Biofilms as self-shaping growing nematics

Active nematics are the non-equilibrium analogue of passive liquid crystals. They consist of anisotropic units that consume free energy to drive emergent behaviour. As with liquid crystal molecules in displays, ordering and dynamics in active nematics are sensitive to boundary conditions. However, u...

Full description

Saved in:
Bibliographic Details
Published inNature physics Vol. 19; no. 12; pp. 1936 - 1944
Main Authors Nijjer, Japinder, Li, Changhao, Kothari, Mrityunjay, Henzel, Thomas, Zhang, Qiuting, Tai, Jung-Shen B, Zhou, Shuang, Cohen, Tal, Zhang, Sulin, Yan, Jing
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group 01.12.2023
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Active nematics are the non-equilibrium analogue of passive liquid crystals. They consist of anisotropic units that consume free energy to drive emergent behaviour. As with liquid crystal molecules in displays, ordering and dynamics in active nematics are sensitive to boundary conditions. However, unlike passive liquid crystals, active nematics have the potential to regulate their boundaries through self-generated stresses. Here we show how a three-dimensional, living nematic can actively shape itself and its boundary to regulate its internal architecture through growth-induced stresses, using bacterial biofilms confined by a hydrogel as a model system. We show that biofilms exhibit a sharp transition in shape from domes to lenses in response to changing environmental stiffness or cell–substrate friction, which is explained by a theoretical model that considers the competition between confinement and interfacial forces. The growth mode defines the progression of the boundary, which in turn determines the trajectories and spatial distribution of cell lineages. We further demonstrate that the evolving boundary and corresponding stress anisotropy define the orientational ordering of cells and the emergence of topological defects in the biofilm interior. Our findings may provide strategies for the development of programmed microbial consortia with emergent material properties.Confined biofilms can shape themselves and their boundary to modify their internal organisation. This mechanism could inform the development of active materials that control their own geometry.
AbstractList Active nematics are the non-equilibrium analogue of passive liquid crystals. They consist of anisotropic units that consume free energy to drive emergent behaviour. As with liquid crystal molecules in displays, ordering and dynamics in active nematics are sensitive to boundary conditions. However, unlike passive liquid crystals, active nematics have the potential to regulate their boundaries through self-generated stresses. Here we show how a three-dimensional, living nematic can actively shape itself and its boundary to regulate its internal architecture through growth-induced stresses, using bacterial biofilms confined by a hydrogel as a model system. We show that biofilms exhibit a sharp transition in shape from domes to lenses in response to changing environmental stiffness or cell–substrate friction, which is explained by a theoretical model that considers the competition between confinement and interfacial forces. The growth mode defines the progression of the boundary, which in turn determines the trajectories and spatial distribution of cell lineages. We further demonstrate that the evolving boundary and corresponding stress anisotropy define the orientational ordering of cells and the emergence of topological defects in the biofilm interior. Our findings may provide strategies for the development of programmed microbial consortia with emergent material properties.Confined biofilms can shape themselves and their boundary to modify their internal organisation. This mechanism could inform the development of active materials that control their own geometry.
Active nematics are the nonequilibrium analogue of passive liquid crystals. They consist of anisotropic units that consume free energy to drive emergent behaviour. Like liquid crystal molecules in displays, ordering and dynamics in active nematics are sensitive to boundary conditions. However, unlike passive liquid crystals, active nematics have the potential to regulate their boundaries through self-generated stresses. Here, we show how a three-dimensional, living nematic can actively shape itself and its boundary to regulate its internal architecture through growth-induced stresses, using bacterial biofilms confined by a hydrogel as a model system. We show that biofilms exhibit a sharp transition in shape from domes to lenses upon changing environmental stiffness or cell-substrate friction, which is explained by a theoretical model that considers the competition between confinement and interfacial forces. The growth mode defines the progression of the boundary, which in turn determines the trajectories and spatial distribution of cell lineages. We further demonstrate that the evolving boundary and corresponding stress anisotropy define the orientational ordering of cells and the emergence of topological defects in the biofilm interior. Our findings may provide strategies for the development of programmed microbial consortia with emergent material properties.
Active nematics are the nonequilibrium analogue of passive liquid crystals. They consist of anisotropic units that consume free energy to drive emergent behaviour. Like liquid crystal molecules in displays, ordering and dynamics in active nematics are sensitive to boundary conditions. However, unlike passive liquid crystals, active nematics have the potential to regulate their boundaries through self-generated stresses. Here, we show how a three-dimensional, living nematic can actively shape itself and its boundary to regulate its internal architecture through growth-induced stresses, using bacterial biofilms confined by a hydrogel as a model system. We show that biofilms exhibit a sharp transition in shape from domes to lenses upon changing environmental stiffness or cell-substrate friction, which is explained by a theoretical model that considers the competition between confinement and interfacial forces. The growth mode defines the progression of the boundary, which in turn determines the trajectories and spatial distribution of cell lineages. We further demonstrate that the evolving boundary and corresponding stress anisotropy define the orientational ordering of cells and the emergence of topological defects in the biofilm interior. Our findings may provide strategies for the development of programmed microbial consortia with emergent material properties.Active nematics are the nonequilibrium analogue of passive liquid crystals. They consist of anisotropic units that consume free energy to drive emergent behaviour. Like liquid crystal molecules in displays, ordering and dynamics in active nematics are sensitive to boundary conditions. However, unlike passive liquid crystals, active nematics have the potential to regulate their boundaries through self-generated stresses. Here, we show how a three-dimensional, living nematic can actively shape itself and its boundary to regulate its internal architecture through growth-induced stresses, using bacterial biofilms confined by a hydrogel as a model system. We show that biofilms exhibit a sharp transition in shape from domes to lenses upon changing environmental stiffness or cell-substrate friction, which is explained by a theoretical model that considers the competition between confinement and interfacial forces. The growth mode defines the progression of the boundary, which in turn determines the trajectories and spatial distribution of cell lineages. We further demonstrate that the evolving boundary and corresponding stress anisotropy define the orientational ordering of cells and the emergence of topological defects in the biofilm interior. Our findings may provide strategies for the development of programmed microbial consortia with emergent material properties.
Author Nijjer, Japinder
Li, Changhao
Zhang, Qiuting
Kothari, Mrityunjay
Cohen, Tal
Henzel, Thomas
Yan, Jing
Zhang, Sulin
Tai, Jung-Shen B
Zhou, Shuang
AuthorAffiliation 1 Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT, USA
8 Quantitative Biology Institute, Yale University, New Haven, CT, USA
4 Department of Mechanical Engineering, University of New Hampshire, Durham, NH, USA
3 Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
6 Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
5 Department of Physics, University of Massachusetts Amherst, Amherst, MA, USA
7 Department of Biomedical Engineering, Pennsylvania State University, University Park, PA, USA
2 Department of Engineering Science and Mechanics, Pennsylvania State University, University Park, PA, USA
AuthorAffiliation_xml – name: 1 Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT, USA
– name: 5 Department of Physics, University of Massachusetts Amherst, Amherst, MA, USA
– name: 3 Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
– name: 6 Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
– name: 4 Department of Mechanical Engineering, University of New Hampshire, Durham, NH, USA
– name: 7 Department of Biomedical Engineering, Pennsylvania State University, University Park, PA, USA
– name: 8 Quantitative Biology Institute, Yale University, New Haven, CT, USA
– name: 2 Department of Engineering Science and Mechanics, Pennsylvania State University, University Park, PA, USA
Author_xml – sequence: 1
  givenname: Japinder
  surname: Nijjer
  fullname: Nijjer, Japinder
– sequence: 2
  givenname: Changhao
  surname: Li
  fullname: Li, Changhao
– sequence: 3
  givenname: Mrityunjay
  surname: Kothari
  fullname: Kothari, Mrityunjay
– sequence: 4
  givenname: Thomas
  surname: Henzel
  fullname: Henzel, Thomas
– sequence: 5
  givenname: Qiuting
  surname: Zhang
  fullname: Zhang, Qiuting
– sequence: 6
  givenname: Jung-Shen B
  surname: Tai
  fullname: Tai, Jung-Shen B
– sequence: 7
  givenname: Shuang
  surname: Zhou
  fullname: Zhou, Shuang
– sequence: 8
  givenname: Tal
  surname: Cohen
  fullname: Cohen, Tal
– sequence: 9
  givenname: Sulin
  surname: Zhang
  fullname: Zhang, Sulin
– sequence: 10
  givenname: Jing
  surname: Yan
  fullname: Yan, Jing
BookMark eNpdkE9LAzEQxYNUsK1-AU8FL3pYzSTZJHsSLf6Dghc9h-w226bsJjXZVfz2pm4p6GF4A_PjzcyboJHzziB0DvgaMJU3kUHORYYJTUUIZHCExiBYnhEmYXToBT1Bkxg3GDPCgY7R1b31tW3aONNxFk1TZ3Gtt9atZqvgv3bqTKs7W8VTdFzrJpqzvU7R--PD2_w5W7w-vczvFlnFsOwyDkRwAVpUNTXalELoEpY5M4aXRSFYzWVOClrgvNSayoJzLisOwnAmuZSaTtHt4Lvty9YsK-O6oBu1DbbV4Vt5bdXfibNrtfKfCtLm9CZNDpd7h-A_ehM71dpYmabRzvg-KoolEyJnIBJ68Q_d-D649J8isihyjgXBiSIDVQUfYzD14RrAape_GvJXKX_1m78C-gO8bnjj
CitedBy_id crossref_primary_10_1039_D3SM01535A
crossref_primary_10_1038_s41567_024_02572_3
crossref_primary_10_1038_s44222_024_00176_3
crossref_primary_10_1080_1358314X_2023_2314929
Cites_doi 10.1103/PhysRevLett.117.048102
10.1126/science.1222981
10.1038/s41579-020-0385-0
10.1038/nrmicro.2016.94
10.1038/s41567-018-0170-4
10.1073/pnas.2107107118
10.1099/mic.0.040196-0
10.1073/pnas.1601702113
10.1073/pnas.0706805105
10.1038/nature21718
10.1103/PhysRevLett.128.178102
10.1038/s41467-018-06370-3
10.1039/f29787400918
10.1371/journal.pone.0048098
10.1016/j.ymeth.2016.09.016
10.1016/j.cell.2013.11.028
10.1038/s41467-021-26869-6
10.1038/s41567-020-01056-4
10.1126/science.1195639
10.1126/sciadv.abc8685
10.1063/1.2808028
10.1073/pnas.1919607117
10.1038/s41467-019-10311-z
10.1103/PhysRevLett.123.178001
10.1038/s41467-018-05666-8
10.1017/jfm.2018.203
10.1016/j.bioflm.2022.100084
10.7554/eLife.41093
10.1093/pnasnexus/pgac217
10.1038/nrmicro821
10.1038/nrmicro1838
10.1038/s41579-019-0314-2
10.1111/j.1365-2958.2006.05568.x
10.1126/science.aaz4547
10.1080/026782998207640
10.1038/s41579-019-0196-3
10.1017/jfm.2017.832
10.1038/s41567-018-0356-9
10.1038/nature11591
10.1038/natrevmats.2017.48
10.1038/nrmicro3433
10.1103/PhysRevLett.123.258101
10.1126/science.abb8501
10.1128/JB.188.3.1049-1059.2006
10.1016/j.jmps.2021.104709
10.1038/s41567-022-01641-9
10.7554/eLife.72187
10.1098/rsta.2015.0425
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer Nature Limited 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
Copyright_xml – notice: The Author(s), under exclusive licence to Springer Nature Limited 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
DBID AAYXX
CITATION
7U5
8FD
L7M
7X8
5PM
DOI 10.1038/s41567-023-02221-1
DatabaseName CrossRef
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
Technology Research Database
Advanced Technologies Database with Aerospace
Solid State and Superconductivity Abstracts
MEDLINE - Academic
DatabaseTitleList Technology Research Database

MEDLINE - Academic
DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISSN 1745-2481
EndPage 1944
ExternalDocumentID 10_1038_s41567_023_02221_1
GroupedDBID 0R~
123
29M
39C
4.4
5BI
6OB
70F
AAEEF
AARCD
AAYXX
AAZLF
ABJNI
ABLJU
ABVXF
ABZEH
ACGFO
ACGFS
ACGOD
ACMJI
ADBBV
ADFRT
AENEX
AFBBN
AFSHS
AFWHJ
AGAYW
AGEZK
AGHTU
AHBCP
AHOSX
AHSBF
AIBTJ
ALFFA
ALMA_UNASSIGNED_HOLDINGS
AMTXH
ARAPS
ARMCB
ASPBG
AVWKF
AXYYD
AZFZN
BENPR
BHPHI
BKKNO
CITATION
DU5
EBS
EE.
EXGXG
F5P
FEDTE
FQGFK
FSGXE
HCIFZ
HVGLF
HZ~
LGEZI
LOTEE
N9A
NADUK
NNMJJ
NXXTH
O9-
P2P
RNS
RNT
RNTTT
SHXYY
SIXXV
SJN
SNYQT
TAOOD
TBHMF
TDRGL
TSG
7U5
8FD
L7M
7X8
AAEXX
ABEEJ
ADZGE
5PM
ID FETCH-LOGICAL-c408t-6127671a7cf3eaeb77ab1d54ee6b9974f685293905baa3896668c617e648688a3
ISSN 1745-2473
IngestDate Tue Sep 17 21:27:49 EDT 2024
Sat Aug 17 04:23:09 EDT 2024
Fri Sep 13 09:23:53 EDT 2024
Thu Sep 12 19:09:25 EDT 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 12
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c408t-6127671a7cf3eaeb77ab1d54ee6b9974f685293905baa3896668c617e648688a3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
Author contributions: J.N. and C.L. contributed equally to the work. J.N. and J.Y. conceptualized the project. J.N. and Q.Z. performed the experiments and J.N. and J.-S.B.T. performed the data analysis. J.N., M.K., T.H., S.Z., T.C. and J.Y. formulated the theoretical model. C.L. and S.Z. developed the agent-based simulations. All authors contributed to the writing of the manuscript.
ORCID 0000-0002-9831-3931
0000-0003-2773-0348
0000-0003-1301-501X
0000-0002-9449-5790
0000-0001-9668-8513
0000-0002-6442-6866
OpenAccessLink https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11271743
PQID 2899560720
PQPubID 27545
PageCount 9
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_11271743
proquest_miscellaneous_3084775417
proquest_journals_2899560720
crossref_primary_10_1038_s41567_023_02221_1
PublicationCentury 2000
PublicationDate 2023-12-01
PublicationDateYYYYMMDD 2023-12-01
PublicationDate_xml – month: 12
  year: 2023
  text: 2023-12-01
  day: 01
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
PublicationTitle Nature physics
PublicationYear 2023
Publisher Nature Publishing Group
Publisher_xml – name: Nature Publishing Group
References TB Saw (2221_CR6) 2017; 544
D Needleman (2221_CR2) 2017; 2
X Huang (2221_CR32) 2023; 14
JC Fong (2221_CR51) 2017; 6
MR Warren (2221_CR13) 2019; 8
H-C Flemming (2221_CR15) 2016; 14
BR Parry (2221_CR35) 2014; 156
JCN Fong (2221_CR37) 2010; 156
OD Lavrentovich (2221_CR39) 1998; 24
2221_CR38
ME Cates (2221_CR53) 2018; 836
K Copenhagen (2221_CR5) 2021; 17
T Sanchez (2221_CR1) 2012; 491
V Berk (2221_CR31) 2012; 337
J-Y Tinevez (2221_CR52) 2017; 115
M Doi (2221_CR44) 1978; 74
PS Stewart (2221_CR49) 2008; 6
T Henzel (2221_CR34) 2022; 1
Z You (2221_CR42) 2019; 123
NJ O’Keeffe (2221_CR26) 2018; 844
Z You (2221_CR43) 2021; 7
H Xu (2221_CR20) 2022; 16
K Drescher (2221_CR19) 2016; 113
YI Yaman (2221_CR8) 2019; 10
P Pearce (2221_CR21) 2019; 123
D Dell’Arciprete (2221_CR7) 2018; 9
J Li (2221_CR33) 2022; 159
L Hall-Stoodley (2221_CR14) 2004; 2
JCN Fong (2221_CR50) 2006; 188
A Doostmohammadi (2221_CR12) 2016; 117
C Fei (2221_CR28) 2020; 117
GE Volovik (2221_CR40) 1983; 58
NQ Balaban (2221_CR48) 2019; 17
G Duclos (2221_CR4) 2020; 367
J Yan (2221_CR18) 2016; 113
D Volfson (2221_CR10) 2008; 105
B Bottura (2221_CR47) 2022; 4
S Beyhan (2221_CR25) 2007; 63
B Qin (2221_CR36) 2020; 369
C-Y Lai (2221_CR27) 2016; 374
P-T Su (2221_CR9) 2012; 7
JK Teschler (2221_CR30) 2015; 13
R Hartmann (2221_CR17) 2019; 15
GT Fortune (2221_CR23) 2022; 128
I-H Lin (2221_CR41) 2011; 332
KP Rumbaugh (2221_CR46) 2020; 18
M Basaran (2221_CR45) 2022; 11
F Beroz (2221_CR29) 2018; 14
J Nijjer (2221_CR16) 2021; 12
J Dhar (2221_CR11) 2022; 18
Q Zhang (2221_CR24) 2021; 118
YF Dufrêne (2221_CR22) 2020; 18
A Doostmohammadi (2221_CR3) 2018; 9
References_xml – volume: 14
  year: 2023
  ident: 2221_CR32
  publication-title: Nat. Commun.
  contributor:
    fullname: X Huang
– volume: 117
  start-page: 048102
  year: 2016
  ident: 2221_CR12
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.117.048102
  contributor:
    fullname: A Doostmohammadi
– volume: 113
  start-page: e5337
  year: 2016
  ident: 2221_CR18
  publication-title: Proc. Natl Acad. Sci. USA
  contributor:
    fullname: J Yan
– volume: 337
  start-page: 236
  year: 2012
  ident: 2221_CR31
  publication-title: Science
  doi: 10.1126/science.1222981
  contributor:
    fullname: V Berk
– volume: 18
  start-page: 571
  year: 2020
  ident: 2221_CR46
  publication-title: Nat. Rev. Microbiol.
  doi: 10.1038/s41579-020-0385-0
  contributor:
    fullname: KP Rumbaugh
– volume: 6
  start-page: e1002210
  year: 2017
  ident: 2221_CR51
  publication-title: eLife
  contributor:
    fullname: JC Fong
– volume: 14
  start-page: 563
  year: 2016
  ident: 2221_CR15
  publication-title: Nat. Rev. Microbiol.
  doi: 10.1038/nrmicro.2016.94
  contributor:
    fullname: H-C Flemming
– volume: 14
  start-page: 954
  year: 2018
  ident: 2221_CR29
  publication-title: Nat. Phys.
  doi: 10.1038/s41567-018-0170-4
  contributor:
    fullname: F Beroz
– volume: 118
  start-page: e2107107118
  year: 2021
  ident: 2221_CR24
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.2107107118
  contributor:
    fullname: Q Zhang
– volume: 156
  start-page: 2757
  year: 2010
  ident: 2221_CR37
  publication-title: Microbiology
  doi: 10.1099/mic.0.040196-0
  contributor:
    fullname: JCN Fong
– volume: 113
  start-page: e2066
  year: 2016
  ident: 2221_CR19
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.1601702113
  contributor:
    fullname: K Drescher
– volume: 105
  start-page: 15346
  year: 2008
  ident: 2221_CR10
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.0706805105
  contributor:
    fullname: D Volfson
– volume: 544
  start-page: 212
  year: 2017
  ident: 2221_CR6
  publication-title: Nature
  doi: 10.1038/nature21718
  contributor:
    fullname: TB Saw
– volume: 128
  start-page: 178102
  year: 2022
  ident: 2221_CR23
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.128.178102
  contributor:
    fullname: GT Fortune
– volume: 9
  year: 2018
  ident: 2221_CR7
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-018-06370-3
  contributor:
    fullname: D Dell’Arciprete
– volume: 16
  start-page: 46
  year: 2022
  ident: 2221_CR20
  publication-title: Nat. Phys.
  contributor:
    fullname: H Xu
– volume: 74
  start-page: 918
  year: 1978
  ident: 2221_CR44
  publication-title: J. Chem. Soc., Faraday Trans. 2
  doi: 10.1039/f29787400918
  contributor:
    fullname: M Doi
– volume: 7
  start-page: e48098
  year: 2012
  ident: 2221_CR9
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0048098
  contributor:
    fullname: P-T Su
– volume: 115
  start-page: 80
  year: 2017
  ident: 2221_CR52
  publication-title: Methods
  doi: 10.1016/j.ymeth.2016.09.016
  contributor:
    fullname: J-Y Tinevez
– volume: 156
  start-page: 183
  year: 2014
  ident: 2221_CR35
  publication-title: Cell
  doi: 10.1016/j.cell.2013.11.028
  contributor:
    fullname: BR Parry
– volume: 12
  year: 2021
  ident: 2221_CR16
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-021-26869-6
  contributor:
    fullname: J Nijjer
– volume: 17
  start-page: 211
  year: 2021
  ident: 2221_CR5
  publication-title: Nat. Phys.
  doi: 10.1038/s41567-020-01056-4
  contributor:
    fullname: K Copenhagen
– volume: 332
  start-page: 1297
  year: 2011
  ident: 2221_CR41
  publication-title: Science
  doi: 10.1126/science.1195639
  contributor:
    fullname: I-H Lin
– volume: 7
  start-page: eabc8685
  year: 2021
  ident: 2221_CR43
  publication-title: Sci. Adv.
  doi: 10.1126/sciadv.abc8685
  contributor:
    fullname: Z You
– ident: 2221_CR38
  doi: 10.1063/1.2808028
– volume: 117
  start-page: 7622
  year: 2020
  ident: 2221_CR28
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.1919607117
  contributor:
    fullname: C Fei
– volume: 10
  year: 2019
  ident: 2221_CR8
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-019-10311-z
  contributor:
    fullname: YI Yaman
– volume: 123
  start-page: 178001
  year: 2019
  ident: 2221_CR42
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.123.178001
  contributor:
    fullname: Z You
– volume: 9
  year: 2018
  ident: 2221_CR3
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-018-05666-8
  contributor:
    fullname: A Doostmohammadi
– volume: 844
  start-page: 435
  year: 2018
  ident: 2221_CR26
  publication-title: J. Fluid Mech.
  doi: 10.1017/jfm.2018.203
  contributor:
    fullname: NJ O’Keeffe
– volume: 4
  start-page: 100084
  year: 2022
  ident: 2221_CR47
  publication-title: Biofilm
  doi: 10.1016/j.bioflm.2022.100084
  contributor:
    fullname: B Bottura
– volume: 8
  start-page: e41093
  year: 2019
  ident: 2221_CR13
  publication-title: eLife
  doi: 10.7554/eLife.41093
  contributor:
    fullname: MR Warren
– volume: 1
  start-page: pgac217
  year: 2022
  ident: 2221_CR34
  publication-title: PNAS Nexus
  doi: 10.1093/pnasnexus/pgac217
  contributor:
    fullname: T Henzel
– volume: 2
  start-page: 95
  year: 2004
  ident: 2221_CR14
  publication-title: Nat. Rev. Microbiol.
  doi: 10.1038/nrmicro821
  contributor:
    fullname: L Hall-Stoodley
– volume: 6
  start-page: 199
  year: 2008
  ident: 2221_CR49
  publication-title: Nat. Rev. Microbiol.
  doi: 10.1038/nrmicro1838
  contributor:
    fullname: PS Stewart
– volume: 18
  start-page: 227
  year: 2020
  ident: 2221_CR22
  publication-title: Nat. Rev. Microbiol.
  doi: 10.1038/s41579-019-0314-2
  contributor:
    fullname: YF Dufrêne
– volume: 63
  start-page: 995
  year: 2007
  ident: 2221_CR25
  publication-title: Mol. Microbiol.
  doi: 10.1111/j.1365-2958.2006.05568.x
  contributor:
    fullname: S Beyhan
– volume: 367
  start-page: 1120
  year: 2020
  ident: 2221_CR4
  publication-title: Science
  doi: 10.1126/science.aaz4547
  contributor:
    fullname: G Duclos
– volume: 24
  start-page: 117
  year: 1998
  ident: 2221_CR39
  publication-title: Liq. Cryst.
  doi: 10.1080/026782998207640
  contributor:
    fullname: OD Lavrentovich
– volume: 58
  start-page: 1159
  year: 1983
  ident: 2221_CR40
  publication-title: J. Exp. Theor. Phys.
  contributor:
    fullname: GE Volovik
– volume: 17
  start-page: 441
  year: 2019
  ident: 2221_CR48
  publication-title: Nat. Rev. Microbiol.
  doi: 10.1038/s41579-019-0196-3
  contributor:
    fullname: NQ Balaban
– volume: 836
  start-page: P1
  year: 2018
  ident: 2221_CR53
  publication-title: J. Fluid Mech.
  doi: 10.1017/jfm.2017.832
  contributor:
    fullname: ME Cates
– volume: 15
  start-page: 251
  year: 2019
  ident: 2221_CR17
  publication-title: Nat. Phys.
  doi: 10.1038/s41567-018-0356-9
  contributor:
    fullname: R Hartmann
– volume: 491
  start-page: 431
  year: 2012
  ident: 2221_CR1
  publication-title: Nature
  doi: 10.1038/nature11591
  contributor:
    fullname: T Sanchez
– volume: 2
  start-page: 17048
  year: 2017
  ident: 2221_CR2
  publication-title: Nat. Rev. Mater.
  doi: 10.1038/natrevmats.2017.48
  contributor:
    fullname: D Needleman
– volume: 13
  start-page: 255
  year: 2015
  ident: 2221_CR30
  publication-title: Nat. Rev. Microbiol.
  doi: 10.1038/nrmicro3433
  contributor:
    fullname: JK Teschler
– volume: 123
  start-page: 258101
  year: 2019
  ident: 2221_CR21
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.123.258101
  contributor:
    fullname: P Pearce
– volume: 369
  start-page: 71
  year: 2020
  ident: 2221_CR36
  publication-title: Science
  doi: 10.1126/science.abb8501
  contributor:
    fullname: B Qin
– volume: 188
  start-page: 1049
  year: 2006
  ident: 2221_CR50
  publication-title: J. Bacteriol.
  doi: 10.1128/JB.188.3.1049-1059.2006
  contributor:
    fullname: JCN Fong
– volume: 159
  start-page: 104709
  year: 2022
  ident: 2221_CR33
  publication-title: J. Mech. Phys. Solids
  doi: 10.1016/j.jmps.2021.104709
  contributor:
    fullname: J Li
– volume: 18
  start-page: 945
  year: 2022
  ident: 2221_CR11
  publication-title: Nat. Phys.
  doi: 10.1038/s41567-022-01641-9
  contributor:
    fullname: J Dhar
– volume: 11
  start-page: e72187
  year: 2022
  ident: 2221_CR45
  publication-title: eLife
  doi: 10.7554/eLife.72187
  contributor:
    fullname: M Basaran
– volume: 374
  start-page: 20150425
  year: 2016
  ident: 2221_CR27
  publication-title: Phil. Trans. R. Soc. A
  doi: 10.1098/rsta.2015.0425
  contributor:
    fullname: C-Y Lai
SSID ssj0042613
Score 2.513535
Snippet Active nematics are the non-equilibrium analogue of passive liquid crystals. They consist of anisotropic units that consume free energy to drive emergent...
Active nematics are the nonequilibrium analogue of passive liquid crystals. They consist of anisotropic units that consume free energy to drive emergent...
SourceID pubmedcentral
proquest
crossref
SourceType Open Access Repository
Aggregation Database
StartPage 1936
SubjectTerms Active control
Anisotropy
Biofilms
Boundary conditions
Crystal defects
Crystals
Development strategies
Environmental changes
Free energy
Liquid crystals
Material properties
Microorganisms
Spatial distribution
Stresses
Substrates
Title Biofilms as self-shaping growing nematics
URI https://www.proquest.com/docview/2899560720/abstract/
https://www.proquest.com/docview/3084775417/abstract/
https://pubmed.ncbi.nlm.nih.gov/PMC11271743
Volume 19
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Nb9MwGLZgExIXxPgQhYEyiQtChsSxY-e4olXV1AUOrdSb5STO2mq4iLSX_Xpex85HxQ7bLmmVVHH0Pu6b57HfD4Q-c_jLpCrUmMZ5gWmapFiwkmNSCcVLVsRuaeAqS6YLerlky76fY5Ndssu_Fbd35pU8BlU4B7jaLNkHINvdFE7Ad8AXjoAwHO-F8XhtG27_rm2zmFrfVLheqSb_6RrEtf00riJrPaSgWVPK0y9pdIw6W282Dr1Le4uyD9qdrf22vLleqW3noAFh5bLUr2z_u73Z9OE4U21u3e7_IP7ILy2QeBCm4bwhpwwT6nqNdO4yHU4LMnB-wAWTO72yq8FeW63IsR3HqswIR_07qN13z37KyWI2k_OL5fwpOiY8ZaCoj88n43HWvmCt6Itdnqt7Op8LBaN8_3-MQ77Ri4jDENgBp5i_RC-8GAjOHbIn6Ik2r9CzXw6Z1-hLi2-g6mCIb-DxDVp836DF5GL-Y4p9awtc0FDsQLATnvBI8aKKtdI55yqPSka1TvIUJF6VCAZELA1ZrhRwShCZogCyqRMqEiFU_BYdma3R71CgC21_UoFRbGGgUJUqIlVOdBkWqaJihL62BpB_XAUT2UQexEI6c0kwl2zMJaMROm1tJP1Mr6UV5cCMOQlH6Ky7DH7Ibi4po7f7WsYh8BzOaMRHSBzYthvVVjI_vGLWq6aiOZB-bqXx-3vc_gN63s_VU3S0-7vXH4EY7vJPfqL8A2OqYtg
link.rule.ids 230,315,786,790,891,27957,27958
linkProvider Library Specific Holdings
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Biofilms+as+self-shaping+growing+nematics&rft.jtitle=Nature+physics&rft.au=Nijjer%2C+Japinder&rft.au=Li%2C+Changhao&rft.au=Kothari%2C+Mrityunjay&rft.au=Henzel%2C+Thomas&rft.date=2023-12-01&rft.issn=1745-2473&rft.volume=19&rft.issue=12&rft.spage=1936&rft_id=info:doi/10.1038%2Fs41567-023-02221-1&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1745-2473&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1745-2473&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1745-2473&client=summon