Cooperative Autonomous Driving Oriented MEC-Aided 5G-V2X: Prototype System Design, Field Tests and AI-Based Optimization Tools
Vehicle-to-Everything (V2X) requirements from cooperative autonomous driving can be characterized as ultra-reliable, low latency, high traffic, and high mobility. These requirements introduce great challenges in the air interface and protocol stack design, resource allocation, network deployment, an...
Saved in:
Published in | IEEE access Vol. 8; pp. 54288 - 54302 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Piscataway
IEEE
2020
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Vehicle-to-Everything (V2X) requirements from cooperative autonomous driving can be characterized as ultra-reliable, low latency, high traffic, and high mobility. These requirements introduce great challenges in the air interface and protocol stack design, resource allocation, network deployment, and all the way up to mobile (or multi-access) edge computing (MEC), cloud and application layer. In this paper, we present a cooperative autonomous driving oriented MEC-aided 5G-V2X prototype system design and the rationale behind the design choices. The prototype system is developed based on a next-generation radio access network (NG-RAN) experimental platform, a cooperative driving vehicle platoon, and an MEC server providing high definition (HD) 3D dynamic map service. Field tests are conducted and the results demonstrate that the combination of 5G-V2X, MEC and cooperative autonomous driving can be pretty powerful. Considering the remaining challenges in the commercial deployment of 5G-V2X networks and future researches, we propose two artificial intelligence (AI) based optimization tools. The first is a deep-learning-based tool called deep spatio-temporal residual networks with a permutation operator (PST-ResNet). By providing city-wide user and network traffic prediction, PST-ResNet can help to reduce the capital expense (CAPEX) and operating expense (OPEX) costs of commercial 5G-V2X networks. The second is a swarm intelligence based optimization tool called subpopulation collaboration based dynamic self-adaption cuckoo Search (SC-DSCS), which can be widely used to solve complex optimization problems in future researches. The effectiveness of proposed optimization tools is verified by real-world data and benchmark functions. |
---|---|
AbstractList | Vehicle-to-Everything (V2X) requirements from cooperative autonomous driving can be characterized as ultra-reliable, low latency, high traffic, and high mobility. These requirements introduce great challenges in the air interface and protocol stack design, resource allocation, network deployment, and all the way up to mobile (or multi-access) edge computing (MEC), cloud and application layer. In this paper, we present a cooperative autonomous driving oriented MEC-aided 5G-V2X prototype system design and the rationale behind the design choices. The prototype system is developed based on a next-generation radio access network (NG-RAN) experimental platform, a cooperative driving vehicle platoon, and an MEC server providing high definition (HD) 3D dynamic map service. Field tests are conducted and the results demonstrate that the combination of 5G-V2X, MEC and cooperative autonomous driving can be pretty powerful. Considering the remaining challenges in the commercial deployment of 5G-V2X networks and future researches, we propose two artificial intelligence (AI) based optimization tools. The first is a deep-learning-based tool called deep spatio-temporal residual networks with a permutation operator (PST-ResNet). By providing city-wide user and network traffic prediction, PST-ResNet can help to reduce the capital expense (CAPEX) and operating expense (OPEX) costs of commercial 5G-V2X networks. The second is a swarm intelligence based optimization tool called subpopulation collaboration based dynamic self-adaption cuckoo Search (SC-DSCS), which can be widely used to solve complex optimization problems in future researches. The effectiveness of proposed optimization tools is verified by real-world data and benchmark functions. |
Author | Hu, Jing Zhang, Erqing Li, Shufang Ma, Huisheng Wei, Xinlei Lv, Zhengnan |
Author_xml | – sequence: 1 givenname: Huisheng orcidid: 0000-0001-7073-6521 surname: Ma fullname: Ma, Huisheng email: mhs@bupt.edu.cn organization: School of Information and Communication Engineering, Beijing University of Posts and Telecommunications, Beijing, China – sequence: 2 givenname: Shufang surname: Li fullname: Li, Shufang organization: School of Information and Communication Engineering, Beijing University of Posts and Telecommunications, Beijing, China – sequence: 3 givenname: Erqing surname: Zhang fullname: Zhang, Erqing organization: School of Information and Communication Engineering, Beijing University of Posts and Telecommunications, Beijing, China – sequence: 4 givenname: Zhengnan surname: Lv fullname: Lv, Zhengnan organization: Potevio Information Technology Company Ltd., Beijing, China – sequence: 5 givenname: Jing surname: Hu fullname: Hu, Jing organization: Potevio Information Technology Company Ltd., Beijing, China – sequence: 6 givenname: Xinlei surname: Wei fullname: Wei, Xinlei organization: Research Institute of Highway Ministry of Transport, Beijing, China |
BookMark | eNp9kU1vEzEQhi1UJEroL-jFElc2tdcfu-a2bNM2UlGQEhA3y7u2I0ebdbCdSumB347bLQhxYC4zGvl5Z8bvW3A2-tEAcInRHGMkrpq2XazX8xKVaF6KGlNOXoHzEnNREEb42V_1G3AR4w7lqHOLVefgZ-v9wQSV3IOBzTH50e_9McLr4B7cuIWr4MyYjIafF23ROJ0rdlt8K79_hF-CTz6dDgauTzGZPbw20W3HD_DGmUHDjYkpQjVq2CyLTypmcnVIbu8e8zA_wo33Q3wHXls1RHPxkmfg681i094V96vbZdvcFz1FdSq4tV1XcUtwx4himNedxb2wmmuKtC41ocSQGlGuyo4jqhHukaCMVITbjgkyA8tJV3u1k4fg9iqcpFdOPjd82EoVkusHI3tNDCOsypilHHXCso4yY6qOYG6RzlrvJ61D8D-O-Uq588cw5vVlmUdyXuL81zMgpld98DEGY2Xv0vPlKSg3SIzkk3tyck8-uSdf3Mss-Yf9vfH_qcuJcsaYP4RAFDEiyC8dJqb4 |
CODEN | IAECCG |
CitedBy_id | crossref_primary_10_3390_s21020372 crossref_primary_10_1109_COMST_2024_3384132 crossref_primary_10_3390_s22155535 crossref_primary_10_1057_s41599_025_04554_z crossref_primary_10_1002_int_22576 crossref_primary_10_3390_math10234539 crossref_primary_10_1109_MNET_011_2000577 crossref_primary_10_1109_ACCESS_2023_3341092 crossref_primary_10_3390_su14148277 crossref_primary_10_1093_iti_liac020 crossref_primary_10_1109_TNSE_2022_3225326 crossref_primary_10_1109_TVT_2023_3297017 crossref_primary_10_1109_COMST_2024_3405075 crossref_primary_10_1016_j_comnet_2021_108090 crossref_primary_10_1177_15553434221132636 crossref_primary_10_1364_JOCN_452105 crossref_primary_10_1109_ACCESS_2024_3524886 crossref_primary_10_1109_TVT_2022_3210689 crossref_primary_10_1002_ett_4579 crossref_primary_10_1016_j_asoc_2021_108043 crossref_primary_10_1016_j_comcom_2022_04_024 crossref_primary_10_1016_j_isci_2024_109751 crossref_primary_10_1109_ACCESS_2021_3125977 crossref_primary_10_1109_ACCESS_2024_3397467 crossref_primary_10_17482_uumfd_1244198 crossref_primary_10_3390_telecom5020022 crossref_primary_10_1109_ACCESS_2023_3239694 crossref_primary_10_1145_3567826 crossref_primary_10_1016_j_vehcom_2022_100551 crossref_primary_10_1109_TVT_2021_3122257 crossref_primary_10_3390_s24020374 crossref_primary_10_1016_j_phycom_2022_101619 crossref_primary_10_1109_ACCESS_2021_3100472 crossref_primary_10_1109_TITS_2020_3004117 crossref_primary_10_3390_s23187968 crossref_primary_10_1109_ACCESS_2020_3037717 crossref_primary_10_1109_ACCESS_2021_3105583 |
Cites_doi | 10.1007/978-3-319-67669-2_3 10.1109/ICCT.2017.8359752 10.2139/ssrn.3363555 10.1109/MCOM.2015.7355568 10.1016/j.advengsoft.2013.12.007 10.33130/AJCT.2019v05i01.006 10.1016/j.vehcom.2018.04.003 10.1109/ACCESS.2019.2919489 10.1186/s13638-019-1503-4 10.1109/ICACCI.2017.8126036 10.4271/2016-01-1887 10.5573/IEIESPC.2015.4.2.115 10.1109/ACCESS.2018.2854842 10.1007/s00521-018-3512-3 10.1007/s11276-019-02181-6 10.1002/wics.1429 10.1155/2015/374873 10.1109/CSCN.2019.8931319 10.1109/TVT.2019.2937825 10.3390/electronics8040455 10.1016/j.aci.2017.09.001 10.1007/s11276-017-1485-2 10.1145/3339363.3339367 10.1002/dac.3483 10.1007/s00521-013-1367-1 10.1109/ICSAI.2018.8599432 10.1109/WoWMoM.2017.7974355 10.1109/VTCFall.2019.8891446 10.1109/ACCESS.2019.2891073 10.1016/j.phycom.2018.06.003 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020 |
DBID | 97E ESBDL RIA RIE AAYXX CITATION 7SC 7SP 7SR 8BQ 8FD JG9 JQ2 L7M L~C L~D DOA |
DOI | 10.1109/ACCESS.2020.2981463 |
DatabaseName | IEEE Xplore (IEEE) Open Access资源_IEL Journals IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts METADEX Technology Research Database Materials Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace METADEX Computer and Information Systems Abstracts Professional |
DatabaseTitleList | Materials Research Database |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 2169-3536 |
EndPage | 54302 |
ExternalDocumentID | oai_doaj_org_article_cd3e5357b59f460b9f5b45ee7b316f0d 10_1109_ACCESS_2020_2981463 9040539 |
Genre | orig-research |
GrantInformation_xml | – fundername: National Basic Research Program of China (973 Program); National Key Research and Development Program of China grantid: 2019YFB2102300 funderid: 10.13039/501100012166 – fundername: Breeding Project for New Generation AI of Beijing grantid: Z181100008918008 – fundername: National Science and Technology Major Project of China grantid: 2016ZX03001024 |
GroupedDBID | 0R~ 4.4 5VS 6IK 97E AAJGR ABAZT ABVLG ACGFS ADBBV AGSQL ALMA_UNASSIGNED_HOLDINGS BCNDV BEFXN BFFAM BGNUA BKEBE BPEOZ EBS EJD ESBDL GROUPED_DOAJ IPLJI JAVBF KQ8 M43 M~E O9- OCL OK1 RIA RIE RNS AAYXX CITATION RIG 7SC 7SP 7SR 8BQ 8FD JG9 JQ2 L7M L~C L~D |
ID | FETCH-LOGICAL-c408t-6ffbb76f31b53a5168bf1c9fd6d40dd2d343e38046a2b604d01c09453736fb593 |
IEDL.DBID | DOA |
ISSN | 2169-3536 |
IngestDate | Wed Aug 27 01:30:54 EDT 2025 Sun Jun 29 15:25:59 EDT 2025 Thu Apr 24 23:03:40 EDT 2025 Tue Jul 01 01:22:21 EDT 2025 Wed Aug 27 02:39:33 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Language | English |
License | https://creativecommons.org/licenses/by/4.0/legalcode |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c408t-6ffbb76f31b53a5168bf1c9fd6d40dd2d343e38046a2b604d01c09453736fb593 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0001-7073-6521 |
OpenAccessLink | https://doaj.org/article/cd3e5357b59f460b9f5b45ee7b316f0d |
PQID | 2453662135 |
PQPubID | 4845423 |
PageCount | 15 |
ParticipantIDs | proquest_journals_2453662135 doaj_primary_oai_doaj_org_article_cd3e5357b59f460b9f5b45ee7b316f0d crossref_citationtrail_10_1109_ACCESS_2020_2981463 crossref_primary_10_1109_ACCESS_2020_2981463 ieee_primary_9040539 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20200000 2020-00-00 20200101 2020-01-01 |
PublicationDateYYYYMMDD | 2020-01-01 |
PublicationDate_xml | – year: 2020 text: 20200000 |
PublicationDecade | 2020 |
PublicationPlace | Piscataway |
PublicationPlace_xml | – name: Piscataway |
PublicationTitle | IEEE access |
PublicationTitleAbbrev | Access |
PublicationYear | 2020 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref35 ref13 ref34 ref37 ref15 ref36 ref14 ref31 hartenstein (ref2) 2009 ref30 ref33 ref11 ref32 malathi (ref21) 2017; 12 ref39 park (ref12) 2020 ref17 ref16 ref19 ref18 zhang (ref22) 2017 (ref4) 2014 ref24 ref23 ref26 ref25 (ref1) 2018 ref28 ref27 kingma (ref38) 2014 ref29 ref7 ramakrishnan (ref20) 2015; 2 ref9 ref3 ref6 ref5 ref40 serizawa (ref10) 2019 (ref8) 2018 |
References_xml | – ident: ref23 doi: 10.1007/978-3-319-67669-2_3 – ident: ref33 doi: 10.1109/ICCT.2017.8359752 – ident: ref3 doi: 10.2139/ssrn.3363555 – ident: ref5 doi: 10.1109/MCOM.2015.7355568 – ident: ref36 doi: 10.1016/j.advengsoft.2013.12.007 – ident: ref35 doi: 10.33130/AJCT.2019v05i01.006 – ident: ref18 doi: 10.1016/j.vehcom.2018.04.003 – ident: ref6 doi: 10.1109/ACCESS.2019.2919489 – ident: ref26 doi: 10.1186/s13638-019-1503-4 – ident: ref30 doi: 10.1109/ICACCI.2017.8126036 – ident: ref9 doi: 10.4271/2016-01-1887 – ident: ref31 doi: 10.5573/IEIESPC.2015.4.2.115 – year: 2014 ident: ref4 publication-title: Taxonomy and Definitions for Terms Related to On-Road Motor Vehicle Automated Driving Systems-J3016 – year: 2018 ident: ref1 publication-title: Service requirements for V2X services (v15 0 0 Release 15) – ident: ref14 doi: 10.1109/ACCESS.2018.2854842 – ident: ref39 doi: 10.1007/s00521-018-3512-3 – volume: 2 start-page: 173 year: 2015 ident: ref20 article-title: Adaptive routing protocol based on cuckoo search algorithm (ARP-CS) for secured vehicular ad hoc network (VANET) publication-title: Int J Comput Netw Appl – year: 2014 ident: ref38 article-title: Adam: A method for stochastic optimization publication-title: arXiv 1412 6980 – ident: ref15 doi: 10.1007/s11276-019-02181-6 – ident: ref40 doi: 10.1002/wics.1429 – year: 2009 ident: ref2 publication-title: VANET Vehicular Applications and Inter-Networking Technologies – ident: ref37 doi: 10.1155/2015/374873 – ident: ref7 doi: 10.1109/CSCN.2019.8931319 – start-page: 1 year: 2019 ident: ref10 article-title: Field trial activities on 5G NR V2 V direct communication towards application to truck platooning publication-title: Proc IEEE Veh Tech Conf (VTC Fall) – ident: ref16 doi: 10.1109/TVT.2019.2937825 – year: 2020 ident: ref12 article-title: Extreme URLLC: Vision, challenges, and key enablers publication-title: arXiv 2001 09683 – ident: ref28 doi: 10.3390/electronics8040455 – ident: ref25 doi: 10.1016/j.aci.2017.09.001 – ident: ref27 doi: 10.1007/s11276-017-1485-2 – ident: ref34 doi: 10.1145/3339363.3339367 – ident: ref29 doi: 10.1002/dac.3483 – volume: 12 start-page: 2000 year: 2017 ident: ref21 article-title: An efficient clustering algorithm for Vanet publication-title: Int J Appl Eng Res – year: 2017 ident: ref22 article-title: Deep spatio-temporal residual networks for citywide crowd flows prediction publication-title: Proc 31st AAAI Conf Artif Intell – year: 2018 ident: ref8 publication-title: Study on Enhancement of 3GPP Support for 5G V2X Services (v16 2 0 Release 16) – ident: ref24 doi: 10.1007/s00521-013-1367-1 – ident: ref32 doi: 10.1109/ICSAI.2018.8599432 – ident: ref11 doi: 10.1109/WoWMoM.2017.7974355 – ident: ref17 doi: 10.1109/VTCFall.2019.8891446 – ident: ref13 doi: 10.1109/ACCESS.2019.2891073 – ident: ref19 doi: 10.1016/j.phycom.2018.06.003 |
SSID | ssj0000816957 |
Score | 2.3959177 |
Snippet | Vehicle-to-Everything (V2X) requirements from cooperative autonomous driving can be characterized as ultra-reliable, low latency, high traffic, and high... |
SourceID | doaj proquest crossref ieee |
SourceType | Open Website Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 54288 |
SubjectTerms | Artificial intelligence Autonomous vehicles Cloud computing Communications traffic Costs cuckoo search deep learning Design optimization Edge computing Field study Field tests High definition MEC Mobile computing Network latency Optimization Particle swarm optimization Permutations Prototypes Resource allocation Swarm intelligence Systems design V2X Vehicle-to-everything |
SummonAdditionalLinks | – databaseName: IEEE Electronic Library (IEL) dbid: RIE link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwELbanuDAqyCWFuQDx_XWj9hZc0vTLgWplMMW7c2KY1uqKJtqN7n0wG9nnHgjXkLcoiiOxp6x5-GZbxB6W9e6UjxQEq-MYkmOJhp2EZk770BdWV6FHu3zk7q4zj6u5GoPTcdaGO99n3zmZ_Gxv8t3Td3FUNmJBomTQu-jfXDchlqtMZ4SG0homSdgIUb1SVGWMAdwATmdcR1DXeIX5dNj9KemKn-cxL16WTxGlzvChqySr7OutbP6_jfMxv-l_Al6lOxMXAyC8RTt-fUz9PAn9MFD9L1smjs_IH_jomtjeUPTbfHZ5iZGGfBVhEAGgxRfnpekuIFlxfI9-cJX7_DnTdM2MXqLB8RzfNYngkzxIibE4SVMcIurtcPFB3IKetLhKziavqWaT7xsmtvtc3S9OF-WFyS1YyB1RuctUSFYm6sgmJWikkzNbWC1Dk65jDrHnciEF3NwuCtuFc0cZTU4j1LkQgUrtXiBDtbN2r9E2CkYmoMkMGsz6cFr4xLsDiul8twxNkF8xydTJ6zy2DLj1vQ-C9VmYK6JzDWJuRM0HQfdDVAd__78NArA-GnE2e5fAONM2ramdsJLIXMgP2SKWh1kJNjnVjAVqJugw8js8SeJzxN0vBMnk86EreGwFEpxJuSrv486Qg8igUOA5xgdtJvOvwaTp7Vveln_AeX0_KY priority: 102 providerName: IEEE |
Title | Cooperative Autonomous Driving Oriented MEC-Aided 5G-V2X: Prototype System Design, Field Tests and AI-Based Optimization Tools |
URI | https://ieeexplore.ieee.org/document/9040539 https://www.proquest.com/docview/2453662135 https://doaj.org/article/cd3e5357b59f460b9f5b45ee7b316f0d |
Volume | 8 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LT9wwELYQp3KoSmnVLQ_50CMGP2In5hYCW1qp0MNS7c2KY1tCgg3aDdf-9o4ds9qqUrlwjezEnhnPK55vEPrSdbpVPFASfxnFkhxNNJwiUjnvwFxZ3oaE9nmtrm6L73M532j1Fe-EjfDAI-FOOye8FLK0UodCUauDtIX0vrSCqUBd1L5g8zaCqaSDK6a0LDPMEKP6tG4a2BEEhJyecB0TX-IvU5QQ-3OLlX_0cjI203fobfYScT2ubhdt-cV7tLOBHbiHfjd9_-hH3G5cPw2xOAGieHyxvIs5AnwTAYzBncQ_LhtS3wFRsPxKfvH5Gf657Ic-5l7xiFeOL9I1jmM8jdfZ8AwWtMLtwuH6GzkHK-fwDSiWh1yxiWd9f7_6gG6nl7PmiuRmCqQraDUQFYK1pQqCWSlayVRlA-t0cMoV1DnuRCG8qCBcbrlVtHCUdRD6SVEKFYD44iPaXvQL_wlhp2BqCXxkNrICYi4uwWuwUirPHWMTxJ_parqMNB4bXtybFHFQbUZmmMgMk5kxQcfrSY8j0Mb_h59Hhq2HRpTs9ABkx2TZMS_JzgTtRXavX6JBo0mhJ-jgmf0mn-iV4UAKpTgT8vNrfHofvYnbGZM5B2h7WD75Q3BvBnuUJPkoVSL-AUrY9Lg |
linkProvider | Directory of Open Access Journals |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwzV1Lb9QwELaqcgAOvApiSwEf4NZsYzt21kgc0myXXfrisEV7C3FsSxXtptokQnDgl_BX-G-ME2_ES9wqcYsiO7Imn8cz45lvEHpRFDIX1IaBuzJyJTkykLCLgpE2Go4rRXPbsn2eiOlZ9HbBFxvoW18LY4xpk8_M0D22d_m6LBoXKtuTgDjOpE-hPDSfP4GDVr2ejeFvvqR0cjBPp4HvIRAUUTiqA2GtUrGwjCjOck7ESFlSSKuFjkKtqWYRM2wEXmJOlQgjHZICPB7OYias4o5qCRT8DbAzOO2qw_oIjmtZIXnsqYxIKPeSNAWpgdNJwyGVLrjGfjnu2q4Avo3LH7q_PdAmd9H3tSi6PJaPw6ZWw-LLbyyR_6us7qE73pLGSQf9-2jDLB-g2z_xK26hr2lZXpmO2xwnTe0KOMqmwuPVuYuj4FNH8gwmNz4-SIPkHICD-ZvgPV28wu9WZV26-DTuON3xuE112cUTl_KH5yDQCudLjZNZsA-WgManoHwvfVUrnpflRfUQnV2LAB6hzWW5NI8R1gKmxoB1olTEDfillINlpTgXhmpCBoiucZEVno3dNQW5yFqvLJRZB6bMgSnzYBqg3X7SVUdG8u_h-w5w_VDHJN6-AKBkXjFlhWaGMx7D8m0kQiUtdws2sWJE2FAP0JYDV_8Rj6sB2lnDN_Nar8ooiEIIShjf_vus5-jmdH58lB3NTg6foFtusV04awdt1qvGPAUDr1bP2n2G0YfrBusPGBRZOA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Cooperative+Autonomous+Driving+Oriented+MEC-Aided+5G-V2X%3A+Prototype+System+Design%2C+Field+Tests+and+AI-Based+Optimization+Tools&rft.jtitle=IEEE+access&rft.au=Ma%2C+Huisheng&rft.au=Li%2C+Shufang&rft.au=Zhang%2C+Erqing&rft.au=Lv%2C+Zhengnan&rft.date=2020&rft.issn=2169-3536&rft.eissn=2169-3536&rft.volume=8&rft.spage=54288&rft.epage=54302&rft_id=info:doi/10.1109%2FACCESS.2020.2981463&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_ACCESS_2020_2981463 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2169-3536&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2169-3536&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2169-3536&client=summon |