Alkanes as working fluids for high-temperature exhaust heat recovery of diesel engine using organic Rankine cycle
•Less complex fluids are preferred due to their excellent performances.•The cyclic Alkanes are considered as the most promising candidate.•Maximum improvement of 10% in BSFC is obtained by DE-ORC combined systems.•Alkane-based ORCs may be more attractive than steam cycle for exhaust heat recovery. S...
Saved in:
Published in | Applied energy Vol. 119; pp. 204 - 217 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Kidlington
Elsevier Ltd
15.04.2014
Elsevier |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | •Less complex fluids are preferred due to their excellent performances.•The cyclic Alkanes are considered as the most promising candidate.•Maximum improvement of 10% in BSFC is obtained by DE-ORC combined systems.•Alkane-based ORCs may be more attractive than steam cycle for exhaust heat recovery.
Study on recovering waste heat of engine exhaust gas using organic Rankine cycle (ORC) has continuously increased in recent years. However, it is difficult to find out appropriate working fluids to match with exhaust gas waste heat due to high temperature. In this work, several tentative attempts and explorations are made in selecting Alkanes as working fluid owing to their excellent thermo-physical and environmental characteristics. Parameters optimization of the combined system of diesel engine with bottoming ORC (DE-ORC) is performed on Alkane-based working fluids with six indicators, including thermal efficiency (η), exergy destruction factor (EDF), turbine size parameter (SP), total exergy destruction rate (IORC), turbine volume flow ratio (VFR) and net power output per unit mass flow rate of exhaust (Pnet). Afterwards, the impact of molecular complexity on the indicators of VFR and SP is analyzed. Furthermore, the energy distribution of engine exhaust gases and the improvement of fuel economy, after integrating the bottoming ORC with diesel engine, are also discussed. Finally, the performance comparison between Cyclohexane-based ORCandsteam cycle with relative pressure is carriedout. The results show that optimized working fluids are not always constant subject to different indicators and operation parameters. However, cyclic Alkanes, Cyclohexane and Cyclopentane are considered as the most suitable working fluids when taking into account of all comprehensive indicators. The maximum improvement of 10% in brake specific fuel consumption (BSFC) is obtained for DE-ORC combined systems with Cyclohexane used as working fluid. In addition, although steamhasmoreadvantagesin thermal efficiency in the current conditions, from a technical and economic point of view, Alkane-based ORCs may be more attractive than conventional steam cycles, specifically for DE waste gas heat recovery. |
---|---|
AbstractList | Study on recovering waste heat of engine exhaust gas using organic Rankine cycle (ORC) has continuously increased in recent years. However, it is difficult to find out appropriate working fluids to match with exhaust gas waste heat due to high temperature. In this work, several tentative attempts and explorations are made in selecting Alkanes as working fluid owing to their excellent thermo-physical and environmental characteristics. Parameters optimization of the combined system of diesel engine with bottoming ORC (DE-ORC) is performed on Alkane-based working fluids with six indicators, including thermal efficiency ( eta ), exergy destruction factor (EDF), turbine size parameter (SP), total exergy destruction rate (IORC), turbine volume flow ratio (VFR) and net power output per unit mass flow rate of exhaust (Pnet). Afterwards, the impact of molecular complexity on the indicators of VFR and SP is analyzed. Furthermore, the energy distribution of engine exhaust gases and the improvement of fuel economy, after integrating the bottoming ORC with diesel engine, are also discussed. Finally, the performance comparison between Cyclohexane-based ORC and steam cycle with relative pressure is carried out. The results show that optimized working fluids are not always constant subject to different indicators and operation parameters. However, cyclic Alkanes, Cyclohexane and Cyclopentane are considered as the most suitable working fluids when taking into account of all comprehensive indicators. The maximum improvement of 10% in brake specific fuel consumption (BSFC) is obtained for DE-ORC combined systems with Cyclohexane used as working fluid. In addition, although steam has more advantages in thermal efficiency in the current conditions, from a technical and economic point of view, Alkane-based ORCs may be more attractive than conventional steam cycles, specifically for DE waste gas heat recovery. •Less complex fluids are preferred due to their excellent performances.•The cyclic Alkanes are considered as the most promising candidate.•Maximum improvement of 10% in BSFC is obtained by DE-ORC combined systems.•Alkane-based ORCs may be more attractive than steam cycle for exhaust heat recovery. Study on recovering waste heat of engine exhaust gas using organic Rankine cycle (ORC) has continuously increased in recent years. However, it is difficult to find out appropriate working fluids to match with exhaust gas waste heat due to high temperature. In this work, several tentative attempts and explorations are made in selecting Alkanes as working fluid owing to their excellent thermo-physical and environmental characteristics. Parameters optimization of the combined system of diesel engine with bottoming ORC (DE-ORC) is performed on Alkane-based working fluids with six indicators, including thermal efficiency (η), exergy destruction factor (EDF), turbine size parameter (SP), total exergy destruction rate (IORC), turbine volume flow ratio (VFR) and net power output per unit mass flow rate of exhaust (Pnet). Afterwards, the impact of molecular complexity on the indicators of VFR and SP is analyzed. Furthermore, the energy distribution of engine exhaust gases and the improvement of fuel economy, after integrating the bottoming ORC with diesel engine, are also discussed. Finally, the performance comparison between Cyclohexane-based ORCandsteam cycle with relative pressure is carriedout. The results show that optimized working fluids are not always constant subject to different indicators and operation parameters. However, cyclic Alkanes, Cyclohexane and Cyclopentane are considered as the most suitable working fluids when taking into account of all comprehensive indicators. The maximum improvement of 10% in brake specific fuel consumption (BSFC) is obtained for DE-ORC combined systems with Cyclohexane used as working fluid. In addition, although steamhasmoreadvantagesin thermal efficiency in the current conditions, from a technical and economic point of view, Alkane-based ORCs may be more attractive than conventional steam cycles, specifically for DE waste gas heat recovery. Study on recovering waste heat of engine exhaust gas using organic Rankine cycle (ORC) has continuously increased in recent years. However, it is difficult to find out appropriate working fluids to match with exhaust gas waste heat due to high temperature. In this work, several tentative attempts and explorations are made in selecting Alkanes as working fluid owing to their excellent thermo-physical and environmental characteristics. Parameters optimization of the combined system of diesel engine with bottoming ORC (DE-ORC) is performed on Alkane-based working fluids with six indicators, including thermal efficiency (η), exergy destruction factor (EDF), turbine size parameter (SP), total exergy destruction rate (IORC), turbine volume flow ratio (VFR) and net power output per unit mass flow rate of exhaust (Pnet). Afterwards, the impact of molecular complexity on the indicators of VFR and SP is analyzed. Furthermore, the energy distribution of engine exhaust gases and the improvement of fuel economy, after integrating the bottoming ORC with diesel engine, are also discussed. Finally, the performance comparison between Cyclohexane-based ORCandsteam cycle with relative pressure is carriedout. The results show that optimized working fluids are not always constant subject to different indicators and operation parameters. However, cyclic Alkanes, Cyclohexane and Cyclopentane are considered as the most suitable working fluids when taking into account of all comprehensive indicators. The maximum improvement of 10% in brake specific fuel consumption (BSFC) is obtained for DE-ORC combined systems with Cyclohexane used as working fluid. In addition, although steamhasmoreadvantagesin thermal efficiency in the current conditions, from a technical and economic point of view, Alkane-based ORCs may be more attractive than conventional steam cycles, specifically for DE waste gas heat recovery. |
Author | Wei, Haiqiao Shu, Gequn Tian, Hua Wang, Xu Liang, Xingyu Li, Xiaoning |
Author_xml | – sequence: 1 givenname: Gequn surname: Shu fullname: Shu, Gequn organization: State Key Laboratory of Engines, Tianjin University, Weijin Road 92, Nankai District, Tianjin 300072, China – sequence: 2 givenname: Xiaoning surname: Li fullname: Li, Xiaoning organization: State Key Laboratory of Engines, Tianjin University, Weijin Road 92, Nankai District, Tianjin 300072, China – sequence: 3 givenname: Hua surname: Tian fullname: Tian, Hua organization: State Key Laboratory of Engines, Tianjin University, Weijin Road 92, Nankai District, Tianjin 300072, China – sequence: 4 givenname: Xingyu surname: Liang fullname: Liang, Xingyu organization: State Key Laboratory of Engines, Tianjin University, Weijin Road 92, Nankai District, Tianjin 300072, China – sequence: 5 givenname: Haiqiao surname: Wei fullname: Wei, Haiqiao email: whq@tju.edu.cn organization: State Key Laboratory of Engines, Tianjin University, Weijin Road 92, Nankai District, Tianjin 300072, China – sequence: 6 givenname: Xu surname: Wang fullname: Wang, Xu organization: School of Aerospace, Mechanical and Manufacturing Engineering, RMIT University, Australia |
BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=28238985$$DView record in Pascal Francis |
BookMark | eNqFkc1qGzEUhUVIIU7aVyjaFLqZqX5mRhJ00RDSHwgUSrsWQnM1li1LjqRJ67fPGCebbrwSXL5zxL3fNbqMKQJC7ylpKaHDp01r9hAhT4eWEcpbylrSDxdoRaVgjaJUXqIV4WRo2EDVFbouZUMIYZSRFXq8DVsToWBT8N-Utz5O2IXZjwW7lPHaT-umwm4P2dQ5A4Z_azOXitdgKs5g0xPkA04Ojx4KBAxx8hHwXI5FKU8meot_mbg9Tu3BBniL3jgTCrx7eW_Qn6_3v---Nw8_v_24u31obEdkbQYw0oGl3ClrBsfGHoRj4JiwQjIqnHIEhAQquBWE846DUkIIO_Ru2ZPxG_Tx1LvP6XGGUvXOFwshLOumuWi2HI9zxdl5lPas6wiVqlvQDy-oKdYEl020vuh99juTD5pJxqWS_cJ9PnE2p1IyOG19NdWnWLPxQVOij_L0Rr_K00d5mjK9yFviw3_x1x_OBr-cgrCc9slD1sV6iBZGv9iqekz-XMUz2v-7kQ |
CODEN | APENDX |
CitedBy_id | crossref_primary_10_1016_j_applthermaleng_2017_07_164 crossref_primary_10_1016_j_applthermaleng_2020_116210 crossref_primary_10_1016_j_applthermaleng_2021_117028 crossref_primary_10_1016_j_ecmx_2022_100180 crossref_primary_10_1016_j_apenergy_2014_07_007 crossref_primary_10_1016_j_enconman_2021_114843 crossref_primary_10_1016_j_energy_2022_123993 crossref_primary_10_3390_en14185886 crossref_primary_10_1002_er_7515 crossref_primary_10_1016_j_tsep_2021_101158 crossref_primary_10_1016_j_apenergy_2016_04_026 crossref_primary_10_1016_j_enconman_2018_06_011 crossref_primary_10_1016_j_applthermaleng_2015_11_018 crossref_primary_10_1016_j_egypro_2017_12_533 crossref_primary_10_1016_j_energy_2022_125935 crossref_primary_10_3390_su16114495 crossref_primary_10_1016_j_energy_2023_127945 crossref_primary_10_1007_s11431_021_1921_0 crossref_primary_10_1016_j_apenergy_2019_113997 crossref_primary_10_1016_j_applthermaleng_2021_116626 crossref_primary_10_3390_su16051924 crossref_primary_10_1080_01457632_2016_1216938 crossref_primary_10_1016_j_enconman_2017_05_078 crossref_primary_10_1016_j_apenergy_2016_05_053 crossref_primary_10_1016_j_applthermaleng_2015_02_002 crossref_primary_10_1016_j_energy_2016_09_049 crossref_primary_10_1016_j_enconman_2021_114703 crossref_primary_10_1016_j_seta_2021_101457 crossref_primary_10_1016_j_apenergy_2016_12_122 crossref_primary_10_1016_j_energy_2023_127810 crossref_primary_10_1016_j_renene_2017_05_054 crossref_primary_10_1016_j_enconman_2022_116609 crossref_primary_10_1016_j_energy_2021_122961 crossref_primary_10_1016_j_applthermaleng_2020_115028 crossref_primary_10_1016_j_apenergy_2015_04_088 crossref_primary_10_1016_j_energy_2022_125717 crossref_primary_10_3389_fenrg_2024_1352540 crossref_primary_10_2139_ssrn_4169413 crossref_primary_10_1016_j_energy_2025_135698 crossref_primary_10_1016_j_apenergy_2016_06_093 crossref_primary_10_1016_j_enconman_2019_111850 crossref_primary_10_1016_j_enconman_2015_05_043 crossref_primary_10_1016_j_enconman_2019_111855 crossref_primary_10_1007_s11630_020_1351_x crossref_primary_10_1016_j_applthermaleng_2018_08_012 crossref_primary_10_3390_app10196919 crossref_primary_10_15446_sicel_v11_109039 crossref_primary_10_1016_j_energy_2023_128218 crossref_primary_10_1016_j_apenergy_2017_03_082 crossref_primary_10_1115_1_4047192 crossref_primary_10_1016_j_energy_2019_116183 crossref_primary_10_1016_j_ecmx_2020_100029 crossref_primary_10_1016_j_enconman_2018_08_069 crossref_primary_10_1016_j_apenergy_2018_08_124 crossref_primary_10_1016_j_energy_2018_06_017 crossref_primary_10_1016_j_enconman_2018_02_032 crossref_primary_10_1016_j_energy_2018_12_123 crossref_primary_10_1016_j_ecmx_2023_100415 crossref_primary_10_1016_j_energy_2015_10_117 crossref_primary_10_1007_s10973_021_10753_y crossref_primary_10_1016_j_applthermaleng_2015_07_072 crossref_primary_10_1016_j_enconman_2018_06_048 crossref_primary_10_1016_j_energy_2018_03_053 crossref_primary_10_1016_j_apenergy_2015_12_087 crossref_primary_10_1016_j_enconman_2020_113049 crossref_primary_10_1016_j_applthermaleng_2015_08_057 crossref_primary_10_1016_j_ecmx_2022_100244 crossref_primary_10_1016_j_egyr_2021_07_088 crossref_primary_10_1016_j_enconman_2016_07_039 crossref_primary_10_1007_s11356_022_21377_6 crossref_primary_10_1016_j_ecmx_2023_100426 crossref_primary_10_1016_j_apenergy_2019_114245 crossref_primary_10_1016_j_apenergy_2020_114891 crossref_primary_10_1016_j_desal_2024_118166 crossref_primary_10_1016_j_energy_2016_04_062 crossref_primary_10_1016_j_energy_2017_10_012 crossref_primary_10_1016_j_enconman_2014_04_026 crossref_primary_10_1016_j_enconman_2017_08_009 crossref_primary_10_1016_j_energy_2016_07_152 crossref_primary_10_1016_j_enconman_2016_09_086 crossref_primary_10_1016_j_energy_2015_04_107 crossref_primary_10_1061__ASCE_EY_1943_7897_0000468 crossref_primary_10_1016_j_tsep_2023_102303 crossref_primary_10_1016_j_energy_2023_128304 crossref_primary_10_1016_j_apenergy_2018_02_096 crossref_primary_10_1016_j_enconman_2018_06_032 crossref_primary_10_3390_app9214526 crossref_primary_10_1016_j_applthermaleng_2018_07_136 crossref_primary_10_1016_j_apenergy_2018_09_022 crossref_primary_10_1016_j_enconman_2014_10_029 crossref_primary_10_1016_j_applthermaleng_2020_116423 crossref_primary_10_1016_j_energy_2019_07_129 crossref_primary_10_1016_j_energy_2018_02_047 crossref_primary_10_1016_j_ijhydene_2017_10_053 crossref_primary_10_1051_e3sconf_20172200132 crossref_primary_10_1016_j_apenergy_2020_115637 crossref_primary_10_1016_j_apenergy_2017_03_033 crossref_primary_10_1016_j_energy_2019_03_016 crossref_primary_10_1016_j_energy_2022_123345 crossref_primary_10_3390_pr11072108 crossref_primary_10_1080_15567036_2020_1781298 crossref_primary_10_1016_j_enconman_2015_06_012 crossref_primary_10_1016_j_enconman_2018_08_024 crossref_primary_10_1016_j_energy_2017_05_003 crossref_primary_10_1016_j_applthermaleng_2017_08_128 crossref_primary_10_1016_j_apenergy_2024_124167 crossref_primary_10_1016_j_enconman_2016_09_064 crossref_primary_10_1016_j_apenergy_2015_05_080 crossref_primary_10_1016_j_proeng_2015_01_402 crossref_primary_10_1016_j_enconman_2016_02_073 crossref_primary_10_1016_j_ces_2015_09_013 crossref_primary_10_1016_j_apenergy_2020_115333 crossref_primary_10_1016_j_enconman_2019_03_039 crossref_primary_10_1016_j_energy_2020_117800 crossref_primary_10_1016_j_energy_2020_117489 crossref_primary_10_1016_j_energy_2014_07_007 crossref_primary_10_1016_j_csite_2016_05_001 crossref_primary_10_1016_j_fluid_2018_04_018 crossref_primary_10_1016_j_enconman_2019_02_006 crossref_primary_10_1016_j_enconman_2021_114323 crossref_primary_10_1016_j_jhazmat_2017_10_030 crossref_primary_10_1016_j_energy_2017_10_055 crossref_primary_10_1016_j_apenergy_2016_04_092 crossref_primary_10_1016_j_apenergy_2016_03_049 crossref_primary_10_1016_j_applthermaleng_2015_06_055 crossref_primary_10_1016_j_heliyon_2022_e12230 crossref_primary_10_3390_en14216865 crossref_primary_10_1016_j_energy_2015_04_094 crossref_primary_10_1016_j_jclepro_2020_125679 crossref_primary_10_1002_er_4977 crossref_primary_10_3390_app10134411 crossref_primary_10_1016_j_apenergy_2015_07_019 crossref_primary_10_1080_15435075_2021_1941036 crossref_primary_10_1002_er_4173 crossref_primary_10_1007_s11771_019_4169_5 crossref_primary_10_1007_s11431_019_1447_4 crossref_primary_10_1016_j_energy_2023_126676 crossref_primary_10_1016_j_energy_2015_01_108 crossref_primary_10_1016_j_enconman_2019_112053 crossref_primary_10_1016_j_psep_2023_06_037 crossref_primary_10_1016_j_energy_2021_119974 crossref_primary_10_1016_j_applthermaleng_2019_114576 crossref_primary_10_1016_j_enconman_2018_05_094 crossref_primary_10_1016_j_rser_2017_05_082 crossref_primary_10_1016_j_applthermaleng_2018_12_158 crossref_primary_10_1016_j_egyr_2022_07_073 crossref_primary_10_1080_15435075_2025_2481497 crossref_primary_10_1016_j_fuel_2017_10_127 crossref_primary_10_1016_j_renene_2020_11_043 crossref_primary_10_1016_j_apenergy_2017_08_127 crossref_primary_10_1016_j_enconman_2019_06_051 crossref_primary_10_1016_j_fuel_2021_122658 crossref_primary_10_1016_j_energy_2018_12_196 crossref_primary_10_1002_ente_201500001 crossref_primary_10_1016_j_energy_2021_120271 crossref_primary_10_1115_1_4030108 crossref_primary_10_1016_j_enconman_2021_115055 crossref_primary_10_1016_j_jhazmat_2017_05_039 crossref_primary_10_1016_j_enconman_2021_115177 crossref_primary_10_1002_er_4830 crossref_primary_10_1016_j_ijft_2020_100040 crossref_primary_10_1016_j_applthermaleng_2021_117639 crossref_primary_10_1016_j_renene_2020_04_147 crossref_primary_10_1016_j_csite_2020_100785 crossref_primary_10_1016_j_enconman_2018_10_047 crossref_primary_10_1016_j_jhazmat_2015_03_064 crossref_primary_10_1016_j_applthermaleng_2020_116277 crossref_primary_10_1002_er_4945 crossref_primary_10_1016_j_enconman_2019_111782 crossref_primary_10_1016_j_energy_2019_01_131 crossref_primary_10_1016_j_pecs_2024_101201 crossref_primary_10_1007_s10098_023_02489_0 crossref_primary_10_1016_j_enconman_2016_07_081 crossref_primary_10_1016_j_energy_2024_130511 crossref_primary_10_32604_ee_2023_027546 crossref_primary_10_1016_j_enconman_2018_04_022 crossref_primary_10_1016_j_energy_2017_12_109 crossref_primary_10_1007_s11630_019_1119_3 crossref_primary_10_3390_app9081639 crossref_primary_10_1016_j_enconman_2018_04_027 crossref_primary_10_1016_j_energy_2019_116559 crossref_primary_10_1016_j_rser_2018_04_023 crossref_primary_10_1016_j_enconman_2016_12_066 crossref_primary_10_1016_j_pecs_2021_100906 crossref_primary_10_3390_app9040680 crossref_primary_10_1016_j_enconman_2018_10_017 crossref_primary_10_1016_j_solener_2016_01_029 crossref_primary_10_1016_j_energy_2018_12_091 crossref_primary_10_1016_j_enconman_2020_113468 crossref_primary_10_1016_j_energy_2024_131716 crossref_primary_10_1016_j_applthermaleng_2016_06_144 crossref_primary_10_1016_j_apenergy_2016_03_011 crossref_primary_10_1016_j_egypro_2017_09_099 crossref_primary_10_3390_en16072975 crossref_primary_10_1016_j_enconman_2017_04_099 crossref_primary_10_1007_s11630_019_1090_z crossref_primary_10_3390_en11071905 crossref_primary_10_1016_j_applthermaleng_2023_122002 crossref_primary_10_1016_j_energy_2019_02_186 crossref_primary_10_1002_er_4014 crossref_primary_10_1016_j_energy_2018_10_026 |
Cites_doi | 10.1016/j.apenergy.2012.07.020 10.1016/j.energy.2009.06.019 10.1016/j.energy.2012.09.021 10.1016/j.applthermaleng.2010.02.012 10.1016/j.energy.2009.06.001 10.1016/j.apenergy.2011.07.042 10.1016/j.applthermaleng.2006.05.003 10.1115/1.3230794 10.1016/j.apenergy.2011.02.034 10.1016/j.energy.2011.03.041 10.1016/j.energy.2011.06.028 10.1016/j.apenergy.2012.11.075 10.1016/j.apenergy.2008.09.018 10.1016/j.energy.2009.04.037 10.1016/j.energy.2010.10.051 10.1016/j.apenergy.2012.09.018 10.1016/j.apenergy.2012.01.019 10.1063/1.3194308 10.1016/j.applthermaleng.2011.12.021 10.1016/j.energy.2012.06.005 10.1016/j.apenergy.2012.08.013 10.1016/j.apenergy.2011.02.042 10.1016/j.apenergy.2010.07.023 10.1016/j.applthermaleng.2006.04.024 10.1016/j.energy.2012.03.018 10.1016/j.apenergy.2012.12.060 10.1016/j.rser.2011.07.024 |
ContentType | Journal Article |
Copyright | 2014 Elsevier Ltd 2015 INIST-CNRS |
Copyright_xml | – notice: 2014 Elsevier Ltd – notice: 2015 INIST-CNRS |
DBID | AAYXX CITATION IQODW 7ST C1K SOI 7S9 L.6 |
DOI | 10.1016/j.apenergy.2013.12.056 |
DatabaseName | CrossRef Pascal-Francis Environment Abstracts Environmental Sciences and Pollution Management Environment Abstracts AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef Environment Abstracts Environmental Sciences and Pollution Management AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | Environment Abstracts AGRICOLA |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Environmental Sciences Applied Sciences |
EISSN | 1872-9118 |
EndPage | 217 |
ExternalDocumentID | 28238985 10_1016_j_apenergy_2013_12_056 S0306261913010659 |
GroupedDBID | --K --M .~1 0R~ 1B1 1~. 1~5 23M 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AABNK AACTN AAEDT AAEDW AAHCO AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AARJD AAXUO ABJNI ABMAC ABXDB ABYKQ ACDAQ ACGFS ACRLP ADBBV ADEZE ADTZH AEBSH AECPX AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHIDL AHJVU AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BELTK BJAXD BKOJK BLXMC CS3 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 FDB FIRID FNPLU FYGXN G-Q GBLVA IHE J1W JARJE JJJVA KOM LY6 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 RIG ROL RPZ SDF SDG SES SPC SPCBC SSR SST SSZ T5K TN5 ~02 ~G- AAHBH AAQXK AATTM AAXKI AAYOK AAYWO AAYXX ABEFU ABFNM ABWVN ACNNM ACRPL ACVFH ADCNI ADMUD ADNMO AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN BNPGV CITATION FEDTE FGOYB G-2 HVGLF HZ~ R2- SAC SEW SSH WUQ ZY4 ABTAH IQODW 7ST C1K EFKBS SOI 7S9 L.6 |
ID | FETCH-LOGICAL-c408t-6ea8fec13f9ca6f2d5e7f2ef27c78217f9f0e78e173c703343e99777c65f26123 |
IEDL.DBID | .~1 |
ISSN | 0306-2619 |
IngestDate | Fri Jul 11 04:33:32 EDT 2025 Tue Aug 05 11:28:08 EDT 2025 Wed Apr 02 07:37:50 EDT 2025 Thu Apr 24 23:01:27 EDT 2025 Tue Jul 01 03:05:22 EDT 2025 Fri Feb 23 02:36:58 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Working fluids Alkanes High-temperature exhaust gas Organic Rankine cycle (ORC) Waste heat recovery (WHR) Waste recovery Diesel engine High temperature Working fluid Heat recovery Exhaust Alkane Rankine cycle Exhaust gas Waste heat |
Language | English |
License | CC BY 4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c408t-6ea8fec13f9ca6f2d5e7f2ef27c78217f9f0e78e173c703343e99777c65f26123 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PQID | 1524401894 |
PQPubID | 23462 |
PageCount | 14 |
ParticipantIDs | proquest_miscellaneous_2101339322 proquest_miscellaneous_1524401894 pascalfrancis_primary_28238985 crossref_citationtrail_10_1016_j_apenergy_2013_12_056 crossref_primary_10_1016_j_apenergy_2013_12_056 elsevier_sciencedirect_doi_10_1016_j_apenergy_2013_12_056 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2014-04-15 |
PublicationDateYYYYMMDD | 2014-04-15 |
PublicationDate_xml | – month: 04 year: 2014 text: 2014-04-15 day: 15 |
PublicationDecade | 2010 |
PublicationPlace | Kidlington |
PublicationPlace_xml | – name: Kidlington |
PublicationTitle | Applied energy |
PublicationYear | 2014 |
Publisher | Elsevier Ltd Elsevier |
Publisher_xml | – name: Elsevier Ltd – name: Elsevier |
References | Li, Wang, Du (b0135) 2012; 42 Yun, Cho, Luck, Mago (b0015) 2013; 102 Desai, Bandyopadhyay (b0125) 2009; 34 Macián, Serrano, Dolz, Sánchez (b0045) 2013; 104 Sánchez, Muñoz de Escalona, Monje, Chacartegui, Sánchez (b0100) 2011; 196 Lai, Wendland, Fischer (b0110) 2011; 36 Drescher, Brüggermann (b0035) 2007; 27 United Stated Department of Energy, Office of Energy Efficiency and Renewable Energy. Vehicle technologies multi-year prog-ram plan 2011-2015; 2010 December. 59 (last visited 01.03.13). Vaja, Gambarotta (b0065) 2010; 35 Fu, Liu, Feng, g Yang, Wang, Wang (b0020) 2013; 102 Siddiqi, Atakan (b0115) 2012; 45 Zhang, Wang, Guo (b0080) 2011; 88 Love, Szybist, Sluder (b0025) 2012; 89 Harinck, Guardone, Colonna (b0130) 2009; 21 Roy, Mishra, Misra (b0070) 2011; 88 Cayer, Galanis, Desilets, Nesreddine, Roy (b0075) 2009; 86 Invernizzi, Iora, Silva (b0120) 2007; 27 Algieri, Morrone (b0105) 2012; 36 Schuster, Karellas, Aumann (b0140) 2010; 35 . Pandiyarajan, Pandian, Malan, Velraj, Seeniraj (b0030) 2011; 88 Tchanche, Lambrinos, Frangoudakis, Papadakis (b0090) 2011; 15 Lemmon EW, Huber ML, McLinden MO. NIST reference fluid thermodynamic and transport properties-REFPROP. NIST standard reference database 23, Version 8.0; 2007. Yu, Shu, Tian, Wei, Liu (b0055) 2013 Macchi, Perdichizzi (b0150) 1981; 103 Horst, Rottengruber, Seifert (b0010) 2013; 105 Tian, Shu, Wei, Liang, Liu (b0050) 2012; 47 Wang, Zhang, Fan, Ouyang, Zhao, Mu (b0060) 2011; 36 Wang, Zhao, Wang (b0085) 2012; 94 Fernández, Prieto, Suárez (b0095) 2011; 36 Zhang, Wang, Fan (b0040) 2013; 102 Heberle, Brüggemann (b0145) 2010; 30 Zhang (10.1016/j.apenergy.2013.12.056_b0040) 2013; 102 10.1016/j.apenergy.2013.12.056_b0005 Yu (10.1016/j.apenergy.2013.12.056_b0055) 2013 Vaja (10.1016/j.apenergy.2013.12.056_b0065) 2010; 35 Lai (10.1016/j.apenergy.2013.12.056_b0110) 2011; 36 Macchi (10.1016/j.apenergy.2013.12.056_b0150) 1981; 103 Love (10.1016/j.apenergy.2013.12.056_b0025) 2012; 89 Invernizzi (10.1016/j.apenergy.2013.12.056_b0120) 2007; 27 10.1016/j.apenergy.2013.12.056_b0155 Li (10.1016/j.apenergy.2013.12.056_b0135) 2012; 42 Roy (10.1016/j.apenergy.2013.12.056_b0070) 2011; 88 Schuster (10.1016/j.apenergy.2013.12.056_b0140) 2010; 35 Heberle (10.1016/j.apenergy.2013.12.056_b0145) 2010; 30 Harinck (10.1016/j.apenergy.2013.12.056_b0130) 2009; 21 Wang (10.1016/j.apenergy.2013.12.056_b0085) 2012; 94 Yun (10.1016/j.apenergy.2013.12.056_b0015) 2013; 102 Cayer (10.1016/j.apenergy.2013.12.056_b0075) 2009; 86 Tchanche (10.1016/j.apenergy.2013.12.056_b0090) 2011; 15 Horst (10.1016/j.apenergy.2013.12.056_b0010) 2013; 105 Zhang (10.1016/j.apenergy.2013.12.056_b0080) 2011; 88 Sánchez (10.1016/j.apenergy.2013.12.056_b0100) 2011; 196 Drescher (10.1016/j.apenergy.2013.12.056_b0035) 2007; 27 Algieri (10.1016/j.apenergy.2013.12.056_b0105) 2012; 36 Macián (10.1016/j.apenergy.2013.12.056_b0045) 2013; 104 Tian (10.1016/j.apenergy.2013.12.056_b0050) 2012; 47 Fernández (10.1016/j.apenergy.2013.12.056_b0095) 2011; 36 Siddiqi (10.1016/j.apenergy.2013.12.056_b0115) 2012; 45 Desai (10.1016/j.apenergy.2013.12.056_b0125) 2009; 34 Fu (10.1016/j.apenergy.2013.12.056_b0020) 2013; 102 Pandiyarajan (10.1016/j.apenergy.2013.12.056_b0030) 2011; 88 Wang (10.1016/j.apenergy.2013.12.056_b0060) 2011; 36 |
References_xml | – volume: 15 start-page: 3963 year: 2011 end-page: 3979 ident: b0090 article-title: Low-grade heat conversion into power using organic Rankine cycles – a review of various applications publication-title: Renew Sust Energy Rev – volume: 196 start-page: 4355 year: 2011 end-page: 4363 ident: b0100 article-title: Preliminary analysis of compound systems based on high temperature fuel cell, gas turbine and organic Rankine cycle publication-title: J Power Energy – volume: 34 start-page: 1674 year: 2009 end-page: 1686 ident: b0125 article-title: Process integration of organic Rankine cycle publication-title: Energy – volume: 94 start-page: 34 year: 2012 end-page: 40 ident: b0085 article-title: An experimental study on the recuperative low temperature solar Rankine cycle using R245fa publication-title: Appl Energy – reference: United Stated Department of Energy, Office of Energy Efficiency and Renewable Energy. Vehicle technologies multi-year prog-ram plan 2011-2015; 2010 December. 59 (last visited 01.03.13). < – volume: 103 start-page: 718 year: 1981 end-page: 724 ident: b0150 article-title: Efficiency prediction for axial-flow turbines operating with non conventional fluids publication-title: Trans ASME, J Eng Power – reference: Lemmon EW, Huber ML, McLinden MO. NIST reference fluid thermodynamic and transport properties-REFPROP. NIST standard reference database 23, Version 8.0; 2007. – volume: 36 start-page: 199 year: 2011 end-page: 211 ident: b0110 article-title: Working fluids for high-temperature organic Rankine cycles publication-title: Energy – volume: 35 start-page: 1084 year: 2010 end-page: 1093 ident: b0065 article-title: Internal combustion engine (ICE) bottoming with organic Rankine cycles (ORCs) publication-title: Energy – volume: 88 start-page: 2740 year: 2011 end-page: 2754 ident: b0080 article-title: Performance comparison and parametric optimization of subcritical organic Rankine cycle (ORC) and transcritical power cycle system for low-temperature geothermal power generation publication-title: Appl Energy – reference: >. – volume: 88 start-page: 77 year: 2011 end-page: 87 ident: b0030 article-title: Experimental investigation on heat recovery from diesel engine exhaust using finned shell and tube heat exchanger and thermal storage system publication-title: Appl Energy – volume: 30 start-page: 1326 year: 2010 end-page: 1332 ident: b0145 article-title: Exergy based fluid selection for a geothermal organic Rankine cycle for combined heat and power generation publication-title: Appl Therm Eng – volume: 86 start-page: 1055 year: 2009 end-page: 1063 ident: b0075 article-title: Analysis of a carbon dioxide transcritical power cycle using a low temperature source publication-title: Appl Energy – volume: 36 start-page: 236 year: 2012 end-page: 244 ident: b0105 article-title: Comparative energetic analysis of high-temperature subcritical and transcritical organic Rankine cycle (ORC). A biomass application in the Sibari district publication-title: Appl Therm Eng – volume: 102 start-page: 327 year: 2013 end-page: 335 ident: b0015 article-title: Modeling of reciprocating internal combustion engines for power generation and heat recovery publication-title: Appl Energy – volume: 27 start-page: 223 year: 2007 end-page: 228 ident: b0035 article-title: Fluid selection for the organic Rankine cycle (ORC) in biomass power and heat plants publication-title: Appl Therm Eng – start-page: 1 year: 2013 end-page: 10 ident: b0055 article-title: Simulation and thermodynamic analysis of a bottoming organic Rankine cycle (ORC) of diesel engine (DE) publication-title: Energy – volume: 45 start-page: 256 year: 2012 end-page: 263 ident: b0115 article-title: Alkanes as fluids in Rankine cycles in comparison to water, benzene and toluene publication-title: Energy – volume: 102 start-page: 1504 year: 2013 end-page: 1513 ident: b0040 article-title: A performance analysis of a novel system of a dual loop bottoming organic Rankine cycle (ORC) with a light-duty diesel engine publication-title: Appl Energy – volume: 35 start-page: 1033 year: 2010 end-page: 1039 ident: b0140 article-title: Efficiency optimization potential in supercritical organic Rankine cycles publication-title: Energy – volume: 104 start-page: 758 year: 2013 end-page: 771 ident: b0045 article-title: Methodology to design a bottoming Rankine cycle, as a waste energy recovering system in vehicles. Study in a HDD engine publication-title: Appl Energy – volume: 105 start-page: 293 year: 2013 end-page: 303 ident: b0010 article-title: Dynamic heat exchanger model for performance prediction and control system design of automotive waste heat recovery systems publication-title: Appl Energy – volume: 88 start-page: 2995 year: 2011 end-page: 3004 ident: b0070 article-title: Performance analysis of an organic Rankine cycle with superheating under different heat source temperature conditions publication-title: Appl Energy – volume: 89 start-page: 322 year: 2012 end-page: 328 ident: b0025 article-title: Effect of heat exchanger material and fouling on thermoelectric exhaust heat recovery publication-title: Appl Energy – volume: 27 start-page: 100 year: 2007 end-page: 110 ident: b0120 article-title: Bottoming micro-Rankine cycles for micro-gas turbines publication-title: Appl Therm Eng – volume: 21 year: 2009 ident: b0130 article-title: The influence of molecular complexity on expanding flows of ideal and dense gas publication-title: Phys. Fluids – volume: 47 start-page: 125 year: 2012 end-page: 136 ident: b0050 article-title: Fluids and parameters optimization for the organic Rankine cycles (ORCs) used in exhaust heat recovery of Internal Combustion Engine (ICE) publication-title: Energy – volume: 36 start-page: 5239 year: 2011 end-page: 5249 ident: b0095 article-title: Thermodynamic analysis of high-temperature regenerative organic Rankine cycles using siloxanes as working fluids publication-title: Energy – volume: 42 start-page: 503 year: 2012 end-page: 509 ident: b0135 article-title: Influence of coupled pinch point temperature difference and evaporation temperature on performance of organic Rankine cycle publication-title: Energy – volume: 102 start-page: 622 year: 2013 end-page: 630 ident: b0020 article-title: Energy and exergy analysis on gasoline engine based on mapping characteristics experiment publication-title: Appl Energy – volume: 36 start-page: 3406 year: 2011 end-page: 3418 ident: b0060 article-title: Study of working fluid selection of organic Rankine cycle (ORC) for engine waste heat recovery publication-title: Energy – volume: 102 start-page: 327 year: 2013 ident: 10.1016/j.apenergy.2013.12.056_b0015 article-title: Modeling of reciprocating internal combustion engines for power generation and heat recovery publication-title: Appl Energy doi: 10.1016/j.apenergy.2012.07.020 – volume: 35 start-page: 1033 year: 2010 ident: 10.1016/j.apenergy.2013.12.056_b0140 article-title: Efficiency optimization potential in supercritical organic Rankine cycles publication-title: Energy doi: 10.1016/j.energy.2009.06.019 – volume: 47 start-page: 125 year: 2012 ident: 10.1016/j.apenergy.2013.12.056_b0050 article-title: Fluids and parameters optimization for the organic Rankine cycles (ORCs) used in exhaust heat recovery of Internal Combustion Engine (ICE) publication-title: Energy doi: 10.1016/j.energy.2012.09.021 – volume: 30 start-page: 1326 year: 2010 ident: 10.1016/j.apenergy.2013.12.056_b0145 article-title: Exergy based fluid selection for a geothermal organic Rankine cycle for combined heat and power generation publication-title: Appl Therm Eng doi: 10.1016/j.applthermaleng.2010.02.012 – volume: 35 start-page: 1084 year: 2010 ident: 10.1016/j.apenergy.2013.12.056_b0065 article-title: Internal combustion engine (ICE) bottoming with organic Rankine cycles (ORCs) publication-title: Energy doi: 10.1016/j.energy.2009.06.001 – volume: 89 start-page: 322 year: 2012 ident: 10.1016/j.apenergy.2013.12.056_b0025 article-title: Effect of heat exchanger material and fouling on thermoelectric exhaust heat recovery publication-title: Appl Energy doi: 10.1016/j.apenergy.2011.07.042 – start-page: 1 year: 2013 ident: 10.1016/j.apenergy.2013.12.056_b0055 article-title: Simulation and thermodynamic analysis of a bottoming organic Rankine cycle (ORC) of diesel engine (DE) publication-title: Energy – volume: 27 start-page: 100 year: 2007 ident: 10.1016/j.apenergy.2013.12.056_b0120 article-title: Bottoming micro-Rankine cycles for micro-gas turbines publication-title: Appl Therm Eng doi: 10.1016/j.applthermaleng.2006.05.003 – volume: 103 start-page: 718 year: 1981 ident: 10.1016/j.apenergy.2013.12.056_b0150 article-title: Efficiency prediction for axial-flow turbines operating with non conventional fluids publication-title: Trans ASME, J Eng Power doi: 10.1115/1.3230794 – volume: 88 start-page: 2740 year: 2011 ident: 10.1016/j.apenergy.2013.12.056_b0080 article-title: Performance comparison and parametric optimization of subcritical organic Rankine cycle (ORC) and transcritical power cycle system for low-temperature geothermal power generation publication-title: Appl Energy doi: 10.1016/j.apenergy.2011.02.034 – volume: 36 start-page: 3406 year: 2011 ident: 10.1016/j.apenergy.2013.12.056_b0060 article-title: Study of working fluid selection of organic Rankine cycle (ORC) for engine waste heat recovery publication-title: Energy doi: 10.1016/j.energy.2011.03.041 – volume: 36 start-page: 5239 year: 2011 ident: 10.1016/j.apenergy.2013.12.056_b0095 article-title: Thermodynamic analysis of high-temperature regenerative organic Rankine cycles using siloxanes as working fluids publication-title: Energy doi: 10.1016/j.energy.2011.06.028 – volume: 104 start-page: 758 year: 2013 ident: 10.1016/j.apenergy.2013.12.056_b0045 article-title: Methodology to design a bottoming Rankine cycle, as a waste energy recovering system in vehicles. Study in a HDD engine publication-title: Appl Energy doi: 10.1016/j.apenergy.2012.11.075 – volume: 86 start-page: 1055 year: 2009 ident: 10.1016/j.apenergy.2013.12.056_b0075 article-title: Analysis of a carbon dioxide transcritical power cycle using a low temperature source publication-title: Appl Energy doi: 10.1016/j.apenergy.2008.09.018 – volume: 34 start-page: 1674 year: 2009 ident: 10.1016/j.apenergy.2013.12.056_b0125 article-title: Process integration of organic Rankine cycle publication-title: Energy doi: 10.1016/j.energy.2009.04.037 – volume: 36 start-page: 199 year: 2011 ident: 10.1016/j.apenergy.2013.12.056_b0110 article-title: Working fluids for high-temperature organic Rankine cycles publication-title: Energy doi: 10.1016/j.energy.2010.10.051 – volume: 102 start-page: 1504 year: 2013 ident: 10.1016/j.apenergy.2013.12.056_b0040 article-title: A performance analysis of a novel system of a dual loop bottoming organic Rankine cycle (ORC) with a light-duty diesel engine publication-title: Appl Energy doi: 10.1016/j.apenergy.2012.09.018 – ident: 10.1016/j.apenergy.2013.12.056_b0005 – volume: 94 start-page: 34 year: 2012 ident: 10.1016/j.apenergy.2013.12.056_b0085 article-title: An experimental study on the recuperative low temperature solar Rankine cycle using R245fa publication-title: Appl Energy doi: 10.1016/j.apenergy.2012.01.019 – volume: 21 year: 2009 ident: 10.1016/j.apenergy.2013.12.056_b0130 article-title: The influence of molecular complexity on expanding flows of ideal and dense gas publication-title: Phys. Fluids doi: 10.1063/1.3194308 – volume: 196 start-page: 4355 year: 2011 ident: 10.1016/j.apenergy.2013.12.056_b0100 article-title: Preliminary analysis of compound systems based on high temperature fuel cell, gas turbine and organic Rankine cycle publication-title: J Power Energy – volume: 36 start-page: 236 year: 2012 ident: 10.1016/j.apenergy.2013.12.056_b0105 article-title: Comparative energetic analysis of high-temperature subcritical and transcritical organic Rankine cycle (ORC). A biomass application in the Sibari district publication-title: Appl Therm Eng doi: 10.1016/j.applthermaleng.2011.12.021 – volume: 45 start-page: 256 year: 2012 ident: 10.1016/j.apenergy.2013.12.056_b0115 article-title: Alkanes as fluids in Rankine cycles in comparison to water, benzene and toluene publication-title: Energy doi: 10.1016/j.energy.2012.06.005 – ident: 10.1016/j.apenergy.2013.12.056_b0155 – volume: 102 start-page: 622 year: 2013 ident: 10.1016/j.apenergy.2013.12.056_b0020 article-title: Energy and exergy analysis on gasoline engine based on mapping characteristics experiment publication-title: Appl Energy doi: 10.1016/j.apenergy.2012.08.013 – volume: 88 start-page: 2995 year: 2011 ident: 10.1016/j.apenergy.2013.12.056_b0070 article-title: Performance analysis of an organic Rankine cycle with superheating under different heat source temperature conditions publication-title: Appl Energy doi: 10.1016/j.apenergy.2011.02.042 – volume: 88 start-page: 77 year: 2011 ident: 10.1016/j.apenergy.2013.12.056_b0030 article-title: Experimental investigation on heat recovery from diesel engine exhaust using finned shell and tube heat exchanger and thermal storage system publication-title: Appl Energy doi: 10.1016/j.apenergy.2010.07.023 – volume: 27 start-page: 223 year: 2007 ident: 10.1016/j.apenergy.2013.12.056_b0035 article-title: Fluid selection for the organic Rankine cycle (ORC) in biomass power and heat plants publication-title: Appl Therm Eng doi: 10.1016/j.applthermaleng.2006.04.024 – volume: 42 start-page: 503 year: 2012 ident: 10.1016/j.apenergy.2013.12.056_b0135 article-title: Influence of coupled pinch point temperature difference and evaporation temperature on performance of organic Rankine cycle publication-title: Energy doi: 10.1016/j.energy.2012.03.018 – volume: 105 start-page: 293 year: 2013 ident: 10.1016/j.apenergy.2013.12.056_b0010 article-title: Dynamic heat exchanger model for performance prediction and control system design of automotive waste heat recovery systems publication-title: Appl Energy doi: 10.1016/j.apenergy.2012.12.060 – volume: 15 start-page: 3963 year: 2011 ident: 10.1016/j.apenergy.2013.12.056_b0090 article-title: Low-grade heat conversion into power using organic Rankine cycles – a review of various applications publication-title: Renew Sust Energy Rev doi: 10.1016/j.rser.2011.07.024 |
SSID | ssj0002120 |
Score | 2.52113 |
Snippet | •Less complex fluids are preferred due to their excellent performances.•The cyclic Alkanes are considered as the most promising candidate.•Maximum improvement... Study on recovering waste heat of engine exhaust gas using organic Rankine cycle (ORC) has continuously increased in recent years. However, it is difficult to... |
SourceID | proquest pascalfrancis crossref elsevier |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 204 |
SubjectTerms | Alkanes Applied sciences cyclohexanes diesel engines Energy energy use and consumption Energy. Thermal use of fuels Engines and turbines Equipments for energy generation and conversion: thermal, electrical, mechanical energy, etc Exact sciences and technology exergy fuels heat recovery High-temperature exhaust gas mass flow Organic Rankine cycle (ORC) steam temperature Waste heat recovery (WHR) wastes Working fluids |
Title | Alkanes as working fluids for high-temperature exhaust heat recovery of diesel engine using organic Rankine cycle |
URI | https://dx.doi.org/10.1016/j.apenergy.2013.12.056 https://www.proquest.com/docview/1524401894 https://www.proquest.com/docview/2101339322 |
Volume | 119 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3fb9MwED5N4wWE0DaYKIzKk3jNWsdx4jxW06aOaXsAJu3NctwzdFRtIa1gL_zt3CXOfgjQHvaYyJdY9vn8nX33HcB7lJXO5CQkBnXglJwqMSbzifQkEUrlhp7PIc_O8_FF9uFSX27AYZcLw2GV0fa3Nr2x1vHNII7mYDmdDj4x2mX8T1ZY8u0gZ7BnBWv5we_bMI80UjNS44Rb38kSvjpwS2wy7DjESzXHglzI-t8b1POlq2nYQlvv4i_T3exHx1vwIgJJMWr7ug0bON-BZ3foBXdg9-g2i42axmVcv4Tvo9k3RzZOuFr8bE_LRZitp5NaEIYVTGGcMGdVJFwW-Osr0wMJNtyCXWjS_2uxCIJDEHEmsPmr4Bj6L6KtE-XFR8dVGVD4a-rfK7g4Pvp8OE5i7YXEZ0OzSnJ0JqCXKpTe5SGdaCxCiiEtPGEKWYQyDLEwKAvlyWioTGFJULLwuQ7MSqZ2YXO-mONrEMFh6YzUlc9zTquryGnSuXH5xBMA8cMe6G7ArY_E5FwfY2a7CLQr202U5YmyMrX0hR4MbuSWLTXHgxJlN5_2npJZ2j8elO3fU4CbX5LPSqDP6B7sdxphaYnyvQvN5GJdW4JIGbmxpsz-34Y8b6kUgen0zSM6-Rae0lMTWST1HmyufqzxHYGmVdVvVkUfnoxOTsfnfwDUphp2 |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3fb9MwED6N7gEQQjCYKGPDSLyG1kmcOI_VtKljWx9gk_ZmOe55dFRtIa1g__3uEqfbBGgPvLa-xPKPz985d98BfERZqlSOfaRReU7JKSOtUxdJRxa-SGzf8T3k6SgbnqefL9TFBuy3uTAcVhmwv8H0Gq3DL70wmr3FZNL7ymyX-T-hsOSvg49gk9WpVAc2B0fHw9EakOOgzkjtIza4kyh89ckusE6y4yivpL4Z5FrWfz-jni1sRSPnm5IXf6B3fSQdvoDngUuKQdPdl7CBsy14ekdhcAu2D24T2ahp2MnVK_gxmH63BHPCVuJXc2Eu_HQ1GVeCaKxgFeOIZauC5rLA399YIUgwdgv2omkLXIu5FxyFiFOB9VsFh9FfiqZUlBNfLBdmQOGuqX-v4fzw4Gx_GIXyC5FL-3oZZWi1RycTXzib-XisMPcx-jh3RCtk7gvfx1yjzBNHuJGkCRbEJnOXKc_CZMk2dGbzGb4B4S0WVktVuizjzLqS_CaVaZuNHXEQ1--CagfcuKBNziUypqYNQrsy7UQZnigjY0NP6EJvbbdo1DketCja-TT31pmhI-RB2717C2D9SnJbifdp1YUP7YowtEv50wvN5HxVGWJJKXmyukj_3Yacb5kkxKfjt__RyffweHh2emJOjkbHO_CE_qkDjaR6B53lzxXuEodalnthj9wAaSodJw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Alkanes+as+working+fluids+for+high-temperature+exhaust+heat+recovery+of+diesel+engine+using+organic+Rankine+cycle&rft.jtitle=Applied+energy&rft.au=Shu%2C+Gequn&rft.au=Li%2C+Xiaoning&rft.au=Tian%2C+Hua&rft.au=Liang%2C+Xingyu&rft.date=2014-04-15&rft.pub=Elsevier+Ltd&rft.issn=0306-2619&rft.eissn=1872-9118&rft.volume=119&rft.spage=204&rft.epage=217&rft_id=info:doi/10.1016%2Fj.apenergy.2013.12.056&rft.externalDocID=S0306261913010659 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0306-2619&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0306-2619&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0306-2619&client=summon |