Battery cell arrangement and heat transfer fluid effects on the parasitic power consumption and the cell temperature distribution in a hybrid electric vehicle

Computationally efficient numerical models of battery cooling systems are developed and the effects of the battery cell arrangement and the heat transfer fluid (HTF) type on the cooling performance and the parasitic power consumption of the system are investigated. A one-dimensional heat conduction...

Full description

Saved in:
Bibliographic Details
Published inJournal of power sources Vol. 227; pp. 191 - 198
Main Authors Park, Sungjin, Jung, Dohoy
Format Journal Article
LanguageEnglish
Published Amsterdam Elsevier B.V 01.04.2013
Elsevier
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Computationally efficient numerical models of battery cooling systems are developed and the effects of the battery cell arrangement and the heat transfer fluid (HTF) type on the cooling performance and the parasitic power consumption of the system are investigated. A one-dimensional heat conduction model of a cylindrical battery cell is developed using a finite difference method for the cell temperature prediction and a battery module model is developed to predict the cell to cell temperature variation and the power consumption of the systems depending on the design of battery module and operating conditions. The analysis of the battery thermal management system (BTMS) design by using the numerical model is conducted for air and liquid type BTMSs. From the numerical analysis, it is found that a wide battery module with a small cell to cell gap is desirable for the air type BTMS while a narrow battery module with a small gap is desirable for a liquid type BTMS. The results also show that the air type BTMS consumes much more power compared with the liquid type BTMS especially for high heat load condition. However, under low heat load conditions, the power consumption of the air type BTMS is acceptable considering its advantages over the liquid type BTMS. ► The design and fluid type effects of the BTMS are investigated using numerical model. ► A wide battery module with a small cell to cell gap is desirable for the air type BTMS. ► A narrow battery module with a small gap is desirable for a liquid type BTMS. ► Fluid types and design should be selected depending on the heat load of the battery pack.
AbstractList Computationally efficient numerical models of battery cooling systems are developed and the effects of the battery cell arrangement and the heat transfer fluid (HTF) type on the cooling performance and the parasitic power consumption of the system are investigated. A one-dimensional heat conduction model of a cylindrical battery cell is developed using a finite difference method for the cell temperature prediction and a battery module model is developed to predict the cell to cell temperature variation and the power consumption of the systems depending on the design of battery module and operating conditions. The analysis of the battery thermal management system (BTMS) design by using the numerical model is conducted for air and liquid type BTMSs. From the numerical analysis, it is found that a wide battery module with a small cell to cell gap is desirable for the air type BTMS while a narrow battery module with a small gap is desirable for a liquid type BTMS. The results also show that the air type BTMS consumes much more power compared with the liquid type BTMS especially for high heat load condition. However, under low heat load conditions, the power consumption of the air type BTMS is acceptable considering its advantages over the liquid type BTMS. ► The design and fluid type effects of the BTMS are investigated using numerical model. ► A wide battery module with a small cell to cell gap is desirable for the air type BTMS. ► A narrow battery module with a small gap is desirable for a liquid type BTMS. ► Fluid types and design should be selected depending on the heat load of the battery pack.
Computationally efficient numerical models of battery cooling systems are developed and the effects of the battery cell arrangement and the heat transfer fluid (HTF) type on the cooling performance and the parasitic power consumption of the system are investigated. A one-dimensional heat conduction model of a cylindrical battery cell is developed using a finite difference method for the cell temperature prediction and a battery module model is developed to predict the cell to cell temperature variation and the power consumption of the systems depending on the design of battery module and operating conditions. The analysis of the battery thermal management system (BTMS) design by using the numerical model is conducted for air and liquid type BTMSs. From the numerical analysis, it is found that a wide battery module with a small cell to cell gap is desirable for the air type BTMS while a narrow battery module with a small gap is desirable for a liquid type BTMS. The results also show that the air type BTMS consumes much more power compared with the liquid type BTMS especially for high heat load condition. However, under low heat load conditions, the power consumption of the air type BTMS is acceptable considering its advantages over the liquid type BTMS.
Author Park, Sungjin
Jung, Dohoy
Author_xml – sequence: 1
  givenname: Sungjin
  surname: Park
  fullname: Park, Sungjin
  email: parksj@hongik.ac.kr
  organization: Department of Mechanical and System Design Engineering, Hongik University, 94 Wausan-Ro, Mapo-Gu, Seoul 121-791, Republic of Korea
– sequence: 2
  givenname: Dohoy
  surname: Jung
  fullname: Jung, Dohoy
  email: dohoy@umich.edu
  organization: Department of Mechanical Engineering, The University of Michigan-Dearborn, 4901 Evergreen Road, Dearborn, MI 48128, USA
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=27112571$$DView record in Pascal Francis
BookMark eNqFkc1u1DAUhS1UJKYDr4C8QWKT4N84swOq8iNVYgNry7GvGY8SJ9hO0bwMz4rTKWzrjSXf7557fM81uopzBIReU9JSQrt3p_a0zL_zvKaWEcpaSlvCD8_QjvaKN0xJeYV2hKu-UUryF-g65xMhhFJFdujPR1MKpDO2MI7YpGTiT5ggFmyiw0cwBZf6lj0k7Mc1OAzegy0ZzxGXI-DFJJNDCRZXExWyc8zrtJRQ65vExjxoF5gWSKasCbALuaQwrA9UqCA-noe0iY9VO1WxezgGO8JL9NybMcOrx3uPfny6_X7zpbn79vnrzYe7xgrSl0a6oRvASy_EQQhWPz44KcF2vejYwToDpodBGEN9x4kYOtZTJpx1rhu88Qe-R28vukuaf62Qi55C3mybCPOaNe0U5X096mmUVw-KMC4r2l1Qm-acE3i9pDCZdNaU6C07fdL_stNbdppSXbOrjW8eZ5hszehrAjbk_91MUcpkdbRH7y8c1N3cB0g62wDRggupLlK7OTw16i-SGLnj
CODEN JPSODZ
CitedBy_id crossref_primary_10_1016_j_applthermaleng_2022_119566
crossref_primary_10_1016_j_jpowsour_2014_05_088
crossref_primary_10_1016_j_est_2023_106839
crossref_primary_10_3390_en15124227
crossref_primary_10_3390_en13215695
crossref_primary_10_1007_s00158_017_1733_1
crossref_primary_10_1016_j_applthermaleng_2019_114257
crossref_primary_10_1016_j_jpowsour_2024_234382
crossref_primary_10_1155_2020_4695419
crossref_primary_10_1016_j_enconman_2017_11_046
crossref_primary_10_3390_en15218239
crossref_primary_10_1016_j_applthermaleng_2019_03_157
crossref_primary_10_1080_23311916_2022_2048996
crossref_primary_10_1016_j_est_2021_102518
crossref_primary_10_1016_j_est_2023_109303
crossref_primary_10_1016_j_ijheatmasstransfer_2021_121269
crossref_primary_10_3390_batteries9090474
crossref_primary_10_1155_2014_852712
crossref_primary_10_1016_j_est_2016_12_003
crossref_primary_10_1016_j_jpowsour_2017_02_023
crossref_primary_10_1016_j_apenergy_2019_04_141
crossref_primary_10_1115_1_4047526
crossref_primary_10_1016_j_est_2022_104384
crossref_primary_10_1016_j_jpowsour_2021_229513
crossref_primary_10_1016_j_est_2022_105195
crossref_primary_10_3795_KSME_B_2014_38_3_227
crossref_primary_10_1016_j_ensm_2020_06_042
crossref_primary_10_3389_fmats_2022_824168
crossref_primary_10_1061__ASCE_EY_1943_7897_0000631
crossref_primary_10_3390_batteries10010032
crossref_primary_10_3390_pr11123450
crossref_primary_10_1016_j_energy_2022_124178
crossref_primary_10_1016_j_renene_2022_11_010
crossref_primary_10_1016_j_jpowsour_2015_12_037
crossref_primary_10_1615_InterJEnerCleanEnv_2023046956
crossref_primary_10_1016_j_est_2020_102003
crossref_primary_10_1016_j_applthermaleng_2022_118869
crossref_primary_10_1016_j_est_2023_107511
crossref_primary_10_1016_j_rser_2020_109815
crossref_primary_10_1016_j_est_2021_103314
crossref_primary_10_1016_j_pecs_2023_101109
crossref_primary_10_1007_s40430_024_04735_y
crossref_primary_10_1016_j_jpowsour_2013_10_052
crossref_primary_10_1016_j_applthermaleng_2021_117281
crossref_primary_10_1016_j_est_2024_111401
crossref_primary_10_1016_j_applthermaleng_2024_122471
crossref_primary_10_3390_pr11020500
crossref_primary_10_1016_j_rser_2021_111759
crossref_primary_10_1016_j_jpowsour_2013_04_108
crossref_primary_10_35234_fumbd_728143
crossref_primary_10_1016_j_applthermaleng_2021_116878
crossref_primary_10_1016_j_est_2023_108751
crossref_primary_10_1002_ente_202301061
crossref_primary_10_1016_j_applthermaleng_2021_116758
crossref_primary_10_33619_2414_2948_80_33
crossref_primary_10_1016_j_ijheatmasstransfer_2019_118581
crossref_primary_10_3390_batteries8090128
crossref_primary_10_1016_j_est_2023_108636
crossref_primary_10_1016_j_est_2022_105214
crossref_primary_10_3390_app9040754
crossref_primary_10_1016_j_applthermaleng_2023_120303
crossref_primary_10_1016_j_ijheatmasstransfer_2023_125156
crossref_primary_10_1016_j_est_2024_111814
crossref_primary_10_1016_j_est_2024_111412
crossref_primary_10_1016_j_applthermaleng_2020_116062
crossref_primary_10_1016_j_est_2024_112588
crossref_primary_10_1016_j_enconman_2018_12_051
crossref_primary_10_1016_j_jpowsour_2021_230680
crossref_primary_10_1016_j_est_2023_109278
crossref_primary_10_3390_en16093857
crossref_primary_10_1021_acs_energyfuels_2c02923
crossref_primary_10_3390_batteries8100177
crossref_primary_10_1016_j_est_2023_107499
crossref_primary_10_1016_j_est_2022_105735
crossref_primary_10_1007_s41918_019_00060_4
crossref_primary_10_1016_j_applthermaleng_2016_01_050
crossref_primary_10_3390_en12071251
crossref_primary_10_1016_j_est_2022_104214
crossref_primary_10_20964_2021_03_35
crossref_primary_10_1016_j_applthermaleng_2021_117503
crossref_primary_10_1016_j_applthermaleng_2020_115840
crossref_primary_10_1016_j_enconman_2020_113715
crossref_primary_10_1016_j_applthermaleng_2019_04_033
crossref_primary_10_20964_2019_07_06
crossref_primary_10_1016_j_rser_2020_110685
crossref_primary_10_1016_j_energy_2019_06_017
crossref_primary_10_1002_htj_23063
crossref_primary_10_1016_j_applthermaleng_2023_120992
crossref_primary_10_1016_j_applthermaleng_2021_116811
crossref_primary_10_1016_j_cej_2023_148450
crossref_primary_10_1088_1757_899X_1126_1_012072
crossref_primary_10_1016_j_energy_2023_126827
crossref_primary_10_1016_j_proeng_2017_01_189
crossref_primary_10_1080_15567036_2022_2042625
crossref_primary_10_1016_j_applthermaleng_2021_117235
crossref_primary_10_3390_en15041326
crossref_primary_10_1007_s40430_024_05062_y
crossref_primary_10_2514_1_T6899
crossref_primary_10_1016_j_applthermaleng_2023_120402
crossref_primary_10_1016_j_ijheatmasstransfer_2021_122025
crossref_primary_10_1080_01457632_2023_2260526
crossref_primary_10_3390_en13030507
crossref_primary_10_1177_09544089211015876
crossref_primary_10_1007_s10973_022_11577_0
crossref_primary_10_1016_j_energy_2019_116565
crossref_primary_10_1016_j_ijheatmasstransfer_2022_122608
crossref_primary_10_1016_j_jclepro_2019_118131
crossref_primary_10_3390_en15113930
crossref_primary_10_1016_j_est_2023_109852
crossref_primary_10_1016_j_ijheatmasstransfer_2021_121853
crossref_primary_10_1016_j_ijheatfluidflow_2024_109320
crossref_primary_10_1007_s10973_023_12698_w
crossref_primary_10_1016_j_matpr_2024_04_094
crossref_primary_10_1016_j_rser_2017_03_138
crossref_primary_10_3389_fenrg_2021_797664
crossref_primary_10_3390_en13236257
crossref_primary_10_1016_j_enconman_2024_118478
crossref_primary_10_1016_j_prime_2024_100469
crossref_primary_10_1016_j_applthermaleng_2022_119626
crossref_primary_10_1021_acs_energyfuels_2c04243
crossref_primary_10_1016_j_applthermaleng_2022_118251
crossref_primary_10_1016_j_applthermaleng_2021_117088
crossref_primary_10_1016_j_jpowsour_2022_231094
crossref_primary_10_1016_j_ecmx_2022_100310
crossref_primary_10_3390_wevj13080149
crossref_primary_10_1016_j_jclepro_2021_129079
crossref_primary_10_1002_est2_572
crossref_primary_10_1002_htj_22991
crossref_primary_10_1016_j_applthermaleng_2017_12_055
crossref_primary_10_1002_ente_202101131
crossref_primary_10_1002_er_5599
crossref_primary_10_1039_D1NA00214G
crossref_primary_10_1016_j_egypro_2017_12_231
crossref_primary_10_1016_j_ifacol_2017_08_1493
crossref_primary_10_1021_acsami_2c15718
crossref_primary_10_1016_j_applthermaleng_2020_116542
crossref_primary_10_3390_en15239180
crossref_primary_10_3390_en16031498
crossref_primary_10_1016_j_jpowsour_2020_228820
crossref_primary_10_1007_s10973_020_09611_0
crossref_primary_10_1007_s42835_023_01374_6
crossref_primary_10_1016_j_apenergy_2016_05_122
crossref_primary_10_1016_j_rser_2024_114654
crossref_primary_10_7467_KSAE_2018_26_5_663
crossref_primary_10_1016_j_energy_2023_129074
crossref_primary_10_1016_j_applthermaleng_2023_121270
crossref_primary_10_1016_j_est_2023_109197
crossref_primary_10_1016_j_psep_2024_02_077
crossref_primary_10_1109_TEC_2015_2433312
crossref_primary_10_1016_j_jpowsour_2021_230001
crossref_primary_10_1016_j_apenergy_2015_03_080
crossref_primary_10_1016_j_est_2023_108389
crossref_primary_10_1016_j_tsep_2023_101746
crossref_primary_10_1016_j_est_2021_102525
crossref_primary_10_1016_j_est_2023_108025
crossref_primary_10_1016_j_est_2020_101771
crossref_primary_10_1002_est2_501
Cites_doi 10.1016/S0065-2717(08)70038-8
10.1016/j.jpowsour.2006.01.038
10.1115/1.4000587
10.1007/s11434-010-3192-2
10.1055/s-2006-941909
10.1016/S0378-7753(02)00200-8
10.1016/j.jpowsour.2009.10.105
10.1149/1.2097230
10.1016/S0378-7753(99)00178-0
ContentType Journal Article
Copyright 2012 Elsevier B.V.
2014 INIST-CNRS
Copyright_xml – notice: 2012 Elsevier B.V.
– notice: 2014 INIST-CNRS
DBID IQODW
AAYXX
CITATION
7ST
C1K
SOI
7SP
7SU
7TB
8FD
FR3
KR7
L7M
DOI 10.1016/j.jpowsour.2012.11.039
DatabaseName Pascal-Francis
CrossRef
Environment Abstracts
Environmental Sciences and Pollution Management
Environment Abstracts
Electronics & Communications Abstracts
Environmental Engineering Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Engineering Research Database
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Environment Abstracts
Environmental Sciences and Pollution Management
Civil Engineering Abstracts
Technology Research Database
Mechanical & Transportation Engineering Abstracts
Electronics & Communications Abstracts
Environmental Engineering Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
DatabaseTitleList
Environment Abstracts
Civil Engineering Abstracts
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Applied Sciences
EISSN 1873-2755
EndPage 198
ExternalDocumentID 10_1016_j_jpowsour_2012_11_039
27112571
S0378775312017132
GroupedDBID --K
--M
.~1
0R~
1B1
1~.
1~5
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AABNK
AABXZ
AACTN
AAEDT
AAEDW
AAEPC
AAHCO
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AARJD
AARLI
AAXUO
ABFNM
ABMAC
ABXDB
ABXRA
ABYKQ
ACDAQ
ACGFS
ACRLP
ADBBV
ADECG
ADEZE
AEBSH
AEKER
AENEX
AEZYN
AFKWA
AFRZQ
AFTJW
AFZHZ
AGHFR
AGUBO
AGYEJ
AHHHB
AHIDL
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
AJSZI
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BELTK
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FLBIZ
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
JARJE
KOM
LX7
LY6
M41
MAGPM
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RIG
RNS
ROL
RPZ
SDF
SDG
SDP
SES
SPC
SPCBC
SSK
SSM
SSR
SSZ
T5K
XPP
ZMT
~G-
29L
AALMO
AAQXK
ABPIF
ABPTK
ACNNM
ADALY
AI.
ASPBG
AVWKF
AZFZN
BBWZM
EJD
FEDTE
FGOYB
G-2
HLY
HVGLF
HZ~
IPNFZ
IQODW
NDZJH
R2-
SAC
SCB
SCE
SEW
T9H
VH1
VOH
WUQ
AAXKI
AAYXX
ADMUD
AFJKZ
AKRWK
CITATION
7ST
C1K
SOI
7SP
7SU
7TB
8FD
FR3
KR7
L7M
ID FETCH-LOGICAL-c408t-5db6bef5f449442187bd55ec684629cdaea8eb4aa1f6304b628124dcdd6bfaf93
IEDL.DBID .~1
ISSN 0378-7753
IngestDate Fri Oct 25 02:38:53 EDT 2024
Fri Oct 25 07:49:24 EDT 2024
Thu Sep 26 18:38:54 EDT 2024
Fri Nov 25 01:05:57 EST 2022
Fri Feb 23 02:31:21 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Numerical modeling
Liquid type
Hybrid electric vehicle
Battery cell arrangement
Air type
Battery thermal management system
Performance evaluation
Hybrid electric powered vehicles
Electric vehicle
Numerical method
Electric power consumption
Thermal conduction
Temperature distribution
Hybrid vehicle
Cooling
System design
Secondary cell
Cylindrical shape
Operating conditions
One dimensional model
Cooling system
Thermal fluid
Numerical simulation
Comparative study
Temperature fluctuation
Heat transfer
Finite difference method
Language English
License CC BY 4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c408t-5db6bef5f449442187bd55ec684629cdaea8eb4aa1f6304b628124dcdd6bfaf93
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PQID 1349470235
PQPubID 23462
PageCount 8
ParticipantIDs proquest_miscellaneous_1671388887
proquest_miscellaneous_1349470235
crossref_primary_10_1016_j_jpowsour_2012_11_039
pascalfrancis_primary_27112571
elsevier_sciencedirect_doi_10_1016_j_jpowsour_2012_11_039
PublicationCentury 2000
PublicationDate 2013-04-01
PublicationDateYYYYMMDD 2013-04-01
PublicationDate_xml – month: 04
  year: 2013
  text: 2013-04-01
  day: 01
PublicationDecade 2010
PublicationPlace Amsterdam
PublicationPlace_xml – name: Amsterdam
PublicationTitle Journal of power sources
PublicationYear 2013
Publisher Elsevier B.V
Elsevier
Publisher_xml – name: Elsevier B.V
– name: Elsevier
References Smith, Wang (bib11) 2006; 160
Speltino, Domenico, Fiengo, Stefanopoulou (bib3) 2010
Y. Ma, H. Teng, M. Thelliez, SAE 2010-01-2204, 2010.
Zhukauskas (bib15) 1972; 8
Pesaran (bib4) 2002; 110
Zhukauskas, Ulinskas (bib12) 1988
Fox, McDonald, Pritchard (bib13) 2004
C. Park, A.K. Jaura, SAE 2003-01-2286, 2003.
Evans, White (bib8) 1989; 136
D. Linden, T.B. Reddy, McGraw-Hill, New York, 2001.
H. Sun, B. Tossan, D. Brouns, SAE 2011-01-1368, 2011.
Hallaj, Maleki, Hong, Selman (bib9) 1999; 83
D. Jung, D. Assanis, SAE 2006-01-0726, 2006.
Forgez, Do, Friedrich, Morcrette, Delacourt (bib10) 2010; 195
M. Zolot, A.A. Pesaran, M. Mihalic, SAE 2002-01-1962, 2002.
A.A. Pesaran, in: Advanced Automotive Battery Conference, Las Vegas, Nevada, 2001.
Streeter (bib14) 1961
Park, Jung (bib18) 2010; 132
Smith (10.1016/j.jpowsour.2012.11.039_bib11) 2006; 160
Zhukauskas (10.1016/j.jpowsour.2012.11.039_bib15) 1972; 8
10.1016/j.jpowsour.2012.11.039_bib7
10.1016/j.jpowsour.2012.11.039_bib6
10.1016/j.jpowsour.2012.11.039_bib5
Fox (10.1016/j.jpowsour.2012.11.039_bib13) 2004
Evans (10.1016/j.jpowsour.2012.11.039_bib8) 1989; 136
10.1016/j.jpowsour.2012.11.039_bib2
10.1016/j.jpowsour.2012.11.039_bib17
10.1016/j.jpowsour.2012.11.039_bib1
10.1016/j.jpowsour.2012.11.039_bib16
Streeter (10.1016/j.jpowsour.2012.11.039_bib14) 1961
Pesaran (10.1016/j.jpowsour.2012.11.039_bib4) 2002; 110
Zhukauskas (10.1016/j.jpowsour.2012.11.039_bib12) 1988
Speltino (10.1016/j.jpowsour.2012.11.039_bib3) 2010
Forgez (10.1016/j.jpowsour.2012.11.039_bib10) 2010; 195
Hallaj (10.1016/j.jpowsour.2012.11.039_bib9) 1999; 83
Park (10.1016/j.jpowsour.2012.11.039_bib18) 2010; 132
References_xml – volume: 8
  start-page: 93
  year: 1972
  end-page: 160
  ident: bib15
  publication-title: Advances in Heat Transfer
  contributor:
    fullname: Zhukauskas
– volume: 132
  start-page: 092802-1
  year: 2010
  end-page: 092802-11
  ident: bib18
  publication-title: Journal of Engineering for Gas Turbines and Power
  contributor:
    fullname: Jung
– volume: 160
  start-page: 662
  year: 2006
  end-page: 673
  ident: bib11
  publication-title: Journal of Power Sources
  contributor:
    fullname: Wang
– volume: 83
  start-page: 1
  year: 1999
  end-page: 8
  ident: bib9
  publication-title: Journal of Power Sources
  contributor:
    fullname: Selman
– volume: 110
  start-page: 377
  year: 2002
  end-page: 382
  ident: bib4
  publication-title: Journal of Power Sources
  contributor:
    fullname: Pesaran
– year: 2004
  ident: bib13
  article-title: Introduction to Fluid Mechanics
  contributor:
    fullname: Pritchard
– volume: 195
  start-page: 2961
  year: 2010
  end-page: 2968
  ident: bib10
  publication-title: Journal of Power Sources
  contributor:
    fullname: Delacourt
– year: 1988
  ident: bib12
  article-title: Heat Transfer in Tube Banks in Crossflow
  contributor:
    fullname: Ulinskas
– year: 1961
  ident: bib14
  article-title: Handbook of Fluid Dynamics
  contributor:
    fullname: Streeter
– year: 2010
  ident: bib3
  publication-title: American Control Conference
  contributor:
    fullname: Stefanopoulou
– volume: 136
  start-page: 2145
  year: 1989
  end-page: 2152
  ident: bib8
  publication-title: Journal of Electrochemical Society
  contributor:
    fullname: White
– ident: 10.1016/j.jpowsour.2012.11.039_bib16
– volume: 8
  start-page: 93
  year: 1972
  ident: 10.1016/j.jpowsour.2012.11.039_bib15
  publication-title: Advances in Heat Transfer
  doi: 10.1016/S0065-2717(08)70038-8
  contributor:
    fullname: Zhukauskas
– ident: 10.1016/j.jpowsour.2012.11.039_bib5
– ident: 10.1016/j.jpowsour.2012.11.039_bib2
– volume: 160
  start-page: 662
  year: 2006
  ident: 10.1016/j.jpowsour.2012.11.039_bib11
  publication-title: Journal of Power Sources
  doi: 10.1016/j.jpowsour.2006.01.038
  contributor:
    fullname: Smith
– ident: 10.1016/j.jpowsour.2012.11.039_bib7
– volume: 132
  start-page: 092802-1
  year: 2010
  ident: 10.1016/j.jpowsour.2012.11.039_bib18
  publication-title: Journal of Engineering for Gas Turbines and Power
  doi: 10.1115/1.4000587
  contributor:
    fullname: Park
– ident: 10.1016/j.jpowsour.2012.11.039_bib6
  doi: 10.1007/s11434-010-3192-2
– ident: 10.1016/j.jpowsour.2012.11.039_bib17
  doi: 10.1055/s-2006-941909
– ident: 10.1016/j.jpowsour.2012.11.039_bib1
– year: 2004
  ident: 10.1016/j.jpowsour.2012.11.039_bib13
  contributor:
    fullname: Fox
– year: 1961
  ident: 10.1016/j.jpowsour.2012.11.039_bib14
  contributor:
    fullname: Streeter
– volume: 110
  start-page: 377
  year: 2002
  ident: 10.1016/j.jpowsour.2012.11.039_bib4
  publication-title: Journal of Power Sources
  doi: 10.1016/S0378-7753(02)00200-8
  contributor:
    fullname: Pesaran
– year: 1988
  ident: 10.1016/j.jpowsour.2012.11.039_bib12
  contributor:
    fullname: Zhukauskas
– year: 2010
  ident: 10.1016/j.jpowsour.2012.11.039_bib3
  contributor:
    fullname: Speltino
– volume: 195
  start-page: 2961
  year: 2010
  ident: 10.1016/j.jpowsour.2012.11.039_bib10
  publication-title: Journal of Power Sources
  doi: 10.1016/j.jpowsour.2009.10.105
  contributor:
    fullname: Forgez
– volume: 136
  start-page: 2145
  year: 1989
  ident: 10.1016/j.jpowsour.2012.11.039_bib8
  publication-title: Journal of Electrochemical Society
  doi: 10.1149/1.2097230
  contributor:
    fullname: Evans
– volume: 83
  start-page: 1
  year: 1999
  ident: 10.1016/j.jpowsour.2012.11.039_bib9
  publication-title: Journal of Power Sources
  doi: 10.1016/S0378-7753(99)00178-0
  contributor:
    fullname: Hallaj
SSID ssj0001170
Score 2.527769
Snippet Computationally efficient numerical models of battery cooling systems are developed and the effects of the battery cell arrangement and the heat transfer fluid...
SourceID proquest
crossref
pascalfrancis
elsevier
SourceType Aggregation Database
Index Database
Publisher
StartPage 191
SubjectTerms Air type
Applied sciences
Battery cell arrangement
Battery thermal management system
Cooling systems
Direct energy conversion and energy accumulation
Electric batteries
Electrical engineering. Electrical power engineering
Electrical power engineering
Electrochemical conversion: primary and secondary batteries, fuel cells
Energy
Energy. Thermal use of fuels
Exact sciences and technology
Fluid flow
Ground, air and sea transportation, marine construction
Heat transfer
Hybrid electric vehicle
Liquid type
Liquids
Mathematical models
Modules
Numerical modeling
Power consumption
Road transportation and traffic
Theoretical studies. Data and constants. Metering
Title Battery cell arrangement and heat transfer fluid effects on the parasitic power consumption and the cell temperature distribution in a hybrid electric vehicle
URI https://dx.doi.org/10.1016/j.jpowsour.2012.11.039
https://search.proquest.com/docview/1349470235
https://search.proquest.com/docview/1671388887
Volume 227
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELaqcqFCCEorlsdqKnHNbtZx7ORYVVRbEL1Apd4sP9VdoWy03QX1wk_htzLjJNCKqhzIMZo4lmcy89mZ-Yaxd9JKZZ2MmXLKZUJ5k9VBGWJGxIBjvYolFQp_OpfzC_HhsrzcYSdDLQylVfa-v_PpyVv3d6b9ak7bxWL6OS_Q2BBtzzhxvhTkhwWGP7TpyY8_aR7UWSX9ScDdEknfqhJeTpbt6jsdklOKF58Qmyc1Db8_QD1pzTUuW-z6XfzlulM8On3GnvZAEo67uT5nO6HZZ3u36AVfsJ8deeYN0Ok8mPWaCgnoNBBM44G8MGwSbg1riF-3Cw99dgesGkBgCMQLTjldDlpqpgYu1WsmJ5OGIJk0NhFc9ezM4ImKt--iBQsUhKsbKguDruMODvYtXNGcD9jF6fsvJ_Os78eQOZFXm6z0VtoQyyhELQRiA2V9WQYnEcPw2nkTTBWsMGYWZZELKzmhB--8lzaaWBeHbLdZNeElg5pzFaOTCB-8KE1lqlhFrwonfG55zkdsOihBtx3thh7y0ZZ6UJsmteEeRqPaRqwedKXvGJDG2PDPZ8d3lPv7lVwhHC3VbMSOBm1r_PxoZU0TVttrTeyOQhFp0AMyEs2zwku9-o9JvmaPeWrFQVlDb9juZr0NbxEQbew4WfyYPTo--zg__wV-xxH3
link.rule.ids 315,783,787,4509,24128,27936,27937,45597,45691
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELaq9gAIIZ5iC5RB4ppu1nHs5FhVVFva7oVW6s3yU90VykbbXar-GX4rM05StQLBgRwj27E845nPzsw3jH2WVirrZMyUUy4TypusDsoQMyI6HOtVLClR-Gwmpxfi62V5ucUOh1wYCqvsbX9n05O17t-M-9Uct_P5-FteoLIh2p5w4nwp0A7vIBqocXfuHByfTGd3BpmKq6SfCXhgog73EoUX-4t2eUP35BTlxfeJ0JPqhv_ZRz1tzTWuXOxKXvxmvZNLOnrOnvVYEg666b5gW6F5yZ7cYxh8xX52_Jm3QBf0YFYryiWgC0EwjQcyxLBO0DWsIH7fzD30AR6wbACxIRA1OIV1OWipnhq4lLKZ7EwagtqksYnjqidoBk9svH0hLZhjQ7i6pcww6Iru4GA_whXN-TW7OPpyfjjN-pIMmRN5tc5Kb6UNsYxC1EIgPFDWl2VwEmEMr503wVTBCmMmURa5sJITgPDOe2mjiXXxhm03yya8ZVBzrmJ0EhGEF6WpTBWr6FXhhM8tz_mIjQch6LZj3tBDSNpCD2LTJDY8xmgU24jVg6z0Ax3S6B7-2XfvgXDvPskVItJSTUbs0yBtjTuQVtY0Ybm51kTwKBTxBv2ljUQNrfBRu_8xyY_s0fT87FSfHs9O3rHHPFXmoCCi92x7vdqED4iP1nav1_9fzboUqw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Battery+cell+arrangement+and+heat+transfer+fluid+effects+on+the+parasitic+power+consumption+and+the+cell+temperature+distribution+in+a+hybrid+electric+vehicle&rft.jtitle=Journal+of+power+sources&rft.au=Park%2C+Sungjin&rft.au=Jung%2C+Dohoy&rft.date=2013-04-01&rft.issn=0378-7753&rft.volume=227&rft.spage=191&rft.epage=198&rft_id=info:doi/10.1016%2Fj.jpowsour.2012.11.039&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0378-7753&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0378-7753&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0378-7753&client=summon