Research and Application of Regularized Sparse Filtering Model for Intelligent Fault Diagnosis Under Large Speed Fluctuation

The speed of mechanical rotating parts often fluctuates during the working process. Vibration signals collected under constant speed have a strong correlation with the corresponding fault types. However, the mapping relationship becomes complex under large speed fluctuation, which is an urgent resea...

Full description

Saved in:
Bibliographic Details
Published inIEEE access Vol. 8; pp. 39809 - 39818
Main Authors Han, Baokun, Zhang, Guowei, Wang, Jinrui, Wang, Xiaoyu, Jia, Sixiang, He, Jingtao
Format Journal Article
LanguageEnglish
Published Piscataway IEEE 2020
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN2169-3536
2169-3536
DOI10.1109/ACCESS.2020.2975531

Cover

Loading…
Abstract The speed of mechanical rotating parts often fluctuates during the working process. Vibration signals collected under constant speed have a strong correlation with the corresponding fault types. However, the mapping relationship becomes complex under large speed fluctuation, which is an urgent research subject in intelligent fault diagnosis. As an effective unsupervised learning method, sparse filtering (SF) has been successfully used in intelligent fault diagnosis. However, the generalization capability of this method to deal with large speed fluctuation remains poor. To overcome this deficiency, this study adds regularization to the loss function of SF to obtain regularized SF methods. The frequency domain signals under large speed fluctuation are directly input to regularized SF for feature extraction, and softmax regression is used as a classifier for fault type identification. Experimental results of gearbox and bearing datasets show that L1/2 regularized sparse filtering (L1/2-SF) model can solve the problem of large speed fluctuation more effectively than other regularized SF models can.
AbstractList The speed of mechanical rotating parts often fluctuates during the working process. Vibration signals collected under constant speed have a strong correlation with the corresponding fault types. However, the mapping relationship becomes complex under large speed fluctuation, which is an urgent research subject in intelligent fault diagnosis. As an effective unsupervised learning method, sparse filtering (SF) has been successfully used in intelligent fault diagnosis. However, the generalization capability of this method to deal with large speed fluctuation remains poor. To overcome this deficiency, this study adds regularization to the loss function of SF to obtain regularized SF methods. The frequency domain signals under large speed fluctuation are directly input to regularized SF for feature extraction, and softmax regression is used as a classifier for fault type identification. Experimental results of gearbox and bearing datasets show that L1/2 regularized sparse filtering (L1/2-SF) model can solve the problem of large speed fluctuation more effectively than other regularized SF models can.
Author Zhang, Guowei
Wang, Xiaoyu
He, Jingtao
Jia, Sixiang
Wang, Jinrui
Han, Baokun
Author_xml – sequence: 1
  givenname: Baokun
  orcidid: 0000-0001-7367-6253
  surname: Han
  fullname: Han, Baokun
  organization: College of Mechanical and Electronic Engineering, Shandong University of Science and Technology, Qingdao, China
– sequence: 2
  givenname: Guowei
  orcidid: 0000-0002-5982-2995
  surname: Zhang
  fullname: Zhang, Guowei
  organization: College of Mechanical and Electronic Engineering, Shandong University of Science and Technology, Qingdao, China
– sequence: 3
  givenname: Jinrui
  orcidid: 0000-0001-8690-0672
  surname: Wang
  fullname: Wang, Jinrui
  email: wangjr33@163.com
  organization: College of Mechanical and Electronic Engineering, Shandong University of Science and Technology, Qingdao, China
– sequence: 4
  givenname: Xiaoyu
  orcidid: 0000-0002-3819-2015
  surname: Wang
  fullname: Wang, Xiaoyu
  organization: College of Mechanical and Electronic Engineering, Shandong University of Science and Technology, Qingdao, China
– sequence: 5
  givenname: Sixiang
  orcidid: 0000-0001-8207-1045
  surname: Jia
  fullname: Jia, Sixiang
  organization: College of Mechanical and Electronic Engineering, Shandong University of Science and Technology, Qingdao, China
– sequence: 6
  givenname: Jingtao
  orcidid: 0000-0001-8796-8185
  surname: He
  fullname: He, Jingtao
  organization: College of Mechanical and Electronic Engineering, Shandong University of Science and Technology, Qingdao, China
BookMark eNqFkUFv3CAQha0qlZqm-QW5IPW8GwzYhuNqm21X2qhStjmjMR67rCi4gA-N-uPrrKOo6qVcQKN53xvmvS8ufPBYFDclXZclVbeb7fbueFwzyuiaqaaqePmmuGRlrVa84vXFX-93xXVKJzofOZeq5rL4_YAJIZrvBHxHNuPorIFsgyehJw84TA6ifcKOHEeICcnOuozR-oHchw4d6UMke5_ROTugz2QHk8vkk4XBh2QTefQdRnKAOOCMwBm0c5PJ09njQ_G2B5fw-uW-Kh53d9-2X1aHr5_3281hZQSVeVVXgvGyQeglNkJQDqWiICWdf4BNr-pWYE0FR6p6IStoWyo7NDUrmSkbw_lVsV-4XYCTHqP9AfGXDmD1uRDioCFmaxzqtmuxFmZeUKUERQU96xqQ2HdMAcdqZn1cWGMMPydMWZ_CFP08vmaiEo1golZzF1-6TAwpRexfXUuqn1PTS2r6OTX9ktqsUv-ojM3nTeUI1v1He7NoLSK-uilKaylr_ge9PafW
CODEN IAECCG
CitedBy_id crossref_primary_10_32604_cmc_2024_049484
crossref_primary_10_1109_ACCESS_2020_3014340
crossref_primary_10_23939_acps2024_01_061
crossref_primary_10_3390_e23081052
Cites_doi 10.1243/09544062JMES1777
10.1016/j.ymssp.2015.10.025
10.1198/016214506000000735
10.1109/TNNLS.2012.2197412
10.1016/j.ymssp.2013.06.001
10.1006/mssp.2000.1290
10.1016/j.ymssp.2006.09.009
10.1002/cpa.20303
10.1016/j.sigpro.2013.04.015
10.1109/TIE.2016.2519325
10.1155/2016/5289698
10.1016/j.patrec.2014.09.006
10.1016/j.ymssp.2012.09.014
10.1088/1361-6501/aaf319
10.3390/app8060906
10.1016/j.sigpro.2013.05.013
10.1016/j.measurement.2012.04.006
10.1109/TIM.2018.2868519
10.23919/ChiCC.2017.8028522
10.1016/j.neunet.2013.11.006
10.1016/j.renene.2010.05.012
10.1016/j.ymssp.2010.07.017
10.1007/s11042-015-2808-x
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020
DBID 97E
ESBDL
RIA
RIE
AAYXX
CITATION
7SC
7SP
7SR
8BQ
8FD
JG9
JQ2
L7M
L~C
L~D
DOA
DOI 10.1109/ACCESS.2020.2975531
DatabaseName IEEE Xplore (IEEE)
IEEE Xplore Open Access Journals
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Xplore
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
METADEX
Computer and Information Systems Abstracts Professional
DatabaseTitleList

Materials Research Database
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: RIE
  name: IEEE Xplore
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2169-3536
EndPage 39818
ExternalDocumentID oai_doaj_org_article_bdbe64c0085940e9af2d7a8efd29a3e5
10_1109_ACCESS_2020_2975531
9006886
Genre orig-research
GrantInformation_xml – fundername: Applied Research Project for Postdoctoral Researchers in Qingdao
  grantid: 01020240604
– fundername: China Postdoctoral Science Foundation
  grantid: 2019M662399
  funderid: 10.13039/501100002858
GroupedDBID 0R~
4.4
5VS
6IK
97E
AAJGR
ABAZT
ABVLG
ACGFS
ADBBV
AGSQL
ALMA_UNASSIGNED_HOLDINGS
BCNDV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
EJD
ESBDL
GROUPED_DOAJ
IPLJI
JAVBF
KQ8
M43
M~E
O9-
OCL
OK1
RIA
RIE
RNS
AAYXX
CITATION
RIG
7SC
7SP
7SR
8BQ
8FD
JG9
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c408t-6542317eaf8e74403a190a880957e7f96b4e6043e09f485abb08dec6212c17c33
IEDL.DBID RIE
ISSN 2169-3536
IngestDate Wed Aug 27 01:30:59 EDT 2025
Sun Jun 29 15:46:07 EDT 2025
Thu Apr 24 23:11:24 EDT 2025
Tue Jul 01 01:22:14 EDT 2025
Wed Aug 27 02:35:28 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Language English
License https://creativecommons.org/licenses/by/4.0/legalcode
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c408t-6542317eaf8e74403a190a880957e7f96b4e6043e09f485abb08dec6212c17c33
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-7367-6253
0000-0002-5982-2995
0000-0002-3819-2015
0000-0001-8690-0672
0000-0001-8796-8185
0000-0001-8207-1045
OpenAccessLink https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/document/9006886
PQID 2454742469
PQPubID 4845423
PageCount 10
ParticipantIDs proquest_journals_2454742469
crossref_citationtrail_10_1109_ACCESS_2020_2975531
ieee_primary_9006886
crossref_primary_10_1109_ACCESS_2020_2975531
doaj_primary_oai_doaj_org_article_bdbe64c0085940e9af2d7a8efd29a3e5
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20200000
2020-00-00
20200101
2020-01-01
PublicationDateYYYYMMDD 2020-01-01
PublicationDate_xml – year: 2020
  text: 20200000
PublicationDecade 2020
PublicationPlace Piscataway
PublicationPlace_xml – name: Piscataway
PublicationTitle IEEE access
PublicationTitleAbbrev Access
PublicationYear 2020
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref12
ref15
ref14
ref11
xu (ref23) 2012; 23
ref10
ref2
ref1
ref17
ref16
ref18
tibshirani (ref26) 2018; 58
van der maaten (ref29) 2008; 9
ref25
ref20
ref21
nair (ref24) 2010
ref28
jiang (ref5) 0; 17 4
ref27
ref8
ref7
ref9
ref4
ref3
ref6
goodfellow (ref22) 2016
ngiam (ref19) 2011
References_xml – ident: ref1
  doi: 10.1243/09544062JMES1777
– ident: ref2
  doi: 10.1016/j.ymssp.2015.10.025
– volume: 58
  start-page: 267
  year: 2018
  ident: ref26
  article-title: Regression shrinkage and selection via the lasso
  publication-title: J Roy Statist Soc B Statist Methodol
– ident: ref27
  doi: 10.1198/016214506000000735
– volume: 17 4
  start-page: 1861
  year: 0
  ident: ref5
  article-title: A novel method for self-adaptive feature extraction using scaling crossover characteristics of signals and combining with LS-SVM for multi-fault diagnosis of gearbox
  publication-title: J Vibroeng
– volume: 23
  start-page: 1013
  year: 2012
  ident: ref23
  article-title: $L_{1/2}$ regularization: A thresholding representation theory and a fast solver
  publication-title: IEEE Trans Neural Netw Learn Syst
  doi: 10.1109/TNNLS.2012.2197412
– ident: ref10
  doi: 10.1016/j.ymssp.2013.06.001
– ident: ref16
  doi: 10.1006/mssp.2000.1290
– ident: ref11
  doi: 10.1016/j.ymssp.2006.09.009
– start-page: 807
  year: 2010
  ident: ref24
  article-title: Rectified linear units improve restricted Boltzmann machines
  publication-title: Proc 27th Int Conf Mach Learn (ICML)
– ident: ref28
  doi: 10.1002/cpa.20303
– ident: ref13
  doi: 10.1016/j.sigpro.2013.04.015
– ident: ref4
  doi: 10.1109/TIE.2016.2519325
– ident: ref8
  doi: 10.1155/2016/5289698
– start-page: 1125
  year: 2011
  ident: ref19
  article-title: Sparse filtering
  publication-title: Proc Adv Neural Inf Process Syst
– year: 2016
  ident: ref22
  publication-title: Deep Learning
– ident: ref17
  doi: 10.1016/j.patrec.2014.09.006
– ident: ref15
  doi: 10.1016/j.ymssp.2012.09.014
– ident: ref3
  doi: 10.1088/1361-6501/aaf319
– ident: ref21
  doi: 10.3390/app8060906
– ident: ref7
  doi: 10.1016/j.sigpro.2013.05.013
– ident: ref9
  doi: 10.1016/j.measurement.2012.04.006
– ident: ref6
  doi: 10.1109/TIM.2018.2868519
– ident: ref20
  doi: 10.23919/ChiCC.2017.8028522
– ident: ref25
  doi: 10.1016/j.neunet.2013.11.006
– ident: ref12
  doi: 10.1016/j.renene.2010.05.012
– ident: ref14
  doi: 10.1016/j.ymssp.2010.07.017
– volume: 9
  start-page: 2579
  year: 2008
  ident: ref29
  article-title: Visualizing data using t-SNE
  publication-title: J Mach Learn Res
– ident: ref18
  doi: 10.1007/s11042-015-2808-x
SSID ssj0000816957
Score 2.1831293
Snippet The speed of mechanical rotating parts often fluctuates during the working process. Vibration signals collected under constant speed have a strong correlation...
SourceID doaj
proquest
crossref
ieee
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 39809
SubjectTerms Fault diagnosis
Feature extraction
Filtering
Filtration
Fluctuations
Gearboxes
large speed fluctuation
Linear programming
Regularization
Rotating parts
Signal processing
sparse filtering
Training
Vibrations
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07b9swECaCTO1QtE2KunmAQ8YooSiKEkfHqeAUTYYkBrwRJHUCDBh2kMhL0R_fO0pWHRRol64CHyLvyLsjj9_H2JnPZVM4lydOCJcooCXlC5loAWgeVG7qSAZze6enM_Vtns93qL4oJ6yDB-4m7tLXHrQK5BoYJcC4RtaFK6GppXEZRPRStHk7wVTcg8tUm7zoYYZSYS7HkwmOCANCKS7oNWmepa9MUUTs7ylW_tiXo7Gp3rN3vZfIx93ffWB7sPrI3u5gBx6wn9ucOe5WNR__vofm64bfR4b558UPqPnDE8auwKsF3YtjVU70Z0uOziq_GfA4W165zbLl113m3eKFR0Ik_p0SxbEJtHG8Wm7otQn1cchm1dfHyTTpqRSSoETZJkRLhZ4CuKYEggTMHDoCDtcuThIUjdFegRYqA2EaVebOe1HWEDQatpAWIcs-sf3VegWfGfc1htQaQGRBqoBtBOUKdBNCpjEYcvmIye2s2tDjjBPdxdLGeEMY24nCkihsL4oROx8qPXUwG38vfkXiGooSRnb8gJpje82x_9KcETsgYQ-NGHouU-oRO94K3_br-cVKwj1TUmnz5X90fcTe0HC6o5xjtt8-b-AEnZvWn0Y9_gVFwvTL
  priority: 102
  providerName: Directory of Open Access Journals
Title Research and Application of Regularized Sparse Filtering Model for Intelligent Fault Diagnosis Under Large Speed Fluctuation
URI https://ieeexplore.ieee.org/document/9006886
https://www.proquest.com/docview/2454742469
https://doaj.org/article/bdbe64c0085940e9af2d7a8efd29a3e5
Volume 8
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwELbanuAALQWxpVQ-cGy2Xsdx4uN2ISqIcgAq9WbZzkRasdqt2uRS8eOZcbzhVSFuURQ7Tsb2PDzzfYy98YVsS-eKzAnhMgW0pHwpMy0A1YMqTBPJYC4_6Ysr9eG6uN5hp2MtDADE5DOY0mU8y282oadQ2ZmhgoZK77JddNyGWq0xnkIEEqYoE7DQTJiz-WKB34AuoBRTqh8t8tlvyidi9CdSlb924qhe6qfscjuwIavk27Tv_DTc_4HZ-L8j32dPkp3J58PEOGA7sH7GHv-CPnjIvm-z7rhbN3z-8ySbb1r-OXLU3y7voeFfbtD7BV4v6WQdm3IiUFtxNHf5-xHRs-O161cdfzvk7i3veKRU4h8p1Ry7QC3J61VP9Sr0jufsqn73dXGRJTKGLChRdRkRW6GtAa6tgEAFc4emhMPVjz8dytZor0ALlYMwraoK572oGggaVWOYlSHPX7C99WYNLxn3DTrlGkDkQaqAfQTlSjQ0Qq7RnXLFhMmtlGxISOVEmLGy0WMRxg6itSRam0Q7Yadjo5sBqOPfj5-T-MdHCWU73kCx2bRorW88aBXILDVKgHGtbEpXQdtI43LAgR6SqMdOkpQn7Hg7mWzaEe6sJOQ0JZU2Rw-3esUe0QCH8M4x2-tue3iNBk_nT2Kg4CTO9x8kA_4M
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwELZKOQAHXgWxUMAHjs3W6zhOfFwWoi3s9gCt1JtlOxNp1dVu1SaXih_PjJMNTyFuURQ7k4ztmbFnvo-xdz6Tde5cljghXKKAppTPZaIFoHlQmakiGczyVM_P1aeL7GKPHQ21MAAQk89gTJfxLL_ahpa2yo4NFTQU-g67i3Y_m3TVWsOOClFImCzvoYUmwhxPZzP8CgwCpRhTBWmWTn4xPxGlv6dV-WMtjgamfMSWO9G6vJLLcdv4cbj9DbXxf2V_zB72niafdkPjCduDzVP24Cf8wQP2bZd3x92m4tMfZ9l8W_MvkaX-enULFf96hfEv8HJFZ-vYlBOF2pqjw8tPBkzPhpeuXTf8Q5e9t7rhkVSJLyjZHLtAO8nLdUsVK_SOZ-y8_Hg2myc9HUMSlCiahKit0NsAVxdAsIKpQ2fC4fzHnw55bbRXoIVKQZhaFZnzXhQVBI3GMUzykKbP2f5mu4EXjPsKw3ININIgVcA-gnI5uhoh1RhQuWzE5E5LNvRY5USZsbYxZhHGdqq1pFrbq3bEjoZGVx1Ux78ff0_qHx4lnO14A9Vm-2lrfeVBq0COqVECjKtllbsC6koalwIKekCqHjrptTxih7vBZPs14cZKwk5TUmnz8u-t3rJ787Plwi5OTj-_YvdJ2G6z55DtN9ctvEb3p_Fv4qj_DoalAG8
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Research+and+Application+of+Regularized+Sparse+Filtering+Model+for+Intelligent+Fault+Diagnosis+Under+Large+Speed+Fluctuation&rft.jtitle=IEEE+access&rft.au=Han%2C+Baokun&rft.au=Zhang%2C+Guowei&rft.au=Wang%2C+Jinrui&rft.au=Wang%2C+Xiaoyu&rft.date=2020&rft.pub=IEEE&rft.eissn=2169-3536&rft.volume=8&rft.spage=39809&rft.epage=39818&rft_id=info:doi/10.1109%2FACCESS.2020.2975531&rft.externalDocID=9006886
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2169-3536&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2169-3536&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2169-3536&client=summon