Research and Application of Regularized Sparse Filtering Model for Intelligent Fault Diagnosis Under Large Speed Fluctuation
The speed of mechanical rotating parts often fluctuates during the working process. Vibration signals collected under constant speed have a strong correlation with the corresponding fault types. However, the mapping relationship becomes complex under large speed fluctuation, which is an urgent resea...
Saved in:
Published in | IEEE access Vol. 8; pp. 39809 - 39818 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Piscataway
IEEE
2020
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
ISSN | 2169-3536 2169-3536 |
DOI | 10.1109/ACCESS.2020.2975531 |
Cover
Loading…
Abstract | The speed of mechanical rotating parts often fluctuates during the working process. Vibration signals collected under constant speed have a strong correlation with the corresponding fault types. However, the mapping relationship becomes complex under large speed fluctuation, which is an urgent research subject in intelligent fault diagnosis. As an effective unsupervised learning method, sparse filtering (SF) has been successfully used in intelligent fault diagnosis. However, the generalization capability of this method to deal with large speed fluctuation remains poor. To overcome this deficiency, this study adds regularization to the loss function of SF to obtain regularized SF methods. The frequency domain signals under large speed fluctuation are directly input to regularized SF for feature extraction, and softmax regression is used as a classifier for fault type identification. Experimental results of gearbox and bearing datasets show that L1/2 regularized sparse filtering (L1/2-SF) model can solve the problem of large speed fluctuation more effectively than other regularized SF models can. |
---|---|
AbstractList | The speed of mechanical rotating parts often fluctuates during the working process. Vibration signals collected under constant speed have a strong correlation with the corresponding fault types. However, the mapping relationship becomes complex under large speed fluctuation, which is an urgent research subject in intelligent fault diagnosis. As an effective unsupervised learning method, sparse filtering (SF) has been successfully used in intelligent fault diagnosis. However, the generalization capability of this method to deal with large speed fluctuation remains poor. To overcome this deficiency, this study adds regularization to the loss function of SF to obtain regularized SF methods. The frequency domain signals under large speed fluctuation are directly input to regularized SF for feature extraction, and softmax regression is used as a classifier for fault type identification. Experimental results of gearbox and bearing datasets show that L1/2 regularized sparse filtering (L1/2-SF) model can solve the problem of large speed fluctuation more effectively than other regularized SF models can. |
Author | Zhang, Guowei Wang, Xiaoyu He, Jingtao Jia, Sixiang Wang, Jinrui Han, Baokun |
Author_xml | – sequence: 1 givenname: Baokun orcidid: 0000-0001-7367-6253 surname: Han fullname: Han, Baokun organization: College of Mechanical and Electronic Engineering, Shandong University of Science and Technology, Qingdao, China – sequence: 2 givenname: Guowei orcidid: 0000-0002-5982-2995 surname: Zhang fullname: Zhang, Guowei organization: College of Mechanical and Electronic Engineering, Shandong University of Science and Technology, Qingdao, China – sequence: 3 givenname: Jinrui orcidid: 0000-0001-8690-0672 surname: Wang fullname: Wang, Jinrui email: wangjr33@163.com organization: College of Mechanical and Electronic Engineering, Shandong University of Science and Technology, Qingdao, China – sequence: 4 givenname: Xiaoyu orcidid: 0000-0002-3819-2015 surname: Wang fullname: Wang, Xiaoyu organization: College of Mechanical and Electronic Engineering, Shandong University of Science and Technology, Qingdao, China – sequence: 5 givenname: Sixiang orcidid: 0000-0001-8207-1045 surname: Jia fullname: Jia, Sixiang organization: College of Mechanical and Electronic Engineering, Shandong University of Science and Technology, Qingdao, China – sequence: 6 givenname: Jingtao orcidid: 0000-0001-8796-8185 surname: He fullname: He, Jingtao organization: College of Mechanical and Electronic Engineering, Shandong University of Science and Technology, Qingdao, China |
BookMark | eNqFkUFv3CAQha0qlZqm-QW5IPW8GwzYhuNqm21X2qhStjmjMR67rCi4gA-N-uPrrKOo6qVcQKN53xvmvS8ufPBYFDclXZclVbeb7fbueFwzyuiaqaaqePmmuGRlrVa84vXFX-93xXVKJzofOZeq5rL4_YAJIZrvBHxHNuPorIFsgyehJw84TA6ifcKOHEeICcnOuozR-oHchw4d6UMke5_ROTugz2QHk8vkk4XBh2QTefQdRnKAOOCMwBm0c5PJ09njQ_G2B5fw-uW-Kh53d9-2X1aHr5_3281hZQSVeVVXgvGyQeglNkJQDqWiICWdf4BNr-pWYE0FR6p6IStoWyo7NDUrmSkbw_lVsV-4XYCTHqP9AfGXDmD1uRDioCFmaxzqtmuxFmZeUKUERQU96xqQ2HdMAcdqZn1cWGMMPydMWZ_CFP08vmaiEo1golZzF1-6TAwpRexfXUuqn1PTS2r6OTX9ktqsUv-ojM3nTeUI1v1He7NoLSK-uilKaylr_ge9PafW |
CODEN | IAECCG |
CitedBy_id | crossref_primary_10_32604_cmc_2024_049484 crossref_primary_10_1109_ACCESS_2020_3014340 crossref_primary_10_23939_acps2024_01_061 crossref_primary_10_3390_e23081052 |
Cites_doi | 10.1243/09544062JMES1777 10.1016/j.ymssp.2015.10.025 10.1198/016214506000000735 10.1109/TNNLS.2012.2197412 10.1016/j.ymssp.2013.06.001 10.1006/mssp.2000.1290 10.1016/j.ymssp.2006.09.009 10.1002/cpa.20303 10.1016/j.sigpro.2013.04.015 10.1109/TIE.2016.2519325 10.1155/2016/5289698 10.1016/j.patrec.2014.09.006 10.1016/j.ymssp.2012.09.014 10.1088/1361-6501/aaf319 10.3390/app8060906 10.1016/j.sigpro.2013.05.013 10.1016/j.measurement.2012.04.006 10.1109/TIM.2018.2868519 10.23919/ChiCC.2017.8028522 10.1016/j.neunet.2013.11.006 10.1016/j.renene.2010.05.012 10.1016/j.ymssp.2010.07.017 10.1007/s11042-015-2808-x |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020 |
DBID | 97E ESBDL RIA RIE AAYXX CITATION 7SC 7SP 7SR 8BQ 8FD JG9 JQ2 L7M L~C L~D DOA |
DOI | 10.1109/ACCESS.2020.2975531 |
DatabaseName | IEEE Xplore (IEEE) IEEE Xplore Open Access Journals IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Xplore CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts METADEX Technology Research Database Materials Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace METADEX Computer and Information Systems Abstracts Professional |
DatabaseTitleList | Materials Research Database |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: RIE name: IEEE Xplore url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 2169-3536 |
EndPage | 39818 |
ExternalDocumentID | oai_doaj_org_article_bdbe64c0085940e9af2d7a8efd29a3e5 10_1109_ACCESS_2020_2975531 9006886 |
Genre | orig-research |
GrantInformation_xml | – fundername: Applied Research Project for Postdoctoral Researchers in Qingdao grantid: 01020240604 – fundername: China Postdoctoral Science Foundation grantid: 2019M662399 funderid: 10.13039/501100002858 |
GroupedDBID | 0R~ 4.4 5VS 6IK 97E AAJGR ABAZT ABVLG ACGFS ADBBV AGSQL ALMA_UNASSIGNED_HOLDINGS BCNDV BEFXN BFFAM BGNUA BKEBE BPEOZ EBS EJD ESBDL GROUPED_DOAJ IPLJI JAVBF KQ8 M43 M~E O9- OCL OK1 RIA RIE RNS AAYXX CITATION RIG 7SC 7SP 7SR 8BQ 8FD JG9 JQ2 L7M L~C L~D |
ID | FETCH-LOGICAL-c408t-6542317eaf8e74403a190a880957e7f96b4e6043e09f485abb08dec6212c17c33 |
IEDL.DBID | RIE |
ISSN | 2169-3536 |
IngestDate | Wed Aug 27 01:30:59 EDT 2025 Sun Jun 29 15:46:07 EDT 2025 Thu Apr 24 23:11:24 EDT 2025 Tue Jul 01 01:22:14 EDT 2025 Wed Aug 27 02:35:28 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Language | English |
License | https://creativecommons.org/licenses/by/4.0/legalcode |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c408t-6542317eaf8e74403a190a880957e7f96b4e6043e09f485abb08dec6212c17c33 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0001-7367-6253 0000-0002-5982-2995 0000-0002-3819-2015 0000-0001-8690-0672 0000-0001-8796-8185 0000-0001-8207-1045 |
OpenAccessLink | https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/document/9006886 |
PQID | 2454742469 |
PQPubID | 4845423 |
PageCount | 10 |
ParticipantIDs | proquest_journals_2454742469 crossref_citationtrail_10_1109_ACCESS_2020_2975531 ieee_primary_9006886 crossref_primary_10_1109_ACCESS_2020_2975531 doaj_primary_oai_doaj_org_article_bdbe64c0085940e9af2d7a8efd29a3e5 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20200000 2020-00-00 20200101 2020-01-01 |
PublicationDateYYYYMMDD | 2020-01-01 |
PublicationDate_xml | – year: 2020 text: 20200000 |
PublicationDecade | 2020 |
PublicationPlace | Piscataway |
PublicationPlace_xml | – name: Piscataway |
PublicationTitle | IEEE access |
PublicationTitleAbbrev | Access |
PublicationYear | 2020 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref13 ref12 ref15 ref14 ref11 xu (ref23) 2012; 23 ref10 ref2 ref1 ref17 ref16 ref18 tibshirani (ref26) 2018; 58 van der maaten (ref29) 2008; 9 ref25 ref20 ref21 nair (ref24) 2010 ref28 jiang (ref5) 0; 17 4 ref27 ref8 ref7 ref9 ref4 ref3 ref6 goodfellow (ref22) 2016 ngiam (ref19) 2011 |
References_xml | – ident: ref1 doi: 10.1243/09544062JMES1777 – ident: ref2 doi: 10.1016/j.ymssp.2015.10.025 – volume: 58 start-page: 267 year: 2018 ident: ref26 article-title: Regression shrinkage and selection via the lasso publication-title: J Roy Statist Soc B Statist Methodol – ident: ref27 doi: 10.1198/016214506000000735 – volume: 17 4 start-page: 1861 year: 0 ident: ref5 article-title: A novel method for self-adaptive feature extraction using scaling crossover characteristics of signals and combining with LS-SVM for multi-fault diagnosis of gearbox publication-title: J Vibroeng – volume: 23 start-page: 1013 year: 2012 ident: ref23 article-title: $L_{1/2}$ regularization: A thresholding representation theory and a fast solver publication-title: IEEE Trans Neural Netw Learn Syst doi: 10.1109/TNNLS.2012.2197412 – ident: ref10 doi: 10.1016/j.ymssp.2013.06.001 – ident: ref16 doi: 10.1006/mssp.2000.1290 – ident: ref11 doi: 10.1016/j.ymssp.2006.09.009 – start-page: 807 year: 2010 ident: ref24 article-title: Rectified linear units improve restricted Boltzmann machines publication-title: Proc 27th Int Conf Mach Learn (ICML) – ident: ref28 doi: 10.1002/cpa.20303 – ident: ref13 doi: 10.1016/j.sigpro.2013.04.015 – ident: ref4 doi: 10.1109/TIE.2016.2519325 – ident: ref8 doi: 10.1155/2016/5289698 – start-page: 1125 year: 2011 ident: ref19 article-title: Sparse filtering publication-title: Proc Adv Neural Inf Process Syst – year: 2016 ident: ref22 publication-title: Deep Learning – ident: ref17 doi: 10.1016/j.patrec.2014.09.006 – ident: ref15 doi: 10.1016/j.ymssp.2012.09.014 – ident: ref3 doi: 10.1088/1361-6501/aaf319 – ident: ref21 doi: 10.3390/app8060906 – ident: ref7 doi: 10.1016/j.sigpro.2013.05.013 – ident: ref9 doi: 10.1016/j.measurement.2012.04.006 – ident: ref6 doi: 10.1109/TIM.2018.2868519 – ident: ref20 doi: 10.23919/ChiCC.2017.8028522 – ident: ref25 doi: 10.1016/j.neunet.2013.11.006 – ident: ref12 doi: 10.1016/j.renene.2010.05.012 – ident: ref14 doi: 10.1016/j.ymssp.2010.07.017 – volume: 9 start-page: 2579 year: 2008 ident: ref29 article-title: Visualizing data using t-SNE publication-title: J Mach Learn Res – ident: ref18 doi: 10.1007/s11042-015-2808-x |
SSID | ssj0000816957 |
Score | 2.1831293 |
Snippet | The speed of mechanical rotating parts often fluctuates during the working process. Vibration signals collected under constant speed have a strong correlation... |
SourceID | doaj proquest crossref ieee |
SourceType | Open Website Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 39809 |
SubjectTerms | Fault diagnosis Feature extraction Filtering Filtration Fluctuations Gearboxes large speed fluctuation Linear programming Regularization Rotating parts Signal processing sparse filtering Training Vibrations |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07b9swECaCTO1QtE2KunmAQ8YooSiKEkfHqeAUTYYkBrwRJHUCDBh2kMhL0R_fO0pWHRRol64CHyLvyLsjj9_H2JnPZVM4lydOCJcooCXlC5loAWgeVG7qSAZze6enM_Vtns93qL4oJ6yDB-4m7tLXHrQK5BoYJcC4RtaFK6GppXEZRPRStHk7wVTcg8tUm7zoYYZSYS7HkwmOCANCKS7oNWmepa9MUUTs7ylW_tiXo7Gp3rN3vZfIx93ffWB7sPrI3u5gBx6wn9ucOe5WNR__vofm64bfR4b558UPqPnDE8auwKsF3YtjVU70Z0uOziq_GfA4W165zbLl113m3eKFR0Ik_p0SxbEJtHG8Wm7otQn1cchm1dfHyTTpqRSSoETZJkRLhZ4CuKYEggTMHDoCDtcuThIUjdFegRYqA2EaVebOe1HWEDQatpAWIcs-sf3VegWfGfc1htQaQGRBqoBtBOUKdBNCpjEYcvmIye2s2tDjjBPdxdLGeEMY24nCkihsL4oROx8qPXUwG38vfkXiGooSRnb8gJpje82x_9KcETsgYQ-NGHouU-oRO94K3_br-cVKwj1TUmnz5X90fcTe0HC6o5xjtt8-b-AEnZvWn0Y9_gVFwvTL priority: 102 providerName: Directory of Open Access Journals |
Title | Research and Application of Regularized Sparse Filtering Model for Intelligent Fault Diagnosis Under Large Speed Fluctuation |
URI | https://ieeexplore.ieee.org/document/9006886 https://www.proquest.com/docview/2454742469 https://doaj.org/article/bdbe64c0085940e9af2d7a8efd29a3e5 |
Volume | 8 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwELbanuAALQWxpVQ-cGy2Xsdx4uN2ISqIcgAq9WbZzkRasdqt2uRS8eOZcbzhVSFuURQ7Tsb2PDzzfYy98YVsS-eKzAnhMgW0pHwpMy0A1YMqTBPJYC4_6Ysr9eG6uN5hp2MtDADE5DOY0mU8y282oadQ2ZmhgoZK77JddNyGWq0xnkIEEqYoE7DQTJiz-WKB34AuoBRTqh8t8tlvyidi9CdSlb924qhe6qfscjuwIavk27Tv_DTc_4HZ-L8j32dPkp3J58PEOGA7sH7GHv-CPnjIvm-z7rhbN3z-8ySbb1r-OXLU3y7voeFfbtD7BV4v6WQdm3IiUFtxNHf5-xHRs-O161cdfzvk7i3veKRU4h8p1Ry7QC3J61VP9Sr0jufsqn73dXGRJTKGLChRdRkRW6GtAa6tgEAFc4emhMPVjz8dytZor0ALlYMwraoK572oGggaVWOYlSHPX7C99WYNLxn3DTrlGkDkQaqAfQTlSjQ0Qq7RnXLFhMmtlGxISOVEmLGy0WMRxg6itSRam0Q7Yadjo5sBqOPfj5-T-MdHCWU73kCx2bRorW88aBXILDVKgHGtbEpXQdtI43LAgR6SqMdOkpQn7Hg7mWzaEe6sJOQ0JZU2Rw-3esUe0QCH8M4x2-tue3iNBk_nT2Kg4CTO9x8kA_4M |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwELZKOQAHXgWxUMAHjs3W6zhOfFwWoi3s9gCt1JtlOxNp1dVu1SaXih_PjJMNTyFuURQ7k4ztmbFnvo-xdz6Tde5cljghXKKAppTPZaIFoHlQmakiGczyVM_P1aeL7GKPHQ21MAAQk89gTJfxLL_ahpa2yo4NFTQU-g67i3Y_m3TVWsOOClFImCzvoYUmwhxPZzP8CgwCpRhTBWmWTn4xPxGlv6dV-WMtjgamfMSWO9G6vJLLcdv4cbj9DbXxf2V_zB72niafdkPjCduDzVP24Cf8wQP2bZd3x92m4tMfZ9l8W_MvkaX-enULFf96hfEv8HJFZ-vYlBOF2pqjw8tPBkzPhpeuXTf8Q5e9t7rhkVSJLyjZHLtAO8nLdUsVK_SOZ-y8_Hg2myc9HUMSlCiahKit0NsAVxdAsIKpQ2fC4fzHnw55bbRXoIVKQZhaFZnzXhQVBI3GMUzykKbP2f5mu4EXjPsKw3ININIgVcA-gnI5uhoh1RhQuWzE5E5LNvRY5USZsbYxZhHGdqq1pFrbq3bEjoZGVx1Ux78ff0_qHx4lnO14A9Vm-2lrfeVBq0COqVECjKtllbsC6koalwIKekCqHjrptTxih7vBZPs14cZKwk5TUmnz8u-t3rJ787Plwi5OTj-_YvdJ2G6z55DtN9ctvEb3p_Fv4qj_DoalAG8 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Research+and+Application+of+Regularized+Sparse+Filtering+Model+for+Intelligent+Fault+Diagnosis+Under+Large+Speed+Fluctuation&rft.jtitle=IEEE+access&rft.au=Han%2C+Baokun&rft.au=Zhang%2C+Guowei&rft.au=Wang%2C+Jinrui&rft.au=Wang%2C+Xiaoyu&rft.date=2020&rft.pub=IEEE&rft.eissn=2169-3536&rft.volume=8&rft.spage=39809&rft.epage=39818&rft_id=info:doi/10.1109%2FACCESS.2020.2975531&rft.externalDocID=9006886 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2169-3536&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2169-3536&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2169-3536&client=summon |