A Novel Clustering Algorithm for Wi-Fi Indoor Positioning

In recent years, the Wi-Fi-based indoor positioning technology has become a research hotspot. This technology mainly locates the indoor Wi-Fi based on the received signal strength indicator (RSSI) signals. The most popular Wi-Fi positioning algorithm is the k-nearest neighbors (KNN) algorithm. Due t...

Full description

Saved in:
Bibliographic Details
Published inIEEE access Vol. 7; pp. 122428 - 122434
Main Authors Ren, Jin, Wang, Yunan, Niu, Changliu, Song, Wei, Huang, Songyang
Format Journal Article
LanguageEnglish
Published Piscataway IEEE 2019
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract In recent years, the Wi-Fi-based indoor positioning technology has become a research hotspot. This technology mainly locates the indoor Wi-Fi based on the received signal strength indicator (RSSI) signals. The most popular Wi-Fi positioning algorithm is the k-nearest neighbors (KNN) algorithm. Due to the excessive amount of RSSI data, clustering algorithms are generally adopted to classify the data before KNN positioning. However, the traditional clustering algorithms cannot maintain data integrity after the classification. To solve the problem, this paper puts forward an improved public c-means (IPC) clustering algorithm with high accuracy in indoor environment, and uses the algorithm to optimize the fingerprint database. After being trained in the database, all fingerprint points were divided into several classes. Then, the range of each class was determined by comparing the cluster centers. To optimize the clustering effect, the points in the border area between two classes were allocated to these classes simultaneously, pushing up the positioning accuracy in this area. The experimental results show that the IPC clustering algorithm achieved better accuracy with lighter computing load than FCM clustering and k-means clustering, and could be coupled with KNN or FS-KNN to achieve good positioning effect.
AbstractList In recent years, the Wi-Fi-based indoor positioning technology has become a research hotspot. This technology mainly locates the indoor Wi-Fi based on the received signal strength indicator (RSSI) signals. The most popular Wi-Fi positioning algorithm is the k-nearest neighbors (KNN) algorithm. Due to the excessive amount of RSSI data, clustering algorithms are generally adopted to classify the data before KNN positioning. However, the traditional clustering algorithms cannot maintain data integrity after the classification. To solve the problem, this paper puts forward an improved public c-means (IPC) clustering algorithm with high accuracy in indoor environment, and uses the algorithm to optimize the fingerprint database. After being trained in the database, all fingerprint points were divided into several classes. Then, the range of each class was determined by comparing the cluster centers. To optimize the clustering effect, the points in the border area between two classes were allocated to these classes simultaneously, pushing up the positioning accuracy in this area. The experimental results show that the IPC clustering algorithm achieved better accuracy with lighter computing load than FCM clustering and k-means clustering, and could be coupled with KNN or FS-KNN to achieve good positioning effect.
Author Huang, Songyang
Song, Wei
Ren, Jin
Niu, Changliu
Wang, Yunan
Author_xml – sequence: 1
  givenname: Jin
  orcidid: 0000-0002-5832-3756
  surname: Ren
  fullname: Ren, Jin
  email: rj@ncut.edu.cn
  organization: School of Information Science and Technology, North China University of Technology, Beijing, China
– sequence: 2
  givenname: Yunan
  surname: Wang
  fullname: Wang, Yunan
  organization: School of Information Science and Technology, North China University of Technology, Beijing, China
– sequence: 3
  givenname: Changliu
  surname: Niu
  fullname: Niu, Changliu
  organization: School of Information Science and Technology, North China University of Technology, Beijing, China
– sequence: 4
  givenname: Wei
  surname: Song
  fullname: Song, Wei
  organization: Beijing Key Laboratory on Integration and Analysis of Large-Scale Stream Data, Beijing, China
– sequence: 5
  givenname: Songyang
  surname: Huang
  fullname: Huang, Songyang
  organization: School of Information Science and Technology, North China University of Technology, Beijing, China
BookMark eNpNUE1Lw0AQXUTBWv0FXgKeU3ez38cSqhaKCioel81mtm5Js3WTCv57U1PEuczM4703w7tAp21sAaFrgmeEYH07L8vFy8uswETPCk0lE-wETQoidE45Faf_5nN01XUbPJQaIC4nSM-zx_gFTVY2-66HFNp1Nm_WMYX-Y5v5mLL3kN-FbNnWcVieYxf6ENuBdonOvG06uDr2KXq7W7yWD_nq6X5Zzle5Y1j1ueCgamutF0rLCpSrVaVA1AWl3rqaV8IrbL1THFOhpayUIxXhTLtCM1xTOkXL0beOdmN2KWxt-jbRBvMLxLQ2NvXBNWBwBUJ6JkFWmIFwlhGowXNFraWe8cHrZvTapfi5h643m7hP7fC-KRjnAlPJ2cCiI8ul2HUJ_N9Vgs0hcjNGbg6Rm2Pkg-p6VAUA-FMoRQpJKP0B-rl9uw
CODEN IAECCG
CitedBy_id crossref_primary_10_3390_s21155013
crossref_primary_10_3390_s23208598
crossref_primary_10_1109_JIOT_2022_3230913
crossref_primary_10_1109_TWC_2023_3275537
crossref_primary_10_3390_rs16061024
crossref_primary_10_1049_cmu2_12386
crossref_primary_10_1109_TIM_2020_2998645
crossref_primary_10_1007_s11277_021_09411_1
crossref_primary_10_1109_TVT_2024_3355888
crossref_primary_10_1080_21693277_2022_2144522
crossref_primary_10_3390_ijgi9120714
crossref_primary_10_1155_2022_8692080
crossref_primary_10_1109_JSEN_2021_3113837
crossref_primary_10_3390_app11010279
Cites_doi 10.1109/ICTC.2017.8190791
10.1016/j.eswa.2010.02.111
10.1109/ICITBS.2018.00060
10.1109/UIC-ATC-ScalCom-CBDCom-IoP-SmartWorld.2016.0127
10.1016/j.robot.2009.07.018
10.1145/2700271
10.1109/ICICIP.2015.7388180
10.1109/JIOT.2018.2864607
10.1109/GreenCom-iThings-CPSCom.2013.353
10.1109/GLOCOM.2014.7036847
10.1109/WPNC.2008.4510359
10.1109/SIU.2018.8404171
10.1109/IAEAC.2017.8054235
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019
DBID 97E
ESBDL
RIA
RIE
AAYXX
CITATION
7SC
7SP
7SR
8BQ
8FD
JG9
JQ2
L7M
L~C
L~D
DOA
DOI 10.1109/ACCESS.2019.2937464
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005-present
IEEE Xplore Open Access Journals
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Xplore
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Directory of Open Access Journals - May need to register for free articles
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
METADEX
Computer and Information Systems Abstracts Professional
DatabaseTitleList

Materials Research Database
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: RIE
  name: IEEE Xplore
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2169-3536
EndPage 122434
ExternalDocumentID oai_doaj_org_article_0be67f47e7b04e6ca41edef583aa3f45
10_1109_ACCESS_2019_2937464
8812713
Genre orig-research
GrantInformation_xml – fundername: North China University of Technology
  grantid: XN019009
  funderid: 10.13039/501100009546
– fundername: North China University of Technology
  grantid: 110051360007
  funderid: 10.13039/501100009546
– fundername: 2019 Beijing University Student Scientific Research and Entrepreneurship Action Plan Project
  grantid: 218051360019XN004
– fundername: Scientific Research Project of Beijing Educational Committee
  grantid: KM201710009004
– fundername: Research Project on Teaching Reform and Curriculum Construction of North China University of Technology
  grantid: 18XN009-011
– fundername: 2019 Fundamental Research Funds for Beijing Universities
  grantid: 110052971921/004
– fundername: 2019 Education and Teaching Reform General Project of North China University of Technology
  grantid: 108051360019XN141/021
GroupedDBID 0R~
4.4
5VS
6IK
97E
AAJGR
ABVLG
ACGFS
ADBBV
ALMA_UNASSIGNED_HOLDINGS
BCNDV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
EJD
ESBDL
GROUPED_DOAJ
IFIPE
IPLJI
JAVBF
KQ8
M43
M~E
O9-
OCL
OK1
RIA
RIE
RIG
RNS
AAYXX
CITATION
7SC
7SP
7SR
8BQ
8FD
JG9
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c408t-65e8daaaf6897be8cd8b8e6d233facd5b6f80afc85036977b8c1b1549c2940d33
IEDL.DBID DOA
ISSN 2169-3536
IngestDate Tue Oct 22 15:12:16 EDT 2024
Thu Oct 10 17:49:28 EDT 2024
Fri Aug 23 00:51:12 EDT 2024
Wed Jun 26 19:29:01 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c408t-65e8daaaf6897be8cd8b8e6d233facd5b6f80afc85036977b8c1b1549c2940d33
ORCID 0000-0002-5832-3756
OpenAccessLink https://doaj.org/article/0be67f47e7b04e6ca41edef583aa3f45
PQID 2455603754
PQPubID 4845423
PageCount 7
ParticipantIDs ieee_primary_8812713
doaj_primary_oai_doaj_org_article_0be67f47e7b04e6ca41edef583aa3f45
crossref_primary_10_1109_ACCESS_2019_2937464
proquest_journals_2455603754
PublicationCentury 2000
PublicationDate 20190000
2019-00-00
20190101
2019-01-01
PublicationDateYYYYMMDD 2019-01-01
PublicationDate_xml – year: 2019
  text: 20190000
PublicationDecade 2010
PublicationPlace Piscataway
PublicationPlace_xml – name: Piscataway
PublicationTitle IEEE access
PublicationTitleAbbrev Access
PublicationYear 2019
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
luo (ref17) 2014; 31
ref15
ref14
wu (ref7) 2017; 43
ref10
ref2
ref1
ref16
ref19
cui (ref4) 2015; 6
zhang (ref9) 2013; 7
ref18
ref8
sun (ref11) 2009
ref3
ref6
ref5
li (ref12) 2017; 4
References_xml – volume: 4
  start-page: 787
  year: 2017
  ident: ref12
  article-title: Method of WiFi indoor location based on K-Means and random forest
  publication-title: Control Eng China
  contributor:
    fullname: li
– volume: 43
  start-page: 289
  year: 2017
  ident: ref7
  article-title: Research and improvement of WiFi positioning based on k nearest neighbor method
  publication-title: Comput Eng
  contributor:
    fullname: wu
– volume: 7
  start-page: 44
  year: 2013
  ident: ref9
  article-title: Research of indoor positioning based on a optimization KNN algorithm
  publication-title: Elect Engineering
  contributor:
    fullname: zhang
– ident: ref13
  doi: 10.1109/ICTC.2017.8190791
– ident: ref16
  doi: 10.1016/j.eswa.2010.02.111
– ident: ref10
  doi: 10.1109/ICITBS.2018.00060
– ident: ref1
  doi: 10.1109/UIC-ATC-ScalCom-CBDCom-IoP-SmartWorld.2016.0127
– ident: ref2
  doi: 10.1016/j.robot.2009.07.018
– start-page: 251
  year: 2009
  ident: ref11
  article-title: KNN-FCM hybrid algorithm for indoor location in WLAN
  publication-title: Proc 2nd Int Conf Power Electron Intell Transp Syst (PEITS)
  contributor:
    fullname: sun
– ident: ref5
  doi: 10.1145/2700271
– ident: ref14
  doi: 10.1109/ICICIP.2015.7388180
– ident: ref19
  doi: 10.1109/JIOT.2018.2864607
– ident: ref6
  doi: 10.1109/GreenCom-iThings-CPSCom.2013.353
– volume: 31
  start-page: 28
  year: 2014
  ident: ref17
  article-title: A density based K-means clustering algorithm
  publication-title: Microelectron Comput
  contributor:
    fullname: luo
– ident: ref18
  doi: 10.1109/GLOCOM.2014.7036847
– ident: ref3
  doi: 10.1109/WPNC.2008.4510359
– ident: ref15
  doi: 10.1109/SIU.2018.8404171
– ident: ref8
  doi: 10.1109/IAEAC.2017.8054235
– volume: 6
  start-page: 35
  year: 2015
  ident: ref4
  article-title: A hybrid indoor positioning method based on propagation model and lacation fingerprint
  publication-title: Bulletin of Surveying and Mapping
  contributor:
    fullname: cui
SSID ssj0000816957
Score 2.2881403
Snippet In recent years, the Wi-Fi-based indoor positioning technology has become a research hotspot. This technology mainly locates the indoor Wi-Fi based on the...
SourceID doaj
proquest
crossref
ieee
SourceType Open Website
Aggregation Database
Publisher
StartPage 122428
SubjectTerms Accuracy
Algorithms
Classification algorithms
Cluster analysis
Clustering
Clustering algorithms
Euclidean distance
Fingerprint recognition
Fingerprints
improved public c-means (IPC) clustering algorithm
Indoor environments
indoor positioning
K-nearest neighbors algorithm
Received signal strength indicator
Signal strength
the k-nearest neighbors (KNN) algorithm
Vector quantization
Wi-Fi
Wireless fidelity
SummonAdditionalLinks – databaseName: IEEE Xplore
  dbid: RIE
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT9wwEB5RTnAoLRR1C1Q59EgWJ_HzuKy6opVAHEDlZvkxblfdbiqa5dBfXzvxroD20FtiOZEzY2c-j2e-AfiAdWXSgU1Z8ZSSw01VGu5lKb1grDE0GJGSky-v-MUt_XzH7rbgdJMLg4h98BmO02V_lu9bt0qusjMZrZFIJWpfCKWGXK2NPyUVkFBMZGKhiqizyXQavyFFb6lxNGqCcvrE-PQc_bmoyl9_4t68zPbgcj2wIark-3jV2bH7_Yyz8X9H_gpeZpxZTIaJ8Rq2cLkPu4_YBw9ATYqr9gEXxXSxSnQJsbGYLL629_Pu248igtniy7yczYtPS9_Gm-sc3hW7vYHb2ceb6UWZKymUjhLZlZyh9MaYwKUSFqXz0krkvm6aYJxnlgdJTHCSRYMWEaGVrrKJvM3VihLfNIewvWyX-BaKYNAES4JEGaFUVKeQ1LuaqEBl7VUYwelaxPrnQJih-40GUXrQiE4a0VkjIzhPath0TWzXfUMUn86LRxOLXAQqUFhCkTtDK_QYmGyMaQJlIzhIIt-8JEt7BMdrpeq8Mn_pmrII8lLh33f_fuoIdtIABzfLMWx39ys8icCjs-_7GfcHrwbVWA
  priority: 102
  providerName: IEEE
Title A Novel Clustering Algorithm for Wi-Fi Indoor Positioning
URI https://ieeexplore.ieee.org/document/8812713
https://www.proquest.com/docview/2455603754
https://doaj.org/article/0be67f47e7b04e6ca41edef583aa3f45
Volume 7
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV09T8MwELVQJxgQn6JQUAZGQp3EH-exVFQFCcRARTfLjm2oVFoELb-fc5KiIgYWxjhWEr9LfO-c8ztCzn2emfjDJs1E3JIjTJYa4SAFJzkvDAtGxs3Jd_diOGK3Yz5eK_UVc8JqeeAauC61XsjApJeWMi9KwzLvfOBQGFMEVquXUrUWTFVzMGRCcdnIDOH5bq_fxxHFXC51iS5OMsF-uKJKsb8psfJrXq6czWCHbDcsMenVT7dLNvxsj2ytaQfuE9VL7ueffpr0p8sodoCNSW_6PMdg_-U1QSqaPE3SwSS5mbk5Hjw0yVnY7YCMBteP_WHa1EFIS0ZhkQruwRljggAlrYfSgQUvXF4UwZSOWxGAmlACR3eEfM5CmdkovVbmilFXFIekNZvP_BFJgvEmWBrAAxIhNIYE5sqcqsAgdyq0ycUKEv1Wy13oKkygStcI6oigbhBsk6sI23fXqFVdNaAFdWNB_ZcF22Q_gv59EUDOgaFzm3RWRtDNd_Whc8aRosWyvcf_cesTshmHUy-pdEhr8b70p0gyFvasep_Oqv2AXyGZzhg
link.rule.ids 315,783,787,799,867,2109,4031,27935,27936,27937,55086
linkProvider Directory of Open Access Journals
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lj9MwELZWywE48FoQhQVy4LjpOokf42OpqLqwrTjsir1ZfoyXitKgJeXAr8dO3IrXgVtiOZEzY2c-j2e-IeQ11pVJBzZlJVJKjjBVaYSHErzkvDEsGJmSkxdLMb9k76741QE52efCIGIffIbjdNmf5fvWbZOr7BSiNZKpRO2tiKtBDNlae49KKiGhuMzUQhVVp5PpNH5Fit9S42jWJBPsN_PTs_Tnsip__Yt7AzO7Txa7oQ1xJZ_H286O3Y8_WBv_d-wPyL2MNIvJMDUekgPcPCJ3f-EfPCJqUizb77guputtIkyIjcVkfd3erLpPX4oIZ4uPq3K2Ks42vo03H3KAV-z2mFzO3l5M52WupVA6RqErBUfwxpggQEmL4DxYQOHrpgnGeW5FAGqCAx5NWsSEFlxlE32bqxWjvmmekMNNu8GnpAgGTbA0AEIEU1GhEph3NVWBQe1VGJGTnYj114EyQ_dbDar0oBGdNKKzRkbkTVLDvmviu-4bovh0Xj6aWhQyMInSUobCGVahx8ChMaYJjI_IURL5_iVZ2iNyvFOqzmvzm64ZjzAvlf599u-nXpHb84vFuT4_W75_Tu6kwQ5Ol2Ny2N1s8UWEIZ192c--n_2e2KM
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Novel+Clustering+Algorithm+for+Wi-Fi+Indoor+Positioning&rft.jtitle=IEEE+access&rft.au=Ren%2C+Jin&rft.au=Wang%2C+Yunan&rft.au=Niu%2C+Changliu&rft.au=Song%2C+Wei&rft.date=2019&rft.issn=2169-3536&rft.eissn=2169-3536&rft.volume=7&rft.spage=122428&rft.epage=122434&rft_id=info:doi/10.1109%2FACCESS.2019.2937464&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_ACCESS_2019_2937464
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2169-3536&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2169-3536&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2169-3536&client=summon