Proactive and Power Efficient Hybrid Virtual Network Embedding: An AWS Cloud Case Study

The sharp increase of multimodal cloud resources demand makes it more challenging to design rightsized virtual instances. Inefficient embedding of high sized instances into the substrate resource network has led to numerous resource underutilization issues, which further constitute a key driver to r...

Full description

Saved in:
Bibliographic Details
Published inIEEE access Vol. 10; pp. 57499 - 57513
Main Authors Hamzaoui, Ikhlasse, Duthil, Benjamin, Courboulay, Vincent, Medromi, Hicham
Format Journal Article
LanguageEnglish
Published Piscataway IEEE 2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The sharp increase of multimodal cloud resources demand makes it more challenging to design rightsized virtual instances. Inefficient embedding of high sized instances into the substrate resource network has led to numerous resource underutilization issues, which further constitute a key driver to repetitive reallocations of virtual instances. Besides, repetitive reconfigurations of virtual network instances go through a process of intra- or inter-cloud migration that provokes additional increase in power consumption. This paper proposes to solve these mutual challenges through a proactive, power efficient and hybrid Virtual Network Embedding (VNE) approach. We first formulated a Mixed Integer Linear Programming (MILP) model purposing to maximize total power efficiency of intra Data Center (DC) and inter networking resources as a function of EC2 instances requests rates. Leveraging the AWS cloud as a primary case study for this paper, the suggested VNE combines a multi-stage hybrid Virtual Node Embedding (VNoE) policy with an adaptive multistep consolidated Virtual Link Embedding (VLiE). As a starting point, a Green-Location aware - Global Topology Ranking (GLA-GTR) is designed as a primary ranking process suggesting the greenest substrate DCs locations with their related delivery networks. After implementing our proposal on a real AWS backbone network topology, simulation results indicated the efficiency of the proposed VNE approach. The Stacked Denoising Auto Encoders - Bidirectional Gated Recurrent Unit - Resources Vector Matching VNoE (SDAE-BiGRU-RVM VNoE) policy achieved a power decrease of 14.61%, 14.95% and 17.21% compared to BiGRU-RVM-VNoE, BiGRU-BF-VNoE and BF-VNoE policies, respectively. Accordingly, the suggested policy has reached significant power efficiency and overall maximized resource utilization.
AbstractList The sharp increase of multimodal cloud resources demand makes it more challenging to design rightsized virtual instances. Inefficient embedding of high sized instances into the substrate resource network has led to numerous resource underutilization issues, which further constitute a key driver to repetitive reallocations of virtual instances. Besides, repetitive reconfigurations of virtual network instances go through a process of intra- or inter-cloud migration that provokes additional increase in power consumption. This paper proposes to solve these mutual challenges through a proactive, power efficient and hybrid Virtual Network Embedding (VNE) approach. We first formulated a Mixed Integer Linear Programming (MILP) model purposing to maximize total power efficiency of intra Data Center (DC) and inter networking resources as a function of EC2 instances requests rates. Leveraging the AWS cloud as a primary case study for this paper, the suggested VNE combines a multi-stage hybrid Virtual Node Embedding (VNoE) policy with an adaptive multistep consolidated Virtual Link Embedding (VLiE). As a starting point, a Green-Location aware - Global Topology Ranking (GLA-GTR) is designed as a primary ranking process suggesting the greenest substrate DCs locations with their related delivery networks. After implementing our proposal on a real AWS backbone network topology, simulation results indicated the efficiency of the proposed VNE approach. The Stacked Denoising Auto Encoders - Bidirectional Gated Recurrent Unit - Resources Vector Matching VNoE (SDAE-BiGRU-RVM VNoE) policy achieved a power decrease of 14.61%, 14.95% and 17.21% compared to BiGRU-RVM-VNoE, BiGRU-BF-VNoE and BF-VNoE policies, respectively. Accordingly, the suggested policy has reached significant power efficiency and overall maximized resource utilization.
Author Medromi, Hicham
Hamzaoui, Ikhlasse
Duthil, Benjamin
Courboulay, Vincent
Author_xml – sequence: 1
  givenname: Ikhlasse
  orcidid: 0000-0002-8675-5636
  surname: Hamzaoui
  fullname: Hamzaoui, Ikhlasse
  email: ikhlasse.h12@gmail.com
  organization: Research Foundation for Development and Innovation in Science and Engineering (FRDISI), Casablanca, Morocco
– sequence: 2
  givenname: Benjamin
  surname: Duthil
  fullname: Duthil, Benjamin
  organization: EIGSI, La Rochelle, France
– sequence: 3
  givenname: Vincent
  orcidid: 0000-0002-3999-8408
  surname: Courboulay
  fullname: Courboulay, Vincent
  organization: IT, Image and Interaction Laboratory (L3I), University of La Rochelle, La Rochelle, France
– sequence: 4
  givenname: Hicham
  surname: Medromi
  fullname: Medromi, Hicham
  organization: Research Foundation for Development and Innovation in Science and Engineering (FRDISI), Casablanca, Morocco
BookMark eNpNUU1rGzEUFMWFpm5-QS6CnO3qayVtb2Zx60BIDW7ro9BKT0Gus3K0uwn-91W6IeRd3mOYmTcwn9GsSx0gdEXJklJSf101zXq3WzLC2JJTpQWpPqALRmW94BWXs3f3J3TZ9wdSRheoUhdov83JuiE-Abadx9v0DBmvQ4guQjfgzbnN0eM_MQ-jPeI7GJ5T_ovXDy14H7v7b3jV4dV-h5tjGj1ubA94N4z-_AV9DPbYw-XrnqPf39e_ms3i9uePm2Z1u3CC6GGhmAiStBSclU5U2mngnlovPNWiMFrbWlZZD7SVtpUK6krXlChtaYGl43N0M_n6ZA_mlOODzWeTbDT_gZTvjc1DdEcwgoPmpNa0VlyAktrLwFSg2gcZJFPF63ryOuX0OEI_mEMac1fiGyaVIKrighcWn1gup77PEN6-UmJeCjFTIealEPNaSFFdTaoIAG-KWpVEivJ__76GfQ
CODEN IAECCG
CitedBy_id crossref_primary_10_1007_s10922_024_09822_y
Cites_doi 10.1109/JSAC.2016.2520179
10.1109/ACCESS.2020.3040335
10.1002/dac.3912
10.1109/JIOT.2021.3095094
10.1016/j.comnet.2021.108191
10.1109/TNSM.2020.3022278
10.1109/TNSM.2020.2971543
10.1109/TNSE.2020.3005570
10.1109/TNSM.2021.3123502
10.1007/s10270-020-00852-z
10.1109/TPDS.2021.3075296
10.1016/j.future.2016.12.029
10.1109/JSAC.2020.2986662
10.1109/ACCESS.2021.3050922
10.1016/j.future.2022.03.015
10.1109/TNSM.2018.2890273
10.1109/JSAC.2020.2986663
10.1109/ACCESS.2021.3076916
10.1109/MIC.2017.72
10.1002/dac.4691
10.1364/JOCN.10.000B58
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022
DBID 97E
ESBDL
RIA
RIE
AAYXX
CITATION
7SC
7SP
7SR
8BQ
8FD
JG9
JQ2
L7M
L~C
L~D
DOA
DOI 10.1109/ACCESS.2022.3178405
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005-present
IEEE Open Access Journals
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
METADEX
Computer and Information Systems Abstracts Professional
DatabaseTitleList Materials Research Database


Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2169-3536
EndPage 57513
ExternalDocumentID oai_doaj_org_article_43e8309819734e768d6f27f18df6f627
10_1109_ACCESS_2022_3178405
9783071
Genre orig-research
GroupedDBID 0R~
4.4
5VS
6IK
97E
AAJGR
ABVLG
ACGFS
ADBBV
ALMA_UNASSIGNED_HOLDINGS
BCNDV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
EJD
ESBDL
GROUPED_DOAJ
IFIPE
IPLJI
JAVBF
KQ8
M43
M~E
O9-
OCL
OK1
RIA
RIE
RIG
RNS
AAYXX
CITATION
7SC
7SP
7SR
8BQ
8FD
JG9
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c408t-724f60b1eca6c458c8e3d1ad4d184408baba25ade1b6ab67e95891078a125a6c3
IEDL.DBID RIE
ISSN 2169-3536
IngestDate Thu Jul 04 21:08:13 EDT 2024
Fri Sep 13 00:27:17 EDT 2024
Fri Aug 23 00:57:55 EDT 2024
Wed Jun 26 19:24:57 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c408t-724f60b1eca6c458c8e3d1ad4d184408baba25ade1b6ab67e95891078a125a6c3
ORCID 0000-0002-8675-5636
0000-0002-3999-8408
OpenAccessLink https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/document/9783071
PQID 2674075343
PQPubID 4845423
PageCount 15
ParticipantIDs proquest_journals_2674075343
crossref_primary_10_1109_ACCESS_2022_3178405
doaj_primary_oai_doaj_org_article_43e8309819734e768d6f27f18df6f627
ieee_primary_9783071
PublicationCentury 2000
PublicationDate 20220000
2022-00-00
20220101
2022-01-01
PublicationDateYYYYMMDD 2022-01-01
PublicationDate_xml – year: 2022
  text: 20220000
PublicationDecade 2020
PublicationPlace Piscataway
PublicationPlace_xml – name: Piscataway
PublicationTitle IEEE access
PublicationTitleAbbrev Access
PublicationYear 2022
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref12
(ref23) 2022
ref15
ref14
ref11
(ref28) 2022
ref10
ref2
ref1
ref17
ref16
ref19
ref18
Gene (ref25) 2020
(ref5) 2022
(ref29) 2022
ref20
(ref24) 2022
ref22
ref21
ref27
(ref7) 2022
ref8
(ref26) 2020
ref9
ref4
ref3
ref6
References_xml – ident: ref1
  doi: 10.1109/JSAC.2016.2520179
– ident: ref17
  doi: 10.1109/ACCESS.2020.3040335
– volume-title: Fonctionnalités Principales d’Amazon CloudFront
  year: 2022
  ident: ref24
– volume-title: IP Optimized Optical Transport—The Cisco Routed Optical Network–Cisco
  year: 2020
  ident: ref26
– ident: ref8
  doi: 10.1002/dac.3912
– ident: ref21
  doi: 10.1109/JIOT.2021.3095094
– ident: ref10
  doi: 10.1016/j.comnet.2021.108191
– ident: ref19
  doi: 10.1109/TNSM.2020.3022278
– ident: ref22
  doi: 10.1109/TNSM.2020.2971543
– ident: ref9
  doi: 10.1109/TNSE.2020.3005570
– ident: ref3
  doi: 10.1109/TNSM.2021.3123502
– ident: ref13
  doi: 10.1007/s10270-020-00852-z
– ident: ref11
  doi: 10.1109/TPDS.2021.3075296
– ident: ref27
  doi: 10.1016/j.future.2016.12.029
– ident: ref20
  doi: 10.1109/JSAC.2020.2986662
– volume-title: Amazon Web Services |Alliance Equinix
  year: 2022
  ident: ref5
– volume-title: IEA—International Energy Agency
  year: 2022
  ident: ref29
– ident: ref12
  doi: 10.1109/ACCESS.2021.3050922
– volume-title: 3 Steps Toward Cloud WAN Optimization for AWS Interconnection—Interconnections—The Equinix Blog
  year: 2020
  ident: ref25
  contributor:
    fullname: Gene
– volume-title: AWS Compute Optimizer
  year: 2022
  ident: ref7
– ident: ref2
  doi: 10.1016/j.future.2022.03.015
– ident: ref4
  doi: 10.1109/TNSM.2018.2890273
– ident: ref18
  doi: 10.1109/JSAC.2020.2986663
– ident: ref15
  doi: 10.1109/ACCESS.2021.3076916
– volume-title: ElectricityMap, Electricitymap
  year: 2022
  ident: ref28
– ident: ref6
  doi: 10.1109/MIC.2017.72
– volume-title: Régions et Zones de Disponibilité de l’Infrastructure Mondiale
  year: 2022
  ident: ref23
– ident: ref16
  doi: 10.1002/dac.4691
– ident: ref14
  doi: 10.1364/JOCN.10.000B58
SSID ssj0000816957
Score 2.280988
Snippet The sharp increase of multimodal cloud resources demand makes it more challenging to design rightsized virtual instances. Inefficient embedding of high sized...
SourceID doaj
proquest
crossref
ieee
SourceType Open Website
Aggregation Database
Publisher
StartPage 57499
SubjectTerms AWS cloud
Bandwidth
carbon emission
Case studies
Cloud computing
Coders
Computer networks
Costs
Data centers
Efficiency
Embedding
Engines
global topology ranking
Integer programming
Linear programming
Mixed integer
multistep virtual link embedding
Network topologies
Network topology
Power consumption
Power efficiency
Proactive hybrid virtual node embedding
Ranking
Resource utilization
Substrates
Topology
Virtual networks
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV2xTsMwELUQEwwIKIhCQR4YiZrYju2wlaioYqgqQWk3y44dCQlSBGXo33OXpFURAwtrZCfxXXJ373T3jpBrnWbe69JHpZI-EjowpLzlkXcC2UZ0WRR1tcVYjqbiYZ7Ot0Z9YU1YQw_cCK4veNAcNiWZ4iJAcOxlyVSZaF_KUrKmjzxJt8BUbYN1IrNUtTRDSZz1B3kOJwJAyBjgVAW4Jv3himrG_nbEyi-7XDub-0Ny0EaJdNC83RHZCdUx2d_iDuyQ2QR7odBYUVt5OsFpZ3RYE0KAH6GjFbZi0eeXD2wQoeOm2psO31zw6K5u6aCig9kjzV8XX57m4Mwo1hSuTsj0fviUj6J2SkJUiFgvI8VEKWOXhMLKQqS60IH7xHrhAbzBCmedZan1IXHSOqlChoMEITKwENvAFn5KdqtFFc4IBbRkdcx8jEkOwH06AxPAXJBcKAehQpfcrAVm3hsyDFODiDgzjXwNyte08u2SOxTqZikyWdcXQL-m1a_5S79d0kGVbG6CqSoIi7qkt1aRaf-6T8OkAnyacsHP_-PRF2QPj9MkXHpkd_nxFS4hBFm6q_pr-wbpU9Io
  priority: 102
  providerName: Directory of Open Access Journals
Title Proactive and Power Efficient Hybrid Virtual Network Embedding: An AWS Cloud Case Study
URI https://ieeexplore.ieee.org/document/9783071
https://www.proquest.com/docview/2674075343/abstract/
https://doaj.org/article/43e8309819734e768d6f27f18df6f627
Volume 10
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1NT9wwEB0Bp_YAtBSxQJEPPZIlcRzb4bZEi1aVipDK182yY0dC0Gy17B7g1zPjZFfQ9tBbFNmW4-ePec7MG4Bvuii9141PGiV9InTgJHmbJ94JUhvRTV1Hb4sLObkW3--KuzU4XsXChBCi81kY0mP8l--n9YKuykgNFqckcp11nfIuVmt1n0IJJMpC9cJCWVqejKoKvwEpIOfITBUymeLd4RM1-vukKn_txPF4Od-CH8uOdV4lD8PF3A3rlz80G_-359uw2duZbNRNjE-wFtrP8PGN-uAO3F5SNBVtd8y2nl1SvjQ2jpIS2BibPFMwF7u5n1GICbvo_MXZ-JcLng68UzZq2ej2J6sepwvPKjwOGXklPn-B6_PxVTVJ-jwLSS1SPU8UF41MXRZqK2tR6FqH3GfWC4_0D0s46ywvrA-Zk9ZJFUpKRYi2hUXrCKvku7DRTtuwBwz5lkVsfErXJMgcdYmbCHdB5kI5NDYGcLwEwPzu5DRMpCFpaTq8DOFlerwGcEYgrYqSFnZ8gYNr-qVlRB5wcEs0bVQuAtInLxuumkz7RjaSqwHsECCrRnosBnC4hNz06_bJcKmQ4Ra5yPf_XesAPlAHu0uYQ9iYzxbhK5olc3cU6fxRnJWvXUHduQ
link.rule.ids 315,786,790,802,870,2115,4043,27956,27957,27958,55109
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB5V5UB7KNCHulDAhx6bbdZxbIfbEm21QLuq1OfNsmNHqqBZtOweyq9nxsmuSumBW5TYkeOxPfNNZr4BONR54b2ufVIr6ROhAyfK2yzxThDbiK6rKkZbTOT4Sny9zW_X4GiVCxNCiMFnoU-X8V--n1YLcpURGywuScQ6L1DPp0WbrbXyqFAJiSJXHbUQPj8eliV-BYJAzhGbKsQy-V_qJ7L0d2VV_jmLo4I5eQVny6G1cSXf-4u561e_n7A2_u_YX8NWZ2myYbs03sBaaLZh8xH_4A7cnFM-FR14zDaenVPFNDaKpBL4MjZ-oHQudn03oyQTNmkjxtno3gVPKu8TGzZseHPByh_ThWclKkRGcYkPu3B1Mrosx0lXaSGpRKrnieKilqkbhMrKSuS60iHzA-uFRwCILZx1lufWh4GT1kkVCipGiNaFRfsIu2R7sN5Mm7APDBGX1Sn3KTlKEDvqAo8R7oLMhHJobvTgaCkA87Ml1DARiKSFaeVlSF6mk1cPPpOQVk2JDTvewMk13eYyIgs4uQUaNyoTAQGUlzVX9UD7WtaSqx7skEBWL-lk0YODpchNt3N_GS4VYtw8E9nb53t9hJfjy7NTc_pl8u0dbNBgW5fMAazPZ4vwHo2UufsQ1-Yf_5ngGg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Proactive+and+Power+Efficient+Hybrid+Virtual+Network+Embedding%3A+An+AWS+Cloud+Case+Study&rft.jtitle=IEEE+access&rft.au=Hamzaoui%2C+Ikhlasse&rft.au=Duthil%2C+Benjamin&rft.au=Courboulay%2C+Vincent&rft.au=Medromi%2C+Hicham&rft.date=2022&rft.issn=2169-3536&rft.eissn=2169-3536&rft.volume=10&rft.spage=57499&rft.epage=57513&rft_id=info:doi/10.1109%2FACCESS.2022.3178405&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_ACCESS_2022_3178405
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2169-3536&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2169-3536&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2169-3536&client=summon