Alkanes as working fluids for high-temperature exhaust heat recovery of diesel engine using organic Rankine cycle

•Less complex fluids are preferred due to their excellent performances.•The cyclic Alkanes are considered as the most promising candidate.•Maximum improvement of 10% in BSFC is obtained by DE-ORC combined systems.•Alkane-based ORCs may be more attractive than steam cycle for exhaust heat recovery. S...

Full description

Saved in:
Bibliographic Details
Published inApplied energy Vol. 119; pp. 204 - 217
Main Authors Shu, Gequn, Li, Xiaoning, Tian, Hua, Liang, Xingyu, Wei, Haiqiao, Wang, Xu
Format Journal Article
LanguageEnglish
Published Kidlington Elsevier Ltd 15.04.2014
Elsevier
Subjects
Online AccessGet full text

Cover

Loading…
Abstract •Less complex fluids are preferred due to their excellent performances.•The cyclic Alkanes are considered as the most promising candidate.•Maximum improvement of 10% in BSFC is obtained by DE-ORC combined systems.•Alkane-based ORCs may be more attractive than steam cycle for exhaust heat recovery. Study on recovering waste heat of engine exhaust gas using organic Rankine cycle (ORC) has continuously increased in recent years. However, it is difficult to find out appropriate working fluids to match with exhaust gas waste heat due to high temperature. In this work, several tentative attempts and explorations are made in selecting Alkanes as working fluid owing to their excellent thermo-physical and environmental characteristics. Parameters optimization of the combined system of diesel engine with bottoming ORC (DE-ORC) is performed on Alkane-based working fluids with six indicators, including thermal efficiency (η), exergy destruction factor (EDF), turbine size parameter (SP), total exergy destruction rate (IORC), turbine volume flow ratio (VFR) and net power output per unit mass flow rate of exhaust (Pnet). Afterwards, the impact of molecular complexity on the indicators of VFR and SP is analyzed. Furthermore, the energy distribution of engine exhaust gases and the improvement of fuel economy, after integrating the bottoming ORC with diesel engine, are also discussed. Finally, the performance comparison between Cyclohexane-based ORCandsteam cycle with relative pressure is carriedout. The results show that optimized working fluids are not always constant subject to different indicators and operation parameters. However, cyclic Alkanes, Cyclohexane and Cyclopentane are considered as the most suitable working fluids when taking into account of all comprehensive indicators. The maximum improvement of 10% in brake specific fuel consumption (BSFC) is obtained for DE-ORC combined systems with Cyclohexane used as working fluid. In addition, although steamhasmoreadvantagesin thermal efficiency in the current conditions, from a technical and economic point of view, Alkane-based ORCs may be more attractive than conventional steam cycles, specifically for DE waste gas heat recovery.
AbstractList Study on recovering waste heat of engine exhaust gas using organic Rankine cycle (ORC) has continuously increased in recent years. However, it is difficult to find out appropriate working fluids to match with exhaust gas waste heat due to high temperature. In this work, several tentative attempts and explorations are made in selecting Alkanes as working fluid owing to their excellent thermo-physical and environmental characteristics. Parameters optimization of the combined system of diesel engine with bottoming ORC (DE-ORC) is performed on Alkane-based working fluids with six indicators, including thermal efficiency ( eta ), exergy destruction factor (EDF), turbine size parameter (SP), total exergy destruction rate (IORC), turbine volume flow ratio (VFR) and net power output per unit mass flow rate of exhaust (Pnet). Afterwards, the impact of molecular complexity on the indicators of VFR and SP is analyzed. Furthermore, the energy distribution of engine exhaust gases and the improvement of fuel economy, after integrating the bottoming ORC with diesel engine, are also discussed. Finally, the performance comparison between Cyclohexane-based ORC and steam cycle with relative pressure is carried out. The results show that optimized working fluids are not always constant subject to different indicators and operation parameters. However, cyclic Alkanes, Cyclohexane and Cyclopentane are considered as the most suitable working fluids when taking into account of all comprehensive indicators. The maximum improvement of 10% in brake specific fuel consumption (BSFC) is obtained for DE-ORC combined systems with Cyclohexane used as working fluid. In addition, although steam has more advantages in thermal efficiency in the current conditions, from a technical and economic point of view, Alkane-based ORCs may be more attractive than conventional steam cycles, specifically for DE waste gas heat recovery.
•Less complex fluids are preferred due to their excellent performances.•The cyclic Alkanes are considered as the most promising candidate.•Maximum improvement of 10% in BSFC is obtained by DE-ORC combined systems.•Alkane-based ORCs may be more attractive than steam cycle for exhaust heat recovery. Study on recovering waste heat of engine exhaust gas using organic Rankine cycle (ORC) has continuously increased in recent years. However, it is difficult to find out appropriate working fluids to match with exhaust gas waste heat due to high temperature. In this work, several tentative attempts and explorations are made in selecting Alkanes as working fluid owing to their excellent thermo-physical and environmental characteristics. Parameters optimization of the combined system of diesel engine with bottoming ORC (DE-ORC) is performed on Alkane-based working fluids with six indicators, including thermal efficiency (η), exergy destruction factor (EDF), turbine size parameter (SP), total exergy destruction rate (IORC), turbine volume flow ratio (VFR) and net power output per unit mass flow rate of exhaust (Pnet). Afterwards, the impact of molecular complexity on the indicators of VFR and SP is analyzed. Furthermore, the energy distribution of engine exhaust gases and the improvement of fuel economy, after integrating the bottoming ORC with diesel engine, are also discussed. Finally, the performance comparison between Cyclohexane-based ORCandsteam cycle with relative pressure is carriedout. The results show that optimized working fluids are not always constant subject to different indicators and operation parameters. However, cyclic Alkanes, Cyclohexane and Cyclopentane are considered as the most suitable working fluids when taking into account of all comprehensive indicators. The maximum improvement of 10% in brake specific fuel consumption (BSFC) is obtained for DE-ORC combined systems with Cyclohexane used as working fluid. In addition, although steamhasmoreadvantagesin thermal efficiency in the current conditions, from a technical and economic point of view, Alkane-based ORCs may be more attractive than conventional steam cycles, specifically for DE waste gas heat recovery.
Study on recovering waste heat of engine exhaust gas using organic Rankine cycle (ORC) has continuously increased in recent years. However, it is difficult to find out appropriate working fluids to match with exhaust gas waste heat due to high temperature. In this work, several tentative attempts and explorations are made in selecting Alkanes as working fluid owing to their excellent thermo-physical and environmental characteristics. Parameters optimization of the combined system of diesel engine with bottoming ORC (DE-ORC) is performed on Alkane-based working fluids with six indicators, including thermal efficiency (η), exergy destruction factor (EDF), turbine size parameter (SP), total exergy destruction rate (IORC), turbine volume flow ratio (VFR) and net power output per unit mass flow rate of exhaust (Pnet). Afterwards, the impact of molecular complexity on the indicators of VFR and SP is analyzed. Furthermore, the energy distribution of engine exhaust gases and the improvement of fuel economy, after integrating the bottoming ORC with diesel engine, are also discussed. Finally, the performance comparison between Cyclohexane-based ORCandsteam cycle with relative pressure is carriedout. The results show that optimized working fluids are not always constant subject to different indicators and operation parameters. However, cyclic Alkanes, Cyclohexane and Cyclopentane are considered as the most suitable working fluids when taking into account of all comprehensive indicators. The maximum improvement of 10% in brake specific fuel consumption (BSFC) is obtained for DE-ORC combined systems with Cyclohexane used as working fluid. In addition, although steamhasmoreadvantagesin thermal efficiency in the current conditions, from a technical and economic point of view, Alkane-based ORCs may be more attractive than conventional steam cycles, specifically for DE waste gas heat recovery.
Author Wei, Haiqiao
Shu, Gequn
Tian, Hua
Wang, Xu
Liang, Xingyu
Li, Xiaoning
Author_xml – sequence: 1
  givenname: Gequn
  surname: Shu
  fullname: Shu, Gequn
  organization: State Key Laboratory of Engines, Tianjin University, Weijin Road 92, Nankai District, Tianjin 300072, China
– sequence: 2
  givenname: Xiaoning
  surname: Li
  fullname: Li, Xiaoning
  organization: State Key Laboratory of Engines, Tianjin University, Weijin Road 92, Nankai District, Tianjin 300072, China
– sequence: 3
  givenname: Hua
  surname: Tian
  fullname: Tian, Hua
  organization: State Key Laboratory of Engines, Tianjin University, Weijin Road 92, Nankai District, Tianjin 300072, China
– sequence: 4
  givenname: Xingyu
  surname: Liang
  fullname: Liang, Xingyu
  organization: State Key Laboratory of Engines, Tianjin University, Weijin Road 92, Nankai District, Tianjin 300072, China
– sequence: 5
  givenname: Haiqiao
  surname: Wei
  fullname: Wei, Haiqiao
  email: whq@tju.edu.cn
  organization: State Key Laboratory of Engines, Tianjin University, Weijin Road 92, Nankai District, Tianjin 300072, China
– sequence: 6
  givenname: Xu
  surname: Wang
  fullname: Wang, Xu
  organization: School of Aerospace, Mechanical and Manufacturing Engineering, RMIT University, Australia
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=28238985$$DView record in Pascal Francis
BookMark eNqFkc1qGzEUhUVIIU7aVyjaFLqZqX5mRhJ00RDSHwgUSrsWQnM1li1LjqRJ67fPGCebbrwSXL5zxL3fNbqMKQJC7ylpKaHDp01r9hAhT4eWEcpbylrSDxdoRaVgjaJUXqIV4WRo2EDVFbouZUMIYZSRFXq8DVsToWBT8N-Utz5O2IXZjwW7lPHaT-umwm4P2dQ5A4Z_azOXitdgKs5g0xPkA04Ojx4KBAxx8hHwXI5FKU8meot_mbg9Tu3BBniL3jgTCrx7eW_Qn6_3v---Nw8_v_24u31obEdkbQYw0oGl3ClrBsfGHoRj4JiwQjIqnHIEhAQquBWE846DUkIIO_Ru2ZPxG_Tx1LvP6XGGUvXOFwshLOumuWi2HI9zxdl5lPas6wiVqlvQDy-oKdYEl020vuh99juTD5pJxqWS_cJ9PnE2p1IyOG19NdWnWLPxQVOij_L0Rr_K00d5mjK9yFviw3_x1x_OBr-cgrCc9slD1sV6iBZGv9iqekz-XMUz2v-7kQ
CODEN APENDX
CitedBy_id crossref_primary_10_1016_j_applthermaleng_2017_07_164
crossref_primary_10_1016_j_applthermaleng_2020_116210
crossref_primary_10_1016_j_applthermaleng_2021_117028
crossref_primary_10_1016_j_ecmx_2022_100180
crossref_primary_10_1016_j_apenergy_2014_07_007
crossref_primary_10_1016_j_enconman_2021_114843
crossref_primary_10_1016_j_energy_2022_123993
crossref_primary_10_3390_en14185886
crossref_primary_10_1002_er_7515
crossref_primary_10_1016_j_tsep_2021_101158
crossref_primary_10_1016_j_apenergy_2016_04_026
crossref_primary_10_1016_j_enconman_2018_06_011
crossref_primary_10_1016_j_applthermaleng_2015_11_018
crossref_primary_10_1016_j_egypro_2017_12_533
crossref_primary_10_1016_j_energy_2022_125935
crossref_primary_10_3390_su16114495
crossref_primary_10_1016_j_energy_2023_127945
crossref_primary_10_1007_s11431_021_1921_0
crossref_primary_10_1016_j_apenergy_2019_113997
crossref_primary_10_1016_j_applthermaleng_2021_116626
crossref_primary_10_3390_su16051924
crossref_primary_10_1080_01457632_2016_1216938
crossref_primary_10_1016_j_enconman_2017_05_078
crossref_primary_10_1016_j_apenergy_2016_05_053
crossref_primary_10_1016_j_applthermaleng_2015_02_002
crossref_primary_10_1016_j_energy_2016_09_049
crossref_primary_10_1016_j_enconman_2021_114703
crossref_primary_10_1016_j_seta_2021_101457
crossref_primary_10_1016_j_apenergy_2016_12_122
crossref_primary_10_1016_j_energy_2023_127810
crossref_primary_10_1016_j_renene_2017_05_054
crossref_primary_10_1016_j_enconman_2022_116609
crossref_primary_10_1016_j_energy_2021_122961
crossref_primary_10_1016_j_applthermaleng_2020_115028
crossref_primary_10_1016_j_apenergy_2015_04_088
crossref_primary_10_1016_j_energy_2022_125717
crossref_primary_10_3389_fenrg_2024_1352540
crossref_primary_10_2139_ssrn_4169413
crossref_primary_10_1016_j_energy_2025_135698
crossref_primary_10_1016_j_apenergy_2016_06_093
crossref_primary_10_1016_j_enconman_2019_111850
crossref_primary_10_1016_j_enconman_2015_05_043
crossref_primary_10_1016_j_enconman_2019_111855
crossref_primary_10_1007_s11630_020_1351_x
crossref_primary_10_1016_j_applthermaleng_2018_08_012
crossref_primary_10_3390_app10196919
crossref_primary_10_15446_sicel_v11_109039
crossref_primary_10_1016_j_energy_2023_128218
crossref_primary_10_1016_j_apenergy_2017_03_082
crossref_primary_10_1115_1_4047192
crossref_primary_10_1016_j_energy_2019_116183
crossref_primary_10_1016_j_ecmx_2020_100029
crossref_primary_10_1016_j_enconman_2018_08_069
crossref_primary_10_1016_j_apenergy_2018_08_124
crossref_primary_10_1016_j_energy_2018_06_017
crossref_primary_10_1016_j_enconman_2018_02_032
crossref_primary_10_1016_j_energy_2018_12_123
crossref_primary_10_1016_j_ecmx_2023_100415
crossref_primary_10_1016_j_energy_2015_10_117
crossref_primary_10_1007_s10973_021_10753_y
crossref_primary_10_1016_j_applthermaleng_2015_07_072
crossref_primary_10_1016_j_enconman_2018_06_048
crossref_primary_10_1016_j_energy_2018_03_053
crossref_primary_10_1016_j_apenergy_2015_12_087
crossref_primary_10_1016_j_enconman_2020_113049
crossref_primary_10_1016_j_applthermaleng_2015_08_057
crossref_primary_10_1016_j_ecmx_2022_100244
crossref_primary_10_1016_j_egyr_2021_07_088
crossref_primary_10_1016_j_enconman_2016_07_039
crossref_primary_10_1007_s11356_022_21377_6
crossref_primary_10_1016_j_ecmx_2023_100426
crossref_primary_10_1016_j_apenergy_2019_114245
crossref_primary_10_1016_j_apenergy_2020_114891
crossref_primary_10_1016_j_desal_2024_118166
crossref_primary_10_1016_j_energy_2016_04_062
crossref_primary_10_1016_j_energy_2017_10_012
crossref_primary_10_1016_j_enconman_2014_04_026
crossref_primary_10_1016_j_enconman_2017_08_009
crossref_primary_10_1016_j_energy_2016_07_152
crossref_primary_10_1016_j_enconman_2016_09_086
crossref_primary_10_1016_j_energy_2015_04_107
crossref_primary_10_1061__ASCE_EY_1943_7897_0000468
crossref_primary_10_1016_j_tsep_2023_102303
crossref_primary_10_1016_j_energy_2023_128304
crossref_primary_10_1016_j_apenergy_2018_02_096
crossref_primary_10_1016_j_enconman_2018_06_032
crossref_primary_10_3390_app9214526
crossref_primary_10_1016_j_applthermaleng_2018_07_136
crossref_primary_10_1016_j_apenergy_2018_09_022
crossref_primary_10_1016_j_enconman_2014_10_029
crossref_primary_10_1016_j_applthermaleng_2020_116423
crossref_primary_10_1016_j_energy_2019_07_129
crossref_primary_10_1016_j_energy_2018_02_047
crossref_primary_10_1016_j_ijhydene_2017_10_053
crossref_primary_10_1051_e3sconf_20172200132
crossref_primary_10_1016_j_apenergy_2020_115637
crossref_primary_10_1016_j_apenergy_2017_03_033
crossref_primary_10_1016_j_energy_2019_03_016
crossref_primary_10_1016_j_energy_2022_123345
crossref_primary_10_3390_pr11072108
crossref_primary_10_1080_15567036_2020_1781298
crossref_primary_10_1016_j_enconman_2015_06_012
crossref_primary_10_1016_j_enconman_2018_08_024
crossref_primary_10_1016_j_energy_2017_05_003
crossref_primary_10_1016_j_applthermaleng_2017_08_128
crossref_primary_10_1016_j_apenergy_2024_124167
crossref_primary_10_1016_j_enconman_2016_09_064
crossref_primary_10_1016_j_apenergy_2015_05_080
crossref_primary_10_1016_j_proeng_2015_01_402
crossref_primary_10_1016_j_enconman_2016_02_073
crossref_primary_10_1016_j_ces_2015_09_013
crossref_primary_10_1016_j_apenergy_2020_115333
crossref_primary_10_1016_j_enconman_2019_03_039
crossref_primary_10_1016_j_energy_2020_117800
crossref_primary_10_1016_j_energy_2020_117489
crossref_primary_10_1016_j_energy_2014_07_007
crossref_primary_10_1016_j_csite_2016_05_001
crossref_primary_10_1016_j_fluid_2018_04_018
crossref_primary_10_1016_j_enconman_2019_02_006
crossref_primary_10_1016_j_enconman_2021_114323
crossref_primary_10_1016_j_jhazmat_2017_10_030
crossref_primary_10_1016_j_energy_2017_10_055
crossref_primary_10_1016_j_apenergy_2016_04_092
crossref_primary_10_1016_j_apenergy_2016_03_049
crossref_primary_10_1016_j_applthermaleng_2015_06_055
crossref_primary_10_1016_j_heliyon_2022_e12230
crossref_primary_10_3390_en14216865
crossref_primary_10_1016_j_energy_2015_04_094
crossref_primary_10_1016_j_jclepro_2020_125679
crossref_primary_10_1002_er_4977
crossref_primary_10_3390_app10134411
crossref_primary_10_1016_j_apenergy_2015_07_019
crossref_primary_10_1080_15435075_2021_1941036
crossref_primary_10_1002_er_4173
crossref_primary_10_1007_s11771_019_4169_5
crossref_primary_10_1007_s11431_019_1447_4
crossref_primary_10_1016_j_energy_2023_126676
crossref_primary_10_1016_j_energy_2015_01_108
crossref_primary_10_1016_j_enconman_2019_112053
crossref_primary_10_1016_j_psep_2023_06_037
crossref_primary_10_1016_j_energy_2021_119974
crossref_primary_10_1016_j_applthermaleng_2019_114576
crossref_primary_10_1016_j_enconman_2018_05_094
crossref_primary_10_1016_j_rser_2017_05_082
crossref_primary_10_1016_j_applthermaleng_2018_12_158
crossref_primary_10_1016_j_egyr_2022_07_073
crossref_primary_10_1080_15435075_2025_2481497
crossref_primary_10_1016_j_fuel_2017_10_127
crossref_primary_10_1016_j_renene_2020_11_043
crossref_primary_10_1016_j_apenergy_2017_08_127
crossref_primary_10_1016_j_enconman_2019_06_051
crossref_primary_10_1016_j_fuel_2021_122658
crossref_primary_10_1016_j_energy_2018_12_196
crossref_primary_10_1002_ente_201500001
crossref_primary_10_1016_j_energy_2021_120271
crossref_primary_10_1115_1_4030108
crossref_primary_10_1016_j_enconman_2021_115055
crossref_primary_10_1016_j_jhazmat_2017_05_039
crossref_primary_10_1016_j_enconman_2021_115177
crossref_primary_10_1002_er_4830
crossref_primary_10_1016_j_ijft_2020_100040
crossref_primary_10_1016_j_applthermaleng_2021_117639
crossref_primary_10_1016_j_renene_2020_04_147
crossref_primary_10_1016_j_csite_2020_100785
crossref_primary_10_1016_j_enconman_2018_10_047
crossref_primary_10_1016_j_jhazmat_2015_03_064
crossref_primary_10_1016_j_applthermaleng_2020_116277
crossref_primary_10_1002_er_4945
crossref_primary_10_1016_j_enconman_2019_111782
crossref_primary_10_1016_j_energy_2019_01_131
crossref_primary_10_1016_j_pecs_2024_101201
crossref_primary_10_1007_s10098_023_02489_0
crossref_primary_10_1016_j_enconman_2016_07_081
crossref_primary_10_1016_j_energy_2024_130511
crossref_primary_10_32604_ee_2023_027546
crossref_primary_10_1016_j_enconman_2018_04_022
crossref_primary_10_1016_j_energy_2017_12_109
crossref_primary_10_1007_s11630_019_1119_3
crossref_primary_10_3390_app9081639
crossref_primary_10_1016_j_enconman_2018_04_027
crossref_primary_10_1016_j_energy_2019_116559
crossref_primary_10_1016_j_rser_2018_04_023
crossref_primary_10_1016_j_enconman_2016_12_066
crossref_primary_10_1016_j_pecs_2021_100906
crossref_primary_10_3390_app9040680
crossref_primary_10_1016_j_enconman_2018_10_017
crossref_primary_10_1016_j_solener_2016_01_029
crossref_primary_10_1016_j_energy_2018_12_091
crossref_primary_10_1016_j_enconman_2020_113468
crossref_primary_10_1016_j_energy_2024_131716
crossref_primary_10_1016_j_applthermaleng_2016_06_144
crossref_primary_10_1016_j_apenergy_2016_03_011
crossref_primary_10_1016_j_egypro_2017_09_099
crossref_primary_10_3390_en16072975
crossref_primary_10_1016_j_enconman_2017_04_099
crossref_primary_10_1007_s11630_019_1090_z
crossref_primary_10_3390_en11071905
crossref_primary_10_1016_j_applthermaleng_2023_122002
crossref_primary_10_1016_j_energy_2019_02_186
crossref_primary_10_1002_er_4014
crossref_primary_10_1016_j_energy_2018_10_026
Cites_doi 10.1016/j.apenergy.2012.07.020
10.1016/j.energy.2009.06.019
10.1016/j.energy.2012.09.021
10.1016/j.applthermaleng.2010.02.012
10.1016/j.energy.2009.06.001
10.1016/j.apenergy.2011.07.042
10.1016/j.applthermaleng.2006.05.003
10.1115/1.3230794
10.1016/j.apenergy.2011.02.034
10.1016/j.energy.2011.03.041
10.1016/j.energy.2011.06.028
10.1016/j.apenergy.2012.11.075
10.1016/j.apenergy.2008.09.018
10.1016/j.energy.2009.04.037
10.1016/j.energy.2010.10.051
10.1016/j.apenergy.2012.09.018
10.1016/j.apenergy.2012.01.019
10.1063/1.3194308
10.1016/j.applthermaleng.2011.12.021
10.1016/j.energy.2012.06.005
10.1016/j.apenergy.2012.08.013
10.1016/j.apenergy.2011.02.042
10.1016/j.apenergy.2010.07.023
10.1016/j.applthermaleng.2006.04.024
10.1016/j.energy.2012.03.018
10.1016/j.apenergy.2012.12.060
10.1016/j.rser.2011.07.024
ContentType Journal Article
Copyright 2014 Elsevier Ltd
2015 INIST-CNRS
Copyright_xml – notice: 2014 Elsevier Ltd
– notice: 2015 INIST-CNRS
DBID AAYXX
CITATION
IQODW
7ST
C1K
SOI
7S9
L.6
DOI 10.1016/j.apenergy.2013.12.056
DatabaseName CrossRef
Pascal-Francis
Environment Abstracts
Environmental Sciences and Pollution Management
Environment Abstracts
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
Environment Abstracts
Environmental Sciences and Pollution Management
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList Environment Abstracts

AGRICOLA
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Environmental Sciences
Applied Sciences
EISSN 1872-9118
EndPage 217
ExternalDocumentID 28238985
10_1016_j_apenergy_2013_12_056
S0306261913010659
GroupedDBID --K
--M
.~1
0R~
1B1
1~.
1~5
23M
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAHCO
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AARJD
AAXUO
ABJNI
ABMAC
ABXDB
ABYKQ
ACDAQ
ACGFS
ACRLP
ADBBV
ADEZE
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHIDL
AHJVU
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BELTK
BJAXD
BKOJK
BLXMC
CS3
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
JARJE
JJJVA
KOM
LY6
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RIG
ROL
RPZ
SDF
SDG
SES
SPC
SPCBC
SSR
SST
SSZ
T5K
TN5
~02
~G-
AAHBH
AAQXK
AATTM
AAXKI
AAYOK
AAYWO
AAYXX
ABEFU
ABFNM
ABWVN
ACNNM
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
BNPGV
CITATION
FEDTE
FGOYB
G-2
HVGLF
HZ~
R2-
SAC
SEW
SSH
WUQ
ZY4
ABTAH
IQODW
7ST
C1K
EFKBS
SOI
7S9
L.6
ID FETCH-LOGICAL-c408t-6ea8fec13f9ca6f2d5e7f2ef27c78217f9f0e78e173c703343e99777c65f26123
IEDL.DBID .~1
ISSN 0306-2619
IngestDate Fri Jul 11 04:33:32 EDT 2025
Tue Aug 05 11:28:08 EDT 2025
Wed Apr 02 07:37:50 EDT 2025
Thu Apr 24 23:01:27 EDT 2025
Tue Jul 01 03:05:22 EDT 2025
Fri Feb 23 02:36:58 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Working fluids
Alkanes
High-temperature exhaust gas
Organic Rankine cycle (ORC)
Waste heat recovery (WHR)
Waste recovery
Diesel engine
High temperature
Working fluid
Heat recovery
Exhaust
Alkane
Rankine cycle
Exhaust gas
Waste heat
Language English
License CC BY 4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c408t-6ea8fec13f9ca6f2d5e7f2ef27c78217f9f0e78e173c703343e99777c65f26123
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PQID 1524401894
PQPubID 23462
PageCount 14
ParticipantIDs proquest_miscellaneous_2101339322
proquest_miscellaneous_1524401894
pascalfrancis_primary_28238985
crossref_citationtrail_10_1016_j_apenergy_2013_12_056
crossref_primary_10_1016_j_apenergy_2013_12_056
elsevier_sciencedirect_doi_10_1016_j_apenergy_2013_12_056
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2014-04-15
PublicationDateYYYYMMDD 2014-04-15
PublicationDate_xml – month: 04
  year: 2014
  text: 2014-04-15
  day: 15
PublicationDecade 2010
PublicationPlace Kidlington
PublicationPlace_xml – name: Kidlington
PublicationTitle Applied energy
PublicationYear 2014
Publisher Elsevier Ltd
Elsevier
Publisher_xml – name: Elsevier Ltd
– name: Elsevier
References Li, Wang, Du (b0135) 2012; 42
Yun, Cho, Luck, Mago (b0015) 2013; 102
Desai, Bandyopadhyay (b0125) 2009; 34
Macián, Serrano, Dolz, Sánchez (b0045) 2013; 104
Sánchez, Muñoz de Escalona, Monje, Chacartegui, Sánchez (b0100) 2011; 196
Lai, Wendland, Fischer (b0110) 2011; 36
Drescher, Brüggermann (b0035) 2007; 27
United Stated Department of Energy, Office of Energy Efficiency and Renewable Energy. Vehicle technologies multi-year prog-ram plan 2011-2015; 2010 December. 59 (last visited 01.03.13).
Vaja, Gambarotta (b0065) 2010; 35
Fu, Liu, Feng, g Yang, Wang, Wang (b0020) 2013; 102
Siddiqi, Atakan (b0115) 2012; 45
Zhang, Wang, Guo (b0080) 2011; 88
Love, Szybist, Sluder (b0025) 2012; 89
Harinck, Guardone, Colonna (b0130) 2009; 21
Roy, Mishra, Misra (b0070) 2011; 88
Cayer, Galanis, Desilets, Nesreddine, Roy (b0075) 2009; 86
Invernizzi, Iora, Silva (b0120) 2007; 27
Algieri, Morrone (b0105) 2012; 36
Schuster, Karellas, Aumann (b0140) 2010; 35
.
Pandiyarajan, Pandian, Malan, Velraj, Seeniraj (b0030) 2011; 88
Tchanche, Lambrinos, Frangoudakis, Papadakis (b0090) 2011; 15
Lemmon EW, Huber ML, McLinden MO. NIST reference fluid thermodynamic and transport properties-REFPROP. NIST standard reference database 23, Version 8.0; 2007.
Yu, Shu, Tian, Wei, Liu (b0055) 2013
Macchi, Perdichizzi (b0150) 1981; 103
Horst, Rottengruber, Seifert (b0010) 2013; 105
Tian, Shu, Wei, Liang, Liu (b0050) 2012; 47
Wang, Zhang, Fan, Ouyang, Zhao, Mu (b0060) 2011; 36
Wang, Zhao, Wang (b0085) 2012; 94
Fernández, Prieto, Suárez (b0095) 2011; 36
Zhang, Wang, Fan (b0040) 2013; 102
Heberle, Brüggemann (b0145) 2010; 30
Zhang (10.1016/j.apenergy.2013.12.056_b0040) 2013; 102
10.1016/j.apenergy.2013.12.056_b0005
Yu (10.1016/j.apenergy.2013.12.056_b0055) 2013
Vaja (10.1016/j.apenergy.2013.12.056_b0065) 2010; 35
Lai (10.1016/j.apenergy.2013.12.056_b0110) 2011; 36
Macchi (10.1016/j.apenergy.2013.12.056_b0150) 1981; 103
Love (10.1016/j.apenergy.2013.12.056_b0025) 2012; 89
Invernizzi (10.1016/j.apenergy.2013.12.056_b0120) 2007; 27
10.1016/j.apenergy.2013.12.056_b0155
Li (10.1016/j.apenergy.2013.12.056_b0135) 2012; 42
Roy (10.1016/j.apenergy.2013.12.056_b0070) 2011; 88
Schuster (10.1016/j.apenergy.2013.12.056_b0140) 2010; 35
Heberle (10.1016/j.apenergy.2013.12.056_b0145) 2010; 30
Harinck (10.1016/j.apenergy.2013.12.056_b0130) 2009; 21
Wang (10.1016/j.apenergy.2013.12.056_b0085) 2012; 94
Yun (10.1016/j.apenergy.2013.12.056_b0015) 2013; 102
Cayer (10.1016/j.apenergy.2013.12.056_b0075) 2009; 86
Tchanche (10.1016/j.apenergy.2013.12.056_b0090) 2011; 15
Horst (10.1016/j.apenergy.2013.12.056_b0010) 2013; 105
Zhang (10.1016/j.apenergy.2013.12.056_b0080) 2011; 88
Sánchez (10.1016/j.apenergy.2013.12.056_b0100) 2011; 196
Drescher (10.1016/j.apenergy.2013.12.056_b0035) 2007; 27
Algieri (10.1016/j.apenergy.2013.12.056_b0105) 2012; 36
Macián (10.1016/j.apenergy.2013.12.056_b0045) 2013; 104
Tian (10.1016/j.apenergy.2013.12.056_b0050) 2012; 47
Fernández (10.1016/j.apenergy.2013.12.056_b0095) 2011; 36
Siddiqi (10.1016/j.apenergy.2013.12.056_b0115) 2012; 45
Desai (10.1016/j.apenergy.2013.12.056_b0125) 2009; 34
Fu (10.1016/j.apenergy.2013.12.056_b0020) 2013; 102
Pandiyarajan (10.1016/j.apenergy.2013.12.056_b0030) 2011; 88
Wang (10.1016/j.apenergy.2013.12.056_b0060) 2011; 36
References_xml – volume: 15
  start-page: 3963
  year: 2011
  end-page: 3979
  ident: b0090
  article-title: Low-grade heat conversion into power using organic Rankine cycles – a review of various applications
  publication-title: Renew Sust Energy Rev
– volume: 196
  start-page: 4355
  year: 2011
  end-page: 4363
  ident: b0100
  article-title: Preliminary analysis of compound systems based on high temperature fuel cell, gas turbine and organic Rankine cycle
  publication-title: J Power Energy
– volume: 34
  start-page: 1674
  year: 2009
  end-page: 1686
  ident: b0125
  article-title: Process integration of organic Rankine cycle
  publication-title: Energy
– volume: 94
  start-page: 34
  year: 2012
  end-page: 40
  ident: b0085
  article-title: An experimental study on the recuperative low temperature solar Rankine cycle using R245fa
  publication-title: Appl Energy
– reference: United Stated Department of Energy, Office of Energy Efficiency and Renewable Energy. Vehicle technologies multi-year prog-ram plan 2011-2015; 2010 December. 59 (last visited 01.03.13). <
– volume: 103
  start-page: 718
  year: 1981
  end-page: 724
  ident: b0150
  article-title: Efficiency prediction for axial-flow turbines operating with non conventional fluids
  publication-title: Trans ASME, J Eng Power
– reference: Lemmon EW, Huber ML, McLinden MO. NIST reference fluid thermodynamic and transport properties-REFPROP. NIST standard reference database 23, Version 8.0; 2007.
– volume: 36
  start-page: 199
  year: 2011
  end-page: 211
  ident: b0110
  article-title: Working fluids for high-temperature organic Rankine cycles
  publication-title: Energy
– volume: 35
  start-page: 1084
  year: 2010
  end-page: 1093
  ident: b0065
  article-title: Internal combustion engine (ICE) bottoming with organic Rankine cycles (ORCs)
  publication-title: Energy
– volume: 88
  start-page: 2740
  year: 2011
  end-page: 2754
  ident: b0080
  article-title: Performance comparison and parametric optimization of subcritical organic Rankine cycle (ORC) and transcritical power cycle system for low-temperature geothermal power generation
  publication-title: Appl Energy
– reference: >.
– volume: 88
  start-page: 77
  year: 2011
  end-page: 87
  ident: b0030
  article-title: Experimental investigation on heat recovery from diesel engine exhaust using finned shell and tube heat exchanger and thermal storage system
  publication-title: Appl Energy
– volume: 30
  start-page: 1326
  year: 2010
  end-page: 1332
  ident: b0145
  article-title: Exergy based fluid selection for a geothermal organic Rankine cycle for combined heat and power generation
  publication-title: Appl Therm Eng
– volume: 86
  start-page: 1055
  year: 2009
  end-page: 1063
  ident: b0075
  article-title: Analysis of a carbon dioxide transcritical power cycle using a low temperature source
  publication-title: Appl Energy
– volume: 36
  start-page: 236
  year: 2012
  end-page: 244
  ident: b0105
  article-title: Comparative energetic analysis of high-temperature subcritical and transcritical organic Rankine cycle (ORC). A biomass application in the Sibari district
  publication-title: Appl Therm Eng
– volume: 102
  start-page: 327
  year: 2013
  end-page: 335
  ident: b0015
  article-title: Modeling of reciprocating internal combustion engines for power generation and heat recovery
  publication-title: Appl Energy
– volume: 27
  start-page: 223
  year: 2007
  end-page: 228
  ident: b0035
  article-title: Fluid selection for the organic Rankine cycle (ORC) in biomass power and heat plants
  publication-title: Appl Therm Eng
– start-page: 1
  year: 2013
  end-page: 10
  ident: b0055
  article-title: Simulation and thermodynamic analysis of a bottoming organic Rankine cycle (ORC) of diesel engine (DE)
  publication-title: Energy
– volume: 45
  start-page: 256
  year: 2012
  end-page: 263
  ident: b0115
  article-title: Alkanes as fluids in Rankine cycles in comparison to water, benzene and toluene
  publication-title: Energy
– volume: 102
  start-page: 1504
  year: 2013
  end-page: 1513
  ident: b0040
  article-title: A performance analysis of a novel system of a dual loop bottoming organic Rankine cycle (ORC) with a light-duty diesel engine
  publication-title: Appl Energy
– volume: 35
  start-page: 1033
  year: 2010
  end-page: 1039
  ident: b0140
  article-title: Efficiency optimization potential in supercritical organic Rankine cycles
  publication-title: Energy
– volume: 104
  start-page: 758
  year: 2013
  end-page: 771
  ident: b0045
  article-title: Methodology to design a bottoming Rankine cycle, as a waste energy recovering system in vehicles. Study in a HDD engine
  publication-title: Appl Energy
– volume: 105
  start-page: 293
  year: 2013
  end-page: 303
  ident: b0010
  article-title: Dynamic heat exchanger model for performance prediction and control system design of automotive waste heat recovery systems
  publication-title: Appl Energy
– volume: 88
  start-page: 2995
  year: 2011
  end-page: 3004
  ident: b0070
  article-title: Performance analysis of an organic Rankine cycle with superheating under different heat source temperature conditions
  publication-title: Appl Energy
– volume: 89
  start-page: 322
  year: 2012
  end-page: 328
  ident: b0025
  article-title: Effect of heat exchanger material and fouling on thermoelectric exhaust heat recovery
  publication-title: Appl Energy
– volume: 27
  start-page: 100
  year: 2007
  end-page: 110
  ident: b0120
  article-title: Bottoming micro-Rankine cycles for micro-gas turbines
  publication-title: Appl Therm Eng
– volume: 21
  year: 2009
  ident: b0130
  article-title: The influence of molecular complexity on expanding flows of ideal and dense gas
  publication-title: Phys. Fluids
– volume: 47
  start-page: 125
  year: 2012
  end-page: 136
  ident: b0050
  article-title: Fluids and parameters optimization for the organic Rankine cycles (ORCs) used in exhaust heat recovery of Internal Combustion Engine (ICE)
  publication-title: Energy
– volume: 36
  start-page: 5239
  year: 2011
  end-page: 5249
  ident: b0095
  article-title: Thermodynamic analysis of high-temperature regenerative organic Rankine cycles using siloxanes as working fluids
  publication-title: Energy
– volume: 42
  start-page: 503
  year: 2012
  end-page: 509
  ident: b0135
  article-title: Influence of coupled pinch point temperature difference and evaporation temperature on performance of organic Rankine cycle
  publication-title: Energy
– volume: 102
  start-page: 622
  year: 2013
  end-page: 630
  ident: b0020
  article-title: Energy and exergy analysis on gasoline engine based on mapping characteristics experiment
  publication-title: Appl Energy
– volume: 36
  start-page: 3406
  year: 2011
  end-page: 3418
  ident: b0060
  article-title: Study of working fluid selection of organic Rankine cycle (ORC) for engine waste heat recovery
  publication-title: Energy
– volume: 102
  start-page: 327
  year: 2013
  ident: 10.1016/j.apenergy.2013.12.056_b0015
  article-title: Modeling of reciprocating internal combustion engines for power generation and heat recovery
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2012.07.020
– volume: 35
  start-page: 1033
  year: 2010
  ident: 10.1016/j.apenergy.2013.12.056_b0140
  article-title: Efficiency optimization potential in supercritical organic Rankine cycles
  publication-title: Energy
  doi: 10.1016/j.energy.2009.06.019
– volume: 47
  start-page: 125
  year: 2012
  ident: 10.1016/j.apenergy.2013.12.056_b0050
  article-title: Fluids and parameters optimization for the organic Rankine cycles (ORCs) used in exhaust heat recovery of Internal Combustion Engine (ICE)
  publication-title: Energy
  doi: 10.1016/j.energy.2012.09.021
– volume: 30
  start-page: 1326
  year: 2010
  ident: 10.1016/j.apenergy.2013.12.056_b0145
  article-title: Exergy based fluid selection for a geothermal organic Rankine cycle for combined heat and power generation
  publication-title: Appl Therm Eng
  doi: 10.1016/j.applthermaleng.2010.02.012
– volume: 35
  start-page: 1084
  year: 2010
  ident: 10.1016/j.apenergy.2013.12.056_b0065
  article-title: Internal combustion engine (ICE) bottoming with organic Rankine cycles (ORCs)
  publication-title: Energy
  doi: 10.1016/j.energy.2009.06.001
– volume: 89
  start-page: 322
  year: 2012
  ident: 10.1016/j.apenergy.2013.12.056_b0025
  article-title: Effect of heat exchanger material and fouling on thermoelectric exhaust heat recovery
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2011.07.042
– start-page: 1
  year: 2013
  ident: 10.1016/j.apenergy.2013.12.056_b0055
  article-title: Simulation and thermodynamic analysis of a bottoming organic Rankine cycle (ORC) of diesel engine (DE)
  publication-title: Energy
– volume: 27
  start-page: 100
  year: 2007
  ident: 10.1016/j.apenergy.2013.12.056_b0120
  article-title: Bottoming micro-Rankine cycles for micro-gas turbines
  publication-title: Appl Therm Eng
  doi: 10.1016/j.applthermaleng.2006.05.003
– volume: 103
  start-page: 718
  year: 1981
  ident: 10.1016/j.apenergy.2013.12.056_b0150
  article-title: Efficiency prediction for axial-flow turbines operating with non conventional fluids
  publication-title: Trans ASME, J Eng Power
  doi: 10.1115/1.3230794
– volume: 88
  start-page: 2740
  year: 2011
  ident: 10.1016/j.apenergy.2013.12.056_b0080
  article-title: Performance comparison and parametric optimization of subcritical organic Rankine cycle (ORC) and transcritical power cycle system for low-temperature geothermal power generation
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2011.02.034
– volume: 36
  start-page: 3406
  year: 2011
  ident: 10.1016/j.apenergy.2013.12.056_b0060
  article-title: Study of working fluid selection of organic Rankine cycle (ORC) for engine waste heat recovery
  publication-title: Energy
  doi: 10.1016/j.energy.2011.03.041
– volume: 36
  start-page: 5239
  year: 2011
  ident: 10.1016/j.apenergy.2013.12.056_b0095
  article-title: Thermodynamic analysis of high-temperature regenerative organic Rankine cycles using siloxanes as working fluids
  publication-title: Energy
  doi: 10.1016/j.energy.2011.06.028
– volume: 104
  start-page: 758
  year: 2013
  ident: 10.1016/j.apenergy.2013.12.056_b0045
  article-title: Methodology to design a bottoming Rankine cycle, as a waste energy recovering system in vehicles. Study in a HDD engine
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2012.11.075
– volume: 86
  start-page: 1055
  year: 2009
  ident: 10.1016/j.apenergy.2013.12.056_b0075
  article-title: Analysis of a carbon dioxide transcritical power cycle using a low temperature source
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2008.09.018
– volume: 34
  start-page: 1674
  year: 2009
  ident: 10.1016/j.apenergy.2013.12.056_b0125
  article-title: Process integration of organic Rankine cycle
  publication-title: Energy
  doi: 10.1016/j.energy.2009.04.037
– volume: 36
  start-page: 199
  year: 2011
  ident: 10.1016/j.apenergy.2013.12.056_b0110
  article-title: Working fluids for high-temperature organic Rankine cycles
  publication-title: Energy
  doi: 10.1016/j.energy.2010.10.051
– volume: 102
  start-page: 1504
  year: 2013
  ident: 10.1016/j.apenergy.2013.12.056_b0040
  article-title: A performance analysis of a novel system of a dual loop bottoming organic Rankine cycle (ORC) with a light-duty diesel engine
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2012.09.018
– ident: 10.1016/j.apenergy.2013.12.056_b0005
– volume: 94
  start-page: 34
  year: 2012
  ident: 10.1016/j.apenergy.2013.12.056_b0085
  article-title: An experimental study on the recuperative low temperature solar Rankine cycle using R245fa
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2012.01.019
– volume: 21
  year: 2009
  ident: 10.1016/j.apenergy.2013.12.056_b0130
  article-title: The influence of molecular complexity on expanding flows of ideal and dense gas
  publication-title: Phys. Fluids
  doi: 10.1063/1.3194308
– volume: 196
  start-page: 4355
  year: 2011
  ident: 10.1016/j.apenergy.2013.12.056_b0100
  article-title: Preliminary analysis of compound systems based on high temperature fuel cell, gas turbine and organic Rankine cycle
  publication-title: J Power Energy
– volume: 36
  start-page: 236
  year: 2012
  ident: 10.1016/j.apenergy.2013.12.056_b0105
  article-title: Comparative energetic analysis of high-temperature subcritical and transcritical organic Rankine cycle (ORC). A biomass application in the Sibari district
  publication-title: Appl Therm Eng
  doi: 10.1016/j.applthermaleng.2011.12.021
– volume: 45
  start-page: 256
  year: 2012
  ident: 10.1016/j.apenergy.2013.12.056_b0115
  article-title: Alkanes as fluids in Rankine cycles in comparison to water, benzene and toluene
  publication-title: Energy
  doi: 10.1016/j.energy.2012.06.005
– ident: 10.1016/j.apenergy.2013.12.056_b0155
– volume: 102
  start-page: 622
  year: 2013
  ident: 10.1016/j.apenergy.2013.12.056_b0020
  article-title: Energy and exergy analysis on gasoline engine based on mapping characteristics experiment
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2012.08.013
– volume: 88
  start-page: 2995
  year: 2011
  ident: 10.1016/j.apenergy.2013.12.056_b0070
  article-title: Performance analysis of an organic Rankine cycle with superheating under different heat source temperature conditions
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2011.02.042
– volume: 88
  start-page: 77
  year: 2011
  ident: 10.1016/j.apenergy.2013.12.056_b0030
  article-title: Experimental investigation on heat recovery from diesel engine exhaust using finned shell and tube heat exchanger and thermal storage system
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2010.07.023
– volume: 27
  start-page: 223
  year: 2007
  ident: 10.1016/j.apenergy.2013.12.056_b0035
  article-title: Fluid selection for the organic Rankine cycle (ORC) in biomass power and heat plants
  publication-title: Appl Therm Eng
  doi: 10.1016/j.applthermaleng.2006.04.024
– volume: 42
  start-page: 503
  year: 2012
  ident: 10.1016/j.apenergy.2013.12.056_b0135
  article-title: Influence of coupled pinch point temperature difference and evaporation temperature on performance of organic Rankine cycle
  publication-title: Energy
  doi: 10.1016/j.energy.2012.03.018
– volume: 105
  start-page: 293
  year: 2013
  ident: 10.1016/j.apenergy.2013.12.056_b0010
  article-title: Dynamic heat exchanger model for performance prediction and control system design of automotive waste heat recovery systems
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2012.12.060
– volume: 15
  start-page: 3963
  year: 2011
  ident: 10.1016/j.apenergy.2013.12.056_b0090
  article-title: Low-grade heat conversion into power using organic Rankine cycles – a review of various applications
  publication-title: Renew Sust Energy Rev
  doi: 10.1016/j.rser.2011.07.024
SSID ssj0002120
Score 2.52113
Snippet •Less complex fluids are preferred due to their excellent performances.•The cyclic Alkanes are considered as the most promising candidate.•Maximum improvement...
Study on recovering waste heat of engine exhaust gas using organic Rankine cycle (ORC) has continuously increased in recent years. However, it is difficult to...
SourceID proquest
pascalfrancis
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 204
SubjectTerms Alkanes
Applied sciences
cyclohexanes
diesel engines
Energy
energy use and consumption
Energy. Thermal use of fuels
Engines and turbines
Equipments for energy generation and conversion: thermal, electrical, mechanical energy, etc
Exact sciences and technology
exergy
fuels
heat recovery
High-temperature exhaust gas
mass flow
Organic Rankine cycle (ORC)
steam
temperature
Waste heat recovery (WHR)
wastes
Working fluids
Title Alkanes as working fluids for high-temperature exhaust heat recovery of diesel engine using organic Rankine cycle
URI https://dx.doi.org/10.1016/j.apenergy.2013.12.056
https://www.proquest.com/docview/1524401894
https://www.proquest.com/docview/2101339322
Volume 119
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3fb9MwED5N4wWE0DaYKIzKk3jNWsdx4jxW06aOaXsAJu3NctwzdFRtIa1gL_zt3CXOfgjQHvaYyJdY9vn8nX33HcB7lJXO5CQkBnXglJwqMSbzifQkEUrlhp7PIc_O8_FF9uFSX27AYZcLw2GV0fa3Nr2x1vHNII7mYDmdDj4x2mX8T1ZY8u0gZ7BnBWv5we_bMI80UjNS44Rb38kSvjpwS2wy7DjESzXHglzI-t8b1POlq2nYQlvv4i_T3exHx1vwIgJJMWr7ug0bON-BZ3foBXdg9-g2i42axmVcv4Tvo9k3RzZOuFr8bE_LRZitp5NaEIYVTGGcMGdVJFwW-Osr0wMJNtyCXWjS_2uxCIJDEHEmsPmr4Bj6L6KtE-XFR8dVGVD4a-rfK7g4Pvp8OE5i7YXEZ0OzSnJ0JqCXKpTe5SGdaCxCiiEtPGEKWYQyDLEwKAvlyWioTGFJULLwuQ7MSqZ2YXO-mONrEMFh6YzUlc9zTquryGnSuXH5xBMA8cMe6G7ArY_E5FwfY2a7CLQr202U5YmyMrX0hR4MbuSWLTXHgxJlN5_2npJZ2j8elO3fU4CbX5LPSqDP6B7sdxphaYnyvQvN5GJdW4JIGbmxpsz-34Y8b6kUgen0zSM6-Rae0lMTWST1HmyufqzxHYGmVdVvVkUfnoxOTsfnfwDUphp2
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3fb9MwED6N7gEQQjCYKGPDSLyG1kmcOI_VtKljWx9gk_ZmOe55dFRtIa1g__3uEqfbBGgPvLa-xPKPz985d98BfERZqlSOfaRReU7JKSOtUxdJRxa-SGzf8T3k6SgbnqefL9TFBuy3uTAcVhmwv8H0Gq3DL70wmr3FZNL7ymyX-T-hsOSvg49gk9WpVAc2B0fHw9EakOOgzkjtIza4kyh89ckusE6y4yivpL4Z5FrWfz-jni1sRSPnm5IXf6B3fSQdvoDngUuKQdPdl7CBsy14ekdhcAu2D24T2ahp2MnVK_gxmH63BHPCVuJXc2Eu_HQ1GVeCaKxgFeOIZauC5rLA399YIUgwdgv2omkLXIu5FxyFiFOB9VsFh9FfiqZUlBNfLBdmQOGuqX-v4fzw4Gx_GIXyC5FL-3oZZWi1RycTXzib-XisMPcx-jh3RCtk7gvfx1yjzBNHuJGkCRbEJnOXKc_CZMk2dGbzGb4B4S0WVktVuizjzLqS_CaVaZuNHXEQ1--CagfcuKBNziUypqYNQrsy7UQZnigjY0NP6EJvbbdo1DketCja-TT31pmhI-RB2717C2D9SnJbifdp1YUP7YowtEv50wvN5HxVGWJJKXmyukj_3Yacb5kkxKfjt__RyffweHh2emJOjkbHO_CE_qkDjaR6B53lzxXuEodalnthj9wAaSodJw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Alkanes+as+working+fluids+for+high-temperature+exhaust+heat+recovery+of+diesel+engine+using+organic+Rankine+cycle&rft.jtitle=Applied+energy&rft.au=Shu%2C+Gequn&rft.au=Li%2C+Xiaoning&rft.au=Tian%2C+Hua&rft.au=Liang%2C+Xingyu&rft.date=2014-04-15&rft.pub=Elsevier+Ltd&rft.issn=0306-2619&rft.eissn=1872-9118&rft.volume=119&rft.spage=204&rft.epage=217&rft_id=info:doi/10.1016%2Fj.apenergy.2013.12.056&rft.externalDocID=S0306261913010659
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0306-2619&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0306-2619&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0306-2619&client=summon