Battery cell arrangement and heat transfer fluid effects on the parasitic power consumption and the cell temperature distribution in a hybrid electric vehicle
Computationally efficient numerical models of battery cooling systems are developed and the effects of the battery cell arrangement and the heat transfer fluid (HTF) type on the cooling performance and the parasitic power consumption of the system are investigated. A one-dimensional heat conduction...
Saved in:
Published in | Journal of power sources Vol. 227; pp. 191 - 198 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Amsterdam
Elsevier B.V
01.04.2013
Elsevier |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Computationally efficient numerical models of battery cooling systems are developed and the effects of the battery cell arrangement and the heat transfer fluid (HTF) type on the cooling performance and the parasitic power consumption of the system are investigated. A one-dimensional heat conduction model of a cylindrical battery cell is developed using a finite difference method for the cell temperature prediction and a battery module model is developed to predict the cell to cell temperature variation and the power consumption of the systems depending on the design of battery module and operating conditions. The analysis of the battery thermal management system (BTMS) design by using the numerical model is conducted for air and liquid type BTMSs. From the numerical analysis, it is found that a wide battery module with a small cell to cell gap is desirable for the air type BTMS while a narrow battery module with a small gap is desirable for a liquid type BTMS. The results also show that the air type BTMS consumes much more power compared with the liquid type BTMS especially for high heat load condition. However, under low heat load conditions, the power consumption of the air type BTMS is acceptable considering its advantages over the liquid type BTMS.
► The design and fluid type effects of the BTMS are investigated using numerical model. ► A wide battery module with a small cell to cell gap is desirable for the air type BTMS. ► A narrow battery module with a small gap is desirable for a liquid type BTMS. ► Fluid types and design should be selected depending on the heat load of the battery pack. |
---|---|
AbstractList | Computationally efficient numerical models of battery cooling systems are developed and the effects of the battery cell arrangement and the heat transfer fluid (HTF) type on the cooling performance and the parasitic power consumption of the system are investigated. A one-dimensional heat conduction model of a cylindrical battery cell is developed using a finite difference method for the cell temperature prediction and a battery module model is developed to predict the cell to cell temperature variation and the power consumption of the systems depending on the design of battery module and operating conditions. The analysis of the battery thermal management system (BTMS) design by using the numerical model is conducted for air and liquid type BTMSs. From the numerical analysis, it is found that a wide battery module with a small cell to cell gap is desirable for the air type BTMS while a narrow battery module with a small gap is desirable for a liquid type BTMS. The results also show that the air type BTMS consumes much more power compared with the liquid type BTMS especially for high heat load condition. However, under low heat load conditions, the power consumption of the air type BTMS is acceptable considering its advantages over the liquid type BTMS.
► The design and fluid type effects of the BTMS are investigated using numerical model. ► A wide battery module with a small cell to cell gap is desirable for the air type BTMS. ► A narrow battery module with a small gap is desirable for a liquid type BTMS. ► Fluid types and design should be selected depending on the heat load of the battery pack. Computationally efficient numerical models of battery cooling systems are developed and the effects of the battery cell arrangement and the heat transfer fluid (HTF) type on the cooling performance and the parasitic power consumption of the system are investigated. A one-dimensional heat conduction model of a cylindrical battery cell is developed using a finite difference method for the cell temperature prediction and a battery module model is developed to predict the cell to cell temperature variation and the power consumption of the systems depending on the design of battery module and operating conditions. The analysis of the battery thermal management system (BTMS) design by using the numerical model is conducted for air and liquid type BTMSs. From the numerical analysis, it is found that a wide battery module with a small cell to cell gap is desirable for the air type BTMS while a narrow battery module with a small gap is desirable for a liquid type BTMS. The results also show that the air type BTMS consumes much more power compared with the liquid type BTMS especially for high heat load condition. However, under low heat load conditions, the power consumption of the air type BTMS is acceptable considering its advantages over the liquid type BTMS. |
Author | Park, Sungjin Jung, Dohoy |
Author_xml | – sequence: 1 givenname: Sungjin surname: Park fullname: Park, Sungjin email: parksj@hongik.ac.kr organization: Department of Mechanical and System Design Engineering, Hongik University, 94 Wausan-Ro, Mapo-Gu, Seoul 121-791, Republic of Korea – sequence: 2 givenname: Dohoy surname: Jung fullname: Jung, Dohoy email: dohoy@umich.edu organization: Department of Mechanical Engineering, The University of Michigan-Dearborn, 4901 Evergreen Road, Dearborn, MI 48128, USA |
BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=27112571$$DView record in Pascal Francis |
BookMark | eNqFkc1u1DAUhS1UJKYDr4C8QWKT4N84swOq8iNVYgNry7GvGY8SJ9hO0bwMz4rTKWzrjSXf7557fM81uopzBIReU9JSQrt3p_a0zL_zvKaWEcpaSlvCD8_QjvaKN0xJeYV2hKu-UUryF-g65xMhhFJFdujPR1MKpDO2MI7YpGTiT5ggFmyiw0cwBZf6lj0k7Mc1OAzegy0ZzxGXI-DFJJNDCRZXExWyc8zrtJRQ65vExjxoF5gWSKasCbALuaQwrA9UqCA-noe0iY9VO1WxezgGO8JL9NybMcOrx3uPfny6_X7zpbn79vnrzYe7xgrSl0a6oRvASy_EQQhWPz44KcF2vejYwToDpodBGEN9x4kYOtZTJpx1rhu88Qe-R28vukuaf62Qi55C3mybCPOaNe0U5X096mmUVw-KMC4r2l1Qm-acE3i9pDCZdNaU6C07fdL_stNbdppSXbOrjW8eZ5hszehrAjbk_91MUcpkdbRH7y8c1N3cB0g62wDRggupLlK7OTw16i-SGLnj |
CODEN | JPSODZ |
CitedBy_id | crossref_primary_10_1016_j_applthermaleng_2022_119566 crossref_primary_10_1016_j_jpowsour_2014_05_088 crossref_primary_10_1016_j_est_2023_106839 crossref_primary_10_3390_en15124227 crossref_primary_10_3390_en13215695 crossref_primary_10_1007_s00158_017_1733_1 crossref_primary_10_1016_j_applthermaleng_2019_114257 crossref_primary_10_1016_j_jpowsour_2024_234382 crossref_primary_10_1155_2020_4695419 crossref_primary_10_1016_j_enconman_2017_11_046 crossref_primary_10_3390_en15218239 crossref_primary_10_1016_j_applthermaleng_2019_03_157 crossref_primary_10_1080_23311916_2022_2048996 crossref_primary_10_1016_j_est_2021_102518 crossref_primary_10_1016_j_est_2023_109303 crossref_primary_10_1016_j_ijheatmasstransfer_2021_121269 crossref_primary_10_3390_batteries9090474 crossref_primary_10_1155_2014_852712 crossref_primary_10_1016_j_est_2016_12_003 crossref_primary_10_1016_j_jpowsour_2017_02_023 crossref_primary_10_1016_j_apenergy_2019_04_141 crossref_primary_10_1115_1_4047526 crossref_primary_10_1016_j_est_2022_104384 crossref_primary_10_1016_j_jpowsour_2021_229513 crossref_primary_10_1016_j_est_2022_105195 crossref_primary_10_3795_KSME_B_2014_38_3_227 crossref_primary_10_1016_j_ensm_2020_06_042 crossref_primary_10_3389_fmats_2022_824168 crossref_primary_10_1061__ASCE_EY_1943_7897_0000631 crossref_primary_10_3390_batteries10010032 crossref_primary_10_3390_pr11123450 crossref_primary_10_1016_j_energy_2022_124178 crossref_primary_10_1016_j_renene_2022_11_010 crossref_primary_10_1016_j_jpowsour_2015_12_037 crossref_primary_10_1615_InterJEnerCleanEnv_2023046956 crossref_primary_10_1016_j_est_2020_102003 crossref_primary_10_1016_j_applthermaleng_2022_118869 crossref_primary_10_1016_j_est_2023_107511 crossref_primary_10_1016_j_rser_2020_109815 crossref_primary_10_1016_j_est_2021_103314 crossref_primary_10_1016_j_pecs_2023_101109 crossref_primary_10_1007_s40430_024_04735_y crossref_primary_10_1016_j_jpowsour_2013_10_052 crossref_primary_10_1016_j_applthermaleng_2021_117281 crossref_primary_10_1016_j_est_2024_111401 crossref_primary_10_1016_j_applthermaleng_2024_122471 crossref_primary_10_3390_pr11020500 crossref_primary_10_1016_j_rser_2021_111759 crossref_primary_10_1016_j_jpowsour_2013_04_108 crossref_primary_10_35234_fumbd_728143 crossref_primary_10_1016_j_applthermaleng_2021_116878 crossref_primary_10_1016_j_est_2023_108751 crossref_primary_10_1002_ente_202301061 crossref_primary_10_1016_j_applthermaleng_2021_116758 crossref_primary_10_33619_2414_2948_80_33 crossref_primary_10_1016_j_ijheatmasstransfer_2019_118581 crossref_primary_10_3390_batteries8090128 crossref_primary_10_1016_j_est_2023_108636 crossref_primary_10_1016_j_est_2022_105214 crossref_primary_10_3390_app9040754 crossref_primary_10_1016_j_applthermaleng_2023_120303 crossref_primary_10_1016_j_ijheatmasstransfer_2023_125156 crossref_primary_10_1016_j_est_2024_111814 crossref_primary_10_1016_j_est_2024_111412 crossref_primary_10_1016_j_applthermaleng_2020_116062 crossref_primary_10_1016_j_est_2024_112588 crossref_primary_10_1016_j_enconman_2018_12_051 crossref_primary_10_1016_j_jpowsour_2021_230680 crossref_primary_10_1016_j_est_2023_109278 crossref_primary_10_3390_en16093857 crossref_primary_10_1021_acs_energyfuels_2c02923 crossref_primary_10_3390_batteries8100177 crossref_primary_10_1016_j_est_2023_107499 crossref_primary_10_1016_j_est_2022_105735 crossref_primary_10_1007_s41918_019_00060_4 crossref_primary_10_1016_j_applthermaleng_2016_01_050 crossref_primary_10_3390_en12071251 crossref_primary_10_1016_j_est_2022_104214 crossref_primary_10_20964_2021_03_35 crossref_primary_10_1016_j_applthermaleng_2021_117503 crossref_primary_10_1016_j_applthermaleng_2020_115840 crossref_primary_10_1016_j_enconman_2020_113715 crossref_primary_10_1016_j_applthermaleng_2019_04_033 crossref_primary_10_20964_2019_07_06 crossref_primary_10_1016_j_rser_2020_110685 crossref_primary_10_1016_j_energy_2019_06_017 crossref_primary_10_1002_htj_23063 crossref_primary_10_1016_j_applthermaleng_2023_120992 crossref_primary_10_1016_j_applthermaleng_2021_116811 crossref_primary_10_1016_j_cej_2023_148450 crossref_primary_10_1088_1757_899X_1126_1_012072 crossref_primary_10_1016_j_energy_2023_126827 crossref_primary_10_1016_j_proeng_2017_01_189 crossref_primary_10_1080_15567036_2022_2042625 crossref_primary_10_1016_j_applthermaleng_2021_117235 crossref_primary_10_3390_en15041326 crossref_primary_10_1007_s40430_024_05062_y crossref_primary_10_2514_1_T6899 crossref_primary_10_1016_j_applthermaleng_2023_120402 crossref_primary_10_1016_j_ijheatmasstransfer_2021_122025 crossref_primary_10_1080_01457632_2023_2260526 crossref_primary_10_3390_en13030507 crossref_primary_10_1177_09544089211015876 crossref_primary_10_1007_s10973_022_11577_0 crossref_primary_10_1016_j_energy_2019_116565 crossref_primary_10_1016_j_ijheatmasstransfer_2022_122608 crossref_primary_10_1016_j_jclepro_2019_118131 crossref_primary_10_3390_en15113930 crossref_primary_10_1016_j_est_2023_109852 crossref_primary_10_1016_j_ijheatmasstransfer_2021_121853 crossref_primary_10_1016_j_ijheatfluidflow_2024_109320 crossref_primary_10_1007_s10973_023_12698_w crossref_primary_10_1016_j_matpr_2024_04_094 crossref_primary_10_1016_j_rser_2017_03_138 crossref_primary_10_3389_fenrg_2021_797664 crossref_primary_10_3390_en13236257 crossref_primary_10_1016_j_enconman_2024_118478 crossref_primary_10_1016_j_prime_2024_100469 crossref_primary_10_1016_j_applthermaleng_2022_119626 crossref_primary_10_1021_acs_energyfuels_2c04243 crossref_primary_10_1016_j_applthermaleng_2022_118251 crossref_primary_10_1016_j_applthermaleng_2021_117088 crossref_primary_10_1016_j_jpowsour_2022_231094 crossref_primary_10_1016_j_ecmx_2022_100310 crossref_primary_10_3390_wevj13080149 crossref_primary_10_1016_j_jclepro_2021_129079 crossref_primary_10_1002_est2_572 crossref_primary_10_1002_htj_22991 crossref_primary_10_1016_j_applthermaleng_2017_12_055 crossref_primary_10_1002_ente_202101131 crossref_primary_10_1002_er_5599 crossref_primary_10_1039_D1NA00214G crossref_primary_10_1016_j_egypro_2017_12_231 crossref_primary_10_1016_j_ifacol_2017_08_1493 crossref_primary_10_1021_acsami_2c15718 crossref_primary_10_1016_j_applthermaleng_2020_116542 crossref_primary_10_3390_en15239180 crossref_primary_10_3390_en16031498 crossref_primary_10_1016_j_jpowsour_2020_228820 crossref_primary_10_1007_s10973_020_09611_0 crossref_primary_10_1007_s42835_023_01374_6 crossref_primary_10_1016_j_apenergy_2016_05_122 crossref_primary_10_1016_j_rser_2024_114654 crossref_primary_10_7467_KSAE_2018_26_5_663 crossref_primary_10_1016_j_energy_2023_129074 crossref_primary_10_1016_j_applthermaleng_2023_121270 crossref_primary_10_1016_j_est_2023_109197 crossref_primary_10_1016_j_psep_2024_02_077 crossref_primary_10_1109_TEC_2015_2433312 crossref_primary_10_1016_j_jpowsour_2021_230001 crossref_primary_10_1016_j_apenergy_2015_03_080 crossref_primary_10_1016_j_est_2023_108389 crossref_primary_10_1016_j_tsep_2023_101746 crossref_primary_10_1016_j_est_2021_102525 crossref_primary_10_1016_j_est_2023_108025 crossref_primary_10_1016_j_est_2020_101771 crossref_primary_10_1002_est2_501 |
Cites_doi | 10.1016/S0065-2717(08)70038-8 10.1016/j.jpowsour.2006.01.038 10.1115/1.4000587 10.1007/s11434-010-3192-2 10.1055/s-2006-941909 10.1016/S0378-7753(02)00200-8 10.1016/j.jpowsour.2009.10.105 10.1149/1.2097230 10.1016/S0378-7753(99)00178-0 |
ContentType | Journal Article |
Copyright | 2012 Elsevier B.V. 2014 INIST-CNRS |
Copyright_xml | – notice: 2012 Elsevier B.V. – notice: 2014 INIST-CNRS |
DBID | IQODW AAYXX CITATION 7ST C1K SOI 7SP 7SU 7TB 8FD FR3 KR7 L7M |
DOI | 10.1016/j.jpowsour.2012.11.039 |
DatabaseName | Pascal-Francis CrossRef Environment Abstracts Environmental Sciences and Pollution Management Environment Abstracts Electronics & Communications Abstracts Environmental Engineering Abstracts Mechanical & Transportation Engineering Abstracts Technology Research Database Engineering Research Database Civil Engineering Abstracts Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef Environment Abstracts Environmental Sciences and Pollution Management Civil Engineering Abstracts Technology Research Database Mechanical & Transportation Engineering Abstracts Electronics & Communications Abstracts Environmental Engineering Abstracts Engineering Research Database Advanced Technologies Database with Aerospace |
DatabaseTitleList | Environment Abstracts Civil Engineering Abstracts |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Applied Sciences |
EISSN | 1873-2755 |
EndPage | 198 |
ExternalDocumentID | 10_1016_j_jpowsour_2012_11_039 27112571 S0378775312017132 |
GroupedDBID | --K --M .~1 0R~ 1B1 1~. 1~5 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AABNK AABXZ AACTN AAEDT AAEDW AAEPC AAHCO AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AARJD AARLI AAXUO ABFNM ABMAC ABXDB ABXRA ABYKQ ACDAQ ACGFS ACRLP ADBBV ADECG ADEZE AEBSH AEKER AENEX AEZYN AFKWA AFRZQ AFTJW AFZHZ AGHFR AGUBO AGYEJ AHHHB AHIDL AIEXJ AIKHN AITUG AJBFU AJOXV AJSZI ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BELTK BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EO8 EO9 EP2 EP3 F5P FDB FIRID FLBIZ FNPLU FYGXN G-Q GBLVA IHE J1W JARJE KOM LX7 LY6 M41 MAGPM MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 RIG RNS ROL RPZ SDF SDG SDP SES SPC SPCBC SSK SSM SSR SSZ T5K XPP ZMT ~G- 29L AALMO AAQXK ABPIF ABPTK ACNNM ADALY AI. ASPBG AVWKF AZFZN BBWZM EJD FEDTE FGOYB G-2 HLY HVGLF HZ~ IPNFZ IQODW NDZJH R2- SAC SCB SCE SEW T9H VH1 VOH WUQ AAXKI AAYXX ADMUD AFJKZ AKRWK CITATION 7ST C1K SOI 7SP 7SU 7TB 8FD FR3 KR7 L7M |
ID | FETCH-LOGICAL-c408t-5db6bef5f449442187bd55ec684629cdaea8eb4aa1f6304b628124dcdd6bfaf93 |
IEDL.DBID | .~1 |
ISSN | 0378-7753 |
IngestDate | Fri Oct 25 02:38:53 EDT 2024 Fri Oct 25 07:49:24 EDT 2024 Thu Sep 26 18:38:54 EDT 2024 Fri Nov 25 01:05:57 EST 2022 Fri Feb 23 02:31:21 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Numerical modeling Liquid type Hybrid electric vehicle Battery cell arrangement Air type Battery thermal management system Performance evaluation Hybrid electric powered vehicles Electric vehicle Numerical method Electric power consumption Thermal conduction Temperature distribution Hybrid vehicle Cooling System design Secondary cell Cylindrical shape Operating conditions One dimensional model Cooling system Thermal fluid Numerical simulation Comparative study Temperature fluctuation Heat transfer Finite difference method |
Language | English |
License | CC BY 4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c408t-5db6bef5f449442187bd55ec684629cdaea8eb4aa1f6304b628124dcdd6bfaf93 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PQID | 1349470235 |
PQPubID | 23462 |
PageCount | 8 |
ParticipantIDs | proquest_miscellaneous_1671388887 proquest_miscellaneous_1349470235 crossref_primary_10_1016_j_jpowsour_2012_11_039 pascalfrancis_primary_27112571 elsevier_sciencedirect_doi_10_1016_j_jpowsour_2012_11_039 |
PublicationCentury | 2000 |
PublicationDate | 2013-04-01 |
PublicationDateYYYYMMDD | 2013-04-01 |
PublicationDate_xml | – month: 04 year: 2013 text: 2013-04-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | Amsterdam |
PublicationPlace_xml | – name: Amsterdam |
PublicationTitle | Journal of power sources |
PublicationYear | 2013 |
Publisher | Elsevier B.V Elsevier |
Publisher_xml | – name: Elsevier B.V – name: Elsevier |
References | Smith, Wang (bib11) 2006; 160 Speltino, Domenico, Fiengo, Stefanopoulou (bib3) 2010 Y. Ma, H. Teng, M. Thelliez, SAE 2010-01-2204, 2010. Zhukauskas (bib15) 1972; 8 Pesaran (bib4) 2002; 110 Zhukauskas, Ulinskas (bib12) 1988 Fox, McDonald, Pritchard (bib13) 2004 C. Park, A.K. Jaura, SAE 2003-01-2286, 2003. Evans, White (bib8) 1989; 136 D. Linden, T.B. Reddy, McGraw-Hill, New York, 2001. H. Sun, B. Tossan, D. Brouns, SAE 2011-01-1368, 2011. Hallaj, Maleki, Hong, Selman (bib9) 1999; 83 D. Jung, D. Assanis, SAE 2006-01-0726, 2006. Forgez, Do, Friedrich, Morcrette, Delacourt (bib10) 2010; 195 M. Zolot, A.A. Pesaran, M. Mihalic, SAE 2002-01-1962, 2002. A.A. Pesaran, in: Advanced Automotive Battery Conference, Las Vegas, Nevada, 2001. Streeter (bib14) 1961 Park, Jung (bib18) 2010; 132 Smith (10.1016/j.jpowsour.2012.11.039_bib11) 2006; 160 Zhukauskas (10.1016/j.jpowsour.2012.11.039_bib15) 1972; 8 10.1016/j.jpowsour.2012.11.039_bib7 10.1016/j.jpowsour.2012.11.039_bib6 10.1016/j.jpowsour.2012.11.039_bib5 Fox (10.1016/j.jpowsour.2012.11.039_bib13) 2004 Evans (10.1016/j.jpowsour.2012.11.039_bib8) 1989; 136 10.1016/j.jpowsour.2012.11.039_bib2 10.1016/j.jpowsour.2012.11.039_bib17 10.1016/j.jpowsour.2012.11.039_bib1 10.1016/j.jpowsour.2012.11.039_bib16 Streeter (10.1016/j.jpowsour.2012.11.039_bib14) 1961 Pesaran (10.1016/j.jpowsour.2012.11.039_bib4) 2002; 110 Zhukauskas (10.1016/j.jpowsour.2012.11.039_bib12) 1988 Speltino (10.1016/j.jpowsour.2012.11.039_bib3) 2010 Forgez (10.1016/j.jpowsour.2012.11.039_bib10) 2010; 195 Hallaj (10.1016/j.jpowsour.2012.11.039_bib9) 1999; 83 Park (10.1016/j.jpowsour.2012.11.039_bib18) 2010; 132 |
References_xml | – volume: 8 start-page: 93 year: 1972 end-page: 160 ident: bib15 publication-title: Advances in Heat Transfer contributor: fullname: Zhukauskas – volume: 132 start-page: 092802-1 year: 2010 end-page: 092802-11 ident: bib18 publication-title: Journal of Engineering for Gas Turbines and Power contributor: fullname: Jung – volume: 160 start-page: 662 year: 2006 end-page: 673 ident: bib11 publication-title: Journal of Power Sources contributor: fullname: Wang – volume: 83 start-page: 1 year: 1999 end-page: 8 ident: bib9 publication-title: Journal of Power Sources contributor: fullname: Selman – volume: 110 start-page: 377 year: 2002 end-page: 382 ident: bib4 publication-title: Journal of Power Sources contributor: fullname: Pesaran – year: 2004 ident: bib13 article-title: Introduction to Fluid Mechanics contributor: fullname: Pritchard – volume: 195 start-page: 2961 year: 2010 end-page: 2968 ident: bib10 publication-title: Journal of Power Sources contributor: fullname: Delacourt – year: 1988 ident: bib12 article-title: Heat Transfer in Tube Banks in Crossflow contributor: fullname: Ulinskas – year: 1961 ident: bib14 article-title: Handbook of Fluid Dynamics contributor: fullname: Streeter – year: 2010 ident: bib3 publication-title: American Control Conference contributor: fullname: Stefanopoulou – volume: 136 start-page: 2145 year: 1989 end-page: 2152 ident: bib8 publication-title: Journal of Electrochemical Society contributor: fullname: White – ident: 10.1016/j.jpowsour.2012.11.039_bib16 – volume: 8 start-page: 93 year: 1972 ident: 10.1016/j.jpowsour.2012.11.039_bib15 publication-title: Advances in Heat Transfer doi: 10.1016/S0065-2717(08)70038-8 contributor: fullname: Zhukauskas – ident: 10.1016/j.jpowsour.2012.11.039_bib5 – ident: 10.1016/j.jpowsour.2012.11.039_bib2 – volume: 160 start-page: 662 year: 2006 ident: 10.1016/j.jpowsour.2012.11.039_bib11 publication-title: Journal of Power Sources doi: 10.1016/j.jpowsour.2006.01.038 contributor: fullname: Smith – ident: 10.1016/j.jpowsour.2012.11.039_bib7 – volume: 132 start-page: 092802-1 year: 2010 ident: 10.1016/j.jpowsour.2012.11.039_bib18 publication-title: Journal of Engineering for Gas Turbines and Power doi: 10.1115/1.4000587 contributor: fullname: Park – ident: 10.1016/j.jpowsour.2012.11.039_bib6 doi: 10.1007/s11434-010-3192-2 – ident: 10.1016/j.jpowsour.2012.11.039_bib17 doi: 10.1055/s-2006-941909 – ident: 10.1016/j.jpowsour.2012.11.039_bib1 – year: 2004 ident: 10.1016/j.jpowsour.2012.11.039_bib13 contributor: fullname: Fox – year: 1961 ident: 10.1016/j.jpowsour.2012.11.039_bib14 contributor: fullname: Streeter – volume: 110 start-page: 377 year: 2002 ident: 10.1016/j.jpowsour.2012.11.039_bib4 publication-title: Journal of Power Sources doi: 10.1016/S0378-7753(02)00200-8 contributor: fullname: Pesaran – year: 1988 ident: 10.1016/j.jpowsour.2012.11.039_bib12 contributor: fullname: Zhukauskas – year: 2010 ident: 10.1016/j.jpowsour.2012.11.039_bib3 contributor: fullname: Speltino – volume: 195 start-page: 2961 year: 2010 ident: 10.1016/j.jpowsour.2012.11.039_bib10 publication-title: Journal of Power Sources doi: 10.1016/j.jpowsour.2009.10.105 contributor: fullname: Forgez – volume: 136 start-page: 2145 year: 1989 ident: 10.1016/j.jpowsour.2012.11.039_bib8 publication-title: Journal of Electrochemical Society doi: 10.1149/1.2097230 contributor: fullname: Evans – volume: 83 start-page: 1 year: 1999 ident: 10.1016/j.jpowsour.2012.11.039_bib9 publication-title: Journal of Power Sources doi: 10.1016/S0378-7753(99)00178-0 contributor: fullname: Hallaj |
SSID | ssj0001170 |
Score | 2.527769 |
Snippet | Computationally efficient numerical models of battery cooling systems are developed and the effects of the battery cell arrangement and the heat transfer fluid... |
SourceID | proquest crossref pascalfrancis elsevier |
SourceType | Aggregation Database Index Database Publisher |
StartPage | 191 |
SubjectTerms | Air type Applied sciences Battery cell arrangement Battery thermal management system Cooling systems Direct energy conversion and energy accumulation Electric batteries Electrical engineering. Electrical power engineering Electrical power engineering Electrochemical conversion: primary and secondary batteries, fuel cells Energy Energy. Thermal use of fuels Exact sciences and technology Fluid flow Ground, air and sea transportation, marine construction Heat transfer Hybrid electric vehicle Liquid type Liquids Mathematical models Modules Numerical modeling Power consumption Road transportation and traffic Theoretical studies. Data and constants. Metering |
Title | Battery cell arrangement and heat transfer fluid effects on the parasitic power consumption and the cell temperature distribution in a hybrid electric vehicle |
URI | https://dx.doi.org/10.1016/j.jpowsour.2012.11.039 https://search.proquest.com/docview/1349470235 https://search.proquest.com/docview/1671388887 |
Volume | 227 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELaqcqFCCEorlsdqKnHNbtZx7ORYVVRbEL1Apd4sP9VdoWy03QX1wk_htzLjJNCKqhzIMZo4lmcy89mZ-Yaxd9JKZZ2MmXLKZUJ5k9VBGWJGxIBjvYolFQp_OpfzC_HhsrzcYSdDLQylVfa-v_PpyVv3d6b9ak7bxWL6OS_Q2BBtzzhxvhTkhwWGP7TpyY8_aR7UWSX9ScDdEknfqhJeTpbt6jsdklOKF58Qmyc1Db8_QD1pzTUuW-z6XfzlulM8On3GnvZAEo67uT5nO6HZZ3u36AVfsJ8deeYN0Ok8mPWaCgnoNBBM44G8MGwSbg1riF-3Cw99dgesGkBgCMQLTjldDlpqpgYu1WsmJ5OGIJk0NhFc9ezM4ImKt--iBQsUhKsbKguDruMODvYtXNGcD9jF6fsvJ_Os78eQOZFXm6z0VtoQyyhELQRiA2V9WQYnEcPw2nkTTBWsMGYWZZELKzmhB--8lzaaWBeHbLdZNeElg5pzFaOTCB-8KE1lqlhFrwonfG55zkdsOihBtx3thh7y0ZZ6UJsmteEeRqPaRqwedKXvGJDG2PDPZ8d3lPv7lVwhHC3VbMSOBm1r_PxoZU0TVttrTeyOQhFp0AMyEs2zwku9-o9JvmaPeWrFQVlDb9juZr0NbxEQbew4WfyYPTo--zg__wV-xxH3 |
link.rule.ids | 315,783,787,4509,24128,27936,27937,45597,45691 |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELaq9gAIIZ5iC5RB4ppu1nHs5FhVVFva7oVW6s3yU90VykbbXar-GX4rM05StQLBgRwj27E845nPzsw3jH2WVirrZMyUUy4TypusDsoQMyI6HOtVLClR-Gwmpxfi62V5ucUOh1wYCqvsbX9n05O17t-M-9Uct_P5-FteoLIh2p5w4nwp0A7vIBqocXfuHByfTGd3BpmKq6SfCXhgog73EoUX-4t2eUP35BTlxfeJ0JPqhv_ZRz1tzTWuXOxKXvxmvZNLOnrOnvVYEg666b5gW6F5yZ7cYxh8xX52_Jm3QBf0YFYryiWgC0EwjQcyxLBO0DWsIH7fzD30AR6wbACxIRA1OIV1OWipnhq4lLKZ7EwagtqksYnjqidoBk9svH0hLZhjQ7i6pcww6Iru4GA_whXN-TW7OPpyfjjN-pIMmRN5tc5Kb6UNsYxC1EIgPFDWl2VwEmEMr503wVTBCmMmURa5sJITgPDOe2mjiXXxhm03yya8ZVBzrmJ0EhGEF6WpTBWr6FXhhM8tz_mIjQch6LZj3tBDSNpCD2LTJDY8xmgU24jVg6z0Ax3S6B7-2XfvgXDvPskVItJSTUbs0yBtjTuQVtY0Ybm51kTwKBTxBv2ljUQNrfBRu_8xyY_s0fT87FSfHs9O3rHHPFXmoCCi92x7vdqED4iP1nav1_9fzboUqw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Battery+cell+arrangement+and+heat+transfer+fluid+effects+on+the+parasitic+power+consumption+and+the+cell+temperature+distribution+in+a+hybrid+electric+vehicle&rft.jtitle=Journal+of+power+sources&rft.au=Park%2C+Sungjin&rft.au=Jung%2C+Dohoy&rft.date=2013-04-01&rft.issn=0378-7753&rft.volume=227&rft.spage=191&rft.epage=198&rft_id=info:doi/10.1016%2Fj.jpowsour.2012.11.039&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0378-7753&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0378-7753&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0378-7753&client=summon |