Using structural equation modelling to jointly estimate maternal and fetal effects on birthweight in the UK Biobank
Abstract Background To date, 60 genetic variants have been robustly associated with birthweight. It is unclear whether these associations represent the effect of an individual’s own genotype on their birthweight, their mother’s genotype, or both. Methods We demonstrate how structural equation modell...
Saved in:
Published in | International journal of epidemiology Vol. 47; no. 4; pp. 1229 - 1241 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
England
Oxford University Press
01.08.2018
|
Subjects | |
Online Access | Get full text |
ISSN | 0300-5771 1464-3685 1464-3685 |
DOI | 10.1093/ije/dyy015 |
Cover
Abstract | Abstract
Background
To date, 60 genetic variants have been robustly associated with birthweight. It is unclear whether these associations represent the effect of an individual’s own genotype on their birthweight, their mother’s genotype, or both.
Methods
We demonstrate how structural equation modelling (SEM) can be used to estimate both maternal and fetal effects when phenotype information is present for individuals in two generations and genotype information is available on the older individual. We conduct an extensive simulation study to assess the bias, power and type 1 error rates of the SEM and also apply the SEM to birthweight data in the UK Biobank study.
Results
Unlike simple regression models, our approach is unbiased when there is both a maternal and a fetal effect. The method can be used when either the individual’s own phenotype or the phenotype of their offspring is not available, and allows the inclusion of summary statistics from additional cohorts where raw data cannot be shared. We show that the type 1 error rate of the method is appropriate, and that there is substantial statistical power to detect a genetic variant that has a moderate effect on the phenotype and reasonable power to detect whether it is a fetal and/or a maternal effect. We also identify a subset of birthweight-associated single nucleotide polymorphisms (SNPs) that have opposing maternal and fetal effects in the UK Biobank.
Conclusions
Our results show that SEM can be used to estimate parameters that would be difficult to quantify using simple statistical methods alone. |
---|---|
AbstractList | Abstract
Background
To date, 60 genetic variants have been robustly associated with birthweight. It is unclear whether these associations represent the effect of an individual’s own genotype on their birthweight, their mother’s genotype, or both.
Methods
We demonstrate how structural equation modelling (SEM) can be used to estimate both maternal and fetal effects when phenotype information is present for individuals in two generations and genotype information is available on the older individual. We conduct an extensive simulation study to assess the bias, power and type 1 error rates of the SEM and also apply the SEM to birthweight data in the UK Biobank study.
Results
Unlike simple regression models, our approach is unbiased when there is both a maternal and a fetal effect. The method can be used when either the individual’s own phenotype or the phenotype of their offspring is not available, and allows the inclusion of summary statistics from additional cohorts where raw data cannot be shared. We show that the type 1 error rate of the method is appropriate, and that there is substantial statistical power to detect a genetic variant that has a moderate effect on the phenotype and reasonable power to detect whether it is a fetal and/or a maternal effect. We also identify a subset of birthweight-associated single nucleotide polymorphisms (SNPs) that have opposing maternal and fetal effects in the UK Biobank.
Conclusions
Our results show that SEM can be used to estimate parameters that would be difficult to quantify using simple statistical methods alone. To date, 60 genetic variants have been robustly associated with birthweight. It is unclear whether these associations represent the effect of an individual's own genotype on their birthweight, their mother's genotype, or both.BackgroundTo date, 60 genetic variants have been robustly associated with birthweight. It is unclear whether these associations represent the effect of an individual's own genotype on their birthweight, their mother's genotype, or both.We demonstrate how structural equation modelling (SEM) can be used to estimate both maternal and fetal effects when phenotype information is present for individuals in two generations and genotype information is available on the older individual. We conduct an extensive simulation study to assess the bias, power and type 1 error rates of the SEM and also apply the SEM to birthweight data in the UK Biobank study.MethodsWe demonstrate how structural equation modelling (SEM) can be used to estimate both maternal and fetal effects when phenotype information is present for individuals in two generations and genotype information is available on the older individual. We conduct an extensive simulation study to assess the bias, power and type 1 error rates of the SEM and also apply the SEM to birthweight data in the UK Biobank study.Unlike simple regression models, our approach is unbiased when there is both a maternal and a fetal effect. The method can be used when either the individual's own phenotype or the phenotype of their offspring is not available, and allows the inclusion of summary statistics from additional cohorts where raw data cannot be shared. We show that the type 1 error rate of the method is appropriate, and that there is substantial statistical power to detect a genetic variant that has a moderate effect on the phenotype and reasonable power to detect whether it is a fetal and/or a maternal effect. We also identify a subset of birthweight-associated single nucleotide polymorphisms (SNPs) that have opposing maternal and fetal effects in the UK Biobank.ResultsUnlike simple regression models, our approach is unbiased when there is both a maternal and a fetal effect. The method can be used when either the individual's own phenotype or the phenotype of their offspring is not available, and allows the inclusion of summary statistics from additional cohorts where raw data cannot be shared. We show that the type 1 error rate of the method is appropriate, and that there is substantial statistical power to detect a genetic variant that has a moderate effect on the phenotype and reasonable power to detect whether it is a fetal and/or a maternal effect. We also identify a subset of birthweight-associated single nucleotide polymorphisms (SNPs) that have opposing maternal and fetal effects in the UK Biobank.Our results show that SEM can be used to estimate parameters that would be difficult to quantify using simple statistical methods alone.ConclusionsOur results show that SEM can be used to estimate parameters that would be difficult to quantify using simple statistical methods alone. To date, 60 genetic variants have been robustly associated with birthweight. It is unclear whether these associations represent the effect of an individual's own genotype on their birthweight, their mother's genotype, or both. We demonstrate how structural equation modelling (SEM) can be used to estimate both maternal and fetal effects when phenotype information is present for individuals in two generations and genotype information is available on the older individual. We conduct an extensive simulation study to assess the bias, power and type 1 error rates of the SEM and also apply the SEM to birthweight data in the UK Biobank study. Unlike simple regression models, our approach is unbiased when there is both a maternal and a fetal effect. The method can be used when either the individual's own phenotype or the phenotype of their offspring is not available, and allows the inclusion of summary statistics from additional cohorts where raw data cannot be shared. We show that the type 1 error rate of the method is appropriate, and that there is substantial statistical power to detect a genetic variant that has a moderate effect on the phenotype and reasonable power to detect whether it is a fetal and/or a maternal effect. We also identify a subset of birthweight-associated single nucleotide polymorphisms (SNPs) that have opposing maternal and fetal effects in the UK Biobank. Our results show that SEM can be used to estimate parameters that would be difficult to quantify using simple statistical methods alone. |
Author | Evans, David M Warrington, Nicole M Freathy, Rachel M Neale, Michael C |
AuthorAffiliation | 2 Institute of Biomedical and Clinical Science, University of Exeter Medical School, University of Exeter, Royal Devon and Exeter Hospital, Exeter, UK 1 University of Queensland Diamantina Institute, The University of Queensland, Translational Research Institute, Brisbane, QLD, Australia 4 Virginia Institute for Psychiatric and Behavioral Genetics, Departments of Psychiatry and Human & Molecular Genetics, Virginia Commonwealth University, Richmond, VA, USA 3 Medical Research Council Integrative Epidemiology Unit, University of Bristol, Bristol, UK 5 School of Social and Community Medicine, University of Bristol, Bristol, UK |
AuthorAffiliation_xml | – name: 1 University of Queensland Diamantina Institute, The University of Queensland, Translational Research Institute, Brisbane, QLD, Australia – name: 3 Medical Research Council Integrative Epidemiology Unit, University of Bristol, Bristol, UK – name: 4 Virginia Institute for Psychiatric and Behavioral Genetics, Departments of Psychiatry and Human & Molecular Genetics, Virginia Commonwealth University, Richmond, VA, USA – name: 5 School of Social and Community Medicine, University of Bristol, Bristol, UK – name: 2 Institute of Biomedical and Clinical Science, University of Exeter Medical School, University of Exeter, Royal Devon and Exeter Hospital, Exeter, UK |
Author_xml | – sequence: 1 givenname: Nicole M surname: Warrington fullname: Warrington, Nicole M organization: University of Queensland Diamantina Institute, The University of Queensland, Translational Research Institute, Brisbane, QLD, Australia – sequence: 2 givenname: Rachel M surname: Freathy fullname: Freathy, Rachel M organization: Institute of Biomedical and Clinical Science, University of Exeter Medical School, University of Exeter, Royal Devon and Exeter Hospital, Exeter, UK – sequence: 3 givenname: Michael C surname: Neale fullname: Neale, Michael C organization: Virginia Institute for Psychiatric and Behavioral Genetics, Departments of Psychiatry and Human & Molecular Genetics, Virginia Commonwealth University, Richmond, VA, USA – sequence: 4 givenname: David M surname: Evans fullname: Evans, David M email: dave.evans@bristol.ac.uk organization: University of Queensland Diamantina Institute, The University of Queensland, Translational Research Institute, Brisbane, QLD, Australia |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/29447406$$D View this record in MEDLINE/PubMed |
BookMark | eNp9UVtLHDEUDkWpq_WlP6DkRSiFqcnkMjMvghXbioIv3eeQyZzZzTqbrEmmZf-9ma5KLSKB5MD5LjnfOUR7zjtA6CMlXylp2KldwWm33RIq3qEZ5ZIXTNZiD80II6QQVUUP0GGMK0Io57x5jw7KhvOKEzlDcR6tW-CYwmjSGPSA4X7UyXqH176DYZi6yeOVty4NWwwx2bVOgKcruIzXrsM9pInZ92BSxJnb2pCWf8Aulglbh9MS8Pwaf7O-1e7uA9rv9RDh-PE9QvPvl78ufhY3tz-uLs5vCsNJnQoJUAnGTclZT2VtWFn1ggte0oZ20_eB0Xyg5gaolqJtORcMcl01tClrdoTOdrqbsV1DZ8ClPKDahDxB2CqvrXrZcXapFv63krTkksos8PlRIPj7MY-u1jaaHIp24MeoSpITZoKxyevTv17PJk9JZwDZAUzwMQbolbHpb9DZ2g6KEjUtU-Vlqt0yM-XLf5Qn1VfBJzuwHzdv4R4ApIuvzw |
CitedBy_id | crossref_primary_10_1038_s41588_021_00902_2 crossref_primary_10_1093_hmg_ddab356 crossref_primary_10_1002_gepi_22138 crossref_primary_10_3389_fnins_2020_00479 crossref_primary_10_1093_eurheartj_ehad631 crossref_primary_10_1093_ije_dyaa013 crossref_primary_10_1161_CIRCGEN_119_002553 crossref_primary_10_1371_journal_pone_0234488 crossref_primary_10_1093_ije_dyaa256 crossref_primary_10_1093_hmg_ddaa149 crossref_primary_10_1136_bjophthalmol_2018_313640 crossref_primary_10_1017_S2040174420001105 crossref_primary_10_1093_ije_dyz019 crossref_primary_10_1186_s12884_024_06250_3 crossref_primary_10_1371_journal_pgen_1011575 crossref_primary_10_1111_ppe_12691 crossref_primary_10_1038_s41588_019_0403_1 crossref_primary_10_1093_ije_dyz250 crossref_primary_10_1101_cshperspect_a039503 crossref_primary_10_7554_eLife_73671 crossref_primary_10_4102_sajesbm_v14i1_453 crossref_primary_10_1093_hmg_ddaa074 crossref_primary_10_1007_s00125_021_05386_7 crossref_primary_10_1093_humrep_deae019 crossref_primary_10_1371_journal_pgen_1009883 crossref_primary_10_1007_s10654_019_00502_9 crossref_primary_10_1210_clinem_dgae455 crossref_primary_10_1017_S0954579422000761 crossref_primary_10_1016_j_clp_2024_02_010 crossref_primary_10_1007_s10519_018_9944_9 crossref_primary_10_1016_j_ebiom_2023_104441 crossref_primary_10_1007_s10519_020_10040_w crossref_primary_10_1101_cshperspect_a039248 crossref_primary_10_1016_j_ssmph_2023_101587 crossref_primary_10_1093_ije_dyae036 crossref_primary_10_1097_HJH_0000000000003707 crossref_primary_10_1038_s41467_021_25723_z crossref_primary_10_1007_s10519_020_10008_w crossref_primary_10_1371_journal_pgen_1010620 crossref_primary_10_2139_ssrn_3927054 crossref_primary_10_1038_s41588_021_00896_x crossref_primary_10_1093_ije_dyad142 crossref_primary_10_1007_s10519_019_09969_4 crossref_primary_10_1038_s41467_022_32003_x crossref_primary_10_1007_s10654_023_01032_1 crossref_primary_10_1038_s41588_022_01062_7 crossref_primary_10_1038_s41467_024_53495_9 crossref_primary_10_1001_jamapsychiatry_2023_3872 crossref_primary_10_1007_s10519_020_10032_w crossref_primary_10_1007_s10519_022_10116_9 crossref_primary_10_1017_S2040174421000350 crossref_primary_10_1007_s10519_020_10033_9 crossref_primary_10_1007_s10519_020_10035_7 crossref_primary_10_3389_fgene_2019_00618 crossref_primary_10_1371_journal_pgen_1009154 crossref_primary_10_1038_s41467_020_17117_4 crossref_primary_10_1192_bjp_2021_15 crossref_primary_10_1210_clinem_dgad308 crossref_primary_10_1093_ije_dyac186 crossref_primary_10_1093_ije_dyad034 crossref_primary_10_1002_jbmr_4316 crossref_primary_10_1016_j_biopsych_2020_01_006 crossref_primary_10_7554_eLife_43990 crossref_primary_10_1007_s00125_021_05570_9 crossref_primary_10_1093_ije_dyz160 |
Cites_doi | 10.1038/ncomms5831 10.1111/j.1399-0004.1984.tb00457.x 10.1126/scitranslmed.3008601 10.1093/hmg/ddu510 10.1038/ng.2238 10.1002/9781118619179 10.1371/journal.pgen.1000008 10.1093/aje/kwk107 10.1080/03014468600008281 10.1038/nature19806 10.1007/s10519-017-9842-6 10.1007/BF00399095 10.1038/953 10.1093/ije/dys141 10.1007/s11892-017-0852-9 10.1111/j.1399-0004.1984.tb01061.x 10.1007/s10519-014-9666-6 |
ContentType | Journal Article |
Copyright | The Author(s) 2018. Published by Oxford University Press on behalf of the International Epidemiological Association. 2018 |
Copyright_xml | – notice: The Author(s) 2018. Published by Oxford University Press on behalf of the International Epidemiological Association. 2018 |
DBID | TOX AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 5PM |
DOI | 10.1093/ije/dyy015 |
DatabaseName | Oxford Journals Open Access Collection CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: TOX name: Oxford Journals Open Access Collection url: https://academic.oup.com/journals/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine Public Health |
EISSN | 1464-3685 |
EndPage | 1241 |
ExternalDocumentID | PMC6124616 29447406 10_1093_ije_dyy015 10.1093/ije/dyy015 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GeographicLocations | United Kingdom |
GeographicLocations_xml | – name: United Kingdom |
GrantInformation_xml | – fundername: University of Queensland Early Career Researcher Grant grantid: 2014002959 – fundername: Medical Research Council programme grant grantid: MC_UU_12013/4 – fundername: National Health and Medical Research Council Early Career Fellowship grantid: APP1104818 – fundername: Australian Research Council Future Fellowship grantid: FT130101709 – fundername: Wellcome Trust grantid: 104150 – fundername: Medical Research Council grantid: MC_UU_12013/4 – fundername: Medical Research Council grantid: MC_PC_17228 – fundername: Medical Research Council grantid: MC_QA137853 – fundername: ; grantid: 2014002959 – fundername: ; grantid: MC_UU_12013/4 – fundername: ; grantid: APP1104818 – fundername: ; grantid: FT130101709 |
GroupedDBID | --- -E4 .2P .I3 .ZR 0R~ 18M 1TH 29J 2WC 4.4 482 48X 53G 5GY 5RE 5VS 5WA 5WD 70D A8Z AABZA AACZT AAJKP AAJQQ AAMVS AAOGV AAPNW AAPQZ AAPXW AARHZ AASNB AAUAY AAUQX AAVAP ABEHJ ABEUO ABIXL ABJNI ABKDP ABNHQ ABNKS ABOCM ABPTD ABQLI ABWST ABXVV ABYLZ ABZBJ ACGFO ACGFS ACIWK ACPRK ACUFI ACUTJ ACUTO ACVHY ADBBV ADEYI ADEZT ADGZP ADHKW ADHZD ADIPN ADJQC ADOCK ADQBN ADRIX ADRTK ADVEK ADYVW ADZXQ AEGPL AEGXH AEJOX AEKSI AEMDU AENEX AENZO AEPUE AETBJ AEWNT AFFZL AFIYH AFOFC AFRAH AFXEN AGINJ AGKEF AGQXC AGSYK AHMBA AHXPO AIAGR AIJHB AJEEA ALMA_UNASSIGNED_HOLDINGS ALUQC APIBT APWMN ATGXG AXUDD BAWUL BAYMD BCRHZ BEYMZ BHONS BTRTY BVRKM BWUDY C45 CDBKE CNZYI CS3 CZ4 DAKXR DIK DILTD DU5 D~K E3Z EBD EBS EE~ EJD EMOBN ESTFP F5P F9B FLUFQ FOEOM FOTVD FQBLK FRP FTKQU GAUVT GJXCC GX1 H13 H5~ HAR HW0 HZ~ IH2 IOX J21 KAQDR KBUDW KOP KQ8 KSI KSN L7B M-Z M49 N9A NGC NOMLY NOYVH NPJNY NU- O9- OAWHX OBS OCZFY ODMLO OHH OJQWA OJZSN OK1 OPAEJ OVD OWPYF P2P PAFKI PEELM PQQKQ Q1. Q5Y R44 RD5 RIG ROL ROX ROZ RUSNO RW1 RXO SV3 TEORI TJX TOX TR2 W2D W8F WH7 WOQ X7H YAYTL YKOAZ YSK YXANX ZKX ~91 AAYXX ABDFA ABEJV ABGNP ABPQP ABVGC ADNBA AFCKW AGORE AGQZG AHMMS AJBYB AJNCP ALXQX AMHCJ CITATION JXSIZ CGR CUY CVF ECM EIF NPM 7X8 5PM |
ID | FETCH-LOGICAL-c408t-6ee7534c243f168c327f54542191d4740e31313e84ce1a65bb4453ee1a7919283 |
IEDL.DBID | TOX |
ISSN | 0300-5771 1464-3685 |
IngestDate | Thu Aug 21 14:33:57 EDT 2025 Fri Jul 11 05:07:53 EDT 2025 Mon Jul 21 06:05:38 EDT 2025 Tue Jul 01 01:59:00 EDT 2025 Thu Apr 24 22:58:59 EDT 2025 Wed Sep 11 04:48:10 EDT 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Keywords | birthweight UK Biobank Structural equation model maternal effects fetal effects |
Language | English |
License | This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited. http://creativecommons.org/licenses/by/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c408t-6ee7534c243f168c327f54542191d4740e31313e84ce1a65bb4453ee1a7919283 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
OpenAccessLink | https://dx.doi.org/10.1093/ije/dyy015 |
PMID | 29447406 |
PQID | 2003035338 |
PQPubID | 23479 |
PageCount | 13 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_6124616 proquest_miscellaneous_2003035338 pubmed_primary_29447406 crossref_citationtrail_10_1093_ije_dyy015 crossref_primary_10_1093_ije_dyy015 oup_primary_10_1093_ije_dyy015 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2018-08-01 |
PublicationDateYYYYMMDD | 2018-08-01 |
PublicationDate_xml | – month: 08 year: 2018 text: 2018-08-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | England |
PublicationPlace_xml | – name: England |
PublicationTitle | International journal of epidemiology |
PublicationTitleAlternate | Int J Epidemiol |
PublicationYear | 2018 |
Publisher | Oxford University Press |
Publisher_xml | – name: Oxford University Press |
References | Bollen ( key 20180905115348_dyy015-B18) 1989 Pierce ( key 20180905115348_dyy015-B9) 2012; 41 Ounsted ( key 20180905115348_dyy015-B11) 1986; 13 Lunde ( key 20180905115348_dyy015-B4) 2007; 165 Allen ( key 20180905115348_dyy015-B7) 2014; 6 Hattersley ( key 20180905115348_dyy015-B8) 1998; 19 Hill ( key 20180905115348_dyy015-B16) 2008; 4 Horikoshi ( key 20180905115348_dyy015-B6) 2016; 538 van der Valk ( key 20180905115348_dyy015-B12) 2015; 24 Beaumont ( key 20180905115348_dyy015-B19) 2017; 17 Barker ( key 20180905115348_dyy015-B1) 1993; 36 Little ( key 20180905115348_dyy015-B10) 1987 Magnus ( key 20180905115348_dyy015-B2) 1984; 25 St Pourcain ( key 20180905115348_dyy015-B15) 2014; 5 Taal ( key 20180905115348_dyy015-B13) 2012; 44 Magnus ( key 20180905115348_dyy015-B3) 1984; 26 Eaves ( key 20180905115348_dyy015-B5) 2014; 44 Verhulst ( key 20180905115348_dyy015-B17) 2017; 47 Warrington ( key 20180905115348_dyy015-B14) 2017 |
References_xml | – volume: 5 start-page: 4831 year: 2014 ident: key 20180905115348_dyy015-B15 article-title: Common variation near ROBO2 is associated with expressive vocabulary in infancy publication-title: Nat Commun doi: 10.1038/ncomms5831 – volume: 25 start-page: 15 year: 1984 ident: key 20180905115348_dyy015-B2 article-title: Causes of variation in birth weight: a study of offspring of twins publication-title: Clin Genet doi: 10.1111/j.1399-0004.1984.tb00457.x – volume: 6 start-page: 224ed4 year: 2014 ident: key 20180905115348_dyy015-B7 article-title: UK biobank data: come and get it publication-title: Sci Transl Med doi: 10.1126/scitranslmed.3008601 – volume-title: Statistical Analysis With Missing Data year: 1987 ident: key 20180905115348_dyy015-B10 – volume: 24 start-page: 1155 year: 2015 ident: key 20180905115348_dyy015-B12 article-title: A novel common variant in DCST2 is associated with length in early life and height in adulthood publication-title: Hum Mol Genet doi: 10.1093/hmg/ddu510 – volume: 44 start-page: 532 year: 2012 ident: key 20180905115348_dyy015-B13 article-title: Common variants at 12q15 and 12q24 are associated with infant head circumference publication-title: Nat Genet doi: 10.1038/ng.2238 – volume-title: Structural Equations With Latent Variables year: 1989 ident: key 20180905115348_dyy015-B18 doi: 10.1002/9781118619179 – volume: 4 start-page: e1000008 year: 2008 ident: key 20180905115348_dyy015-B16 article-title: Data and theory point to mainly additive genetic variance for complex traits publication-title: PLoS Genet doi: 10.1371/journal.pgen.1000008 – volume: 165 start-page: 734 year: 2007 ident: key 20180905115348_dyy015-B4 article-title: Genetic and environmental influences on birth weight, birth length, head circumference, and gestational age by use of population-based parent-offspring data publication-title: Am J Epidemiol doi: 10.1093/aje/kwk107 – volume: 13 start-page: 143 year: 1986 ident: key 20180905115348_dyy015-B11 article-title: Transmission through the female line of a mechanism constraining human fetal growth publication-title: Ann Hum Biol doi: 10.1080/03014468600008281 – volume: 538 start-page: 248 year: 2016 ident: key 20180905115348_dyy015-B6 article-title: Genome-wide associations for birth weight and correlations with adult disease publication-title: Nature doi: 10.1038/nature19806 – volume: 47 start-page: 345 year: 2017 ident: key 20180905115348_dyy015-B17 article-title: GW-SEM: A statistical package to conduct Genome-Wide Structural Equation Modeling publication-title: Behav Genet doi: 10.1007/s10519-017-9842-6 – volume: 36 start-page: 62 year: 1993 ident: key 20180905115348_dyy015-B1 article-title: Type 2 (non-insulin-dependent) diabetes mellitus, hypertension and hyperlipidaemia (syndrome X): relation to reduced fetal growth publication-title: Diabetologia doi: 10.1007/BF00399095 – volume: 19 start-page: 268 year: 1998 ident: key 20180905115348_dyy015-B8 article-title: Mutations in the glucokinase gene of the fetus result in reduced birth weight publication-title: Nat Genet doi: 10.1038/953 – volume: 41 start-page: 1383 year: 2012 ident: key 20180905115348_dyy015-B9 article-title: The effect of non-differential measurement error on bias, precision and power in Mendelian randomization studies publication-title: Int J Epidemiol doi: 10.1093/ije/dys141 – volume: 17 start-page: 22 year: 2017 ident: key 20180905115348_dyy015-B19 article-title: How can genetic studies help us to understand links between birth weight and type 2 diabetes? publication-title: Curr Diabetes Rep doi: 10.1007/s11892-017-0852-9 – volume: 26 start-page: 289 year: 1984 ident: key 20180905115348_dyy015-B3 article-title: Further evidence for a significant effect of fetal genes on variation in birth weight publication-title: Clin Genet doi: 10.1111/j.1399-0004.1984.tb01061.x – year: 2017 ident: key 20180905115348_dyy015-B14 article-title: Maternal and fetal genetic contribution to gestational weight gain publication-title: Int J Obes (Lond) – volume: 44 start-page: 445 year: 2014 ident: key 20180905115348_dyy015-B5 article-title: Resolving the effects of maternal and offspring genotype on dyadic outcomes in genome wide complex trait analysis (‘M-GCTA’) publication-title: Behav Genet doi: 10.1007/s10519-014-9666-6 |
SSID | ssj0014449 |
Score | 2.5256555 |
Snippet | Abstract
Background
To date, 60 genetic variants have been robustly associated with birthweight. It is unclear whether these associations represent the effect... To date, 60 genetic variants have been robustly associated with birthweight. It is unclear whether these associations represent the effect of an individual's... |
SourceID | pubmedcentral proquest pubmed crossref oup |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 1229 |
SubjectTerms | Biological Specimen Banks Birth Weight Female Humans Latent Class Analysis Maternal Inheritance Methods Phenotype Polymorphism, Single Nucleotide Pregnancy Regression Analysis United Kingdom |
Title | Using structural equation modelling to jointly estimate maternal and fetal effects on birthweight in the UK Biobank |
URI | https://www.ncbi.nlm.nih.gov/pubmed/29447406 https://www.proquest.com/docview/2003035338 https://pubmed.ncbi.nlm.nih.gov/PMC6124616 |
Volume | 47 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV1LS8QwEA7iQQQRXV_rY4noxUOxaaZpe1RRVkW9uLC30manWF2yytbD_nsnTXexIkqhFDrpa9LMl8zMN4ydisCXEBW-h2RtPShogpILkXgE7XWAoyzXmfXoPjyq_gDuhuGwCaKZ_uLCT-R5-Yrno9nMr1PJyfra3vz8NFz4CgAcyJW-74VRJOYkpK2mLbPTSmX7hih_BkZ-szQ3G2y9gYj8wul0ky2h6bCVh8YJ3mFrbqmNuwyiLTat3f7cMcFaFg2OH47Am9d1bmzCOa8m_HVSmmo845ZXg3Aqcrurb5WZES-wsi1deAentnlpC63XK6e8NJyAIh_c88uSBgDzts0GN9fPV32vqaXgafDjylOINDEBHYAshIq1DKKCwBPQgCVGEIGPUtCGMWgUmQrzHCCUSMdRQiAwljts2UwM7jGeKR1iFidAsuAXYQKW0ysOlZa5KvKky87mnzrVDdG4rXcxTp3DW6akltSppctOFrLvjl7jV6keaexPgeO5MlP6PazPIzM4-ZzaKptkpAnTxl2265S7uE6QgH1z1WVRS-0LAUu93T5jypeagptwISih9v97sAO2SggrdhGDh2yZegIeEYqp8h7h99v7Xt2VvwA1gfKY |
linkProvider | Oxford University Press |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Using+structural+equation+modelling+to+jointly+estimate+maternal+and+fetal+effects+on+birthweight+in+the+UK+Biobank&rft.jtitle=International+journal+of+epidemiology&rft.au=Warrington%2C+Nicole+M&rft.au=Freathy%2C+Rachel+M&rft.au=Neale%2C+Michael+C&rft.au=Evans%2C+David+M&rft.date=2018-08-01&rft.pub=Oxford+University+Press&rft.issn=0300-5771&rft.eissn=1464-3685&rft.volume=47&rft.issue=4&rft.spage=1229&rft.epage=1241&rft_id=info:doi/10.1093%2Fije%2Fdyy015&rft.externalDocID=10.1093%2Fije%2Fdyy015 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0300-5771&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0300-5771&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0300-5771&client=summon |