Domain Adaptation in Remote Sensing Image Classification: A Survey

Traditional remote sensing (RS) image classification methods heavily rely on labeled samples for model training. When labeled samples are unavailable or labeled samples have different distributions from that of the samples to be classified, the classification model may fail. The cross-domain or cros...

Full description

Saved in:
Bibliographic Details
Published inIEEE journal of selected topics in applied earth observations and remote sensing Vol. 15; pp. 1 - 18
Main Authors Peng, Jiangtao, Huang, Yi, Sun, Weiwei, Chen, Na, Ning, Yujie, Du, Qian
Format Journal Article
LanguageEnglish
Published Piscataway IEEE 2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Traditional remote sensing (RS) image classification methods heavily rely on labeled samples for model training. When labeled samples are unavailable or labeled samples have different distributions from that of the samples to be classified, the classification model may fail. The cross-domain or cross-scene remote sensing image classification is developed for this case where an existing image for training and an unknown image from different scenes or domains for classification. The distribution inconsistency problem may be caused by the differences in acquisition environment conditions, acquisition scene, acquisition time or/and changing sensors. To cope with the cross-domain remote sensing image classification problem, many domain adaptation (DA) techniques have been developed. In this article, we review DA methods in the fields of RS, especially hyperspectral image classification, and provide a survey of DA methods into traditional shallow DA methods (e.g., instance-based, feature-based, and classifier-based adaptations) and recently developed deep DA methods (e.g., discrepancy-based and adversarial-based adaptations).
AbstractList Traditional remote sensing (RS) image classification methods heavily rely on labeled samples for model training. When labeled samples are unavailable or labeled samples have different distributions from that of the samples to be classified, the classification model may fail. The cross-domain or cross-scene remote sensing image classification is developed for this case where an existing image for training and an unknown image from different scenes or domains for classification. The distribution inconsistency problem may be caused by the differences in acquisition environment conditions, acquisition scene, acquisition time or/and changing sensors. To cope with the cross-domain remote sensing image classification problem, many domain adaptation (DA) techniques have been developed. In this article, we review DA methods in the fields of RS, especially hyperspectral image classification, and provide a survey of DA methods into traditional shallow DA methods (e.g., instance-based, feature-based, and classifier-based adaptations) and recently developed deep DA methods (e.g., discrepancy-based and adversarial-based adaptations).
Traditional remote sensing (RS) image classification methods heavily rely on labeled samples for model training. When labeled samples are unavailable or labeled samples have different distributions from that of the samples to be classified, the classification model may fail. The cross-domain or cross-scene remote sensing image classification is developed for this case where an existing image for training and an unknown image from different scenes or domains for classification. The distribution inconsistency problem may be caused by the differences in acquisition environment conditions, acquisition scene, acquisition time, and/or changing sensors. To cope with the cross-domain remote sensing image classification problem, many domain adaptation (DA) techniques have been developed. In this article, we review DA methods in the fields of RS, especially hyperspectral image classification, and provide a survey of DA methods into traditional shallow DA methods (e.g., instance-based, feature-based, and classifier-based adaptations) and recently developed deep DA methods (e.g., discrepancy-based and adversarial-based adaptations).
Author Peng, Jiangtao
Ning, Yujie
Huang, Yi
Du, Qian
Chen, Na
Sun, Weiwei
Author_xml – sequence: 1
  givenname: Jiangtao
  orcidid: 0000-0002-4759-0584
  surname: Peng
  fullname: Peng, Jiangtao
  organization: Hubei Key Laboratory of Applied Mathematics, Faculty of Mathematics and Statistics, Hubei University, Wuhan, P. R. China
– sequence: 2
  givenname: Yi
  surname: Huang
  fullname: Huang, Yi
  organization: Hubei Key Laboratory of Applied Mathematics, Faculty of Mathematics and Statistics, Hubei University, Wuhan, P. R. China
– sequence: 3
  givenname: Weiwei
  orcidid: 0000-0003-3399-7858
  surname: Sun
  fullname: Sun, Weiwei
  organization: Department of Geography and Spatial Information Techniques, Ningbo University, Ningbo, P. R. China
– sequence: 4
  givenname: Na
  surname: Chen
  fullname: Chen, Na
  organization: Hubei Key Laboratory of Applied Mathematics, Faculty of Mathematics and Statistics, Hubei University, Wuhan, P. R. China
– sequence: 5
  givenname: Yujie
  surname: Ning
  fullname: Ning, Yujie
  organization: Hubei Key Laboratory of Applied Mathematics, Faculty of Mathematics and Statistics, Hubei University, Wuhan, P. R. China
– sequence: 6
  givenname: Qian
  orcidid: 0000-0001-8354-7500
  surname: Du
  fullname: Du, Qian
  organization: Department of Electrical and Computer Engineering, Mississippi State University, Mississippi State, MS, USA
BookMark eNp9kE1vEzEQhi1UJNLCL-hlJc4bPJ717ppbCF9BlZCacrb8MY4cJetgb5D679lmCwcOnKyx3ued0XPNroY0EGO3wJcAXL37tn1Y3W-XgguxRCF438kXbCFAQg0S5RVbgEJVQ8ObV-y6lD3nregULtiHj-lo4lCtvDmNZoxpqKbpno5ppGpLQ4nDrtoczY6q9cGUEkN0l9j7alVtz_kXPb5mL4M5FHrz_N6wH58_Pay_1nffv2zWq7vaNbwfa0kBAWzfhFZaRCFV37jWCwkkyYYOnBc9hwABA5eWG-FdL2TbWhsatBxv2Gbu9cns9SnHo8mPOpmoLx8p77TJY3QH0k4iKmk7sq5vJPje-9ASKRTTDn_pejt3nXL6eaYy6n0652E6X4sOFSJ0AqeUmlMup1IyBe3iLGnMJh40cP2kX8_69ZN-_ax_YvEf9s_F_6duZyoS0V9CqWZS2OJv3t-SCg
CODEN IJSTHZ
CitedBy_id crossref_primary_10_1109_TGRS_2024_3476151
crossref_primary_10_1109_TGRS_2023_3295357
crossref_primary_10_1109_TGRS_2024_3479220
crossref_primary_10_3390_rs16122134
crossref_primary_10_1109_TGRS_2023_3325298
crossref_primary_10_1049_csy2_12120
crossref_primary_10_1080_10095020_2024_2387457
crossref_primary_10_1109_TGRS_2024_3371971
crossref_primary_10_1109_TGRS_2024_3407812
crossref_primary_10_1109_TAI_2024_3405404
crossref_primary_10_1080_14498596_2023_2227948
crossref_primary_10_1016_j_procs_2024_09_420
crossref_primary_10_1093_comjnl_bxad104
crossref_primary_10_1109_TGRS_2024_3424553
crossref_primary_10_1016_j_isprsjprs_2024_05_020
crossref_primary_10_1109_TGRS_2023_3318521
crossref_primary_10_1109_TGRS_2023_3318003
crossref_primary_10_3390_electronics13245022
crossref_primary_10_3390_rs15204986
crossref_primary_10_1109_TGRS_2023_3317077
crossref_primary_10_1109_TGRS_2024_3374372
crossref_primary_10_1111_phor_12531
crossref_primary_10_1109_JSTARS_2023_3336929
crossref_primary_10_3390_rs17050927
crossref_primary_10_1109_JSTARS_2024_3485528
crossref_primary_10_1109_TGRS_2024_3478385
crossref_primary_10_1109_TGRS_2024_3518502
crossref_primary_10_1016_j_isprsjprs_2023_07_009
crossref_primary_10_1109_TGRS_2024_3425491
crossref_primary_10_1016_j_compag_2024_109050
crossref_primary_10_1016_j_dsp_2024_104551
crossref_primary_10_1109_TGRS_2024_3387990
crossref_primary_10_3390_math12050708
crossref_primary_10_1016_j_jag_2024_103850
crossref_primary_10_1016_j_jiixd_2024_06_001
crossref_primary_10_1109_LGRS_2024_3367623
crossref_primary_10_1016_j_engappai_2024_109873
crossref_primary_10_1016_j_asoc_2025_112868
crossref_primary_10_1109_TGRS_2025_3526211
crossref_primary_10_1109_TGRS_2024_3442171
crossref_primary_10_1109_TIP_2024_3422881
crossref_primary_10_1109_TGRS_2023_3325459
crossref_primary_10_1109_TGRS_2024_3483283
crossref_primary_10_1117_1_JRS_18_014525
crossref_primary_10_1080_17538947_2024_2346258
crossref_primary_10_3390_rs16213963
crossref_primary_10_1109_LGRS_2024_3451180
crossref_primary_10_1109_TGRS_2024_3515464
crossref_primary_10_1016_j_knosys_2024_112415
crossref_primary_10_1109_TGRS_2023_3348953
crossref_primary_10_1109_TGRS_2024_3376609
crossref_primary_10_1016_j_infrared_2024_105251
crossref_primary_10_1109_TGRS_2023_3257341
crossref_primary_10_1109_JSTARS_2024_3522662
crossref_primary_10_1109_TGRS_2024_3461674
crossref_primary_10_3390_rs16183469
crossref_primary_10_1109_TGRS_2023_3320657
crossref_primary_10_1016_j_inffus_2023_101912
crossref_primary_10_1109_TGRS_2024_3492499
crossref_primary_10_1109_TGRS_2024_3367765
crossref_primary_10_1080_07038992_2024_2367479
crossref_primary_10_1109_TGRS_2024_3369666
crossref_primary_10_1109_TGRS_2023_3300688
crossref_primary_10_3390_rs16162927
crossref_primary_10_1109_TGRS_2023_3325825
crossref_primary_10_1109_JSTARS_2023_3237566
crossref_primary_10_1109_LGRS_2024_3382871
crossref_primary_10_1109_TGRS_2024_3458014
crossref_primary_10_1109_JSTARS_2024_3503756
crossref_primary_10_1109_TGRS_2024_3370576
crossref_primary_10_1109_JSTARS_2024_3523346
crossref_primary_10_1109_JSTARS_2024_3399741
crossref_primary_10_1109_TGRS_2024_3356008
crossref_primary_10_1109_JSTARS_2025_3532816
crossref_primary_10_1109_TCSVT_2023_3330193
crossref_primary_10_1109_ACCESS_2024_3510779
crossref_primary_10_1109_TGRS_2023_3337652
crossref_primary_10_1109_TGRS_2023_3344698
crossref_primary_10_1016_j_neunet_2024_106241
crossref_primary_10_3389_fbioe_2024_1334643
crossref_primary_10_1109_TGRS_2024_3459937
crossref_primary_10_1109_TGRS_2024_3524631
crossref_primary_10_1007_s11356_023_30843_8
Cites_doi 10.3390/rs11192289
10.1109/IGARSS.2017.8127787
10.1109/CVPR46437.2021.01499
10.1145/1015330.1015425
10.1109/TCYB.2020.2994875
10.1109/LGRS.2012.2220516
10.1109/IGARSS.2011.6049404
10.1016/S0167-8655(02)00053-3
10.1109/LGRS.2015.2512999
10.1080/01431161.2020.1750735
10.1109/LGRS.2020.2969970
10.1109/JSTARS.2020.3001198
10.1109/TGRS.2007.894550
10.1109/LGRS.2018.2889800
10.1109/CVPR.2014.183
10.1109/TGRS.2022.3151689
10.1109/JSTARS.2018.2859836
10.1109/JSTARS.2016.2624303
10.1109/LGRS.2012.2236818
10.1109/JPROC.2012.2231951
10.1016/j.isprsjprs.2021.08.004
10.1109/TGRS.2015.2503885
10.1016/j.asoc.2017.12.018
10.1080/01431161.2021.1880663
10.1109/TNNLS.2020.2973293
10.1007/978-3-030-71704-9_65
10.1109/JSTARS.2020.3006879
10.1109/ICCV.2015.463
10.1109/JSTARS.2020.3026316
10.1109/JSTARS.2021.3099805
10.1109/LGRS.2019.2902615
10.1109/LGRS.2015.2491605
10.1109/ICDM.2016.0136
10.1109/TGRS.2020.2997863
10.1109/TGRS.2019.2958123
10.1109/CVPRW50498.2020.00104
10.1016/j.isprsjprs.2015.02.005
10.1016/j.jag.2021.102603
10.1109/LGRS.2018.2889789
10.1109/JSTARS.2021.3132259
10.1109/TGRS.2016.2627042
10.1109/TGRS.2021.3105302
10.1109/TGRS.2012.2200045
10.1109/ICCV.2017.591
10.1109/JSTARS.2021.3129177
10.3390/rs9040337
10.1080/01431161.2020.1797221
10.1109/ICDM.2019.00088
10.1109/TGRS.2021.3073699
10.1016/j.neunet.2019.07.010
10.1109/CVPR.2018.00392
10.1109/LGRS.2019.2931305
10.1109/TGRS.2015.2449736
10.1109/TGRS.2017.2698503
10.1109/TGRS.2018.2827308
10.1016/j.rse.2011.04.022
10.1109/LGRS.2020.3003566
10.1109/TNNLS.2021.3109872
10.1109/LGRS.2017.2726760
10.1109/ICCV.2011.6126344
10.1109/JSTARS.2015.2500961
10.3390/rs11101153
10.1109/JSTARS.2020.3035382
10.1002/9781119646181.ch7
10.1109/LGRS.2018.2889967
10.1109/TCYB.2020.3004263
10.1109/TGRS.2020.2964679
10.1109/MGRS.2018.2798161
10.1109/TGRS.2019.2931730
10.1109/JSTARS.2020.3031741
10.1016/S1566-2535(02)00091-X
10.1109/JSTARS.2021.3049527
10.1109/TGRS.2019.2903719
10.1109/TGRS.2014.2377785
10.1109/LGRS.2016.2568263
10.1016/S0378-3758(00)00115-4
10.1109/TGRS.2014.2317499
10.1109/TGRS.2021.3056624
10.1109/LGRS.2022.3149950
10.1109/TCI.2017.2752150
10.1117/1.JRS.15.032207
10.1109/TGRS.2021.3119914
10.1109/LGRS.2019.2909543
10.1109/TGRS.2018.2882420
10.1007/978-3-030-01237-3_9
10.1109/TGRS.2014.2305805
10.1109/TGRS.2020.3028906
10.1109/LGRS.2016.2617199
10.1109/TNNLS.2020.2988928
10.1109/JSTARS.2017.2732682
10.3389/fenvs.2015.00045
10.3390/rs12071054
10.1109/TGRS.2020.2980417
10.1109/JSTARS.2016.2646138
10.1109/TGRS.2021.3110060
10.1109/LGRS.2018.2799628
10.1109/JSTARS.2021.3063460
10.5194/isprs-annals-IV-2-W7-197-2019
10.1109/TGRS.2012.2200043
10.1109/LGRS.2013.2255258
10.1109/LGRS.2020.3007021
10.1109/ACCESS.2018.2789932
10.1109/TNN.2010.2091281
10.1109/TGRS.2018.2872850
10.1080/01431161.2020.1736727
10.5244/C.29.24
10.1109/TGRS.2019.2951779
10.1109/TGRS.2010.2076287
10.1109/TGRS.2002.803794
10.1109/TGRS.2019.2927393
10.1109/TGRS.2022.3170335
10.1109/JSTARS.2014.2305441
10.1109/TGRS.2012.2198654
10.1109/ICME.2019.00211
10.1109/TGRS.2020.3024796
10.1109/LGRS.2019.2896411
10.3390/rs12111716
10.1109/JSTARS.2021.3109012
10.1109/CVPR.2017.547
10.1117/1.JRS.11.042612
10.1109/TGRS.2020.3015357
10.1109/IGARSS.2019.8898437
10.3390/rs10091425
10.1109/LGRS.2012.2227297
10.1109/TIP.2018.2808767
10.1109/TGRS.2007.910220
10.1109/TGRS.2020.3006161
10.1016/j.rse.2019.111322
10.1016/j.isprsjprs.2018.10.006
10.1109/TGRS.2022.3166817
10.1016/j.isprsjprs.2019.07.001
10.1109/JSTARS.2021.3127754
10.1109/TGRS.2017.2692281
10.1007/978-3-030-31332-6_41
10.3390/rs13193861
10.1109/TGRS.2021.3057066
10.1109/CVPR.2015.7298600
10.1109/TGRS.2011.2174154
10.1109/TIP.2019.2924174
10.1609/aaai.v32i1.11767
10.1109/TGRS.2006.878442
10.1109/TGRS.2019.2946318
10.1109/TGRS.2018.2889195
10.1109/TGRS.2009.2019636
10.1609/aaai.v30i1.10306
10.1109/TAI.2020.3043724
10.1109/ICCV.2017.88
10.3390/ijgi7050182
10.1117/1.JRS.11.042609
10.1109/TGRS.2012.2192740
10.1109/TGRS.2020.3020804
10.1109/36.905255
10.1109/JSTARS.2020.2999386
10.1109/TGRS.2019.2926069
10.1109/JSTARS.2020.3000677
10.1109/TPAMI.2009.57
10.1109/JSTARS.2012.2202881
10.1007/s10994-020-05942-z
10.1109/TGRS.2020.3046756
10.1109/TPAMI.2019.2945942
10.1016/j.patcog.2017.10.007
10.1109/JSTARS.2015.2449738
10.1109/LGRS.2017.2723763
10.1109/TGRS.2020.2985072
10.1109/ICCV.2013.274
10.3390/rs11091047
10.1109/TGRS.2017.2761839
10.1109/TGRS.2018.2852066
10.1016/j.patrec.2015.12.015
10.1109/TGRS.2021.3128162
10.1109/LGRS.2021.3130285
10.1109/JSTARS.2017.2711360
10.1109/ICCV.2013.368
10.1109/JSTARS.2020.3030304
10.1109/LGRS.2021.3126594
10.1016/j.inffus.2014.12.003
10.1109/TGRS.2012.2195727
10.1007/978-3-319-49409-8_35
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022
DBID 97E
ESBDL
RIA
RIE
AAYXX
CITATION
7UA
8FD
C1K
F1W
FR3
H8D
H96
KR7
L.G
L7M
DOA
DOI 10.1109/JSTARS.2022.3220875
DatabaseName IEEE Xplore (IEEE)
IEEE Xplore Open Access Journals
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Water Resources Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Aerospace Database
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Advanced Technologies Database with Aerospace
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Aerospace Database
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Technology Research Database
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Water Resources Abstracts
Environmental Sciences and Pollution Management
DatabaseTitleList
Aerospace Database

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Geology
EISSN 2151-1535
EndPage 18
ExternalDocumentID oai_doaj_org_article_c53395b7ebc8451d8ddf6ee932d28db0
10_1109_JSTARS_2022_3220875
9944086
Genre orig-research
GrantInformation_xml – fundername: Public Projects of Ningbo City
  grantid: 2021S089
– fundername: National Natural Science Foundation of China
  grantid: 42171351; 42122009; 61871177; 41971296
– fundername: Natural Science Foundation of Hubei Province
  grantid: 2021CFA087
GroupedDBID 0R~
29I
4.4
5GY
5VS
6IK
97E
AAFWJ
AAJGR
AASAJ
AAWTH
ABAZT
ABVLG
ACIWK
AENEX
AETIX
AFPKN
AFRAH
AGSQL
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
DU5
EBS
EJD
ESBDL
GROUPED_DOAJ
HZ~
IFIPE
IPLJI
JAVBF
M43
O9-
OCL
OK1
RIA
RIE
RNS
AAYXX
CITATION
RIG
7UA
8FD
C1K
F1W
FR3
H8D
H96
KR7
L.G
L7M
ID FETCH-LOGICAL-c408t-5ef311b84f65b3325984c6d251e5ebf71cd2801f1f3f05b0a2dc82566bbf43b03
IEDL.DBID RIE
ISSN 1939-1404
IngestDate Wed Aug 27 01:18:25 EDT 2025
Mon Jul 28 15:40:49 EDT 2025
Thu Apr 24 23:08:49 EDT 2025
Tue Jul 01 03:16:23 EDT 2025
Wed Aug 27 02:18:00 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Language English
License https://creativecommons.org/licenses/by/4.0/legalcode
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c408t-5ef311b84f65b3325984c6d251e5ebf71cd2801f1f3f05b0a2dc82566bbf43b03
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-3399-7858
0000-0001-8354-7500
0000-0002-4759-0584
OpenAccessLink https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/document/9944086
PQID 2739331723
PQPubID 75722
PageCount 18
ParticipantIDs doaj_primary_oai_doaj_org_article_c53395b7ebc8451d8ddf6ee932d28db0
crossref_citationtrail_10_1109_JSTARS_2022_3220875
proquest_journals_2739331723
crossref_primary_10_1109_JSTARS_2022_3220875
ieee_primary_9944086
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20220000
2022-00-00
20220101
2022-01-01
PublicationDateYYYYMMDD 2022-01-01
PublicationDate_xml – year: 2022
  text: 20220000
PublicationDecade 2020
PublicationPlace Piscataway
PublicationPlace_xml – name: Piscataway
PublicationTitle IEEE journal of selected topics in applied earth observations and remote sensing
PublicationTitleAbbrev JSTARS
PublicationYear 2022
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref57
ref56
ref59
ref58
ref53
ref52
ref168
ref55
ref169
ref54
gui (ref37) 2021; 19
huang (ref7) 0; 19
ref170
rußwurm (ref188) 0
ref177
ref178
ref175
ref51
ref176
ref173
ref174
ref171
ref172
ref46
ref45
ref47
ref42
ref41
ref179
ref44
ref43
ref49
ref180
ref181
ref9
ref4
ref6
ref5
ref100
ref101
ref186
ref40
ref187
ref184
ref185
ref182
ref183
ref35
ref34
ref36
ref31
ref148
ref30
ref149
ref33
ref146
ref32
ref147
long (ref98) 0
ref39
ref38
motiian (ref189) 2017; 30
yaris (ref8) 2021
ref155
ref156
ref153
ref154
ref151
ref152
ref150
ref24
ref23
sun (ref76) 2013; 10
ref26
ref25
ref20
ref159
ref22
ref157
ref21
ref158
ref28
ref27
ref29
gong (ref13) 0
ref166
ref167
ref164
ref165
ref162
ref163
ref160
ref161
ref12
ref128
ref15
ref129
ref14
ref126
ref97
mauro (ref3) 2021
ref127
ref96
ref124
ref11
ref125
ref10
ref17
ref16
ref19
ref18
ref133
ref93
ref134
ref92
ref131
ref95
ref132
ref94
ref130
ref91
ref90
ref89
ref139
ref137
ref86
ref138
ref85
ref135
ref88
ref136
ref87
long (ref99) 0
ref144
ref82
ref145
ref81
ref142
ref84
ref143
ref83
ref140
ref141
ref80
ref79
ref108
ref78
ref109
ref106
ref107
ref75
ref104
ref74
ref105
ref77
ref102
ref103
ref2
ref1
ref190
goodfellow (ref114) 2014; 27
ref71
ref111
huang (ref48) 2021; 19
ref70
ref112
ref73
ref72
ref110
peng (ref50) 2020; 24
ref68
ref119
ref67
ref117
ref69
ref118
ref64
ref115
ref63
ref116
ref66
ref113
ref65
ref60
ref122
ref123
ref62
ref120
ref61
ref121
References_xml – ident: ref104
  doi: 10.3390/rs11192289
– ident: ref44
  doi: 10.1109/IGARSS.2017.8127787
– ident: ref120
  doi: 10.1109/CVPR46437.2021.01499
– ident: ref147
  doi: 10.1145/1015330.1015425
– ident: ref148
  doi: 10.1109/TCYB.2020.2994875
– ident: ref96
  doi: 10.1109/LGRS.2012.2220516
– ident: ref2
  doi: 10.1109/IGARSS.2011.6049404
– ident: ref70
  doi: 10.1016/S0167-8655(02)00053-3
– ident: ref144
  doi: 10.1109/LGRS.2015.2512999
– ident: ref179
  doi: 10.1080/01431161.2020.1750735
– ident: ref157
  doi: 10.1109/LGRS.2020.2969970
– ident: ref64
  doi: 10.1109/JSTARS.2020.3001198
– ident: ref155
  doi: 10.1109/TGRS.2007.894550
– ident: ref17
  doi: 10.1109/LGRS.2018.2889800
– ident: ref40
  doi: 10.1109/CVPR.2014.183
– ident: ref165
  doi: 10.1109/TGRS.2022.3151689
– ident: ref32
  doi: 10.1109/JSTARS.2018.2859836
– ident: ref34
  doi: 10.1109/JSTARS.2016.2624303
– volume: 10
  start-page: 1224
  year: 2013
  ident: ref76
  article-title: Learn multiple-kernel SVMs for domain adaptation in hyperspectral data
  publication-title: IEEE Geosci Remote Sens Lett
  doi: 10.1109/LGRS.2012.2236818
– ident: ref94
  doi: 10.1109/JPROC.2012.2231951
– ident: ref169
  doi: 10.1016/j.isprsjprs.2021.08.004
– ident: ref30
  doi: 10.1109/TGRS.2015.2503885
– ident: ref150
  doi: 10.1016/j.asoc.2017.12.018
– ident: ref126
  doi: 10.1080/01431161.2021.1880663
– ident: ref183
  doi: 10.1109/TNNLS.2020.2973293
– ident: ref5
  doi: 10.1007/978-3-030-71704-9_65
– volume: 19
  year: 2021
  ident: ref37
  article-title: A general feature paradigm for unsupervised cross-domain PolSAR image classification
  publication-title: IEEE Geosci Remote Sens Lett
– ident: ref83
  doi: 10.1109/JSTARS.2020.3006879
– ident: ref116
  doi: 10.1109/ICCV.2015.463
– ident: ref26
  doi: 10.1109/JSTARS.2020.3026316
– ident: ref47
  doi: 10.1109/JSTARS.2021.3099805
– ident: ref62
  doi: 10.1109/LGRS.2019.2902615
– ident: ref16
  doi: 10.1109/LGRS.2015.2491605
– ident: ref185
  doi: 10.1109/ICDM.2016.0136
– ident: ref125
  doi: 10.1109/TGRS.2020.2997863
– ident: ref132
  doi: 10.1109/TGRS.2019.2958123
– ident: ref137
  doi: 10.1109/CVPRW50498.2020.00104
– ident: ref56
  doi: 10.1016/j.isprsjprs.2015.02.005
– ident: ref6
  doi: 10.1016/j.jag.2021.102603
– ident: ref41
  doi: 10.1109/LGRS.2018.2889789
– ident: ref171
  doi: 10.1109/JSTARS.2021.3132259
– ident: ref33
  doi: 10.1109/TGRS.2016.2627042
– ident: ref134
  doi: 10.1109/TGRS.2021.3105302
– ident: ref57
  doi: 10.1109/TGRS.2012.2200045
– ident: ref190
  doi: 10.1109/ICCV.2017.591
– ident: ref122
  doi: 10.1109/JSTARS.2021.3129177
– ident: ref54
  doi: 10.3390/rs9040337
– ident: ref78
  doi: 10.1080/01431161.2020.1797221
– ident: ref118
  doi: 10.1109/ICDM.2019.00088
– ident: ref68
  doi: 10.1109/TGRS.2021.3073699
– ident: ref100
  doi: 10.1016/j.neunet.2019.07.010
– ident: ref119
  doi: 10.1109/CVPR.2018.00392
– ident: ref130
  doi: 10.1109/LGRS.2019.2931305
– ident: ref60
  doi: 10.1109/TGRS.2015.2449736
– ident: ref138
  doi: 10.1109/TGRS.2017.2698503
– ident: ref139
  doi: 10.1109/TGRS.2018.2827308
– ident: ref91
  doi: 10.1016/j.rse.2011.04.022
– ident: ref166
  doi: 10.1109/LGRS.2020.3003566
– start-page: 2208
  year: 0
  ident: ref99
  article-title: Deep transfer learning with joint adaptation networks
  publication-title: Proc Int Conf Mach Learn
– ident: ref108
  doi: 10.1109/TNNLS.2021.3109872
– ident: ref79
  doi: 10.1109/LGRS.2017.2726760
– ident: ref12
  doi: 10.1109/ICCV.2011.6126344
– ident: ref18
  doi: 10.1109/JSTARS.2015.2500961
– volume: 19
  start-page: 601
  year: 0
  ident: ref7
  article-title: Correcting sample selection bias by unlabeled data
  publication-title: Proc Adv Neural Inf Process Syst
– ident: ref135
  doi: 10.3390/rs11101153
– ident: ref143
  doi: 10.1109/JSTARS.2020.3035382
– ident: ref159
  doi: 10.1002/9781119646181.ch7
– ident: ref105
  doi: 10.1109/LGRS.2018.2889967
– ident: ref65
  doi: 10.1109/TCYB.2020.3004263
– ident: ref113
  doi: 10.1109/TGRS.2020.2964679
– ident: ref182
  doi: 10.1109/MGRS.2018.2798161
– volume: 27
  start-page: 1
  year: 2014
  ident: ref114
  article-title: Generative adversarial nets
  publication-title: Adv Neural Inf Process Syst
– ident: ref106
  doi: 10.1109/TGRS.2019.2931730
– ident: ref172
  doi: 10.1109/JSTARS.2020.3031741
– ident: ref72
  doi: 10.1016/S1566-2535(02)00091-X
– ident: ref84
  doi: 10.1109/JSTARS.2021.3049527
– ident: ref66
  doi: 10.1109/TGRS.2019.2903719
– ident: ref39
  doi: 10.1109/TGRS.2014.2377785
– ident: ref11
  doi: 10.1109/LGRS.2016.2568263
– ident: ref146
  doi: 10.1016/S0378-3758(00)00115-4
– ident: ref58
  doi: 10.1109/TGRS.2014.2317499
– ident: ref112
  doi: 10.1109/TGRS.2021.3056624
– ident: ref175
  doi: 10.1109/LGRS.2022.3149950
– ident: ref45
  doi: 10.1109/TCI.2017.2752150
– ident: ref9
  doi: 10.1117/1.JRS.15.032207
– ident: ref131
  doi: 10.1109/TGRS.2021.3119914
– ident: ref81
  doi: 10.1109/LGRS.2019.2909543
– ident: ref55
  doi: 10.1109/TGRS.2018.2882420
– ident: ref187
  doi: 10.1007/978-3-030-01237-3_9
– ident: ref153
  doi: 10.1109/TGRS.2014.2305805
– ident: ref21
  doi: 10.1109/TGRS.2020.3028906
– ident: ref14
  doi: 10.1109/LGRS.2016.2617199
– ident: ref101
  doi: 10.1109/TNNLS.2020.2988928
– ident: ref149
  doi: 10.1109/JSTARS.2017.2732682
– ident: ref1
  doi: 10.3389/fenvs.2015.00045
– ident: ref107
  doi: 10.3390/rs12071054
– ident: ref170
  doi: 10.1109/TGRS.2020.2980417
– volume: 30
  start-page: 1
  year: 2017
  ident: ref189
  article-title: Few-shot adversarial domain adaptation
  publication-title: Adv Neural Inf Process Syst
– ident: ref28
  doi: 10.1109/JSTARS.2016.2646138
– ident: ref85
  doi: 10.1109/TGRS.2021.3110060
– ident: ref27
  doi: 10.1109/LGRS.2018.2799628
– ident: ref109
  doi: 10.1109/JSTARS.2021.3063460
– ident: ref115
  doi: 10.5194/isprs-annals-IV-2-W7-197-2019
– ident: ref75
  doi: 10.1109/TGRS.2012.2200043
– ident: ref95
  doi: 10.1109/LGRS.2013.2255258
– volume: 24
  start-page: 417
  year: 2020
  ident: ref50
  article-title: A modified correlation alignment algorithm for the domain adaptation of GF-5 hyperspectral image
  publication-title: J Remote Sens (China)
– ident: ref152
  doi: 10.1109/LGRS.2020.3007021
– ident: ref63
  doi: 10.1109/ACCESS.2018.2789932
– ident: ref38
  doi: 10.1109/TNN.2010.2091281
– ident: ref52
  doi: 10.1109/TGRS.2018.2872850
– ident: ref163
  doi: 10.1080/01431161.2020.1736727
– ident: ref22
  doi: 10.5244/C.29.24
– ident: ref111
  doi: 10.1109/TGRS.2019.2951779
– start-page: 200
  year: 0
  ident: ref188
  article-title: Meta-learning for few-shot land cover classification
  publication-title: Proc IEEE Conf Comp Vis Pattern Recognit
– ident: ref89
  doi: 10.1109/TGRS.2010.2076287
– ident: ref71
  doi: 10.1109/TGRS.2002.803794
– start-page: 2066
  year: 0
  ident: ref13
  article-title: Geodesic flow kernel for unsupervised domain adaptation
  publication-title: Proc IEEE Conf Comput Vis Pattern Recognit
– ident: ref177
  doi: 10.1109/TGRS.2019.2927393
– ident: ref160
  doi: 10.1109/TGRS.2022.3170335
– ident: ref181
  doi: 10.1109/JSTARS.2014.2305441
– ident: ref154
  doi: 10.1109/TGRS.2012.2198654
– year: 2021
  ident: ref3
  article-title: Domain-adversarial training of self-attention based networks for land cover classification using multi-temporal Sentinel-2 satellite imagery
– ident: ref86
  doi: 10.1109/ICME.2019.00211
– ident: ref82
  doi: 10.1109/TGRS.2020.3024796
– ident: ref173
  doi: 10.1109/LGRS.2019.2896411
– ident: ref164
  doi: 10.3390/rs12111716
– ident: ref110
  doi: 10.1109/JSTARS.2021.3109012
– ident: ref43
  doi: 10.1109/CVPR.2017.547
– ident: ref103
  doi: 10.1117/1.JRS.11.042612
– ident: ref121
  doi: 10.1109/TGRS.2020.3015357
– ident: ref80
  doi: 10.1109/IGARSS.2019.8898437
– ident: ref174
  doi: 10.3390/rs10091425
– ident: ref73
  doi: 10.1109/LGRS.2012.2227297
– ident: ref74
  doi: 10.1109/TIP.2018.2808767
– ident: ref90
  doi: 10.1109/TGRS.2007.910220
– ident: ref168
  doi: 10.1109/TGRS.2020.3006161
– ident: ref180
  doi: 10.1016/j.rse.2019.111322
– ident: ref61
  doi: 10.1016/j.isprsjprs.2018.10.006
– ident: ref162
  doi: 10.1109/TGRS.2022.3166817
– ident: ref133
  doi: 10.1016/j.isprsjprs.2019.07.001
– ident: ref10
  doi: 10.1109/JSTARS.2021.3127754
– ident: ref161
  doi: 10.1109/TGRS.2017.2692281
– ident: ref124
  doi: 10.1007/978-3-030-31332-6_41
– ident: ref176
  doi: 10.3390/rs13193861
– ident: ref129
  doi: 10.1109/TGRS.2021.3057066
– ident: ref25
  doi: 10.1109/CVPR.2015.7298600
– ident: ref151
  doi: 10.1109/TGRS.2011.2174154
– ident: ref46
  doi: 10.1109/TIP.2019.2924174
– ident: ref117
  doi: 10.1609/aaai.v32i1.11767
– ident: ref87
  doi: 10.1109/TGRS.2006.878442
– ident: ref128
  doi: 10.1109/TGRS.2019.2946318
– ident: ref53
  doi: 10.1109/TGRS.2018.2889195
– ident: ref29
  doi: 10.1109/TGRS.2009.2019636
– ident: ref49
  doi: 10.1609/aaai.v30i1.10306
– ident: ref178
  doi: 10.1109/TAI.2020.3043724
– ident: ref186
  doi: 10.1109/ICCV.2017.88
– volume: 19
  year: 2021
  ident: ref48
  article-title: Distribution alignment and discriminative feature learning for domain adaptation in hyperspectral image classification
  publication-title: IEEE Geosci Remote Sens Lett
– start-page: 97
  year: 0
  ident: ref98
  article-title: Learning transferable features with deep adaptation networks
  publication-title: Proc Int Conf Mach Learn
– ident: ref77
  doi: 10.3390/ijgi7050182
– ident: ref158
  doi: 10.1117/1.JRS.11.042609
– ident: ref92
  doi: 10.1109/TGRS.2012.2192740
– ident: ref167
  doi: 10.1109/TGRS.2020.3020804
– ident: ref69
  doi: 10.1109/36.905255
– ident: ref141
  doi: 10.1109/JSTARS.2020.2999386
– ident: ref19
  doi: 10.1109/TGRS.2019.2926069
– ident: ref36
  doi: 10.1109/JSTARS.2020.3000677
– ident: ref88
  doi: 10.1109/TPAMI.2009.57
– year: 2021
  ident: ref8
  article-title: Randomized histogram matching: A simple augmentation for unsupervised domain adaptation in overhead imagery
– ident: ref93
  doi: 10.1109/JSTARS.2012.2202881
– ident: ref145
  doi: 10.1007/s10994-020-05942-z
– ident: ref23
  doi: 10.1109/TGRS.2020.3046756
– ident: ref4
  doi: 10.1109/TPAMI.2019.2945942
– ident: ref140
  doi: 10.1016/j.patcog.2017.10.007
– ident: ref59
  doi: 10.1109/JSTARS.2015.2449738
– ident: ref35
  doi: 10.1109/LGRS.2017.2723763
– ident: ref24
  doi: 10.1109/TGRS.2020.2985072
– ident: ref42
  doi: 10.1109/ICCV.2013.274
– ident: ref67
  doi: 10.3390/rs11091047
– ident: ref31
  doi: 10.1109/TGRS.2017.2761839
– ident: ref20
  doi: 10.1109/TGRS.2018.2852066
– ident: ref51
  doi: 10.1016/j.patrec.2015.12.015
– ident: ref127
  doi: 10.1109/TGRS.2021.3128162
– ident: ref156
  doi: 10.1109/LGRS.2021.3130285
– ident: ref136
  doi: 10.1109/JSTARS.2017.2711360
– ident: ref15
  doi: 10.1109/ICCV.2013.368
– ident: ref142
  doi: 10.1109/JSTARS.2020.3030304
– ident: ref123
  doi: 10.1109/LGRS.2021.3126594
– ident: ref184
  doi: 10.1016/j.inffus.2014.12.003
– ident: ref97
  doi: 10.1109/TGRS.2012.2195727
– ident: ref102
  doi: 10.1007/978-3-319-49409-8_35
SSID ssj0062793
Score 2.5786264
Snippet Traditional remote sensing (RS) image classification methods heavily rely on labeled samples for model training. When labeled samples are unavailable or...
SourceID doaj
proquest
crossref
ieee
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1
SubjectTerms Adaptation
Adaptation models
Classification
Cross-domain classification
distribution difference
domain adaptation
domain adaptation (DA)
Domains
Feature extraction
Hyperspectral imaging
Image classification
Image sensors
Kernel
Methods
Principal component analysis
Remote sensing
remote sensing (RS) image
Remote sensing image
Remote sensors
Sun
Surveying
Surveys
Training
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8QwEA4iCF7EJ64vcvBoNe9Nva1vBT24Ct7CJpl40V3RVfDfO0m7iyDoxWNL-vpmOvNNO8xHyC7DiBekFxVm67pSwKHyRthKd3kQNoH0RT_l-sZc3KurB_3wTeor94Q144Eb4A4C8pFa-y74YJXm0caYDADSjihs9KVax5w3KaaaGGwEul07Y4iz-gCdvHfbx2pQiH30YFbaCr_loTKuv9VX-RGUS6Y5WyQLLUWkvebWlsgMDJfJ3HmR4P1cIUcno2cs52kvDl6a_-gUt24BMQfaz_3ow0d6-YxxghbFy9wLVJYd0h7tv79-wOcquT87vTu-qFolhCooZseVhiQ591Ylo72UWLJYFUxEbgIafEJcEQzGE08yMe3ZQMSApZ8x3iclPZNrZHY4GsI6oVxBN2jRtZ5HJGu1HwgwwMBEqJVgsUPEBBcX2jHhWa3iyZVygdWuAdNlMF0LZofsTQ96aaZk_L78KAM-XZpHXJcdaHjXGt79ZfgOWcnmmp6krrN4tumQrYn5XPs6vjmR5_4hUxJy4z8uvUnm8-M0X2K2yOz49R22kZuM_U5xwy8Kk90x
  priority: 102
  providerName: Directory of Open Access Journals
Title Domain Adaptation in Remote Sensing Image Classification: A Survey
URI https://ieeexplore.ieee.org/document/9944086
https://www.proquest.com/docview/2739331723
https://doaj.org/article/c53395b7ebc8451d8ddf6ee932d28db0
Volume 15
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1RTxQxEJ4AiYkvKqLxFEkffGSPtrvtbnk7VEQTfOAk4a25tlNDlD2Cdyb465l2exejxPi2u2l3236z05l2-g3AG04az9dOVjRbm6pBgZXTsqtUK7zsItYu5085_axPzptPF-piA_bXZ2EQMQef4Thd5r38MPfLtFR2YEzKj6w3YZMct-Gs1krratlmgl2yR0yVKGMKw5Dg5oBEfHI2JV9QyjHJL89Bhb_NQpmsv2RX-Usl53nm-DGcrlo4hJd8Gy8Xbux__UHe-L9deAKPisHJJoOEbMMG9k_hwYec0Pd2B47eza9mlz2bhNn1sCvP6O4MCUFk0xTd3n9lH69I67CcPzNFFuVih2zCpsubn3j7DM6P3395e1KVvAqVp28vKoWxFsJ1TdTK1TU5QF3jdSBLBxW6SCgFSRNXFLGOXDk-k8GTI6m1c7GpHa-fw1Y_7_EFMNFg65VsOycCmX7GzSRq5KgDmkbyMAK5GmfrC-l4yn3x3Wbngxs7gGMTOLaAM4L9daXrgXPj38WPEoDrookwOz-ggbfl_7OezFqjXIvOd40SoQshakSyXqmvwfER7CSw1i8pOI1gdyUOtvzcP6xMLIJkd8n65f21XsHD1MBhpWYXthY3S3xNtsvC7WWffy-L7h1XLuiq
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwzV1Lb9QwEB6VIkQvvApiaQEf4Ea2jhM7CRKHLaXs0seh20q9mbU9QVXbbNXuFi2_hb_Cf2PseFcIELdK3JLItvz4PPONM54BeMVJ4tnMiIS0dZXkmGJilCgTWaRWlDVmJuRP2dtX_aP807E8XoLvi7swiBicz7DrH8O_fDe2U39UtlFVPj-yii6UOzj7Sgba1bvBFq3mayG2Pxy-7ycxh0BiqegkkVhnaWrKvFbSZBmR_TK3ypFWR4mmph45QUK6Tuus5tLwkXCWjCaljKnzzPCM2r0Ft4lnSNHeDpvLeSWKENKXGFCV-CA1MaZRyqsN2lS9gyFZn0J0acfw4Mb4i94L6QFiPpc_lEDQbNv34cd8TlqHltPudGK69ttv4SL_10l7APcipWa9dg88hCVsHsGdjyFl8WwVNrfG56OThvXc6KL1O2D0doCEUWRD77_ffGGDc5KrLGQI9b5Todhb1mPD6eU1zh7D0Y0M4AksN-MGnwJLcyysFEVpUkfktjIjgQo5KodVLrjrgJivq7YxrLrP7nGmg3nFK92CQXsw6AiGDrxZVLpoo4r8u_imB8yiqA8JHj7QQusoYbQl4l5JU6CxZS5TVzpXK0Ti5zRWZ3gHVj04Fo1EXHRgfQ4_HcXXlRY-TiIxS5E9-3utl3C3f7i3q3cH-ztrsOI7255LrcPy5HKKz4mpTcyLsGEYfL5psP0EqHZEuQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Domain+Adaptation+in+Remote+Sensing+Image+Classification%3A+A+Survey&rft.jtitle=IEEE+journal+of+selected+topics+in+applied+earth+observations+and+remote+sensing&rft.au=Peng%2C+Jiangtao&rft.au=Huang%2C+Yi&rft.au=Sun%2C+Weiwei&rft.au=Chen%2C+Na&rft.date=2022&rft.issn=1939-1404&rft.eissn=2151-1535&rft.volume=15&rft.spage=9842&rft.epage=9859&rft_id=info:doi/10.1109%2FJSTARS.2022.3220875&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_JSTARS_2022_3220875
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1939-1404&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1939-1404&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1939-1404&client=summon