Cooperative Autonomous Driving Oriented MEC-Aided 5G-V2X: Prototype System Design, Field Tests and AI-Based Optimization Tools

Vehicle-to-Everything (V2X) requirements from cooperative autonomous driving can be characterized as ultra-reliable, low latency, high traffic, and high mobility. These requirements introduce great challenges in the air interface and protocol stack design, resource allocation, network deployment, an...

Full description

Saved in:
Bibliographic Details
Published inIEEE access Vol. 8; pp. 54288 - 54302
Main Authors Ma, Huisheng, Li, Shufang, Zhang, Erqing, Lv, Zhengnan, Hu, Jing, Wei, Xinlei
Format Journal Article
LanguageEnglish
Published Piscataway IEEE 2020
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Vehicle-to-Everything (V2X) requirements from cooperative autonomous driving can be characterized as ultra-reliable, low latency, high traffic, and high mobility. These requirements introduce great challenges in the air interface and protocol stack design, resource allocation, network deployment, and all the way up to mobile (or multi-access) edge computing (MEC), cloud and application layer. In this paper, we present a cooperative autonomous driving oriented MEC-aided 5G-V2X prototype system design and the rationale behind the design choices. The prototype system is developed based on a next-generation radio access network (NG-RAN) experimental platform, a cooperative driving vehicle platoon, and an MEC server providing high definition (HD) 3D dynamic map service. Field tests are conducted and the results demonstrate that the combination of 5G-V2X, MEC and cooperative autonomous driving can be pretty powerful. Considering the remaining challenges in the commercial deployment of 5G-V2X networks and future researches, we propose two artificial intelligence (AI) based optimization tools. The first is a deep-learning-based tool called deep spatio-temporal residual networks with a permutation operator (PST-ResNet). By providing city-wide user and network traffic prediction, PST-ResNet can help to reduce the capital expense (CAPEX) and operating expense (OPEX) costs of commercial 5G-V2X networks. The second is a swarm intelligence based optimization tool called subpopulation collaboration based dynamic self-adaption cuckoo Search (SC-DSCS), which can be widely used to solve complex optimization problems in future researches. The effectiveness of proposed optimization tools is verified by real-world data and benchmark functions.
AbstractList Vehicle-to-Everything (V2X) requirements from cooperative autonomous driving can be characterized as ultra-reliable, low latency, high traffic, and high mobility. These requirements introduce great challenges in the air interface and protocol stack design, resource allocation, network deployment, and all the way up to mobile (or multi-access) edge computing (MEC), cloud and application layer. In this paper, we present a cooperative autonomous driving oriented MEC-aided 5G-V2X prototype system design and the rationale behind the design choices. The prototype system is developed based on a next-generation radio access network (NG-RAN) experimental platform, a cooperative driving vehicle platoon, and an MEC server providing high definition (HD) 3D dynamic map service. Field tests are conducted and the results demonstrate that the combination of 5G-V2X, MEC and cooperative autonomous driving can be pretty powerful. Considering the remaining challenges in the commercial deployment of 5G-V2X networks and future researches, we propose two artificial intelligence (AI) based optimization tools. The first is a deep-learning-based tool called deep spatio-temporal residual networks with a permutation operator (PST-ResNet). By providing city-wide user and network traffic prediction, PST-ResNet can help to reduce the capital expense (CAPEX) and operating expense (OPEX) costs of commercial 5G-V2X networks. The second is a swarm intelligence based optimization tool called subpopulation collaboration based dynamic self-adaption cuckoo Search (SC-DSCS), which can be widely used to solve complex optimization problems in future researches. The effectiveness of proposed optimization tools is verified by real-world data and benchmark functions.
Author Hu, Jing
Zhang, Erqing
Li, Shufang
Ma, Huisheng
Wei, Xinlei
Lv, Zhengnan
Author_xml – sequence: 1
  givenname: Huisheng
  orcidid: 0000-0001-7073-6521
  surname: Ma
  fullname: Ma, Huisheng
  email: mhs@bupt.edu.cn
  organization: School of Information and Communication Engineering, Beijing University of Posts and Telecommunications, Beijing, China
– sequence: 2
  givenname: Shufang
  surname: Li
  fullname: Li, Shufang
  organization: School of Information and Communication Engineering, Beijing University of Posts and Telecommunications, Beijing, China
– sequence: 3
  givenname: Erqing
  surname: Zhang
  fullname: Zhang, Erqing
  organization: School of Information and Communication Engineering, Beijing University of Posts and Telecommunications, Beijing, China
– sequence: 4
  givenname: Zhengnan
  surname: Lv
  fullname: Lv, Zhengnan
  organization: Potevio Information Technology Company Ltd., Beijing, China
– sequence: 5
  givenname: Jing
  surname: Hu
  fullname: Hu, Jing
  organization: Potevio Information Technology Company Ltd., Beijing, China
– sequence: 6
  givenname: Xinlei
  surname: Wei
  fullname: Wei, Xinlei
  organization: Research Institute of Highway Ministry of Transport, Beijing, China
BookMark eNp9kU1vEzEQhi1UJEroL-jFElc2tdcfu-a2bNM2UlGQEhA3y7u2I0ebdbCdSumB347bLQhxYC4zGvl5Z8bvW3A2-tEAcInRHGMkrpq2XazX8xKVaF6KGlNOXoHzEnNREEb42V_1G3AR4w7lqHOLVefgZ-v9wQSV3IOBzTH50e_9McLr4B7cuIWr4MyYjIafF23ROJ0rdlt8K79_hF-CTz6dDgauTzGZPbw20W3HD_DGmUHDjYkpQjVq2CyLTypmcnVIbu8e8zA_wo33Q3wHXls1RHPxkmfg681i094V96vbZdvcFz1FdSq4tV1XcUtwx4himNedxb2wmmuKtC41ocSQGlGuyo4jqhHukaCMVITbjgkyA8tJV3u1k4fg9iqcpFdOPjd82EoVkusHI3tNDCOsypilHHXCso4yY6qOYG6RzlrvJ61D8D-O-Uq588cw5vVlmUdyXuL81zMgpld98DEGY2Xv0vPlKSg3SIzkk3tyck8-uSdf3Mss-Yf9vfH_qcuJcsaYP4RAFDEiyC8dJqb4
CODEN IAECCG
CitedBy_id crossref_primary_10_3390_s21020372
crossref_primary_10_1109_COMST_2024_3384132
crossref_primary_10_3390_s22155535
crossref_primary_10_1057_s41599_025_04554_z
crossref_primary_10_1002_int_22576
crossref_primary_10_3390_math10234539
crossref_primary_10_1109_MNET_011_2000577
crossref_primary_10_1109_ACCESS_2023_3341092
crossref_primary_10_3390_su14148277
crossref_primary_10_1093_iti_liac020
crossref_primary_10_1109_TNSE_2022_3225326
crossref_primary_10_1109_TVT_2023_3297017
crossref_primary_10_1109_COMST_2024_3405075
crossref_primary_10_1016_j_comnet_2021_108090
crossref_primary_10_1177_15553434221132636
crossref_primary_10_1364_JOCN_452105
crossref_primary_10_1109_ACCESS_2024_3524886
crossref_primary_10_1109_TVT_2022_3210689
crossref_primary_10_1002_ett_4579
crossref_primary_10_1016_j_asoc_2021_108043
crossref_primary_10_1016_j_comcom_2022_04_024
crossref_primary_10_1016_j_isci_2024_109751
crossref_primary_10_1109_ACCESS_2021_3125977
crossref_primary_10_1109_ACCESS_2024_3397467
crossref_primary_10_17482_uumfd_1244198
crossref_primary_10_3390_telecom5020022
crossref_primary_10_1109_ACCESS_2023_3239694
crossref_primary_10_1145_3567826
crossref_primary_10_1016_j_vehcom_2022_100551
crossref_primary_10_1109_TVT_2021_3122257
crossref_primary_10_3390_s24020374
crossref_primary_10_1016_j_phycom_2022_101619
crossref_primary_10_1109_ACCESS_2021_3100472
crossref_primary_10_1109_TITS_2020_3004117
crossref_primary_10_3390_s23187968
crossref_primary_10_1109_ACCESS_2020_3037717
crossref_primary_10_1109_ACCESS_2021_3105583
Cites_doi 10.1007/978-3-319-67669-2_3
10.1109/ICCT.2017.8359752
10.2139/ssrn.3363555
10.1109/MCOM.2015.7355568
10.1016/j.advengsoft.2013.12.007
10.33130/AJCT.2019v05i01.006
10.1016/j.vehcom.2018.04.003
10.1109/ACCESS.2019.2919489
10.1186/s13638-019-1503-4
10.1109/ICACCI.2017.8126036
10.4271/2016-01-1887
10.5573/IEIESPC.2015.4.2.115
10.1109/ACCESS.2018.2854842
10.1007/s00521-018-3512-3
10.1007/s11276-019-02181-6
10.1002/wics.1429
10.1155/2015/374873
10.1109/CSCN.2019.8931319
10.1109/TVT.2019.2937825
10.3390/electronics8040455
10.1016/j.aci.2017.09.001
10.1007/s11276-017-1485-2
10.1145/3339363.3339367
10.1002/dac.3483
10.1007/s00521-013-1367-1
10.1109/ICSAI.2018.8599432
10.1109/WoWMoM.2017.7974355
10.1109/VTCFall.2019.8891446
10.1109/ACCESS.2019.2891073
10.1016/j.phycom.2018.06.003
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020
DBID 97E
ESBDL
RIA
RIE
AAYXX
CITATION
7SC
7SP
7SR
8BQ
8FD
JG9
JQ2
L7M
L~C
L~D
DOA
DOI 10.1109/ACCESS.2020.2981463
DatabaseName IEEE Xplore (IEEE)
Open Access资源_IEL Journals
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
METADEX
Computer and Information Systems Abstracts Professional
DatabaseTitleList
Materials Research Database

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2169-3536
EndPage 54302
ExternalDocumentID oai_doaj_org_article_cd3e5357b59f460b9f5b45ee7b316f0d
10_1109_ACCESS_2020_2981463
9040539
Genre orig-research
GrantInformation_xml – fundername: National Basic Research Program of China (973 Program); National Key Research and Development Program of China
  grantid: 2019YFB2102300
  funderid: 10.13039/501100012166
– fundername: Breeding Project for New Generation AI of Beijing
  grantid: Z181100008918008
– fundername: National Science and Technology Major Project of China
  grantid: 2016ZX03001024
GroupedDBID 0R~
4.4
5VS
6IK
97E
AAJGR
ABAZT
ABVLG
ACGFS
ADBBV
AGSQL
ALMA_UNASSIGNED_HOLDINGS
BCNDV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
EJD
ESBDL
GROUPED_DOAJ
IPLJI
JAVBF
KQ8
M43
M~E
O9-
OCL
OK1
RIA
RIE
RNS
AAYXX
CITATION
RIG
7SC
7SP
7SR
8BQ
8FD
JG9
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c408t-6ffbb76f31b53a5168bf1c9fd6d40dd2d343e38046a2b604d01c09453736fb593
IEDL.DBID DOA
ISSN 2169-3536
IngestDate Wed Aug 27 01:30:54 EDT 2025
Sun Jun 29 15:25:59 EDT 2025
Thu Apr 24 23:03:40 EDT 2025
Tue Jul 01 01:22:21 EDT 2025
Wed Aug 27 02:39:33 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Language English
License https://creativecommons.org/licenses/by/4.0/legalcode
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c408t-6ffbb76f31b53a5168bf1c9fd6d40dd2d343e38046a2b604d01c09453736fb593
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-7073-6521
OpenAccessLink https://doaj.org/article/cd3e5357b59f460b9f5b45ee7b316f0d
PQID 2453662135
PQPubID 4845423
PageCount 15
ParticipantIDs proquest_journals_2453662135
doaj_primary_oai_doaj_org_article_cd3e5357b59f460b9f5b45ee7b316f0d
crossref_citationtrail_10_1109_ACCESS_2020_2981463
crossref_primary_10_1109_ACCESS_2020_2981463
ieee_primary_9040539
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20200000
2020-00-00
20200101
2020-01-01
PublicationDateYYYYMMDD 2020-01-01
PublicationDate_xml – year: 2020
  text: 20200000
PublicationDecade 2020
PublicationPlace Piscataway
PublicationPlace_xml – name: Piscataway
PublicationTitle IEEE access
PublicationTitleAbbrev Access
PublicationYear 2020
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref35
ref13
ref34
ref37
ref15
ref36
ref14
ref31
hartenstein (ref2) 2009
ref30
ref33
ref11
ref32
malathi (ref21) 2017; 12
ref39
park (ref12) 2020
ref17
ref16
ref19
ref18
zhang (ref22) 2017
(ref4) 2014
ref24
ref23
ref26
ref25
(ref1) 2018
ref28
ref27
kingma (ref38) 2014
ref29
ref7
ramakrishnan (ref20) 2015; 2
ref9
ref3
ref6
ref5
ref40
serizawa (ref10) 2019
(ref8) 2018
References_xml – ident: ref23
  doi: 10.1007/978-3-319-67669-2_3
– ident: ref33
  doi: 10.1109/ICCT.2017.8359752
– ident: ref3
  doi: 10.2139/ssrn.3363555
– ident: ref5
  doi: 10.1109/MCOM.2015.7355568
– ident: ref36
  doi: 10.1016/j.advengsoft.2013.12.007
– ident: ref35
  doi: 10.33130/AJCT.2019v05i01.006
– ident: ref18
  doi: 10.1016/j.vehcom.2018.04.003
– ident: ref6
  doi: 10.1109/ACCESS.2019.2919489
– ident: ref26
  doi: 10.1186/s13638-019-1503-4
– ident: ref30
  doi: 10.1109/ICACCI.2017.8126036
– ident: ref9
  doi: 10.4271/2016-01-1887
– ident: ref31
  doi: 10.5573/IEIESPC.2015.4.2.115
– year: 2014
  ident: ref4
  publication-title: Taxonomy and Definitions for Terms Related to On-Road Motor Vehicle Automated Driving Systems-J3016
– year: 2018
  ident: ref1
  publication-title: Service requirements for V2X services (v15 0 0 Release 15)
– ident: ref14
  doi: 10.1109/ACCESS.2018.2854842
– ident: ref39
  doi: 10.1007/s00521-018-3512-3
– volume: 2
  start-page: 173
  year: 2015
  ident: ref20
  article-title: Adaptive routing protocol based on cuckoo search algorithm (ARP-CS) for secured vehicular ad hoc network (VANET)
  publication-title: Int J Comput Netw Appl
– year: 2014
  ident: ref38
  article-title: Adam: A method for stochastic optimization
  publication-title: arXiv 1412 6980
– ident: ref15
  doi: 10.1007/s11276-019-02181-6
– ident: ref40
  doi: 10.1002/wics.1429
– year: 2009
  ident: ref2
  publication-title: VANET Vehicular Applications and Inter-Networking Technologies
– ident: ref37
  doi: 10.1155/2015/374873
– ident: ref7
  doi: 10.1109/CSCN.2019.8931319
– start-page: 1
  year: 2019
  ident: ref10
  article-title: Field trial activities on 5G NR V2 V direct communication towards application to truck platooning
  publication-title: Proc IEEE Veh Tech Conf (VTC Fall)
– ident: ref16
  doi: 10.1109/TVT.2019.2937825
– year: 2020
  ident: ref12
  article-title: Extreme URLLC: Vision, challenges, and key enablers
  publication-title: arXiv 2001 09683
– ident: ref28
  doi: 10.3390/electronics8040455
– ident: ref25
  doi: 10.1016/j.aci.2017.09.001
– ident: ref27
  doi: 10.1007/s11276-017-1485-2
– ident: ref34
  doi: 10.1145/3339363.3339367
– ident: ref29
  doi: 10.1002/dac.3483
– volume: 12
  start-page: 2000
  year: 2017
  ident: ref21
  article-title: An efficient clustering algorithm for Vanet
  publication-title: Int J Appl Eng Res
– year: 2017
  ident: ref22
  article-title: Deep spatio-temporal residual networks for citywide crowd flows prediction
  publication-title: Proc 31st AAAI Conf Artif Intell
– year: 2018
  ident: ref8
  publication-title: Study on Enhancement of 3GPP Support for 5G V2X Services (v16 2 0 Release 16)
– ident: ref24
  doi: 10.1007/s00521-013-1367-1
– ident: ref32
  doi: 10.1109/ICSAI.2018.8599432
– ident: ref11
  doi: 10.1109/WoWMoM.2017.7974355
– ident: ref17
  doi: 10.1109/VTCFall.2019.8891446
– ident: ref13
  doi: 10.1109/ACCESS.2019.2891073
– ident: ref19
  doi: 10.1016/j.phycom.2018.06.003
SSID ssj0000816957
Score 2.3959177
Snippet Vehicle-to-Everything (V2X) requirements from cooperative autonomous driving can be characterized as ultra-reliable, low latency, high traffic, and high...
SourceID doaj
proquest
crossref
ieee
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 54288
SubjectTerms Artificial intelligence
Autonomous vehicles
Cloud computing
Communications traffic
Costs
cuckoo search
deep learning
Design optimization
Edge computing
Field study
Field tests
High definition
MEC
Mobile computing
Network latency
Optimization
Particle swarm optimization
Permutations
Prototypes
Resource allocation
Swarm intelligence
Systems design
V2X
Vehicle-to-everything
SummonAdditionalLinks – databaseName: IEEE Electronic Library (IEL)
  dbid: RIE
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwELbanuDAqyCWFuQDx_XWj9hZc0vTLgWplMMW7c2KY1uqKJtqN7n0wG9nnHgjXkLcoiiOxp6x5-GZbxB6W9e6UjxQEq-MYkmOJhp2EZk770BdWV6FHu3zk7q4zj6u5GoPTcdaGO99n3zmZ_Gxv8t3Td3FUNmJBomTQu-jfXDchlqtMZ4SG0homSdgIUb1SVGWMAdwATmdcR1DXeIX5dNj9KemKn-cxL16WTxGlzvChqySr7OutbP6_jfMxv-l_Al6lOxMXAyC8RTt-fUz9PAn9MFD9L1smjs_IH_jomtjeUPTbfHZ5iZGGfBVhEAGgxRfnpekuIFlxfI9-cJX7_DnTdM2MXqLB8RzfNYngkzxIibE4SVMcIurtcPFB3IKetLhKziavqWaT7xsmtvtc3S9OF-WFyS1YyB1RuctUSFYm6sgmJWikkzNbWC1Dk65jDrHnciEF3NwuCtuFc0cZTU4j1LkQgUrtXiBDtbN2r9E2CkYmoMkMGsz6cFr4xLsDiul8twxNkF8xydTJ6zy2DLj1vQ-C9VmYK6JzDWJuRM0HQfdDVAd__78NArA-GnE2e5fAONM2ramdsJLIXMgP2SKWh1kJNjnVjAVqJugw8js8SeJzxN0vBMnk86EreGwFEpxJuSrv486Qg8igUOA5xgdtJvOvwaTp7Vveln_AeX0_KY
  priority: 102
  providerName: IEEE
Title Cooperative Autonomous Driving Oriented MEC-Aided 5G-V2X: Prototype System Design, Field Tests and AI-Based Optimization Tools
URI https://ieeexplore.ieee.org/document/9040539
https://www.proquest.com/docview/2453662135
https://doaj.org/article/cd3e5357b59f460b9f5b45ee7b316f0d
Volume 8
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LT9wwELYQp3KoSmnVLQ_50CMGP2In5hYCW1qp0MNS7c2KY1tCgg3aDdf-9o4ds9qqUrlwjezEnhnPK55vEPrSdbpVPFASfxnFkhxNNJwiUjnvwFxZ3oaE9nmtrm6L73M532j1Fe-EjfDAI-FOOye8FLK0UodCUauDtIX0vrSCqUBd1L5g8zaCqaSDK6a0LDPMEKP6tG4a2BEEhJyecB0TX-IvU5QQ-3OLlX_0cjI203fobfYScT2ubhdt-cV7tLOBHbiHfjd9_-hH3G5cPw2xOAGieHyxvIs5AnwTAYzBncQ_LhtS3wFRsPxKfvH5Gf657Ic-5l7xiFeOL9I1jmM8jdfZ8AwWtMLtwuH6GzkHK-fwDSiWh1yxiWd9f7_6gG6nl7PmiuRmCqQraDUQFYK1pQqCWSlayVRlA-t0cMoV1DnuRCG8qCBcbrlVtHCUdRD6SVEKFYD44iPaXvQL_wlhp2BqCXxkNrICYi4uwWuwUirPHWMTxJ_parqMNB4bXtybFHFQbUZmmMgMk5kxQcfrSY8j0Mb_h59Hhq2HRpTs9ABkx2TZMS_JzgTtRXavX6JBo0mhJ-jgmf0mn-iV4UAKpTgT8vNrfHofvYnbGZM5B2h7WD75Q3BvBnuUJPkoVSL-AUrY9Lg
linkProvider Directory of Open Access Journals
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwzV1Lb9QwELaqcgAOvApiSwEf4NZsYzt21kgc0myXXfrisEV7C3FsSxXtptokQnDgl_BX-G-ME2_ES9wqcYsiO7Imn8cz45lvEHpRFDIX1IaBuzJyJTkykLCLgpE2Go4rRXPbsn2eiOlZ9HbBFxvoW18LY4xpk8_M0D22d_m6LBoXKtuTgDjOpE-hPDSfP4GDVr2ejeFvvqR0cjBPp4HvIRAUUTiqA2GtUrGwjCjOck7ESFlSSKuFjkKtqWYRM2wEXmJOlQgjHZICPB7OYias4o5qCRT8DbAzOO2qw_oIjmtZIXnsqYxIKPeSNAWpgdNJwyGVLrjGfjnu2q4Avo3LH7q_PdAmd9H3tSi6PJaPw6ZWw-LLbyyR_6us7qE73pLGSQf9-2jDLB-g2z_xK26hr2lZXpmO2xwnTe0KOMqmwuPVuYuj4FNH8gwmNz4-SIPkHICD-ZvgPV28wu9WZV26-DTuON3xuE112cUTl_KH5yDQCudLjZNZsA-WgManoHwvfVUrnpflRfUQnV2LAB6hzWW5NI8R1gKmxoB1olTEDfillINlpTgXhmpCBoiucZEVno3dNQW5yFqvLJRZB6bMgSnzYBqg3X7SVUdG8u_h-w5w_VDHJN6-AKBkXjFlhWaGMx7D8m0kQiUtdws2sWJE2FAP0JYDV_8Rj6sB2lnDN_Nar8ooiEIIShjf_vus5-jmdH58lB3NTg6foFtusV04awdt1qvGPAUDr1bP2n2G0YfrBusPGBRZOA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Cooperative+Autonomous+Driving+Oriented+MEC-Aided+5G-V2X%3A+Prototype+System+Design%2C+Field+Tests+and+AI-Based+Optimization+Tools&rft.jtitle=IEEE+access&rft.au=Ma%2C+Huisheng&rft.au=Li%2C+Shufang&rft.au=Zhang%2C+Erqing&rft.au=Lv%2C+Zhengnan&rft.date=2020&rft.issn=2169-3536&rft.eissn=2169-3536&rft.volume=8&rft.spage=54288&rft.epage=54302&rft_id=info:doi/10.1109%2FACCESS.2020.2981463&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_ACCESS_2020_2981463
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2169-3536&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2169-3536&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2169-3536&client=summon