Restriction fragment length polymorphism of the major histocompatibility complex of the dog

Human major histocompatibility complex (HLA) cDNA probes were used to analyze the restriction fragment length polymorphism (RFLP) of the DLA-D region in dogs. Genomic DNA from peripheral blood leucocytes of 23 unrelated DLA-D-homozygous dogs representing nine DLA-D types (defined by mixed leucocyte...

Full description

Saved in:
Bibliographic Details
Published inImmunogenetics (New York) Vol. 28; no. 2; p. 117
Main Authors Sarmiento, U M, Storb, R F
Format Journal Article
LanguageEnglish
Published United States 01.08.1988
Subjects
Online AccessGet more information

Cover

Loading…
More Information
Summary:Human major histocompatibility complex (HLA) cDNA probes were used to analyze the restriction fragment length polymorphism (RFLP) of the DLA-D region in dogs. Genomic DNA from peripheral blood leucocytes of 23 unrelated DLA-D-homozygous dogs representing nine DLA-D types (defined by mixed leucocyte reaction) was digested with restriction enzymes (Bam HI, Eco RI, Hind III, Pvu II, Taq I, Rsa I, Msp I, Pst I, and Bgl II), separated by agarose gel electrophoresis, and transferred onto Biotrace membrane. The Southern blots were successively hybridized with radiolabeled HLA cDNA probes corresponding to DR, DQ, DP, and DO beta genes. The autoradiograms for all nine enzyme digests displayed multiple bands with the DRb, DQb, and DPb probes while the DOb probe hybridized with one to two bands. The RFLP patterns were highly polymorphic but consistent within each DLA-D type. Standard RFLP patterns were established for nine DLA-D types which could be discriminated from each other by using two enzymes (Rsa I and Pst I) and the HLA-DPb probe. Cluster analysis of the polymorphic restriction fragments detected by the DRb probe revealed four closely related supertypic groups or DLA-DR families: Dw3 + Dw4 + D1, Dw8 + D10, D7 + D16 + D9, and Dw1. This study provides the basis for DLA-D genotyping at a population level by RFLP analysis. These results also suggest that the genetic organization of the DLA-D region may closely resemble that of the HLA complex.
ISSN:0093-7711
1432-1211
DOI:10.1007/bf00346159