Using structural equation modelling to jointly estimate maternal and fetal effects on birthweight in the UK Biobank

Abstract Background To date, 60 genetic variants have been robustly associated with birthweight. It is unclear whether these associations represent the effect of an individual’s own genotype on their birthweight, their mother’s genotype, or both. Methods We demonstrate how structural equation modell...

Full description

Saved in:
Bibliographic Details
Published inInternational journal of epidemiology Vol. 47; no. 4; pp. 1229 - 1241
Main Authors Warrington, Nicole M, Freathy, Rachel M, Neale, Michael C, Evans, David M
Format Journal Article
LanguageEnglish
Published England Oxford University Press 01.08.2018
Subjects
Online AccessGet full text
ISSN0300-5771
1464-3685
1464-3685
DOI10.1093/ije/dyy015

Cover

Abstract Abstract Background To date, 60 genetic variants have been robustly associated with birthweight. It is unclear whether these associations represent the effect of an individual’s own genotype on their birthweight, their mother’s genotype, or both. Methods We demonstrate how structural equation modelling (SEM) can be used to estimate both maternal and fetal effects when phenotype information is present for individuals in two generations and genotype information is available on the older individual. We conduct an extensive simulation study to assess the bias, power and type 1 error rates of the SEM and also apply the SEM to birthweight data in the UK Biobank study. Results Unlike simple regression models, our approach is unbiased when there is both a maternal and a fetal effect. The method can be used when either the individual’s own phenotype or the phenotype of their offspring is not available, and allows the inclusion of summary statistics from additional cohorts where raw data cannot be shared. We show that the type 1 error rate of the method is appropriate, and that there is substantial statistical power to detect a genetic variant that has a moderate effect on the phenotype and reasonable power to detect whether it is a fetal and/or a maternal effect. We also identify a subset of birthweight-associated single nucleotide polymorphisms (SNPs) that have opposing maternal and fetal effects in the UK Biobank. Conclusions Our results show that SEM can be used to estimate parameters that would be difficult to quantify using simple statistical methods alone.
AbstractList Abstract Background To date, 60 genetic variants have been robustly associated with birthweight. It is unclear whether these associations represent the effect of an individual’s own genotype on their birthweight, their mother’s genotype, or both. Methods We demonstrate how structural equation modelling (SEM) can be used to estimate both maternal and fetal effects when phenotype information is present for individuals in two generations and genotype information is available on the older individual. We conduct an extensive simulation study to assess the bias, power and type 1 error rates of the SEM and also apply the SEM to birthweight data in the UK Biobank study. Results Unlike simple regression models, our approach is unbiased when there is both a maternal and a fetal effect. The method can be used when either the individual’s own phenotype or the phenotype of their offspring is not available, and allows the inclusion of summary statistics from additional cohorts where raw data cannot be shared. We show that the type 1 error rate of the method is appropriate, and that there is substantial statistical power to detect a genetic variant that has a moderate effect on the phenotype and reasonable power to detect whether it is a fetal and/or a maternal effect. We also identify a subset of birthweight-associated single nucleotide polymorphisms (SNPs) that have opposing maternal and fetal effects in the UK Biobank. Conclusions Our results show that SEM can be used to estimate parameters that would be difficult to quantify using simple statistical methods alone.
To date, 60 genetic variants have been robustly associated with birthweight. It is unclear whether these associations represent the effect of an individual's own genotype on their birthweight, their mother's genotype, or both.BackgroundTo date, 60 genetic variants have been robustly associated with birthweight. It is unclear whether these associations represent the effect of an individual's own genotype on their birthweight, their mother's genotype, or both.We demonstrate how structural equation modelling (SEM) can be used to estimate both maternal and fetal effects when phenotype information is present for individuals in two generations and genotype information is available on the older individual. We conduct an extensive simulation study to assess the bias, power and type 1 error rates of the SEM and also apply the SEM to birthweight data in the UK Biobank study.MethodsWe demonstrate how structural equation modelling (SEM) can be used to estimate both maternal and fetal effects when phenotype information is present for individuals in two generations and genotype information is available on the older individual. We conduct an extensive simulation study to assess the bias, power and type 1 error rates of the SEM and also apply the SEM to birthweight data in the UK Biobank study.Unlike simple regression models, our approach is unbiased when there is both a maternal and a fetal effect. The method can be used when either the individual's own phenotype or the phenotype of their offspring is not available, and allows the inclusion of summary statistics from additional cohorts where raw data cannot be shared. We show that the type 1 error rate of the method is appropriate, and that there is substantial statistical power to detect a genetic variant that has a moderate effect on the phenotype and reasonable power to detect whether it is a fetal and/or a maternal effect. We also identify a subset of birthweight-associated single nucleotide polymorphisms (SNPs) that have opposing maternal and fetal effects in the UK Biobank.ResultsUnlike simple regression models, our approach is unbiased when there is both a maternal and a fetal effect. The method can be used when either the individual's own phenotype or the phenotype of their offspring is not available, and allows the inclusion of summary statistics from additional cohorts where raw data cannot be shared. We show that the type 1 error rate of the method is appropriate, and that there is substantial statistical power to detect a genetic variant that has a moderate effect on the phenotype and reasonable power to detect whether it is a fetal and/or a maternal effect. We also identify a subset of birthweight-associated single nucleotide polymorphisms (SNPs) that have opposing maternal and fetal effects in the UK Biobank.Our results show that SEM can be used to estimate parameters that would be difficult to quantify using simple statistical methods alone.ConclusionsOur results show that SEM can be used to estimate parameters that would be difficult to quantify using simple statistical methods alone.
To date, 60 genetic variants have been robustly associated with birthweight. It is unclear whether these associations represent the effect of an individual's own genotype on their birthweight, their mother's genotype, or both. We demonstrate how structural equation modelling (SEM) can be used to estimate both maternal and fetal effects when phenotype information is present for individuals in two generations and genotype information is available on the older individual. We conduct an extensive simulation study to assess the bias, power and type 1 error rates of the SEM and also apply the SEM to birthweight data in the UK Biobank study. Unlike simple regression models, our approach is unbiased when there is both a maternal and a fetal effect. The method can be used when either the individual's own phenotype or the phenotype of their offspring is not available, and allows the inclusion of summary statistics from additional cohorts where raw data cannot be shared. We show that the type 1 error rate of the method is appropriate, and that there is substantial statistical power to detect a genetic variant that has a moderate effect on the phenotype and reasonable power to detect whether it is a fetal and/or a maternal effect. We also identify a subset of birthweight-associated single nucleotide polymorphisms (SNPs) that have opposing maternal and fetal effects in the UK Biobank. Our results show that SEM can be used to estimate parameters that would be difficult to quantify using simple statistical methods alone.
Author Evans, David M
Warrington, Nicole M
Freathy, Rachel M
Neale, Michael C
AuthorAffiliation 2 Institute of Biomedical and Clinical Science, University of Exeter Medical School, University of Exeter, Royal Devon and Exeter Hospital, Exeter, UK
1 University of Queensland Diamantina Institute, The University of Queensland, Translational Research Institute, Brisbane, QLD, Australia
4 Virginia Institute for Psychiatric and Behavioral Genetics, Departments of Psychiatry and Human & Molecular Genetics, Virginia Commonwealth University, Richmond, VA, USA
3 Medical Research Council Integrative Epidemiology Unit, University of Bristol, Bristol, UK
5 School of Social and Community Medicine, University of Bristol, Bristol, UK
AuthorAffiliation_xml – name: 1 University of Queensland Diamantina Institute, The University of Queensland, Translational Research Institute, Brisbane, QLD, Australia
– name: 3 Medical Research Council Integrative Epidemiology Unit, University of Bristol, Bristol, UK
– name: 4 Virginia Institute for Psychiatric and Behavioral Genetics, Departments of Psychiatry and Human & Molecular Genetics, Virginia Commonwealth University, Richmond, VA, USA
– name: 5 School of Social and Community Medicine, University of Bristol, Bristol, UK
– name: 2 Institute of Biomedical and Clinical Science, University of Exeter Medical School, University of Exeter, Royal Devon and Exeter Hospital, Exeter, UK
Author_xml – sequence: 1
  givenname: Nicole M
  surname: Warrington
  fullname: Warrington, Nicole M
  organization: University of Queensland Diamantina Institute, The University of Queensland, Translational Research Institute, Brisbane, QLD, Australia
– sequence: 2
  givenname: Rachel M
  surname: Freathy
  fullname: Freathy, Rachel M
  organization: Institute of Biomedical and Clinical Science, University of Exeter Medical School, University of Exeter, Royal Devon and Exeter Hospital, Exeter, UK
– sequence: 3
  givenname: Michael C
  surname: Neale
  fullname: Neale, Michael C
  organization: Virginia Institute for Psychiatric and Behavioral Genetics, Departments of Psychiatry and Human & Molecular Genetics, Virginia Commonwealth University, Richmond, VA, USA
– sequence: 4
  givenname: David M
  surname: Evans
  fullname: Evans, David M
  email: dave.evans@bristol.ac.uk
  organization: University of Queensland Diamantina Institute, The University of Queensland, Translational Research Institute, Brisbane, QLD, Australia
BackLink https://www.ncbi.nlm.nih.gov/pubmed/29447406$$D View this record in MEDLINE/PubMed
BookMark eNp9UVtLHDEUDkWpq_WlP6DkRSiFqcnkMjMvghXbioIv3eeQyZzZzTqbrEmmZf-9ma5KLSKB5MD5LjnfOUR7zjtA6CMlXylp2KldwWm33RIq3qEZ5ZIXTNZiD80II6QQVUUP0GGMK0Io57x5jw7KhvOKEzlDcR6tW-CYwmjSGPSA4X7UyXqH176DYZi6yeOVty4NWwwx2bVOgKcruIzXrsM9pInZ92BSxJnb2pCWf8Aulglbh9MS8Pwaf7O-1e7uA9rv9RDh-PE9QvPvl78ufhY3tz-uLs5vCsNJnQoJUAnGTclZT2VtWFn1ggte0oZ20_eB0Xyg5gaolqJtORcMcl01tClrdoTOdrqbsV1DZ8ClPKDahDxB2CqvrXrZcXapFv63krTkksos8PlRIPj7MY-u1jaaHIp24MeoSpITZoKxyevTv17PJk9JZwDZAUzwMQbolbHpb9DZ2g6KEjUtU-Vlqt0yM-XLf5Qn1VfBJzuwHzdv4R4ApIuvzw
CitedBy_id crossref_primary_10_1038_s41588_021_00902_2
crossref_primary_10_1093_hmg_ddab356
crossref_primary_10_1002_gepi_22138
crossref_primary_10_3389_fnins_2020_00479
crossref_primary_10_1093_eurheartj_ehad631
crossref_primary_10_1093_ije_dyaa013
crossref_primary_10_1161_CIRCGEN_119_002553
crossref_primary_10_1371_journal_pone_0234488
crossref_primary_10_1093_ije_dyaa256
crossref_primary_10_1093_hmg_ddaa149
crossref_primary_10_1136_bjophthalmol_2018_313640
crossref_primary_10_1017_S2040174420001105
crossref_primary_10_1093_ije_dyz019
crossref_primary_10_1186_s12884_024_06250_3
crossref_primary_10_1371_journal_pgen_1011575
crossref_primary_10_1111_ppe_12691
crossref_primary_10_1038_s41588_019_0403_1
crossref_primary_10_1093_ije_dyz250
crossref_primary_10_1101_cshperspect_a039503
crossref_primary_10_7554_eLife_73671
crossref_primary_10_4102_sajesbm_v14i1_453
crossref_primary_10_1093_hmg_ddaa074
crossref_primary_10_1007_s00125_021_05386_7
crossref_primary_10_1093_humrep_deae019
crossref_primary_10_1371_journal_pgen_1009883
crossref_primary_10_1007_s10654_019_00502_9
crossref_primary_10_1210_clinem_dgae455
crossref_primary_10_1017_S0954579422000761
crossref_primary_10_1016_j_clp_2024_02_010
crossref_primary_10_1007_s10519_018_9944_9
crossref_primary_10_1016_j_ebiom_2023_104441
crossref_primary_10_1007_s10519_020_10040_w
crossref_primary_10_1101_cshperspect_a039248
crossref_primary_10_1016_j_ssmph_2023_101587
crossref_primary_10_1093_ije_dyae036
crossref_primary_10_1097_HJH_0000000000003707
crossref_primary_10_1038_s41467_021_25723_z
crossref_primary_10_1007_s10519_020_10008_w
crossref_primary_10_1371_journal_pgen_1010620
crossref_primary_10_2139_ssrn_3927054
crossref_primary_10_1038_s41588_021_00896_x
crossref_primary_10_1093_ije_dyad142
crossref_primary_10_1007_s10519_019_09969_4
crossref_primary_10_1038_s41467_022_32003_x
crossref_primary_10_1007_s10654_023_01032_1
crossref_primary_10_1038_s41588_022_01062_7
crossref_primary_10_1038_s41467_024_53495_9
crossref_primary_10_1001_jamapsychiatry_2023_3872
crossref_primary_10_1007_s10519_020_10032_w
crossref_primary_10_1007_s10519_022_10116_9
crossref_primary_10_1017_S2040174421000350
crossref_primary_10_1007_s10519_020_10033_9
crossref_primary_10_1007_s10519_020_10035_7
crossref_primary_10_3389_fgene_2019_00618
crossref_primary_10_1371_journal_pgen_1009154
crossref_primary_10_1038_s41467_020_17117_4
crossref_primary_10_1192_bjp_2021_15
crossref_primary_10_1210_clinem_dgad308
crossref_primary_10_1093_ije_dyac186
crossref_primary_10_1093_ije_dyad034
crossref_primary_10_1002_jbmr_4316
crossref_primary_10_1016_j_biopsych_2020_01_006
crossref_primary_10_7554_eLife_43990
crossref_primary_10_1007_s00125_021_05570_9
crossref_primary_10_1093_ije_dyz160
Cites_doi 10.1038/ncomms5831
10.1111/j.1399-0004.1984.tb00457.x
10.1126/scitranslmed.3008601
10.1093/hmg/ddu510
10.1038/ng.2238
10.1002/9781118619179
10.1371/journal.pgen.1000008
10.1093/aje/kwk107
10.1080/03014468600008281
10.1038/nature19806
10.1007/s10519-017-9842-6
10.1007/BF00399095
10.1038/953
10.1093/ije/dys141
10.1007/s11892-017-0852-9
10.1111/j.1399-0004.1984.tb01061.x
10.1007/s10519-014-9666-6
ContentType Journal Article
Copyright The Author(s) 2018. Published by Oxford University Press on behalf of the International Epidemiological Association. 2018
Copyright_xml – notice: The Author(s) 2018. Published by Oxford University Press on behalf of the International Epidemiological Association. 2018
DBID TOX
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
DOI 10.1093/ije/dyy015
DatabaseName Oxford Journals Open Access Collection
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic
MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: TOX
  name: Oxford Journals Open Access Collection
  url: https://academic.oup.com/journals/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Public Health
EISSN 1464-3685
EndPage 1241
ExternalDocumentID PMC6124616
29447406
10_1093_ije_dyy015
10.1093/ije/dyy015
Genre Research Support, Non-U.S. Gov't
Journal Article
GeographicLocations United Kingdom
GeographicLocations_xml – name: United Kingdom
GrantInformation_xml – fundername: University of Queensland Early Career Researcher Grant
  grantid: 2014002959
– fundername: Medical Research Council programme grant
  grantid: MC_UU_12013/4
– fundername: National Health and Medical Research Council Early Career Fellowship
  grantid: APP1104818
– fundername: Australian Research Council Future Fellowship
  grantid: FT130101709
– fundername: Wellcome Trust
  grantid: 104150
– fundername: Medical Research Council
  grantid: MC_UU_12013/4
– fundername: Medical Research Council
  grantid: MC_PC_17228
– fundername: Medical Research Council
  grantid: MC_QA137853
– fundername: ;
  grantid: 2014002959
– fundername: ;
  grantid: MC_UU_12013/4
– fundername: ;
  grantid: APP1104818
– fundername: ;
  grantid: FT130101709
GroupedDBID ---
-E4
.2P
.I3
.ZR
0R~
18M
1TH
29J
2WC
4.4
482
48X
53G
5GY
5RE
5VS
5WA
5WD
70D
A8Z
AABZA
AACZT
AAJKP
AAJQQ
AAMVS
AAOGV
AAPNW
AAPQZ
AAPXW
AARHZ
AASNB
AAUAY
AAUQX
AAVAP
ABEHJ
ABEUO
ABIXL
ABJNI
ABKDP
ABNHQ
ABNKS
ABOCM
ABPTD
ABQLI
ABWST
ABXVV
ABYLZ
ABZBJ
ACGFO
ACGFS
ACIWK
ACPRK
ACUFI
ACUTJ
ACUTO
ACVHY
ADBBV
ADEYI
ADEZT
ADGZP
ADHKW
ADHZD
ADIPN
ADJQC
ADOCK
ADQBN
ADRIX
ADRTK
ADVEK
ADYVW
ADZXQ
AEGPL
AEGXH
AEJOX
AEKSI
AEMDU
AENEX
AENZO
AEPUE
AETBJ
AEWNT
AFFZL
AFIYH
AFOFC
AFRAH
AFXEN
AGINJ
AGKEF
AGQXC
AGSYK
AHMBA
AHXPO
AIAGR
AIJHB
AJEEA
ALMA_UNASSIGNED_HOLDINGS
ALUQC
APIBT
APWMN
ATGXG
AXUDD
BAWUL
BAYMD
BCRHZ
BEYMZ
BHONS
BTRTY
BVRKM
BWUDY
C45
CDBKE
CNZYI
CS3
CZ4
DAKXR
DIK
DILTD
DU5
D~K
E3Z
EBD
EBS
EE~
EJD
EMOBN
ESTFP
F5P
F9B
FLUFQ
FOEOM
FOTVD
FQBLK
FRP
FTKQU
GAUVT
GJXCC
GX1
H13
H5~
HAR
HW0
HZ~
IH2
IOX
J21
KAQDR
KBUDW
KOP
KQ8
KSI
KSN
L7B
M-Z
M49
N9A
NGC
NOMLY
NOYVH
NPJNY
NU-
O9-
OAWHX
OBS
OCZFY
ODMLO
OHH
OJQWA
OJZSN
OK1
OPAEJ
OVD
OWPYF
P2P
PAFKI
PEELM
PQQKQ
Q1.
Q5Y
R44
RD5
RIG
ROL
ROX
ROZ
RUSNO
RW1
RXO
SV3
TEORI
TJX
TOX
TR2
W2D
W8F
WH7
WOQ
X7H
YAYTL
YKOAZ
YSK
YXANX
ZKX
~91
AAYXX
ABDFA
ABEJV
ABGNP
ABPQP
ABVGC
ADNBA
AFCKW
AGORE
AGQZG
AHMMS
AJBYB
AJNCP
ALXQX
AMHCJ
CITATION
JXSIZ
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
ID FETCH-LOGICAL-c408t-6ee7534c243f168c327f54542191d4740e31313e84ce1a65bb4453ee1a7919283
IEDL.DBID TOX
ISSN 0300-5771
1464-3685
IngestDate Thu Aug 21 14:33:57 EDT 2025
Fri Jul 11 05:07:53 EDT 2025
Mon Jul 21 06:05:38 EDT 2025
Tue Jul 01 01:59:00 EDT 2025
Thu Apr 24 22:58:59 EDT 2025
Wed Sep 11 04:48:10 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords birthweight
UK Biobank
Structural equation model
maternal effects
fetal effects
Language English
License This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.
http://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c408t-6ee7534c243f168c327f54542191d4740e31313e84ce1a65bb4453ee1a7919283
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://dx.doi.org/10.1093/ije/dyy015
PMID 29447406
PQID 2003035338
PQPubID 23479
PageCount 13
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_6124616
proquest_miscellaneous_2003035338
pubmed_primary_29447406
crossref_citationtrail_10_1093_ije_dyy015
crossref_primary_10_1093_ije_dyy015
oup_primary_10_1093_ije_dyy015
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2018-08-01
PublicationDateYYYYMMDD 2018-08-01
PublicationDate_xml – month: 08
  year: 2018
  text: 2018-08-01
  day: 01
PublicationDecade 2010
PublicationPlace England
PublicationPlace_xml – name: England
PublicationTitle International journal of epidemiology
PublicationTitleAlternate Int J Epidemiol
PublicationYear 2018
Publisher Oxford University Press
Publisher_xml – name: Oxford University Press
References Bollen ( key 20180905115348_dyy015-B18) 1989
Pierce ( key 20180905115348_dyy015-B9) 2012; 41
Ounsted ( key 20180905115348_dyy015-B11) 1986; 13
Lunde ( key 20180905115348_dyy015-B4) 2007; 165
Allen ( key 20180905115348_dyy015-B7) 2014; 6
Hattersley ( key 20180905115348_dyy015-B8) 1998; 19
Hill ( key 20180905115348_dyy015-B16) 2008; 4
Horikoshi ( key 20180905115348_dyy015-B6) 2016; 538
van der Valk ( key 20180905115348_dyy015-B12) 2015; 24
Beaumont ( key 20180905115348_dyy015-B19) 2017; 17
Barker ( key 20180905115348_dyy015-B1) 1993; 36
Little ( key 20180905115348_dyy015-B10) 1987
Magnus ( key 20180905115348_dyy015-B2) 1984; 25
St Pourcain ( key 20180905115348_dyy015-B15) 2014; 5
Taal ( key 20180905115348_dyy015-B13) 2012; 44
Magnus ( key 20180905115348_dyy015-B3) 1984; 26
Eaves ( key 20180905115348_dyy015-B5) 2014; 44
Verhulst ( key 20180905115348_dyy015-B17) 2017; 47
Warrington ( key 20180905115348_dyy015-B14) 2017
References_xml – volume: 5
  start-page: 4831
  year: 2014
  ident: key 20180905115348_dyy015-B15
  article-title: Common variation near ROBO2 is associated with expressive vocabulary in infancy
  publication-title: Nat Commun
  doi: 10.1038/ncomms5831
– volume: 25
  start-page: 15
  year: 1984
  ident: key 20180905115348_dyy015-B2
  article-title: Causes of variation in birth weight: a study of offspring of twins
  publication-title: Clin Genet
  doi: 10.1111/j.1399-0004.1984.tb00457.x
– volume: 6
  start-page: 224ed4
  year: 2014
  ident: key 20180905115348_dyy015-B7
  article-title: UK biobank data: come and get it
  publication-title: Sci Transl Med
  doi: 10.1126/scitranslmed.3008601
– volume-title: Statistical Analysis With Missing Data
  year: 1987
  ident: key 20180905115348_dyy015-B10
– volume: 24
  start-page: 1155
  year: 2015
  ident: key 20180905115348_dyy015-B12
  article-title: A novel common variant in DCST2 is associated with length in early life and height in adulthood
  publication-title: Hum Mol Genet
  doi: 10.1093/hmg/ddu510
– volume: 44
  start-page: 532
  year: 2012
  ident: key 20180905115348_dyy015-B13
  article-title: Common variants at 12q15 and 12q24 are associated with infant head circumference
  publication-title: Nat Genet
  doi: 10.1038/ng.2238
– volume-title: Structural Equations With Latent Variables
  year: 1989
  ident: key 20180905115348_dyy015-B18
  doi: 10.1002/9781118619179
– volume: 4
  start-page: e1000008
  year: 2008
  ident: key 20180905115348_dyy015-B16
  article-title: Data and theory point to mainly additive genetic variance for complex traits
  publication-title: PLoS Genet
  doi: 10.1371/journal.pgen.1000008
– volume: 165
  start-page: 734
  year: 2007
  ident: key 20180905115348_dyy015-B4
  article-title: Genetic and environmental influences on birth weight, birth length, head circumference, and gestational age by use of population-based parent-offspring data
  publication-title: Am J Epidemiol
  doi: 10.1093/aje/kwk107
– volume: 13
  start-page: 143
  year: 1986
  ident: key 20180905115348_dyy015-B11
  article-title: Transmission through the female line of a mechanism constraining human fetal growth
  publication-title: Ann Hum Biol
  doi: 10.1080/03014468600008281
– volume: 538
  start-page: 248
  year: 2016
  ident: key 20180905115348_dyy015-B6
  article-title: Genome-wide associations for birth weight and correlations with adult disease
  publication-title: Nature
  doi: 10.1038/nature19806
– volume: 47
  start-page: 345
  year: 2017
  ident: key 20180905115348_dyy015-B17
  article-title: GW-SEM: A statistical package to conduct Genome-Wide Structural Equation Modeling
  publication-title: Behav Genet
  doi: 10.1007/s10519-017-9842-6
– volume: 36
  start-page: 62
  year: 1993
  ident: key 20180905115348_dyy015-B1
  article-title: Type 2 (non-insulin-dependent) diabetes mellitus, hypertension and hyperlipidaemia (syndrome X): relation to reduced fetal growth
  publication-title: Diabetologia
  doi: 10.1007/BF00399095
– volume: 19
  start-page: 268
  year: 1998
  ident: key 20180905115348_dyy015-B8
  article-title: Mutations in the glucokinase gene of the fetus result in reduced birth weight
  publication-title: Nat Genet
  doi: 10.1038/953
– volume: 41
  start-page: 1383
  year: 2012
  ident: key 20180905115348_dyy015-B9
  article-title: The effect of non-differential measurement error on bias, precision and power in Mendelian randomization studies
  publication-title: Int J Epidemiol
  doi: 10.1093/ije/dys141
– volume: 17
  start-page: 22
  year: 2017
  ident: key 20180905115348_dyy015-B19
  article-title: How can genetic studies help us to understand links between birth weight and type 2 diabetes?
  publication-title: Curr Diabetes Rep
  doi: 10.1007/s11892-017-0852-9
– volume: 26
  start-page: 289
  year: 1984
  ident: key 20180905115348_dyy015-B3
  article-title: Further evidence for a significant effect of fetal genes on variation in birth weight
  publication-title: Clin Genet
  doi: 10.1111/j.1399-0004.1984.tb01061.x
– year: 2017
  ident: key 20180905115348_dyy015-B14
  article-title: Maternal and fetal genetic contribution to gestational weight gain
  publication-title: Int J Obes (Lond)
– volume: 44
  start-page: 445
  year: 2014
  ident: key 20180905115348_dyy015-B5
  article-title: Resolving the effects of maternal and offspring genotype on dyadic outcomes in genome wide complex trait analysis (‘M-GCTA’)
  publication-title: Behav Genet
  doi: 10.1007/s10519-014-9666-6
SSID ssj0014449
Score 2.5256555
Snippet Abstract Background To date, 60 genetic variants have been robustly associated with birthweight. It is unclear whether these associations represent the effect...
To date, 60 genetic variants have been robustly associated with birthweight. It is unclear whether these associations represent the effect of an individual's...
SourceID pubmedcentral
proquest
pubmed
crossref
oup
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1229
SubjectTerms Biological Specimen Banks
Birth Weight
Female
Humans
Latent Class Analysis
Maternal Inheritance
Methods
Phenotype
Polymorphism, Single Nucleotide
Pregnancy
Regression Analysis
United Kingdom
Title Using structural equation modelling to jointly estimate maternal and fetal effects on birthweight in the UK Biobank
URI https://www.ncbi.nlm.nih.gov/pubmed/29447406
https://www.proquest.com/docview/2003035338
https://pubmed.ncbi.nlm.nih.gov/PMC6124616
Volume 47
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV1LS8QwEA7iQQQRXV_rY4noxUOxaaZpe1RRVkW9uLC30manWF2yytbD_nsnTXexIkqhFDrpa9LMl8zMN4ydisCXEBW-h2RtPShogpILkXgE7XWAoyzXmfXoPjyq_gDuhuGwCaKZ_uLCT-R5-Yrno9nMr1PJyfra3vz8NFz4CgAcyJW-74VRJOYkpK2mLbPTSmX7hih_BkZ-szQ3G2y9gYj8wul0ky2h6bCVh8YJ3mFrbqmNuwyiLTat3f7cMcFaFg2OH47Am9d1bmzCOa8m_HVSmmo845ZXg3Aqcrurb5WZES-wsi1deAentnlpC63XK6e8NJyAIh_c88uSBgDzts0GN9fPV32vqaXgafDjylOINDEBHYAshIq1DKKCwBPQgCVGEIGPUtCGMWgUmQrzHCCUSMdRQiAwljts2UwM7jGeKR1iFidAsuAXYQKW0ysOlZa5KvKky87mnzrVDdG4rXcxTp3DW6akltSppctOFrLvjl7jV6keaexPgeO5MlP6PazPIzM4-ZzaKptkpAnTxl2265S7uE6QgH1z1WVRS-0LAUu93T5jypeagptwISih9v97sAO2SggrdhGDh2yZegIeEYqp8h7h99v7Xt2VvwA1gfKY
linkProvider Oxford University Press
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Using+structural+equation+modelling+to+jointly+estimate+maternal+and+fetal+effects+on+birthweight+in+the+UK+Biobank&rft.jtitle=International+journal+of+epidemiology&rft.au=Warrington%2C+Nicole+M&rft.au=Freathy%2C+Rachel+M&rft.au=Neale%2C+Michael+C&rft.au=Evans%2C+David+M&rft.date=2018-08-01&rft.pub=Oxford+University+Press&rft.issn=0300-5771&rft.eissn=1464-3685&rft.volume=47&rft.issue=4&rft.spage=1229&rft.epage=1241&rft_id=info:doi/10.1093%2Fije%2Fdyy015&rft.externalDocID=10.1093%2Fije%2Fdyy015
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0300-5771&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0300-5771&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0300-5771&client=summon