Domain Adaptation in Remote Sensing Image Classification: A Survey
Traditional remote sensing (RS) image classification methods heavily rely on labeled samples for model training. When labeled samples are unavailable or labeled samples have different distributions from that of the samples to be classified, the classification model may fail. The cross-domain or cros...
Saved in:
Published in | IEEE journal of selected topics in applied earth observations and remote sensing Vol. 15; pp. 1 - 18 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Piscataway
IEEE
2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Traditional remote sensing (RS) image classification methods heavily rely on labeled samples for model training. When labeled samples are unavailable or labeled samples have different distributions from that of the samples to be classified, the classification model may fail. The cross-domain or cross-scene remote sensing image classification is developed for this case where an existing image for training and an unknown image from different scenes or domains for classification. The distribution inconsistency problem may be caused by the differences in acquisition environment conditions, acquisition scene, acquisition time or/and changing sensors. To cope with the cross-domain remote sensing image classification problem, many domain adaptation (DA) techniques have been developed. In this article, we review DA methods in the fields of RS, especially hyperspectral image classification, and provide a survey of DA methods into traditional shallow DA methods (e.g., instance-based, feature-based, and classifier-based adaptations) and recently developed deep DA methods (e.g., discrepancy-based and adversarial-based adaptations). |
---|---|
AbstractList | Traditional remote sensing (RS) image classification methods heavily rely on labeled samples for model training. When labeled samples are unavailable or labeled samples have different distributions from that of the samples to be classified, the classification model may fail. The cross-domain or cross-scene remote sensing image classification is developed for this case where an existing image for training and an unknown image from different scenes or domains for classification. The distribution inconsistency problem may be caused by the differences in acquisition environment conditions, acquisition scene, acquisition time or/and changing sensors. To cope with the cross-domain remote sensing image classification problem, many domain adaptation (DA) techniques have been developed. In this article, we review DA methods in the fields of RS, especially hyperspectral image classification, and provide a survey of DA methods into traditional shallow DA methods (e.g., instance-based, feature-based, and classifier-based adaptations) and recently developed deep DA methods (e.g., discrepancy-based and adversarial-based adaptations). Traditional remote sensing (RS) image classification methods heavily rely on labeled samples for model training. When labeled samples are unavailable or labeled samples have different distributions from that of the samples to be classified, the classification model may fail. The cross-domain or cross-scene remote sensing image classification is developed for this case where an existing image for training and an unknown image from different scenes or domains for classification. The distribution inconsistency problem may be caused by the differences in acquisition environment conditions, acquisition scene, acquisition time, and/or changing sensors. To cope with the cross-domain remote sensing image classification problem, many domain adaptation (DA) techniques have been developed. In this article, we review DA methods in the fields of RS, especially hyperspectral image classification, and provide a survey of DA methods into traditional shallow DA methods (e.g., instance-based, feature-based, and classifier-based adaptations) and recently developed deep DA methods (e.g., discrepancy-based and adversarial-based adaptations). |
Author | Peng, Jiangtao Ning, Yujie Huang, Yi Du, Qian Chen, Na Sun, Weiwei |
Author_xml | – sequence: 1 givenname: Jiangtao orcidid: 0000-0002-4759-0584 surname: Peng fullname: Peng, Jiangtao organization: Hubei Key Laboratory of Applied Mathematics, Faculty of Mathematics and Statistics, Hubei University, Wuhan, P. R. China – sequence: 2 givenname: Yi surname: Huang fullname: Huang, Yi organization: Hubei Key Laboratory of Applied Mathematics, Faculty of Mathematics and Statistics, Hubei University, Wuhan, P. R. China – sequence: 3 givenname: Weiwei orcidid: 0000-0003-3399-7858 surname: Sun fullname: Sun, Weiwei organization: Department of Geography and Spatial Information Techniques, Ningbo University, Ningbo, P. R. China – sequence: 4 givenname: Na surname: Chen fullname: Chen, Na organization: Hubei Key Laboratory of Applied Mathematics, Faculty of Mathematics and Statistics, Hubei University, Wuhan, P. R. China – sequence: 5 givenname: Yujie surname: Ning fullname: Ning, Yujie organization: Hubei Key Laboratory of Applied Mathematics, Faculty of Mathematics and Statistics, Hubei University, Wuhan, P. R. China – sequence: 6 givenname: Qian orcidid: 0000-0001-8354-7500 surname: Du fullname: Du, Qian organization: Department of Electrical and Computer Engineering, Mississippi State University, Mississippi State, MS, USA |
BookMark | eNp9kE1vEzEQhi1UJNLCL-hlJc4bPJ717ppbCF9BlZCacrb8MY4cJetgb5D679lmCwcOnKyx3ued0XPNroY0EGO3wJcAXL37tn1Y3W-XgguxRCF438kXbCFAQg0S5RVbgEJVQ8ObV-y6lD3nregULtiHj-lo4lCtvDmNZoxpqKbpno5ppGpLQ4nDrtoczY6q9cGUEkN0l9j7alVtz_kXPb5mL4M5FHrz_N6wH58_Pay_1nffv2zWq7vaNbwfa0kBAWzfhFZaRCFV37jWCwkkyYYOnBc9hwABA5eWG-FdL2TbWhsatBxv2Gbu9cns9SnHo8mPOpmoLx8p77TJY3QH0k4iKmk7sq5vJPje-9ASKRTTDn_pejt3nXL6eaYy6n0652E6X4sOFSJ0AqeUmlMup1IyBe3iLGnMJh40cP2kX8_69ZN-_ax_YvEf9s_F_6duZyoS0V9CqWZS2OJv3t-SCg |
CODEN | IJSTHZ |
CitedBy_id | crossref_primary_10_1109_TGRS_2024_3476151 crossref_primary_10_1109_TGRS_2023_3295357 crossref_primary_10_1109_TGRS_2024_3479220 crossref_primary_10_3390_rs16122134 crossref_primary_10_1109_TGRS_2023_3325298 crossref_primary_10_1049_csy2_12120 crossref_primary_10_1080_10095020_2024_2387457 crossref_primary_10_1109_TGRS_2024_3371971 crossref_primary_10_1109_TGRS_2024_3407812 crossref_primary_10_1109_TAI_2024_3405404 crossref_primary_10_1080_14498596_2023_2227948 crossref_primary_10_1016_j_procs_2024_09_420 crossref_primary_10_1093_comjnl_bxad104 crossref_primary_10_1109_TGRS_2024_3424553 crossref_primary_10_1016_j_isprsjprs_2024_05_020 crossref_primary_10_1109_TGRS_2023_3318521 crossref_primary_10_1109_TGRS_2023_3318003 crossref_primary_10_3390_electronics13245022 crossref_primary_10_3390_rs15204986 crossref_primary_10_1109_TGRS_2023_3317077 crossref_primary_10_1109_TGRS_2024_3374372 crossref_primary_10_1111_phor_12531 crossref_primary_10_1109_JSTARS_2023_3336929 crossref_primary_10_3390_rs17050927 crossref_primary_10_1109_JSTARS_2024_3485528 crossref_primary_10_1109_TGRS_2024_3478385 crossref_primary_10_1109_TGRS_2024_3518502 crossref_primary_10_1016_j_isprsjprs_2023_07_009 crossref_primary_10_1109_TGRS_2024_3425491 crossref_primary_10_1016_j_compag_2024_109050 crossref_primary_10_1016_j_dsp_2024_104551 crossref_primary_10_1109_TGRS_2024_3387990 crossref_primary_10_3390_math12050708 crossref_primary_10_1016_j_jag_2024_103850 crossref_primary_10_1016_j_jiixd_2024_06_001 crossref_primary_10_1109_LGRS_2024_3367623 crossref_primary_10_1016_j_engappai_2024_109873 crossref_primary_10_1016_j_asoc_2025_112868 crossref_primary_10_1109_TGRS_2025_3526211 crossref_primary_10_1109_TGRS_2024_3442171 crossref_primary_10_1109_TIP_2024_3422881 crossref_primary_10_1109_TGRS_2023_3325459 crossref_primary_10_1109_TGRS_2024_3483283 crossref_primary_10_1117_1_JRS_18_014525 crossref_primary_10_1080_17538947_2024_2346258 crossref_primary_10_3390_rs16213963 crossref_primary_10_1109_LGRS_2024_3451180 crossref_primary_10_1109_TGRS_2024_3515464 crossref_primary_10_1016_j_knosys_2024_112415 crossref_primary_10_1109_TGRS_2023_3348953 crossref_primary_10_1109_TGRS_2024_3376609 crossref_primary_10_1016_j_infrared_2024_105251 crossref_primary_10_1109_TGRS_2023_3257341 crossref_primary_10_1109_JSTARS_2024_3522662 crossref_primary_10_1109_TGRS_2024_3461674 crossref_primary_10_3390_rs16183469 crossref_primary_10_1109_TGRS_2023_3320657 crossref_primary_10_1016_j_inffus_2023_101912 crossref_primary_10_1109_TGRS_2024_3492499 crossref_primary_10_1109_TGRS_2024_3367765 crossref_primary_10_1080_07038992_2024_2367479 crossref_primary_10_1109_TGRS_2024_3369666 crossref_primary_10_1109_TGRS_2023_3300688 crossref_primary_10_3390_rs16162927 crossref_primary_10_1109_TGRS_2023_3325825 crossref_primary_10_1109_JSTARS_2023_3237566 crossref_primary_10_1109_LGRS_2024_3382871 crossref_primary_10_1109_TGRS_2024_3458014 crossref_primary_10_1109_JSTARS_2024_3503756 crossref_primary_10_1109_TGRS_2024_3370576 crossref_primary_10_1109_JSTARS_2024_3523346 crossref_primary_10_1109_JSTARS_2024_3399741 crossref_primary_10_1109_TGRS_2024_3356008 crossref_primary_10_1109_JSTARS_2025_3532816 crossref_primary_10_1109_TCSVT_2023_3330193 crossref_primary_10_1109_ACCESS_2024_3510779 crossref_primary_10_1109_TGRS_2023_3337652 crossref_primary_10_1109_TGRS_2023_3344698 crossref_primary_10_1016_j_neunet_2024_106241 crossref_primary_10_3389_fbioe_2024_1334643 crossref_primary_10_1109_TGRS_2024_3459937 crossref_primary_10_1109_TGRS_2024_3524631 crossref_primary_10_1007_s11356_023_30843_8 |
Cites_doi | 10.3390/rs11192289 10.1109/IGARSS.2017.8127787 10.1109/CVPR46437.2021.01499 10.1145/1015330.1015425 10.1109/TCYB.2020.2994875 10.1109/LGRS.2012.2220516 10.1109/IGARSS.2011.6049404 10.1016/S0167-8655(02)00053-3 10.1109/LGRS.2015.2512999 10.1080/01431161.2020.1750735 10.1109/LGRS.2020.2969970 10.1109/JSTARS.2020.3001198 10.1109/TGRS.2007.894550 10.1109/LGRS.2018.2889800 10.1109/CVPR.2014.183 10.1109/TGRS.2022.3151689 10.1109/JSTARS.2018.2859836 10.1109/JSTARS.2016.2624303 10.1109/LGRS.2012.2236818 10.1109/JPROC.2012.2231951 10.1016/j.isprsjprs.2021.08.004 10.1109/TGRS.2015.2503885 10.1016/j.asoc.2017.12.018 10.1080/01431161.2021.1880663 10.1109/TNNLS.2020.2973293 10.1007/978-3-030-71704-9_65 10.1109/JSTARS.2020.3006879 10.1109/ICCV.2015.463 10.1109/JSTARS.2020.3026316 10.1109/JSTARS.2021.3099805 10.1109/LGRS.2019.2902615 10.1109/LGRS.2015.2491605 10.1109/ICDM.2016.0136 10.1109/TGRS.2020.2997863 10.1109/TGRS.2019.2958123 10.1109/CVPRW50498.2020.00104 10.1016/j.isprsjprs.2015.02.005 10.1016/j.jag.2021.102603 10.1109/LGRS.2018.2889789 10.1109/JSTARS.2021.3132259 10.1109/TGRS.2016.2627042 10.1109/TGRS.2021.3105302 10.1109/TGRS.2012.2200045 10.1109/ICCV.2017.591 10.1109/JSTARS.2021.3129177 10.3390/rs9040337 10.1080/01431161.2020.1797221 10.1109/ICDM.2019.00088 10.1109/TGRS.2021.3073699 10.1016/j.neunet.2019.07.010 10.1109/CVPR.2018.00392 10.1109/LGRS.2019.2931305 10.1109/TGRS.2015.2449736 10.1109/TGRS.2017.2698503 10.1109/TGRS.2018.2827308 10.1016/j.rse.2011.04.022 10.1109/LGRS.2020.3003566 10.1109/TNNLS.2021.3109872 10.1109/LGRS.2017.2726760 10.1109/ICCV.2011.6126344 10.1109/JSTARS.2015.2500961 10.3390/rs11101153 10.1109/JSTARS.2020.3035382 10.1002/9781119646181.ch7 10.1109/LGRS.2018.2889967 10.1109/TCYB.2020.3004263 10.1109/TGRS.2020.2964679 10.1109/MGRS.2018.2798161 10.1109/TGRS.2019.2931730 10.1109/JSTARS.2020.3031741 10.1016/S1566-2535(02)00091-X 10.1109/JSTARS.2021.3049527 10.1109/TGRS.2019.2903719 10.1109/TGRS.2014.2377785 10.1109/LGRS.2016.2568263 10.1016/S0378-3758(00)00115-4 10.1109/TGRS.2014.2317499 10.1109/TGRS.2021.3056624 10.1109/LGRS.2022.3149950 10.1109/TCI.2017.2752150 10.1117/1.JRS.15.032207 10.1109/TGRS.2021.3119914 10.1109/LGRS.2019.2909543 10.1109/TGRS.2018.2882420 10.1007/978-3-030-01237-3_9 10.1109/TGRS.2014.2305805 10.1109/TGRS.2020.3028906 10.1109/LGRS.2016.2617199 10.1109/TNNLS.2020.2988928 10.1109/JSTARS.2017.2732682 10.3389/fenvs.2015.00045 10.3390/rs12071054 10.1109/TGRS.2020.2980417 10.1109/JSTARS.2016.2646138 10.1109/TGRS.2021.3110060 10.1109/LGRS.2018.2799628 10.1109/JSTARS.2021.3063460 10.5194/isprs-annals-IV-2-W7-197-2019 10.1109/TGRS.2012.2200043 10.1109/LGRS.2013.2255258 10.1109/LGRS.2020.3007021 10.1109/ACCESS.2018.2789932 10.1109/TNN.2010.2091281 10.1109/TGRS.2018.2872850 10.1080/01431161.2020.1736727 10.5244/C.29.24 10.1109/TGRS.2019.2951779 10.1109/TGRS.2010.2076287 10.1109/TGRS.2002.803794 10.1109/TGRS.2019.2927393 10.1109/TGRS.2022.3170335 10.1109/JSTARS.2014.2305441 10.1109/TGRS.2012.2198654 10.1109/ICME.2019.00211 10.1109/TGRS.2020.3024796 10.1109/LGRS.2019.2896411 10.3390/rs12111716 10.1109/JSTARS.2021.3109012 10.1109/CVPR.2017.547 10.1117/1.JRS.11.042612 10.1109/TGRS.2020.3015357 10.1109/IGARSS.2019.8898437 10.3390/rs10091425 10.1109/LGRS.2012.2227297 10.1109/TIP.2018.2808767 10.1109/TGRS.2007.910220 10.1109/TGRS.2020.3006161 10.1016/j.rse.2019.111322 10.1016/j.isprsjprs.2018.10.006 10.1109/TGRS.2022.3166817 10.1016/j.isprsjprs.2019.07.001 10.1109/JSTARS.2021.3127754 10.1109/TGRS.2017.2692281 10.1007/978-3-030-31332-6_41 10.3390/rs13193861 10.1109/TGRS.2021.3057066 10.1109/CVPR.2015.7298600 10.1109/TGRS.2011.2174154 10.1109/TIP.2019.2924174 10.1609/aaai.v32i1.11767 10.1109/TGRS.2006.878442 10.1109/TGRS.2019.2946318 10.1109/TGRS.2018.2889195 10.1109/TGRS.2009.2019636 10.1609/aaai.v30i1.10306 10.1109/TAI.2020.3043724 10.1109/ICCV.2017.88 10.3390/ijgi7050182 10.1117/1.JRS.11.042609 10.1109/TGRS.2012.2192740 10.1109/TGRS.2020.3020804 10.1109/36.905255 10.1109/JSTARS.2020.2999386 10.1109/TGRS.2019.2926069 10.1109/JSTARS.2020.3000677 10.1109/TPAMI.2009.57 10.1109/JSTARS.2012.2202881 10.1007/s10994-020-05942-z 10.1109/TGRS.2020.3046756 10.1109/TPAMI.2019.2945942 10.1016/j.patcog.2017.10.007 10.1109/JSTARS.2015.2449738 10.1109/LGRS.2017.2723763 10.1109/TGRS.2020.2985072 10.1109/ICCV.2013.274 10.3390/rs11091047 10.1109/TGRS.2017.2761839 10.1109/TGRS.2018.2852066 10.1016/j.patrec.2015.12.015 10.1109/TGRS.2021.3128162 10.1109/LGRS.2021.3130285 10.1109/JSTARS.2017.2711360 10.1109/ICCV.2013.368 10.1109/JSTARS.2020.3030304 10.1109/LGRS.2021.3126594 10.1016/j.inffus.2014.12.003 10.1109/TGRS.2012.2195727 10.1007/978-3-319-49409-8_35 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022 |
DBID | 97E ESBDL RIA RIE AAYXX CITATION 7UA 8FD C1K F1W FR3 H8D H96 KR7 L.G L7M DOA |
DOI | 10.1109/JSTARS.2022.3220875 |
DatabaseName | IEEE Xplore (IEEE) IEEE Xplore Open Access Journals IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Water Resources Abstracts Technology Research Database Environmental Sciences and Pollution Management ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database Aerospace Database Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources Civil Engineering Abstracts Aquatic Science & Fisheries Abstracts (ASFA) Professional Advanced Technologies Database with Aerospace DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef Aerospace Database Civil Engineering Abstracts Aquatic Science & Fisheries Abstracts (ASFA) Professional Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources Technology Research Database ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database Advanced Technologies Database with Aerospace Water Resources Abstracts Environmental Sciences and Pollution Management |
DatabaseTitleList | Aerospace Database |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Geology |
EISSN | 2151-1535 |
EndPage | 18 |
ExternalDocumentID | oai_doaj_org_article_c53395b7ebc8451d8ddf6ee932d28db0 10_1109_JSTARS_2022_3220875 9944086 |
Genre | orig-research |
GrantInformation_xml | – fundername: Public Projects of Ningbo City grantid: 2021S089 – fundername: National Natural Science Foundation of China grantid: 42171351; 42122009; 61871177; 41971296 – fundername: Natural Science Foundation of Hubei Province grantid: 2021CFA087 |
GroupedDBID | 0R~ 29I 4.4 5GY 5VS 6IK 97E AAFWJ AAJGR AASAJ AAWTH ABAZT ABVLG ACIWK AENEX AETIX AFPKN AFRAH AGSQL ALMA_UNASSIGNED_HOLDINGS BEFXN BFFAM BGNUA BKEBE BPEOZ DU5 EBS EJD ESBDL GROUPED_DOAJ HZ~ IFIPE IPLJI JAVBF M43 O9- OCL OK1 RIA RIE RNS AAYXX CITATION RIG 7UA 8FD C1K F1W FR3 H8D H96 KR7 L.G L7M |
ID | FETCH-LOGICAL-c408t-5ef311b84f65b3325984c6d251e5ebf71cd2801f1f3f05b0a2dc82566bbf43b03 |
IEDL.DBID | RIE |
ISSN | 1939-1404 |
IngestDate | Wed Aug 27 01:18:25 EDT 2025 Mon Jul 28 15:40:49 EDT 2025 Thu Apr 24 23:08:49 EDT 2025 Tue Jul 01 03:16:23 EDT 2025 Wed Aug 27 02:18:00 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Language | English |
License | https://creativecommons.org/licenses/by/4.0/legalcode |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c408t-5ef311b84f65b3325984c6d251e5ebf71cd2801f1f3f05b0a2dc82566bbf43b03 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0003-3399-7858 0000-0001-8354-7500 0000-0002-4759-0584 |
OpenAccessLink | https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/document/9944086 |
PQID | 2739331723 |
PQPubID | 75722 |
PageCount | 18 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_c53395b7ebc8451d8ddf6ee932d28db0 crossref_citationtrail_10_1109_JSTARS_2022_3220875 proquest_journals_2739331723 crossref_primary_10_1109_JSTARS_2022_3220875 ieee_primary_9944086 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20220000 2022-00-00 20220101 2022-01-01 |
PublicationDateYYYYMMDD | 2022-01-01 |
PublicationDate_xml | – year: 2022 text: 20220000 |
PublicationDecade | 2020 |
PublicationPlace | Piscataway |
PublicationPlace_xml | – name: Piscataway |
PublicationTitle | IEEE journal of selected topics in applied earth observations and remote sensing |
PublicationTitleAbbrev | JSTARS |
PublicationYear | 2022 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref57 ref56 ref59 ref58 ref53 ref52 ref168 ref55 ref169 ref54 gui (ref37) 2021; 19 huang (ref7) 0; 19 ref170 rußwurm (ref188) 0 ref177 ref178 ref175 ref51 ref176 ref173 ref174 ref171 ref172 ref46 ref45 ref47 ref42 ref41 ref179 ref44 ref43 ref49 ref180 ref181 ref9 ref4 ref6 ref5 ref100 ref101 ref186 ref40 ref187 ref184 ref185 ref182 ref183 ref35 ref34 ref36 ref31 ref148 ref30 ref149 ref33 ref146 ref32 ref147 long (ref98) 0 ref39 ref38 motiian (ref189) 2017; 30 yaris (ref8) 2021 ref155 ref156 ref153 ref154 ref151 ref152 ref150 ref24 ref23 sun (ref76) 2013; 10 ref26 ref25 ref20 ref159 ref22 ref157 ref21 ref158 ref28 ref27 ref29 gong (ref13) 0 ref166 ref167 ref164 ref165 ref162 ref163 ref160 ref161 ref12 ref128 ref15 ref129 ref14 ref126 ref97 mauro (ref3) 2021 ref127 ref96 ref124 ref11 ref125 ref10 ref17 ref16 ref19 ref18 ref133 ref93 ref134 ref92 ref131 ref95 ref132 ref94 ref130 ref91 ref90 ref89 ref139 ref137 ref86 ref138 ref85 ref135 ref88 ref136 ref87 long (ref99) 0 ref144 ref82 ref145 ref81 ref142 ref84 ref143 ref83 ref140 ref141 ref80 ref79 ref108 ref78 ref109 ref106 ref107 ref75 ref104 ref74 ref105 ref77 ref102 ref103 ref2 ref1 ref190 goodfellow (ref114) 2014; 27 ref71 ref111 huang (ref48) 2021; 19 ref70 ref112 ref73 ref72 ref110 peng (ref50) 2020; 24 ref68 ref119 ref67 ref117 ref69 ref118 ref64 ref115 ref63 ref116 ref66 ref113 ref65 ref60 ref122 ref123 ref62 ref120 ref61 ref121 |
References_xml | – ident: ref104 doi: 10.3390/rs11192289 – ident: ref44 doi: 10.1109/IGARSS.2017.8127787 – ident: ref120 doi: 10.1109/CVPR46437.2021.01499 – ident: ref147 doi: 10.1145/1015330.1015425 – ident: ref148 doi: 10.1109/TCYB.2020.2994875 – ident: ref96 doi: 10.1109/LGRS.2012.2220516 – ident: ref2 doi: 10.1109/IGARSS.2011.6049404 – ident: ref70 doi: 10.1016/S0167-8655(02)00053-3 – ident: ref144 doi: 10.1109/LGRS.2015.2512999 – ident: ref179 doi: 10.1080/01431161.2020.1750735 – ident: ref157 doi: 10.1109/LGRS.2020.2969970 – ident: ref64 doi: 10.1109/JSTARS.2020.3001198 – ident: ref155 doi: 10.1109/TGRS.2007.894550 – ident: ref17 doi: 10.1109/LGRS.2018.2889800 – ident: ref40 doi: 10.1109/CVPR.2014.183 – ident: ref165 doi: 10.1109/TGRS.2022.3151689 – ident: ref32 doi: 10.1109/JSTARS.2018.2859836 – ident: ref34 doi: 10.1109/JSTARS.2016.2624303 – volume: 10 start-page: 1224 year: 2013 ident: ref76 article-title: Learn multiple-kernel SVMs for domain adaptation in hyperspectral data publication-title: IEEE Geosci Remote Sens Lett doi: 10.1109/LGRS.2012.2236818 – ident: ref94 doi: 10.1109/JPROC.2012.2231951 – ident: ref169 doi: 10.1016/j.isprsjprs.2021.08.004 – ident: ref30 doi: 10.1109/TGRS.2015.2503885 – ident: ref150 doi: 10.1016/j.asoc.2017.12.018 – ident: ref126 doi: 10.1080/01431161.2021.1880663 – ident: ref183 doi: 10.1109/TNNLS.2020.2973293 – ident: ref5 doi: 10.1007/978-3-030-71704-9_65 – volume: 19 year: 2021 ident: ref37 article-title: A general feature paradigm for unsupervised cross-domain PolSAR image classification publication-title: IEEE Geosci Remote Sens Lett – ident: ref83 doi: 10.1109/JSTARS.2020.3006879 – ident: ref116 doi: 10.1109/ICCV.2015.463 – ident: ref26 doi: 10.1109/JSTARS.2020.3026316 – ident: ref47 doi: 10.1109/JSTARS.2021.3099805 – ident: ref62 doi: 10.1109/LGRS.2019.2902615 – ident: ref16 doi: 10.1109/LGRS.2015.2491605 – ident: ref185 doi: 10.1109/ICDM.2016.0136 – ident: ref125 doi: 10.1109/TGRS.2020.2997863 – ident: ref132 doi: 10.1109/TGRS.2019.2958123 – ident: ref137 doi: 10.1109/CVPRW50498.2020.00104 – ident: ref56 doi: 10.1016/j.isprsjprs.2015.02.005 – ident: ref6 doi: 10.1016/j.jag.2021.102603 – ident: ref41 doi: 10.1109/LGRS.2018.2889789 – ident: ref171 doi: 10.1109/JSTARS.2021.3132259 – ident: ref33 doi: 10.1109/TGRS.2016.2627042 – ident: ref134 doi: 10.1109/TGRS.2021.3105302 – ident: ref57 doi: 10.1109/TGRS.2012.2200045 – ident: ref190 doi: 10.1109/ICCV.2017.591 – ident: ref122 doi: 10.1109/JSTARS.2021.3129177 – ident: ref54 doi: 10.3390/rs9040337 – ident: ref78 doi: 10.1080/01431161.2020.1797221 – ident: ref118 doi: 10.1109/ICDM.2019.00088 – ident: ref68 doi: 10.1109/TGRS.2021.3073699 – ident: ref100 doi: 10.1016/j.neunet.2019.07.010 – ident: ref119 doi: 10.1109/CVPR.2018.00392 – ident: ref130 doi: 10.1109/LGRS.2019.2931305 – ident: ref60 doi: 10.1109/TGRS.2015.2449736 – ident: ref138 doi: 10.1109/TGRS.2017.2698503 – ident: ref139 doi: 10.1109/TGRS.2018.2827308 – ident: ref91 doi: 10.1016/j.rse.2011.04.022 – ident: ref166 doi: 10.1109/LGRS.2020.3003566 – start-page: 2208 year: 0 ident: ref99 article-title: Deep transfer learning with joint adaptation networks publication-title: Proc Int Conf Mach Learn – ident: ref108 doi: 10.1109/TNNLS.2021.3109872 – ident: ref79 doi: 10.1109/LGRS.2017.2726760 – ident: ref12 doi: 10.1109/ICCV.2011.6126344 – ident: ref18 doi: 10.1109/JSTARS.2015.2500961 – volume: 19 start-page: 601 year: 0 ident: ref7 article-title: Correcting sample selection bias by unlabeled data publication-title: Proc Adv Neural Inf Process Syst – ident: ref135 doi: 10.3390/rs11101153 – ident: ref143 doi: 10.1109/JSTARS.2020.3035382 – ident: ref159 doi: 10.1002/9781119646181.ch7 – ident: ref105 doi: 10.1109/LGRS.2018.2889967 – ident: ref65 doi: 10.1109/TCYB.2020.3004263 – ident: ref113 doi: 10.1109/TGRS.2020.2964679 – ident: ref182 doi: 10.1109/MGRS.2018.2798161 – volume: 27 start-page: 1 year: 2014 ident: ref114 article-title: Generative adversarial nets publication-title: Adv Neural Inf Process Syst – ident: ref106 doi: 10.1109/TGRS.2019.2931730 – ident: ref172 doi: 10.1109/JSTARS.2020.3031741 – ident: ref72 doi: 10.1016/S1566-2535(02)00091-X – ident: ref84 doi: 10.1109/JSTARS.2021.3049527 – ident: ref66 doi: 10.1109/TGRS.2019.2903719 – ident: ref39 doi: 10.1109/TGRS.2014.2377785 – ident: ref11 doi: 10.1109/LGRS.2016.2568263 – ident: ref146 doi: 10.1016/S0378-3758(00)00115-4 – ident: ref58 doi: 10.1109/TGRS.2014.2317499 – ident: ref112 doi: 10.1109/TGRS.2021.3056624 – ident: ref175 doi: 10.1109/LGRS.2022.3149950 – ident: ref45 doi: 10.1109/TCI.2017.2752150 – ident: ref9 doi: 10.1117/1.JRS.15.032207 – ident: ref131 doi: 10.1109/TGRS.2021.3119914 – ident: ref81 doi: 10.1109/LGRS.2019.2909543 – ident: ref55 doi: 10.1109/TGRS.2018.2882420 – ident: ref187 doi: 10.1007/978-3-030-01237-3_9 – ident: ref153 doi: 10.1109/TGRS.2014.2305805 – ident: ref21 doi: 10.1109/TGRS.2020.3028906 – ident: ref14 doi: 10.1109/LGRS.2016.2617199 – ident: ref101 doi: 10.1109/TNNLS.2020.2988928 – ident: ref149 doi: 10.1109/JSTARS.2017.2732682 – ident: ref1 doi: 10.3389/fenvs.2015.00045 – ident: ref107 doi: 10.3390/rs12071054 – ident: ref170 doi: 10.1109/TGRS.2020.2980417 – volume: 30 start-page: 1 year: 2017 ident: ref189 article-title: Few-shot adversarial domain adaptation publication-title: Adv Neural Inf Process Syst – ident: ref28 doi: 10.1109/JSTARS.2016.2646138 – ident: ref85 doi: 10.1109/TGRS.2021.3110060 – ident: ref27 doi: 10.1109/LGRS.2018.2799628 – ident: ref109 doi: 10.1109/JSTARS.2021.3063460 – ident: ref115 doi: 10.5194/isprs-annals-IV-2-W7-197-2019 – ident: ref75 doi: 10.1109/TGRS.2012.2200043 – ident: ref95 doi: 10.1109/LGRS.2013.2255258 – volume: 24 start-page: 417 year: 2020 ident: ref50 article-title: A modified correlation alignment algorithm for the domain adaptation of GF-5 hyperspectral image publication-title: J Remote Sens (China) – ident: ref152 doi: 10.1109/LGRS.2020.3007021 – ident: ref63 doi: 10.1109/ACCESS.2018.2789932 – ident: ref38 doi: 10.1109/TNN.2010.2091281 – ident: ref52 doi: 10.1109/TGRS.2018.2872850 – ident: ref163 doi: 10.1080/01431161.2020.1736727 – ident: ref22 doi: 10.5244/C.29.24 – ident: ref111 doi: 10.1109/TGRS.2019.2951779 – start-page: 200 year: 0 ident: ref188 article-title: Meta-learning for few-shot land cover classification publication-title: Proc IEEE Conf Comp Vis Pattern Recognit – ident: ref89 doi: 10.1109/TGRS.2010.2076287 – ident: ref71 doi: 10.1109/TGRS.2002.803794 – start-page: 2066 year: 0 ident: ref13 article-title: Geodesic flow kernel for unsupervised domain adaptation publication-title: Proc IEEE Conf Comput Vis Pattern Recognit – ident: ref177 doi: 10.1109/TGRS.2019.2927393 – ident: ref160 doi: 10.1109/TGRS.2022.3170335 – ident: ref181 doi: 10.1109/JSTARS.2014.2305441 – ident: ref154 doi: 10.1109/TGRS.2012.2198654 – year: 2021 ident: ref3 article-title: Domain-adversarial training of self-attention based networks for land cover classification using multi-temporal Sentinel-2 satellite imagery – ident: ref86 doi: 10.1109/ICME.2019.00211 – ident: ref82 doi: 10.1109/TGRS.2020.3024796 – ident: ref173 doi: 10.1109/LGRS.2019.2896411 – ident: ref164 doi: 10.3390/rs12111716 – ident: ref110 doi: 10.1109/JSTARS.2021.3109012 – ident: ref43 doi: 10.1109/CVPR.2017.547 – ident: ref103 doi: 10.1117/1.JRS.11.042612 – ident: ref121 doi: 10.1109/TGRS.2020.3015357 – ident: ref80 doi: 10.1109/IGARSS.2019.8898437 – ident: ref174 doi: 10.3390/rs10091425 – ident: ref73 doi: 10.1109/LGRS.2012.2227297 – ident: ref74 doi: 10.1109/TIP.2018.2808767 – ident: ref90 doi: 10.1109/TGRS.2007.910220 – ident: ref168 doi: 10.1109/TGRS.2020.3006161 – ident: ref180 doi: 10.1016/j.rse.2019.111322 – ident: ref61 doi: 10.1016/j.isprsjprs.2018.10.006 – ident: ref162 doi: 10.1109/TGRS.2022.3166817 – ident: ref133 doi: 10.1016/j.isprsjprs.2019.07.001 – ident: ref10 doi: 10.1109/JSTARS.2021.3127754 – ident: ref161 doi: 10.1109/TGRS.2017.2692281 – ident: ref124 doi: 10.1007/978-3-030-31332-6_41 – ident: ref176 doi: 10.3390/rs13193861 – ident: ref129 doi: 10.1109/TGRS.2021.3057066 – ident: ref25 doi: 10.1109/CVPR.2015.7298600 – ident: ref151 doi: 10.1109/TGRS.2011.2174154 – ident: ref46 doi: 10.1109/TIP.2019.2924174 – ident: ref117 doi: 10.1609/aaai.v32i1.11767 – ident: ref87 doi: 10.1109/TGRS.2006.878442 – ident: ref128 doi: 10.1109/TGRS.2019.2946318 – ident: ref53 doi: 10.1109/TGRS.2018.2889195 – ident: ref29 doi: 10.1109/TGRS.2009.2019636 – ident: ref49 doi: 10.1609/aaai.v30i1.10306 – ident: ref178 doi: 10.1109/TAI.2020.3043724 – ident: ref186 doi: 10.1109/ICCV.2017.88 – volume: 19 year: 2021 ident: ref48 article-title: Distribution alignment and discriminative feature learning for domain adaptation in hyperspectral image classification publication-title: IEEE Geosci Remote Sens Lett – start-page: 97 year: 0 ident: ref98 article-title: Learning transferable features with deep adaptation networks publication-title: Proc Int Conf Mach Learn – ident: ref77 doi: 10.3390/ijgi7050182 – ident: ref158 doi: 10.1117/1.JRS.11.042609 – ident: ref92 doi: 10.1109/TGRS.2012.2192740 – ident: ref167 doi: 10.1109/TGRS.2020.3020804 – ident: ref69 doi: 10.1109/36.905255 – ident: ref141 doi: 10.1109/JSTARS.2020.2999386 – ident: ref19 doi: 10.1109/TGRS.2019.2926069 – ident: ref36 doi: 10.1109/JSTARS.2020.3000677 – ident: ref88 doi: 10.1109/TPAMI.2009.57 – year: 2021 ident: ref8 article-title: Randomized histogram matching: A simple augmentation for unsupervised domain adaptation in overhead imagery – ident: ref93 doi: 10.1109/JSTARS.2012.2202881 – ident: ref145 doi: 10.1007/s10994-020-05942-z – ident: ref23 doi: 10.1109/TGRS.2020.3046756 – ident: ref4 doi: 10.1109/TPAMI.2019.2945942 – ident: ref140 doi: 10.1016/j.patcog.2017.10.007 – ident: ref59 doi: 10.1109/JSTARS.2015.2449738 – ident: ref35 doi: 10.1109/LGRS.2017.2723763 – ident: ref24 doi: 10.1109/TGRS.2020.2985072 – ident: ref42 doi: 10.1109/ICCV.2013.274 – ident: ref67 doi: 10.3390/rs11091047 – ident: ref31 doi: 10.1109/TGRS.2017.2761839 – ident: ref20 doi: 10.1109/TGRS.2018.2852066 – ident: ref51 doi: 10.1016/j.patrec.2015.12.015 – ident: ref127 doi: 10.1109/TGRS.2021.3128162 – ident: ref156 doi: 10.1109/LGRS.2021.3130285 – ident: ref136 doi: 10.1109/JSTARS.2017.2711360 – ident: ref15 doi: 10.1109/ICCV.2013.368 – ident: ref142 doi: 10.1109/JSTARS.2020.3030304 – ident: ref123 doi: 10.1109/LGRS.2021.3126594 – ident: ref184 doi: 10.1016/j.inffus.2014.12.003 – ident: ref97 doi: 10.1109/TGRS.2012.2195727 – ident: ref102 doi: 10.1007/978-3-319-49409-8_35 |
SSID | ssj0062793 |
Score | 2.5786264 |
Snippet | Traditional remote sensing (RS) image classification methods heavily rely on labeled samples for model training. When labeled samples are unavailable or... |
SourceID | doaj proquest crossref ieee |
SourceType | Open Website Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 1 |
SubjectTerms | Adaptation Adaptation models Classification Cross-domain classification distribution difference domain adaptation domain adaptation (DA) Domains Feature extraction Hyperspectral imaging Image classification Image sensors Kernel Methods Principal component analysis Remote sensing remote sensing (RS) image Remote sensing image Remote sensors Sun Surveying Surveys Training |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8QwEA4iCF7EJ64vcvBoNe9Nva1vBT24Ct7CJpl40V3RVfDfO0m7iyDoxWNL-vpmOvNNO8xHyC7DiBekFxVm67pSwKHyRthKd3kQNoH0RT_l-sZc3KurB_3wTeor94Q144Eb4A4C8pFa-y74YJXm0caYDADSjihs9KVax5w3KaaaGGwEul07Y4iz-gCdvHfbx2pQiH30YFbaCr_loTKuv9VX-RGUS6Y5WyQLLUWkvebWlsgMDJfJ3HmR4P1cIUcno2cs52kvDl6a_-gUt24BMQfaz_3ow0d6-YxxghbFy9wLVJYd0h7tv79-wOcquT87vTu-qFolhCooZseVhiQ591Ylo72UWLJYFUxEbgIafEJcEQzGE08yMe3ZQMSApZ8x3iclPZNrZHY4GsI6oVxBN2jRtZ5HJGu1HwgwwMBEqJVgsUPEBBcX2jHhWa3iyZVygdWuAdNlMF0LZofsTQ96aaZk_L78KAM-XZpHXJcdaHjXGt79ZfgOWcnmmp6krrN4tumQrYn5XPs6vjmR5_4hUxJy4z8uvUnm8-M0X2K2yOz49R22kZuM_U5xwy8Kk90x priority: 102 providerName: Directory of Open Access Journals |
Title | Domain Adaptation in Remote Sensing Image Classification: A Survey |
URI | https://ieeexplore.ieee.org/document/9944086 https://www.proquest.com/docview/2739331723 https://doaj.org/article/c53395b7ebc8451d8ddf6ee932d28db0 |
Volume | 15 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1RTxQxEJ4AiYkvKqLxFEkffGSPtrvtbnk7VEQTfOAk4a25tlNDlD2Cdyb465l2exejxPi2u2l3236z05l2-g3AG04az9dOVjRbm6pBgZXTsqtUK7zsItYu5085_axPzptPF-piA_bXZ2EQMQef4Thd5r38MPfLtFR2YEzKj6w3YZMct-Gs1krratlmgl2yR0yVKGMKw5Dg5oBEfHI2JV9QyjHJL89Bhb_NQpmsv2RX-Usl53nm-DGcrlo4hJd8Gy8Xbux__UHe-L9deAKPisHJJoOEbMMG9k_hwYec0Pd2B47eza9mlz2bhNn1sCvP6O4MCUFk0xTd3n9lH69I67CcPzNFFuVih2zCpsubn3j7DM6P3395e1KVvAqVp28vKoWxFsJ1TdTK1TU5QF3jdSBLBxW6SCgFSRNXFLGOXDk-k8GTI6m1c7GpHa-fw1Y_7_EFMNFg65VsOycCmX7GzSRq5KgDmkbyMAK5GmfrC-l4yn3x3Wbngxs7gGMTOLaAM4L9daXrgXPj38WPEoDrookwOz-ggbfl_7OezFqjXIvOd40SoQshakSyXqmvwfER7CSw1i8pOI1gdyUOtvzcP6xMLIJkd8n65f21XsHD1MBhpWYXthY3S3xNtsvC7WWffy-L7h1XLuiq |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwzV1Lb9QwEB6VIkQvvApiaQEf4Ea2jhM7CRKHLaXs0seh20q9mbU9QVXbbNXuFi2_hb_Cf2PseFcIELdK3JLItvz4PPONM54BeMVJ4tnMiIS0dZXkmGJilCgTWaRWlDVmJuRP2dtX_aP807E8XoLvi7swiBicz7DrH8O_fDe2U39UtlFVPj-yii6UOzj7Sgba1bvBFq3mayG2Pxy-7ycxh0BiqegkkVhnaWrKvFbSZBmR_TK3ypFWR4mmph45QUK6Tuus5tLwkXCWjCaljKnzzPCM2r0Ft4lnSNHeDpvLeSWKENKXGFCV-CA1MaZRyqsN2lS9gyFZn0J0acfw4Mb4i94L6QFiPpc_lEDQbNv34cd8TlqHltPudGK69ttv4SL_10l7APcipWa9dg88hCVsHsGdjyFl8WwVNrfG56OThvXc6KL1O2D0doCEUWRD77_ffGGDc5KrLGQI9b5Todhb1mPD6eU1zh7D0Y0M4AksN-MGnwJLcyysFEVpUkfktjIjgQo5KodVLrjrgJivq7YxrLrP7nGmg3nFK92CQXsw6AiGDrxZVLpoo4r8u_imB8yiqA8JHj7QQusoYbQl4l5JU6CxZS5TVzpXK0Ti5zRWZ3gHVj04Fo1EXHRgfQ4_HcXXlRY-TiIxS5E9-3utl3C3f7i3q3cH-ztrsOI7255LrcPy5HKKz4mpTcyLsGEYfL5psP0EqHZEuQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Domain+Adaptation+in+Remote+Sensing+Image+Classification%3A+A+Survey&rft.jtitle=IEEE+journal+of+selected+topics+in+applied+earth+observations+and+remote+sensing&rft.au=Peng%2C+Jiangtao&rft.au=Huang%2C+Yi&rft.au=Sun%2C+Weiwei&rft.au=Chen%2C+Na&rft.date=2022&rft.issn=1939-1404&rft.eissn=2151-1535&rft.volume=15&rft.spage=9842&rft.epage=9859&rft_id=info:doi/10.1109%2FJSTARS.2022.3220875&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_JSTARS_2022_3220875 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1939-1404&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1939-1404&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1939-1404&client=summon |