A Novel Simplification Method for 3D Geometric Point Cloud Based on the Importance of Point
3D point cloud simplification is an important pretreatment in surface reconstruction for sparing computer resources and improving reconstruction speed. However, existing methods often sacrifice the simplification precision to improve the simplification speed, or sacrifice the speed to improve precis...
Saved in:
Published in | IEEE access Vol. 7; pp. 129029 - 129042 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Piscataway
IEEE
2019
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
ISSN | 2169-3536 2169-3536 |
DOI | 10.1109/ACCESS.2019.2939684 |
Cover
Abstract | 3D point cloud simplification is an important pretreatment in surface reconstruction for sparing computer resources and improving reconstruction speed. However, existing methods often sacrifice the simplification precision to improve the simplification speed, or sacrifice the speed to improve precision. A proper balance between the simplification speed and the simplification accuracy is still a challenge. In this paper, we propose a new simplification method based on the importance of point. Named as detail feature points simplified algorithm (DFPSA), this algorithm has distinct processes to achieve improvements in three aspects. First, a rule of k neighborhood search is set to ensure the points found are the closest to the sample point. In this way, the accuracy of calculated normal vector of the point cloud is significantly improved, and the search speed is largely increased. Second, a formula that considers multiple characteristics for measuring the importance of point is proposed. Thereupon, the main detail features of the point cloud are preserved. Finally, an octree structure is employed to simplify the remaining points, through which holes in reconstructing point cloud are obviously reduced. The DFPSA is applied to four different data sets, and the corresponding results are compared with those of other five algorithms. The experimental results demonstrate that the DFPSA brings better simplification effects than existing counterparts, and the DFPSA not only can simplify point cloud but also has good effect in simplifying subject's narrow contours. |
---|---|
AbstractList | 3D point cloud simplification is an important pretreatment in surface reconstruction for sparing computer resources and improving reconstruction speed. However, existing methods often sacrifice the simplification precision to improve the simplification speed, or sacrifice the speed to improve precision. A proper balance between the simplification speed and the simplification accuracy is still a challenge. In this paper, we propose a new simplification method based on the importance of point. Named as detail feature points simplified algorithm (DFPSA), this algorithm has distinct processes to achieve improvements in three aspects. First, a rule of k neighborhood search is set to ensure the points found are the closest to the sample point. In this way, the accuracy of calculated normal vector of the point cloud is significantly improved, and the search speed is largely increased. Second, a formula that considers multiple characteristics for measuring the importance of point is proposed. Thereupon, the main detail features of the point cloud are preserved. Finally, an octree structure is employed to simplify the remaining points, through which holes in reconstructing point cloud are obviously reduced. The DFPSA is applied to four different data sets, and the corresponding results are compared with those of other five algorithms. The experimental results demonstrate that the DFPSA brings better simplification effects than existing counterparts, and the DFPSA not only can simplify point cloud but also has good effect in simplifying subject's narrow contours. |
Author | Fan, Jiahao Lan, Shumei Ji, Chunyang Li, Ying |
Author_xml | – sequence: 1 givenname: Chunyang surname: Ji fullname: Ji, Chunyang organization: Software Institute, Jilin University, Changchun, China – sequence: 2 givenname: Ying surname: Li fullname: Li, Ying organization: Key Laboratory of Symbolic Computation and Knowledge Engineering of Ministry of Education, Jilin University, Changchun, China – sequence: 3 givenname: Jiahao orcidid: 0000-0002-0818-8533 surname: Fan fullname: Fan, Jiahao email: jihanfan@hotmail.com organization: Key Laboratory of Symbolic Computation and Knowledge Engineering of Ministry of Education, Jilin University, Changchun, China – sequence: 4 givenname: Shumei surname: Lan fullname: Lan, Shumei organization: Key Laboratory of Symbolic Computation and Knowledge Engineering of Ministry of Education, Jilin University, Changchun, China |
BookMark | eNqFUUtv1DAQtlCRKKW_oBdLnHfxO_ZxCaWsVB7SwomDNXYm1KtsvDheJP49aVNViAtzmdHoe4zme0nOxjwiIVecrTln7s2mba93u7Vg3K2Fk85Y9YycC27cSmppzv6aX5DLadqzuey80s05-b6hn_IvHOguHY5D6lOEmvJIP2K9yx3tc6HyHb3BfMBaUqRfchorbYd86uhbmLCjM7jeId0ejrlUGCPS3C-wV-R5D8OEl4_9gnx7f_21_bC6_XyzbTe3q6iYrSsTdAAwOgRskAvJZKNNo3pw0ekQhRHBgQwoOBMaOdPBBoagRS9cg2DkBdkuul2GvT-WdIDy22dI_mGRyw8PpaY4oNdKsg4xOme16oCHIBUgoFBq9sA4a71etI4l_zzhVP0-n8o4n--F0lo7w5WbUXJBxZKnqWD_5MqZvw_FL6H4-1D8Yygzy_3Diqk-vLsWSMN_uFcLNyHik5u1QjfWyj9YL5tV |
CODEN | IAECCG |
CitedBy_id | crossref_primary_10_1016_j_measurement_2022_111173 crossref_primary_10_1016_j_patcog_2023_109520 crossref_primary_10_1016_j_measurement_2022_111135 crossref_primary_10_1016_j_ifacol_2023_10_216 crossref_primary_10_1088_1402_4896_ad7f96 crossref_primary_10_1088_1361_6501_ad1f28 crossref_primary_10_1016_j_ins_2021_04_069 crossref_primary_10_1002_eng2_12800 crossref_primary_10_3390_f14071507 crossref_primary_10_1016_j_displa_2023_102414 crossref_primary_10_3390_sym13030399 crossref_primary_10_1007_s10489_021_02659_x crossref_primary_10_1109_TIM_2024_3420354 crossref_primary_10_1088_1361_6501_abd497 crossref_primary_10_1080_13658816_2023_2193969 crossref_primary_10_3389_fnbot_2023_1234962 crossref_primary_10_1016_j_displa_2025_103007 crossref_primary_10_1007_s11042_022_13588_3 crossref_primary_10_1016_j_isprsjprs_2023_05_002 crossref_primary_10_1109_ACCESS_2020_3023071 crossref_primary_10_1117_1_JRS_17_036505 crossref_primary_10_1038_s41598_022_13550_1 crossref_primary_10_1016_j_measurement_2025_116931 crossref_primary_10_3390_rs16234513 crossref_primary_10_3390_s21134279 crossref_primary_10_1007_s11227_024_06019_7 crossref_primary_10_1088_1361_6501_ac2a68 crossref_primary_10_1109_ACCESS_2020_3002153 crossref_primary_10_3233_JCM_215541 crossref_primary_10_3390_rs15010269 crossref_primary_10_3390_s23104942 crossref_primary_10_1093_comjnl_bxae047 crossref_primary_10_1016_j_asoc_2024_111852 crossref_primary_10_1109_TGRS_2022_3170493 crossref_primary_10_1111_phor_12448 crossref_primary_10_1155_2020_8825205 crossref_primary_10_1109_ACCESS_2020_3011989 crossref_primary_10_1109_ACCESS_2021_3054755 crossref_primary_10_1088_1361_6501_ad54e4 crossref_primary_10_3390_rs13214457 crossref_primary_10_3390_s22197491 crossref_primary_10_1088_1361_6501_ac8ac1 crossref_primary_10_1109_TGRS_2022_3208348 crossref_primary_10_1364_JOSAA_400571 crossref_primary_10_1016_j_eswa_2024_126376 |
Cites_doi | 10.1016/j.cad.2007.10.013 10.1016/j.ijleo.2015.05.092 10.1007/978-3-319-63309-1_35 10.1109/ACCESS.2018.2872168 10.3788/AOS201737.0710002 10.1109/ACCESS.2019.2898689 10.1002/mma.4616 10.1109/ICCSNT.2012.6526171 10.1109/T-C.1975.224110 10.1109/38.920624 10.1016/j.cad.2011.04.001 10.1007/s12524-017-0730-6 10.1016/j.sna.2018.09.012 10.1080/00396265.2016.1259719 10.1016/j.isprsjprs.2018.05.010 10.1109/TVCG.2015.2448080 10.1109/ACCESS.2019.2905546 10.1109/VISUAL.2002.1183771 10.1109/ACCESS.2018.2836192 10.1016/j.cag.2010.01.004 10.3390/s18072239 10.1016/j.compag.2018.10.005 10.1179/003962611X13117748892317 10.1109/TVCG.2010.9 10.1016/j.cad.2004.11.005 10.1007/s001700200112 10.1007/s00371-012-0675-2 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019 |
DBID | 97E ESBDL RIA RIE AAYXX CITATION 7SC 7SP 7SR 8BQ 8FD JG9 JQ2 L7M L~C L~D DOA |
DOI | 10.1109/ACCESS.2019.2939684 |
DatabaseName | IEEE Xplore (IEEE) IEEE Xplore Open Access Journals IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts METADEX Technology Research Database Materials Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace METADEX Computer and Information Systems Abstracts Professional |
DatabaseTitleList | Materials Research Database |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 2169-3536 |
EndPage | 129042 |
ExternalDocumentID | oai_doaj_org_article_5430deec99854da1bb34aeae2449a3ec 10_1109_ACCESS_2019_2939684 8825788 |
Genre | orig-research |
GroupedDBID | 0R~ 4.4 5VS 6IK 97E AAJGR ABAZT ABVLG ACGFS ADBBV AGSQL ALMA_UNASSIGNED_HOLDINGS BCNDV BEFXN BFFAM BGNUA BKEBE BPEOZ EBS EJD ESBDL GROUPED_DOAJ IPLJI JAVBF KQ8 M43 M~E O9- OCL OK1 RIA RIE RNS AAYXX CITATION RIG 7SC 7SP 7SR 8BQ 8FD JG9 JQ2 L7M L~C L~D |
ID | FETCH-LOGICAL-c408t-6b5baa65bbe7e1230375674fa9c95bc262b9a3be21025e105b8b0ea52f297ea63 |
IEDL.DBID | RIE |
ISSN | 2169-3536 |
IngestDate | Wed Aug 27 01:29:19 EDT 2025 Mon Jun 30 06:21:27 EDT 2025 Thu Apr 24 23:05:34 EDT 2025 Tue Jul 01 02:41:54 EDT 2025 Wed Aug 27 02:42:22 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Language | English |
License | https://creativecommons.org/licenses/by/4.0/legalcode |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c408t-6b5baa65bbe7e1230375674fa9c95bc262b9a3be21025e105b8b0ea52f297ea63 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-0818-8533 |
OpenAccessLink | https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/document/8825788 |
PQID | 2455596149 |
PQPubID | 4845423 |
PageCount | 14 |
ParticipantIDs | proquest_journals_2455596149 doaj_primary_oai_doaj_org_article_5430deec99854da1bb34aeae2449a3ec crossref_primary_10_1109_ACCESS_2019_2939684 crossref_citationtrail_10_1109_ACCESS_2019_2939684 ieee_primary_8825788 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20190000 2019-00-00 20190101 2019-01-01 |
PublicationDateYYYYMMDD | 2019-01-01 |
PublicationDate_xml | – year: 2019 text: 20190000 |
PublicationDecade | 2010 |
PublicationPlace | Piscataway |
PublicationPlace_xml | – name: Piscataway |
PublicationTitle | IEEE access |
PublicationTitleAbbrev | Access |
PublicationYear | 2019 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref13 ref12 ref15 ref31 ref30 ref11 ref2 ref1 ref17 ref16 ref19 ref18 chang (ref10) 2018; 27 shao (ref14) 2010; 31 ref23 ref26 ref25 ref20 ref22 ref21 ref28 ref29 ref8 ref7 ref9 ref4 ref3 ref6 xiong (ref24) 2004; 16 ref5 huang (ref27) 2009; 45 |
References_xml | – ident: ref11 doi: 10.1016/j.cad.2007.10.013 – ident: ref19 doi: 10.1016/j.ijleo.2015.05.092 – ident: ref15 doi: 10.1007/978-3-319-63309-1_35 – ident: ref21 doi: 10.1109/ACCESS.2018.2872168 – ident: ref16 doi: 10.3788/AOS201737.0710002 – volume: 16 start-page: 909 year: 2004 ident: ref24 article-title: Algorithm for finding k-nearest neighbors of scattered points in three dimensions publication-title: J Comput -Aided Des Comput Graph – ident: ref3 doi: 10.1109/ACCESS.2019.2898689 – ident: ref20 doi: 10.1002/mma.4616 – ident: ref30 doi: 10.1109/ICCSNT.2012.6526171 – volume: 27 start-page: 60 year: 2018 ident: ref10 article-title: Research on k-means clustering point cloud reduction algorithm based on boundary reservation publication-title: Eng Surveying Mapping – ident: ref25 doi: 10.1109/T-C.1975.224110 – ident: ref6 doi: 10.1109/38.920624 – ident: ref9 doi: 10.1016/j.cad.2011.04.001 – ident: ref17 doi: 10.1007/s12524-017-0730-6 – ident: ref2 doi: 10.1016/j.sna.2018.09.012 – ident: ref4 doi: 10.1080/00396265.2016.1259719 – ident: ref22 doi: 10.1016/j.isprsjprs.2018.05.010 – ident: ref8 doi: 10.1109/TVCG.2015.2448080 – ident: ref31 doi: 10.1109/ACCESS.2019.2905546 – volume: 45 start-page: 70 year: 2009 ident: ref27 article-title: Simplification of scattered point cloud with geometric feature reservation publication-title: Comput Eng Appl – ident: ref26 doi: 10.1109/VISUAL.2002.1183771 – ident: ref12 doi: 10.1109/ACCESS.2018.2836192 – ident: ref29 doi: 10.1016/j.cag.2010.01.004 – volume: 31 start-page: 73 year: 2010 ident: ref14 article-title: Data reduction for point cloud using octree coding publication-title: J Eng Graph – ident: ref18 doi: 10.3390/s18072239 – ident: ref5 doi: 10.1016/j.compag.2018.10.005 – ident: ref1 doi: 10.1179/003962611X13117748892317 – ident: ref23 doi: 10.1109/TVCG.2010.9 – ident: ref28 doi: 10.1016/j.cad.2004.11.005 – ident: ref7 doi: 10.1007/s001700200112 – ident: ref13 doi: 10.1007/s00371-012-0675-2 |
SSID | ssj0000816957 |
Score | 2.392227 |
Snippet | 3D point cloud simplification is an important pretreatment in surface reconstruction for sparing computer resources and improving reconstruction speed.... |
SourceID | doaj proquest crossref ieee |
SourceType | Open Website Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 129029 |
SubjectTerms | 3D geometric point cloud simplification Accuracy Algorithms detail feature point Image reconstruction k neighborhood search rule Octrees Pretreatment Simplification the importance of point Three dimensional models |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NSx0xEA_iSQ-lVYuvasnBo1uz2SS7OT5f_QRFsILgIWSysyA835b67N_vJBsfrwj24nWZ_cjM7Mz8wmR-jO1bLVsfm1urrjMEUEJZeFVigWgldABGJi6Cyytzdqsu7vTdEtVX7AkbxgMPijvUqhItYiBYoFXrS4BKefRIacn6CkOMvsKKJTCVYnBTGqvrPGaoFPZwPJnQimIvl_1BKc6aRv2TitLE_kyx8iYup2Rz8pl9ylUiHw9f94Wt4GyDrS_NDtxk92N-1f_FKb95iE3hXd5745eJEppTLcqrn_wU-8fImRX4df8wm_PJtH9u-RGlrpaTMFV__PwxleBkfN53g9gWuz05_jU5KzJTQhGUaOaFAQ3eGw2ANVIuisS2pladt8FqCNJIIGUBRnynkUoqaECg17KTtkZvqq9sddbPcJvxug0CRBVPmoNSnhBO08m6rZWFpgYfRky-Ks2FPEY8sllMXYITwrpB0y5q2mVNj9jB4qbfwxSN98WPojUWonEEdrpAjuGyY7j_OcaIbUZbLh5CUIKiUzNiu6-2dfl3fXJSaUJWVKnYbx_x6h22Fpcz7NTsstX5n2fco9plDt-Tm74AtDPo3A priority: 102 providerName: Directory of Open Access Journals |
Title | A Novel Simplification Method for 3D Geometric Point Cloud Based on the Importance of Point |
URI | https://ieeexplore.ieee.org/document/8825788 https://www.proquest.com/docview/2455596149 https://doaj.org/article/5430deec99854da1bb34aeae2449a3ec |
Volume | 7 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1RT9wwDI6Ap-1hbGPTDhjKwx7p0UuTtHk8bjA26RDShoS0hyhOXQlxXKfR44FfPyfNVYNN096qyqlcfU792XVsxj4YJWoXiluLptEUoPhJ5uQEM0QjoAHQIs4imJ_rs0v55UpdbbDD4SwMIsbiMxyHy_gvv279KqTKjogNkoFVm2yTzKw_qzXkU8IACaPK1Fhokpuj6WxG7xCqt8yYnJrRlXzkfGKP_jRU5Y8vcXQvp9tsvlasryq5Ga86GPuHJz0b_1fzl-xF4pl82hvGK7aBy9fs-W_dB3fY9yk_b-9xwb9eh7LyJmXv-DwOlebEZnnxkX_C9jZM3fL8or1edny2aFc1PybnV3MSJv7IP99GEk_mw9umF3vDLk9Pvs3OsjRrIfMyr7pMgwLntALAEsmbhdG4upSNM94o8EILMK4ADBGiQiJlUEGOTolGmBKdLt6yrWW7xHeMl7XPIS_CWXWQ0lGMVDWirEtpoCrB-RETaxCsT43IwzyMhY0BSW5sj5wNyNmE3IgdDot-9H04_i1-HNAdREMT7XiDULFpT1oli7xG9BRxKlm7CUAhHTokxkPviqToTkByeEgCccT217Zi04a_s0Iqis2I65jdv6_aY8-Cgn32Zp9tdT9X-J74TAcHMQ9wEM35F71i8k4 |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwELZKOQAHXqVioYAPHJtt1rGd-LhdKFvorpBopUocLI8zkSq2GwRZDvx6xo434iXELYrG0UTfOPPNZDzD2EujRO1CcWvRNJoCFD_JnJxghmgENABaxFkEi6WeX8i3l-pyhx0OZ2EQMRaf4Thcxn_5des3IVV2RGyQDKy6wW6S35eqP601ZFTCCAmjytRaaJKbo-lsRm8R6rfMmNya0ZX8xf3ELv1prMof3-LoYE7uscVWtb6u5NN408HYf_-ta-P_6n6f3U1Mk09703jAdnD9kN35qf_gHvs45cv2G674h6tQWN6k_B1fxLHSnPgsL17xN9heh7lbnr9vr9Ydn63aTc2Pyf3VnISJQfLT60jjyYB42_Rij9jFyevz2TxL0xYyL_OqyzQocE4rACyR_FkYjqtL2TjjjQIvtADjCsAQIyokWgYV5OiUaIQp0elin-2u2zU-ZrysfQ55EU6rg5SOoqSqEWVdSgNVCc6PmNiCYH1qRR4mYqxsDElyY3vkbEDOJuRG7HBY9LnvxPFv8eOA7iAa2mjHG4SKTbvSKlnkNaKnmFPJ2k0ACunQIXEeelckRfcCksNDEogjdrC1FZu2_FcrpKLojNiOefL3VS_Yrfn54syenS7fPWW3g7J9LueA7XZfNviM2E0Hz6NR_wDZmPSm |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Novel+Simplification+Method+for+3D+Geometric+Point+Cloud+Based+on+the+Importance+of+Point&rft.jtitle=IEEE+access&rft.au=Ji%2C+Chunyang&rft.au=Li%2C+Ying&rft.au=Fan%2C+Jiahao&rft.au=Lan%2C+Shumei&rft.date=2019&rft.issn=2169-3536&rft.eissn=2169-3536&rft.volume=7&rft.spage=129029&rft.epage=129042&rft_id=info:doi/10.1109%2FACCESS.2019.2939684&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_ACCESS_2019_2939684 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2169-3536&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2169-3536&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2169-3536&client=summon |