A Novel Clustering Algorithm for Wi-Fi Indoor Positioning
In recent years, the Wi-Fi-based indoor positioning technology has become a research hotspot. This technology mainly locates the indoor Wi-Fi based on the received signal strength indicator (RSSI) signals. The most popular Wi-Fi positioning algorithm is the k-nearest neighbors (KNN) algorithm. Due t...
Saved in:
Published in | IEEE access Vol. 7; p. 1 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Piscataway
IEEE
01.01.2019
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | In recent years, the Wi-Fi-based indoor positioning technology has become a research hotspot. This technology mainly locates the indoor Wi-Fi based on the received signal strength indicator (RSSI) signals. The most popular Wi-Fi positioning algorithm is the k-nearest neighbors (KNN) algorithm. Due to the excessive amount of RSSI data, clustering algorithms are generally adopted to classify the data before KNN positioning. However, the traditional clustering algorithms cannot maintain data integrity after the classification. To solve the problem, this paper puts forward an improved public c-means (IPC) clustering algorithm with high accuracy in indoor environment, and uses the algorithm to optimize the fingerprint database. After being trained in the database, all fingerprint points were divided into several classes. Then, the range of each class was determined by comparing the cluster centers. To optimize the clustering effect, the points in the border area between two classes were allocated to these classes simultaneously, pushing up the positioning accuracy in this area. The experimental results show that the IPC clustering algorithm achieved better accuracy with lighter computing load than FCM clustering and k-means clustering, and could be coupled with KNN or FS-KNN to achieve good positioning effect. |
---|---|
AbstractList | In recent years, the Wi-Fi-based indoor positioning technology has become a research hotspot. This technology mainly locates the indoor Wi-Fi based on the received signal strength indicator (RSSI) signals. The most popular Wi-Fi positioning algorithm is the k-nearest neighbors (KNN) algorithm. Due to the excessive amount of RSSI data, clustering algorithms are generally adopted to classify the data before KNN positioning. However, the traditional clustering algorithms cannot maintain data integrity after the classification. To solve the problem, this paper puts forward an improved public c-means (IPC) clustering algorithm with high accuracy in indoor environment, and uses the algorithm to optimize the fingerprint database. After being trained in the database, all fingerprint points were divided into several classes. Then, the range of each class was determined by comparing the cluster centers. To optimize the clustering effect, the points in the border area between two classes were allocated to these classes simultaneously, pushing up the positioning accuracy in this area. The experimental results show that the IPC clustering algorithm achieved better accuracy with lighter computing load than FCM clustering and k-means clustering, and could be coupled with KNN or FS-KNN to achieve good positioning effect. |
Author | Huang, Songyang Song, Wei Ren, Jin Niu, Changliu Wang, Yunan |
Author_xml | – sequence: 1 givenname: Jin surname: Ren fullname: Ren, Jin organization: School of Information Science and Technology, North China University of Technology, Beijing 100144, China and Beijing Key Laboratory on Integration and Analysis of Large-scale Stream Data, Beijing100144, China – sequence: 2 givenname: Yunan surname: Wang fullname: Wang, Yunan organization: School of Information Science and Technology, North China University of Technology, Beijing 100144, China – sequence: 3 givenname: Changliu surname: Niu fullname: Niu, Changliu organization: School of Information Science and Technology, North China University of Technology, Beijing 100144, China – sequence: 4 givenname: Wei surname: Song fullname: Song, Wei organization: School of Information Engineering, Minzu University of China, Beijing 100081, China – sequence: 5 givenname: Songyang surname: Huang fullname: Huang, Songyang organization: School of Information Science and Technology, North China University of Technology, Beijing 100144, China |
BookMark | eNp9kE1LxDAQhoMouH78Ai8Fz12T5vu4lFUXRAUVjyFNJ2uWbrOmXcF_b9eqiAfnkpnhfV4m7xHab2MLCJ0RPCUE64tZWc4fHqYFJnpaaCqZYHtoUhChc8qp2P_VH6LTrlvhodSw4nKC9Cy7jW_QZGWz7XpIoV1ms2YZU-hf1pmPKXsO-WXIFm0dh-E-dqEPsR1kJ-jA26aD06_3GD1dzh_L6_zm7mpRzm5yx7Dqc8FB1dZaL5SWFShXq0qBqAtKvXU1r4RX2HqnOKZCS1kpRyrCmXaFZrim9BgtRt862pXZpLC26d1EG8znIqalsakPrgGDKxDSMwmywgyEs4xADZ4rai31jA9e56PXJsXXLXS9WcVtaofzTcE4F5hKzgaVHlUuxa5L4I0Lvd19u082NIZgswvejMGbXfDmK_iBpX_Y74v_p85GKgDAD6EUKSSh9AMAWI_- |
CODEN | IAECCG |
CitedBy_id | crossref_primary_10_3390_s21155013 crossref_primary_10_3390_s23208598 crossref_primary_10_1109_JIOT_2022_3230913 crossref_primary_10_1109_TWC_2023_3275537 crossref_primary_10_3390_rs16061024 crossref_primary_10_1049_cmu2_12386 crossref_primary_10_1109_TIM_2024_3476571 crossref_primary_10_1109_TIM_2020_2998645 crossref_primary_10_1007_s11277_021_09411_1 crossref_primary_10_1109_TVT_2024_3355888 crossref_primary_10_1080_21693277_2022_2144522 crossref_primary_10_3390_ijgi9120714 crossref_primary_10_1155_2022_8692080 crossref_primary_10_1088_1361_6501_adb200 crossref_primary_10_1109_JSEN_2021_3113837 crossref_primary_10_3390_app11010279 |
Cites_doi | 10.1109/ICTC.2017.8190791 10.1016/j.eswa.2010.02.111 10.1109/ICITBS.2018.00060 10.1109/UIC-ATC-ScalCom-CBDCom-IoP-SmartWorld.2016.0127 10.1016/j.robot.2009.07.018 10.1145/2700271 10.1109/ICICIP.2015.7388180 10.1109/JIOT.2018.2864607 10.1109/GreenCom-iThings-CPSCom.2013.353 10.1109/GLOCOM.2014.7036847 10.1109/WPNC.2008.4510359 10.1109/SIU.2018.8404171 10.1109/IAEAC.2017.8054235 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019 |
DBID | 97E ESBDL RIA RIE AAYXX CITATION 7SC 7SP 7SR 8BQ 8FD JG9 JQ2 L7M L~C L~D DOA |
DOI | 10.1109/ACCESS.2019.2937464 |
DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE Xplore Open Access Journals IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts METADEX Technology Research Database Materials Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace METADEX Computer and Information Systems Abstracts Professional |
DatabaseTitleList | Materials Research Database |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 2169-3536 |
EndPage | 1 |
ExternalDocumentID | oai_doaj_org_article_0be67f47e7b04e6ca41edef583aa3f45 10_1109_ACCESS_2019_2937464 8812713 |
Genre | orig-research |
GroupedDBID | 0R~ 5VS 6IK 97E AAJGR ABAZT ABVLG ACGFS ADBBV ALMA_UNASSIGNED_HOLDINGS BCNDV BEFXN BFFAM BGNUA BKEBE BPEOZ EBS EJD ESBDL GROUPED_DOAJ IPLJI JAVBF KQ8 M43 M~E O9- OCL OK1 RIA RIE RNS 4.4 AAYXX AGSQL CITATION RIG 7SC 7SP 7SR 8BQ 8FD JG9 JQ2 L7M L~C L~D |
ID | FETCH-LOGICAL-c408t-65e8daaaf6897be8cd8b8e6d233facd5b6f80afc85036977b8c1b1549c2940d33 |
IEDL.DBID | DOA |
ISSN | 2169-3536 |
IngestDate | Wed Aug 27 01:28:10 EDT 2025 Mon Jun 30 03:09:07 EDT 2025 Thu Apr 24 22:55:49 EDT 2025 Tue Jul 01 02:41:52 EDT 2025 Wed Aug 27 02:46:13 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Language | English |
License | https://creativecommons.org/licenses/by/4.0/legalcode |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c408t-65e8daaaf6897be8cd8b8e6d233facd5b6f80afc85036977b8c1b1549c2940d33 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-5832-3756 |
OpenAccessLink | https://doaj.org/article/0be67f47e7b04e6ca41edef583aa3f45 |
PQID | 2455603754 |
PQPubID | 4845423 |
PageCount | 1 |
ParticipantIDs | ieee_primary_8812713 doaj_primary_oai_doaj_org_article_0be67f47e7b04e6ca41edef583aa3f45 crossref_primary_10_1109_ACCESS_2019_2937464 proquest_journals_2455603754 crossref_citationtrail_10_1109_ACCESS_2019_2937464 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2019-01-01 |
PublicationDateYYYYMMDD | 2019-01-01 |
PublicationDate_xml | – month: 01 year: 2019 text: 2019-01-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | Piscataway |
PublicationPlace_xml | – name: Piscataway |
PublicationTitle | IEEE access |
PublicationTitleAbbrev | Access |
PublicationYear | 2019 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref13 luo (ref17) 2014; 31 ref15 ref14 wu (ref7) 2017; 43 ref10 ref2 ref1 ref16 ref19 cui (ref4) 2015; 6 zhang (ref9) 2013; 7 ref18 ref8 sun (ref11) 2009 ref3 ref6 ref5 li (ref12) 2017; 4 |
References_xml | – volume: 4 start-page: 787 year: 2017 ident: ref12 article-title: Method of WiFi indoor location based on K-Means and random forest publication-title: Control Eng China – volume: 43 start-page: 289 year: 2017 ident: ref7 article-title: Research and improvement of WiFi positioning based on k nearest neighbor method publication-title: Comput Eng – volume: 7 start-page: 44 year: 2013 ident: ref9 article-title: Research of indoor positioning based on a optimization KNN algorithm publication-title: Elect Engineering – ident: ref13 doi: 10.1109/ICTC.2017.8190791 – ident: ref16 doi: 10.1016/j.eswa.2010.02.111 – ident: ref10 doi: 10.1109/ICITBS.2018.00060 – ident: ref1 doi: 10.1109/UIC-ATC-ScalCom-CBDCom-IoP-SmartWorld.2016.0127 – ident: ref2 doi: 10.1016/j.robot.2009.07.018 – start-page: 251 year: 2009 ident: ref11 article-title: KNN-FCM hybrid algorithm for indoor location in WLAN publication-title: Proc 2nd Int Conf Power Electron Intell Transp Syst (PEITS) – ident: ref5 doi: 10.1145/2700271 – ident: ref14 doi: 10.1109/ICICIP.2015.7388180 – ident: ref19 doi: 10.1109/JIOT.2018.2864607 – ident: ref6 doi: 10.1109/GreenCom-iThings-CPSCom.2013.353 – volume: 31 start-page: 28 year: 2014 ident: ref17 article-title: A density based K-means clustering algorithm publication-title: Microelectron Comput – ident: ref18 doi: 10.1109/GLOCOM.2014.7036847 – ident: ref3 doi: 10.1109/WPNC.2008.4510359 – ident: ref15 doi: 10.1109/SIU.2018.8404171 – ident: ref8 doi: 10.1109/IAEAC.2017.8054235 – volume: 6 start-page: 35 year: 2015 ident: ref4 article-title: A hybrid indoor positioning method based on propagation model and lacation fingerprint publication-title: Bulletin of Surveying and Mapping |
SSID | ssj0000816957 |
Score | 2.3067546 |
Snippet | In recent years, the Wi-Fi-based indoor positioning technology has become a research hotspot. This technology mainly locates the indoor Wi-Fi based on the... |
SourceID | doaj proquest crossref ieee |
SourceType | Open Website Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 1 |
SubjectTerms | Accuracy Algorithms Classification algorithms Cluster analysis Clustering Clustering algorithms Euclidean distance Fingerprint recognition Fingerprints Improved public c-means (IPC) clustering algorithm Indoor environments Indoor positioning K-nearest neighbors algorithm Received signal strength indicator Signal strength the k-nearest neighbors (KNN) algorithm The knearest neighbors (KNN) algorithm Vector quantization Wi-Fi Wireless fidelity |
SummonAdditionalLinks | – databaseName: IEEE Electronic Library (IEL) dbid: RIE link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwELZKT-UALaVioVQ5cGy2zsbP43bFqiC16oGK3iw_xmXFdlO1WQ78esaJN4JSIW6JNY5sf7ZnPBl_Q8iHFDQFTMSSu-BKVuE-qJ3VpZDMWwjSSpf8kOcX4uyKfb7m11vkeLgLAwBd8BmM02P3Lz80fp1cZScKtZFMKWqf4cGtv6s1-FNSAgnNZSYWqqg-mc5m2IcUvaXHqNQkE-wP5dNx9OekKn_txJ16mb8k55uG9VEl38fr1o39z0ecjf_b8l3yItuZxbSfGHtkC1avyPPf2Af3iZ4WF80PWBaz5TrRJWBhMV3eNPeL9tttgcZs8XVRzhfFp1Vo8OUyh3eh2GtyNf_4ZXZW5kwKpWdUtaXgoIK1NgqlpQPlg3IKRJjUdbQ-cCeiojZ6xVGhoUXolK9cIm_zE81oqOsDsr1qVvCGFDEEyaylCHDFguYWTTjqvOeSWkTZj8hkM8TGZ5rxlO1iabrjBtWmx8UkXEzGZUSOh0p3PcvGv8VPE3aDaKLI7gpwzE1ecYY6EDIyCdJRBsJbVkGAyFVtbR0ZH5H9hNPwkQzRiBxuZoLJy_nBTBhHyzBlC377dK13ZCc1sPfNHJLt9n4N79Faad1RN01_ATTS5o4 priority: 102 providerName: IEEE |
Title | A Novel Clustering Algorithm for Wi-Fi Indoor Positioning |
URI | https://ieeexplore.ieee.org/document/8812713 https://www.proquest.com/docview/2455603754 https://doaj.org/article/0be67f47e7b04e6ca41edef583aa3f45 |
Volume | 7 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8NAEF7Ekx5ErWJ9lBw8Gt0k-zzWYlHB4sGit2WfKtRGtPX3O5uspSLoxWOWzWPnS2a-WSbfIHQci6Y8YSGnxpmcFOAHpdEyZ5xY7R3X3MR9yJsRuxyT6wf6sNTqK9aEtfLAreHOsPGMB8I9N5h4ZjUpvPOBikrrKpBGvRRi3lIy1fhgUTBJeZIZKrA86w8GsKJYyyVPIcRxwsi3UNQo9qcWKz_8chNshptoI7HErN8-3RZa8dNttL6kHdhBsp-N6g8_yQaTeRQ7gMGsP3msIdl_esmAimb3z_nwObuauhoOblNxFkzbQePhxd3gMk99EHJLsJjljHrhtNaBCcmNF9YJIzxzZVUFbR01LAisgxUUwhHwOSNsYaL0mi0lwa6qdtHqtJ76PZQF5zjRGgM8BXGSaiBg2FhLOdaAke2i8sskyiaR8NirYqKaZAFL1dpRRTuqZMcuOlmc9NpqZPw-_TzaejE1Clw3AwC7SrCrv2Dvok5EanERAUQF8u0uOvxCTqWP8V2VhAKvi71-9__j1gdoLS6n3Yc5RKuzt7k_AmYyM73mJew1PxF-At8B31A |
linkProvider | Directory of Open Access Journals |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwzV1LbxMxELaqcgAOvApqoMAe4Mam3o2fBw4hECW0jTi0ojfjxyxEhCxqNyD4LfwV_hvjXSfiJW6VuO1a45VlfzszHo-_IeRRTJoCJqqcu-ByVqAe1M7qXEjmLQRppYtxyKOZmJywl6f8dIt829yFAYA2-Qz68bE9yw-1X8VQ2b5Ca4SbqpRCeQBfPuMG7fzp9Dmu5uOyHL84Hk3yVEMg94yqJhccVLDWVkJp6UD5oJwCEcrBoLI-cCcqRW3lFUdVjr6QU75wkbbMl5rREMOdqOAvoZ_By-522CaCE0tWaC4TlVFB9f5wNMJZi_liuo9mVDLBfjF3bVWAVMblD93fGrTxdfJ9PRVdHsv7_qpxff_1N5bI_3WubpBryZPOhh30b5ItWN4iV3_iV9whepjN6k-wyEaLVSSEwMZsuHhbn82bdx8ydNez1_N8PM-my1Djy6uUwIZit8nJhYz9Dtle1kvYJVkVgmTWUoRwwYLmFp1U6rznklrEse-Rcr2kxici9VjPY2HaDRXVpsOBiTgwCQc98mTT6WPHI_Jv8WcRKxvRSALeNuAam6RTDHUgZMUkSEcZCG9ZAQEqrgbWDirGe2Qn4mLzkQSJHtlbI88khXVuSgS4aOsh3_17r4fk8uT46NAcTmcH98iVONguErVHtpuzFdxH36xxD9pfJCNvLhpnPwA0m0XD |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Novel+Clustering+Algorithm+for+Wi-Fi+Indoor+Positioning&rft.jtitle=IEEE+access&rft.au=Ren%2C+Jin&rft.au=Wang%2C+Yunan&rft.au=Niu%2C+Changliu&rft.au=Song%2C+Wei&rft.date=2019-01-01&rft.issn=2169-3536&rft.eissn=2169-3536&rft.volume=7&rft.spage=122428&rft.epage=122434&rft_id=info:doi/10.1109%2FACCESS.2019.2937464&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_ACCESS_2019_2937464 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2169-3536&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2169-3536&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2169-3536&client=summon |