2C+Xiaoying&rft.au=Chen%2C+Wanzhong&rft.au=Jiang%2C+Yun&rft.date=2020&rft.issn=2169-3536&rft.eissn=2169-3536&rft.volume=8&rft.spage=9770&rft.epage=9781&rft_id=info:doi/10.1109%2FACCESS.2019.2960848&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_ACCESS_2019_2960848 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2169-3536&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2169-3536&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2169-3536&client=summon |