Driving Fatigue Classification Based on Fusion Entropy Analysis Combining EOG and EEG

The rising number of traffic accidents has become a major issue in our daily life, which has attracted the concern of society and governments. To deal with this issue, in our previous study, we have designed a real-time driving fatigue detection system using power spectrum density and sample entropy...

Full description

Saved in:
Bibliographic Details
Published inIEEE access Vol. 7; pp. 61975 - 61986
Main Authors Wang, Hongtao, Wu, Cong, Li, Ting, He, Yuebang, Chen, Peng, Bezerianos, Anastasios
Format Journal Article
LanguageEnglish
Published Piscataway IEEE 2019
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN2169-3536
2169-3536
DOI10.1109/ACCESS.2019.2915533

Cover

Abstract The rising number of traffic accidents has become a major issue in our daily life, which has attracted the concern of society and governments. To deal with this issue, in our previous study, we have designed a real-time driving fatigue detection system using power spectrum density and sample entropy. By using the wireless technology and dry electrodes for EEG collection, we further integrated virtual reality simulated driving environment, which made our study more applicable to realistic settings. However, the high accuracy of classification for driving fatigue has not been obtained. To measure the time series complexity of the EEG signal, we proposed a fusion entropy (sample entropy, approximate entropy, and spectral entropy) analysis method of EEG and EOG. First, a sample entropy was applied for feature extraction from the horizontal and vertical EOG. Second, an approximate entropy, sample entropy, and spectral entropy features of each sub-band of EEG are extracted. Third, feature fusion for sub-band is performed by canonical correlation analysis (CCA). Finally, the features of EOG and EEG are classified using a relevant vector machine (RVM). Twenty-two subjects participated in the driving fatigue experiments for a duration of 90 min. The results demonstrated that the fusion entropy analysis combining EOG and EEG could provide an alternative method for driving fatigue detection, and the average accuracy rate was up to 99.1 ± 1.2%. The authors further analyzed the effect of feature fusion in four sub-bands (<inline-formula> <tex-math notation="LaTeX">\delta </tex-math></inline-formula>, <inline-formula> <tex-math notation="LaTeX">\alpha </tex-math></inline-formula>, <inline-formula> <tex-math notation="LaTeX">\beta </tex-math></inline-formula>, and <inline-formula> <tex-math notation="LaTeX">\theta </tex-math></inline-formula>) and compared with every single sub-band on classification performance, it is proved that the former is superior to the latter presenting the proposed method can provide effective indicators for driving fatigue detection.
AbstractList The rising number of traffic accidents has become a major issue in our daily life, which has attracted the concern of society and governments. To deal with this issue, in our previous study, we have designed a real-time driving fatigue detection system using power spectrum density and sample entropy. By using the wireless technology and dry electrodes for EEG collection, we further integrated virtual reality simulated driving environment, which made our study more applicable to realistic settings. However, the high accuracy of classification for driving fatigue has not been obtained. To measure the time series complexity of the EEG signal, we proposed a fusion entropy (sample entropy, approximate entropy, and spectral entropy) analysis method of EEG and EOG. First, a sample entropy was applied for feature extraction from the horizontal and vertical EOG. Second, an approximate entropy, sample entropy, and spectral entropy features of each sub-band of EEG are extracted. Third, feature fusion for sub-band is performed by canonical correlation analysis (CCA). Finally, the features of EOG and EEG are classified using a relevant vector machine (RVM). Twenty-two subjects participated in the driving fatigue experiments for a duration of 90 min. The results demonstrated that the fusion entropy analysis combining EOG and EEG could provide an alternative method for driving fatigue detection, and the average accuracy rate was up to 99.1 ± 1.2%. The authors further analyzed the effect of feature fusion in four sub-bands (δ, α, β and θ) and compared with every single sub-band on classification performance, it is proved that the former is superior to the latter presenting the proposed method can provide effective indicators for driving fatigue detection.
The rising number of traffic accidents has become a major issue in our daily life, which has attracted the concern of society and governments. To deal with this issue, in our previous study, we have designed a real-time driving fatigue detection system using power spectrum density and sample entropy. By using the wireless technology and dry electrodes for EEG collection, we further integrated virtual reality simulated driving environment, which made our study more applicable to realistic settings. However, the high accuracy of classification for driving fatigue has not been obtained. To measure the time series complexity of the EEG signal, we proposed a fusion entropy (sample entropy, approximate entropy, and spectral entropy) analysis method of EEG and EOG. First, a sample entropy was applied for feature extraction from the horizontal and vertical EOG. Second, an approximate entropy, sample entropy, and spectral entropy features of each sub-band of EEG are extracted. Third, feature fusion for sub-band is performed by canonical correlation analysis (CCA). Finally, the features of EOG and EEG are classified using a relevant vector machine (RVM). Twenty-two subjects participated in the driving fatigue experiments for a duration of 90 min. The results demonstrated that the fusion entropy analysis combining EOG and EEG could provide an alternative method for driving fatigue detection, and the average accuracy rate was up to 99.1 ± 1.2%. The authors further analyzed the effect of feature fusion in four sub-bands (<inline-formula> <tex-math notation="LaTeX">\delta </tex-math></inline-formula>, <inline-formula> <tex-math notation="LaTeX">\alpha </tex-math></inline-formula>, <inline-formula> <tex-math notation="LaTeX">\beta </tex-math></inline-formula>, and <inline-formula> <tex-math notation="LaTeX">\theta </tex-math></inline-formula>) and compared with every single sub-band on classification performance, it is proved that the former is superior to the latter presenting the proposed method can provide effective indicators for driving fatigue detection.
Author Wu, Cong
Li, Ting
Wang, Hongtao
He, Yuebang
Bezerianos, Anastasios
Chen, Peng
Author_xml – sequence: 1
  givenname: Hongtao
  orcidid: 0000-0002-6564-5753
  surname: Wang
  fullname: Wang, Hongtao
  email: nushongtaowang@qq.com
  organization: Faculty of Intelligent Manufacturing, Wuyi University, Jiangmen, China
– sequence: 2
  givenname: Cong
  surname: Wu
  fullname: Wu, Cong
  organization: Faculty of Intelligent Manufacturing, Wuyi University, Jiangmen, China
– sequence: 3
  givenname: Ting
  surname: Li
  fullname: Li, Ting
  organization: Faculty of Intelligent Manufacturing, Wuyi University, Jiangmen, China
– sequence: 4
  givenname: Yuebang
  surname: He
  fullname: He, Yuebang
  organization: Faculty of Intelligent Manufacturing, Wuyi University, Jiangmen, China
– sequence: 5
  givenname: Peng
  surname: Chen
  fullname: Chen, Peng
  organization: Faculty of Intelligent Manufacturing, Wuyi University, Jiangmen, China
– sequence: 6
  givenname: Anastasios
  surname: Bezerianos
  fullname: Bezerianos, Anastasios
  email: tassos.bezerianos@nus.edu.sg
  organization: Centre for Life Sciences, Singapore Institute for Neurotechnology, National University of Singapore, Singapore
BookMark eNqFUclOwzAQtRBIrF_AJRLnFtsTx_axhLQgIfUAnC3HcSpXIS52itS_x20qhLgwl1k0783yLtFp73uL0C3BU0KwvJ-VZfX6OqWYyCmVhDGAE3RBSSEnwKA4_RWfo5sY1ziZSCXGL9D7Y3Bfrl9lcz241dZmZadjdK0zKfd99qCjbbIUzLdxn1f9EPxml8163e2ii1npP2rX7xmq5SLTfZNV1eIanbW6i_bm6K_Q-7x6K58mL8vFczl7mZgci2HCaoaBS8pFztq0j5UFb4ltCTCDWy5IYzAraA2WE0slljlnomiLAhhmoA1coeeRt_F6rTbBfeiwU147dSj4sFI6DM50VlFpJIe6lgJELhnWps5rmefGQFPLRiSuu5FrE_zn1sZBrf02pDOjojljBXAGNHXB2GWCjzHY9mcqwWovhxrlUHs51FGOhJJ_UMYNhwcPQbvuH-ztiHXW2p9pgmPJhYBvde2XQA
CODEN IAECCG
CitedBy_id crossref_primary_10_1016_j_brainresbull_2025_111223
crossref_primary_10_1109_TITS_2020_3013278
crossref_primary_10_1088_1741_2552_adbd77
crossref_primary_10_1007_s00521_023_08491_3
crossref_primary_10_1016_j_bbe_2021_08_003
crossref_primary_10_3390_bs14111090
crossref_primary_10_3390_electronics9111850
crossref_primary_10_3390_ijerph19137878
crossref_primary_10_1016_j_bspc_2023_105638
crossref_primary_10_1109_ACCESS_2019_2929644
crossref_primary_10_1109_TCYB_2021_3123842
crossref_primary_10_1109_ACCESS_2020_3018962
crossref_primary_10_1109_TNSRE_2023_3339768
crossref_primary_10_1016_j_sna_2023_114895
crossref_primary_10_1109_TNSRE_2020_2999599
crossref_primary_10_3390_s24123754
crossref_primary_10_7717_peerj_15744
crossref_primary_10_1016_j_heliyon_2024_e36431
crossref_primary_10_1109_ACCESS_2024_3426079
crossref_primary_10_1088_1741_2552_ab933e
crossref_primary_10_1109_JSEN_2022_3201015
crossref_primary_10_1109_ACCESS_2025_3545094
crossref_primary_10_3390_s21216985
crossref_primary_10_1109_ACCESS_2019_2939593
crossref_primary_10_1109_TAFFC_2021_3133443
crossref_primary_10_1049_bme2_12108
crossref_primary_10_4103_jmss_jmss_119_21
crossref_primary_10_3390_su162410984
crossref_primary_10_1109_TITS_2023_3348517
crossref_primary_10_1016_j_jsr_2024_05_015
crossref_primary_10_1109_ACCESS_2019_2960157
crossref_primary_10_1016_j_neucom_2024_128961
crossref_primary_10_1007_s11517_023_03000_z
crossref_primary_10_1109_TCBB_2020_3018137
crossref_primary_10_3390_app11157132
crossref_primary_10_1016_j_bspc_2021_102748
crossref_primary_10_1080_10255842_2024_2324878
crossref_primary_10_1109_JSEN_2024_3471699
crossref_primary_10_1109_JSEN_2020_3012404
crossref_primary_10_1109_TIM_2024_3400360
crossref_primary_10_1016_j_compbiomed_2021_104809
crossref_primary_10_3390_electronics13101798
crossref_primary_10_1016_j_dsp_2024_104856
crossref_primary_10_1016_j_dibe_2023_100198
crossref_primary_10_1109_ACCESS_2021_3100478
crossref_primary_10_1016_j_measurement_2022_111648
crossref_primary_10_1109_ACCESS_2021_3052935
crossref_primary_10_3390_su15129405
crossref_primary_10_3389_fnins_2024_1479793
crossref_primary_10_1109_ACCESS_2024_3354177
crossref_primary_10_1109_THMS_2020_3016088
crossref_primary_10_1093_sleepadvances_zpae009
crossref_primary_10_1186_s13640_021_00575_1
crossref_primary_10_1109_ACCESS_2024_3524452
crossref_primary_10_1177_15500594231192817
Cites_doi 10.1109/IJCNN.2014.6889642
10.1023/B:BRAT.0000006333.93597.9d
10.1016/j.jneumeth.2016.07.012
10.1016/j.bbe.2015.11.001
10.1109/TITS.2016.2582900
10.1631/jzus.C1400150
10.1093/acprof:oso/9780195058239.001.0001
10.1016/j.bbe.2015.11.003
10.1109/TITS.2013.2275192
10.1088/1741-2552/aa5a98
10.1016/j.procs.2014.07.045
10.1007/s11571-015-9363-z
10.1016/j.eswa.2007.12.043
10.1142/S0129065715500021
10.1117/1.3657506
10.1016/j.cmpb.2016.01.020
10.1088/1741-2560/10/4/046003
10.1016/j.ergon.2004.09.006
10.1109/TPAMI.2010.86
10.1016/j.knosys.2017.05.005
10.1049/iet-smt.2017.0284
10.1007/s11571-018-9485-1
10.1016/S0378-4371(02)00958-5
10.1038/srep43933
10.1016/j.bspc.2015.09.002
10.1007/s13177-015-0112-9
10.1007/s11571-014-9296-y
10.1016/j.eswa.2013.07.108
10.1152/jn.90989.2008
10.1016/j.knosys.2015.01.007
10.1016/j.jneumeth.2014.07.002
10.1023/A:1005553931564
10.1177/0018720813500305
10.1145/2682899
10.3758/s13428-017-0928-0
10.1109/TBME.2011.2116018
10.1109/EMBC.2017.8037351
10.1016/j.neucom.2016.09.011
10.1016/S0301-0511(00)00085-5
10.1152/ajpheart.2000.278.6.H2039
10.1016/j.aap.2009.11.011
10.14257/ijca.2016.9.3.30
10.1016/S0166-4115(08)62386-9
10.1016/j.medengphy.2013.07.011
10.1109/NER.2015.7146721
10.1016/j.cageo.2016.12.005
10.3389/fnins.2017.00103
10.1109/3477.931536
10.1109/TBME.2010.2077291
10.1109/EMBC.2017.8037359
10.1007/s11571-018-9481-5
10.1109/JBHI.2016.2544061
10.1016/j.cmpb.2016.09.008
10.1007/s10548-015-0429-3
10.1088/2057-1976/2/3/035003
10.1093/bioinformatics/17.6.509
10.1007/BF01581275
10.1016/j.jneumeth.2010.01.010
10.1016/j.neucom.2016.12.062
10.1016/j.bbe.2018.04.004
10.1016/j.bspc.2016.05.009
10.1016/j.patrec.2006.11.007
10.1016/j.jneumeth.2003.10.009
10.1073/pnas.88.6.2297
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019
DBID 97E
ESBDL
RIA
RIE
AAYXX
CITATION
7SC
7SP
7SR
8BQ
8FD
JG9
JQ2
L7M
L~C
L~D
DOA
DOI 10.1109/ACCESS.2019.2915533
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE Xplore Open Access Journals
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Xplore
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
METADEX
Computer and Information Systems Abstracts Professional
DatabaseTitleList Materials Research Database


Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: RIE
  name: IEEE/IET Electronic Library (IEL) (UW System Shared)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2169-3536
EndPage 61986
ExternalDocumentID oai_doaj_org_article_29c973bb98384950acb4b944cc3db9d8
10_1109_ACCESS_2019_2915533
8709788
Genre orig-research
GrantInformation_xml – fundername: Jiangmen Brain-like Computation and Hybrid Intelligence R&D Center
  grantid: [2018]359; [2019]26
– fundername: Defence Science Organisation (DSO), Singapore
  grantid: R-719-000-027-592
– fundername: Natural Science Foundation of Guangdong Province
  grantid: 2018A030313882
  funderid: 10.13039/501100003453
– fundername: Wuyi University
  grantid: 2018td01
  funderid: 10.13039/501100007310
– fundername: Projects for International Scientific and Technological Cooperation
  grantid: 2018A05056084
– fundername: Technology Development Project of Guangdong Province
  grantid: 2017A010101034
GroupedDBID 0R~
4.4
5VS
6IK
97E
AAJGR
ABAZT
ABVLG
ACGFS
ADBBV
AGSQL
ALMA_UNASSIGNED_HOLDINGS
BCNDV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
EJD
ESBDL
GROUPED_DOAJ
IPLJI
JAVBF
KQ8
M43
M~E
O9-
OCL
OK1
RIA
RIE
RNS
AAYXX
CITATION
RIG
7SC
7SP
7SR
8BQ
8FD
JG9
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c408t-5b5037927845f695e967f1ef135c0f781dc0562b3e71e290947586f6635053ac3
IEDL.DBID RIE
ISSN 2169-3536
IngestDate Wed Aug 27 01:13:51 EDT 2025
Fri Jun 27 07:15:54 EDT 2025
Thu Apr 24 22:53:56 EDT 2025
Tue Jul 01 02:41:29 EDT 2025
Wed Aug 27 02:46:56 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/OAPA.html
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c408t-5b5037927845f695e967f1ef135c0f781dc0562b3e71e290947586f6635053ac3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-6564-5753
OpenAccessLink https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/document/8709788
PQID 2455637532
PQPubID 4845423
PageCount 12
ParticipantIDs ieee_primary_8709788
crossref_citationtrail_10_1109_ACCESS_2019_2915533
proquest_journals_2455637532
crossref_primary_10_1109_ACCESS_2019_2915533
doaj_primary_oai_doaj_org_article_29c973bb98384950acb4b944cc3db9d8
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20190000
2019-00-00
20190101
2019-01-01
PublicationDateYYYYMMDD 2019-01-01
PublicationDate_xml – year: 2019
  text: 20190000
PublicationDecade 2010
PublicationPlace Piscataway
PublicationPlace_xml – name: Piscataway
PublicationTitle IEEE access
PublicationTitleAbbrev Access
PublicationYear 2019
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref57
ref13
amiri (ref47) 2009; 7
ref56
ref12
ref59
ref15
ref14
ref53
ref52
ref55
ref11
ref54
ref10
burrus (ref50) 1997
ref17
ref16
ref19
ref18
coifman (ref49) 1994
ref51
ref46
ko (ref71) 2015
ref45
ref48
rau (ref3) 2005
ref42
ref41
ref44
ref43
(ref1) 2017
ref8
ref7
ref9
ref6
hanley (ref65) 1989; 29
ref5
ref40
ref35
ref34
ref37
ref36
ref75
ref31
ref74
ref30
ref33
kohavi (ref63) 1995; 14
ref32
ref2
ref39
ref38
ref70
ref73
ref72
zhao (ref4) 2011; 7
ref68
ref24
ref23
ref26
ref69
ref25
ref64
ref20
ref66
ref22
ref28
ref27
tipping (ref58) 2003
ref29
ref60
ref61
gharagozlou (ref21) 2015; 44
hart (ref62) 1988; 52
lee (ref67) 2001; 31
References_xml – ident: ref36
  doi: 10.1109/IJCNN.2014.6889642
– ident: ref44
  doi: 10.1023/B:BRAT.0000006333.93597.9d
– ident: ref52
  doi: 10.1016/j.jneumeth.2016.07.012
– ident: ref26
  doi: 10.1016/j.bbe.2015.11.001
– ident: ref8
  doi: 10.1109/TITS.2016.2582900
– ident: ref41
  doi: 10.1631/jzus.C1400150
– ident: ref34
  doi: 10.1093/acprof:oso/9780195058239.001.0001
– volume: 44
  start-page: 1693
  year: 2015
  ident: ref21
  article-title: Detecting driver mental fatigue based on EEG alpha power changes during simulated driving
  publication-title: Iranian Jour Publ Health
– ident: ref30
  doi: 10.1016/j.bbe.2015.11.003
– ident: ref24
  doi: 10.1109/TITS.2013.2275192
– start-page: 363
  year: 1994
  ident: ref49
  article-title: Signal processing and compression with wavelet packets
  publication-title: Wavelets and Their Applications
– ident: ref39
  doi: 10.1088/1741-2552/aa5a98
– ident: ref20
  doi: 10.1016/j.procs.2014.07.045
– ident: ref10
  doi: 10.1007/s11571-015-9363-z
– ident: ref19
  doi: 10.1016/j.eswa.2007.12.043
– ident: ref9
  doi: 10.1142/S0129065715500021
– ident: ref12
  doi: 10.1117/1.3657506
– ident: ref68
  doi: 10.1016/j.cmpb.2016.01.020
– volume: 29
  start-page: 307
  year: 1989
  ident: ref65
  article-title: Receiver operating characteristic (ROC) methodology: The state of the art
  publication-title: Crit Rev Diagnostic Imag
– ident: ref16
  doi: 10.1088/1741-2560/10/4/046003
– ident: ref18
  doi: 10.1016/j.ergon.2004.09.006
– ident: ref37
  doi: 10.1109/TPAMI.2010.86
– ident: ref27
  doi: 10.1016/j.knosys.2017.05.005
– ident: ref23
  doi: 10.1049/iet-smt.2017.0284
– ident: ref75
  doi: 10.1007/s11571-018-9485-1
– year: 2017
  ident: ref1
  publication-title: More Than 1 2 Million Adolescents Die Every Year Nearly All Preventable
– year: 2005
  ident: ref3
  article-title: Drowsy driver detection and warning system for commercial vehicle drivers: Field operational test design, data analyses, and progress
– ident: ref48
  doi: 10.1016/S0378-4371(02)00958-5
– ident: ref74
  doi: 10.1038/srep43933
– ident: ref25
  doi: 10.1016/j.bspc.2015.09.002
– ident: ref40
  doi: 10.1007/s13177-015-0112-9
– ident: ref42
  doi: 10.1007/s11571-014-9296-y
– ident: ref13
  doi: 10.1016/j.eswa.2013.07.108
– ident: ref46
  doi: 10.1152/jn.90989.2008
– ident: ref17
  doi: 10.1016/j.knosys.2015.01.007
– ident: ref5
  doi: 10.1016/j.jneumeth.2014.07.002
– ident: ref56
  doi: 10.1023/A:1005553931564
– ident: ref15
  doi: 10.1177/0018720813500305
– year: 2003
  ident: ref58
  article-title: Fast marginal likelihood maximisation for sparse Bayesian models
  publication-title: Proc AISTATS
– ident: ref43
  doi: 10.1145/2682899
– ident: ref35
  doi: 10.3758/s13428-017-0928-0
– ident: ref14
  doi: 10.1109/TBME.2011.2116018
– ident: ref60
  doi: 10.1109/EMBC.2017.8037351
– ident: ref28
  doi: 10.1016/j.neucom.2016.09.011
– ident: ref66
  doi: 10.1016/S0301-0511(00)00085-5
– ident: ref54
  doi: 10.1152/ajpheart.2000.278.6.H2039
– ident: ref2
  doi: 10.1016/j.aap.2009.11.011
– ident: ref72
  doi: 10.14257/ijca.2016.9.3.30
– volume: 52
  start-page: 139
  year: 1988
  ident: ref62
  article-title: Development of NASA-TLX (Task Load Index): Results of empirical and theoretical research
  publication-title: Advances in Psychology
  doi: 10.1016/S0166-4115(08)62386-9
– ident: ref70
  doi: 10.1016/j.medengphy.2013.07.011
– ident: ref38
  doi: 10.1109/NER.2015.7146721
– ident: ref57
  doi: 10.1016/j.cageo.2016.12.005
– ident: ref73
  doi: 10.3389/fnins.2017.00103
– volume: 31
  start-page: 426
  year: 2001
  ident: ref67
  article-title: An efficient fuzzy classifier with feature selection based on fuzzy entropy
  publication-title: IEEE Trans Syst Man Cybern C Appl Rev
  doi: 10.1109/3477.931536
– ident: ref6
  doi: 10.1109/TBME.2010.2077291
– ident: ref61
  doi: 10.1109/EMBC.2017.8037359
– volume: 14
  start-page: 1137
  year: 1995
  ident: ref63
  article-title: A study of cross-validation and bootstrap for accuracy estimation and model selection
  publication-title: Proc Int Joint Conf AI
– start-page: 1
  year: 2015
  ident: ref71
  article-title: Single channel wireless EEG device for real-time fatigue level detection
  publication-title: Proc Int Joint Conf Neural Netw (IJCNN)
– ident: ref33
  doi: 10.1007/s11571-018-9481-5
– year: 1997
  ident: ref50
  publication-title: Introduction to Wavelets and Wavelet Transforms A Primer
– ident: ref11
  doi: 10.1109/JBHI.2016.2544061
– volume: 7
  start-page: 248
  year: 2009
  ident: ref47
  article-title: Comparison of different methods of wavelet and wavelet packet transform in processing ground motion records
  publication-title: International Journal of Civil Engineering
– ident: ref51
  doi: 10.1016/j.cmpb.2016.09.008
– ident: ref55
  doi: 10.1007/s10548-015-0429-3
– ident: ref31
  doi: 10.1088/2057-1976/2/3/035003
– ident: ref64
  doi: 10.1093/bioinformatics/17.6.509
– ident: ref59
  doi: 10.1007/BF01581275
– volume: 7
  start-page: 1157
  year: 2011
  ident: ref4
  article-title: Automatic classification of driving mental fatigue with EEG by wavelet packet energy and KPCA-SVM
  publication-title: Int J Innov Comput
– ident: ref7
  doi: 10.1016/j.jneumeth.2010.01.010
– ident: ref32
  doi: 10.1016/j.neucom.2016.12.062
– ident: ref22
  doi: 10.1016/j.bbe.2018.04.004
– ident: ref29
  doi: 10.1016/j.bspc.2016.05.009
– ident: ref69
  doi: 10.1016/j.patrec.2006.11.007
– ident: ref45
  doi: 10.1016/j.jneumeth.2003.10.009
– ident: ref53
  doi: 10.1073/pnas.88.6.2297
SSID ssj0000816957
Score 2.4130054
Snippet The rising number of traffic accidents has become a major issue in our daily life, which has attracted the concern of society and governments. To deal with...
SourceID doaj
proquest
crossref
ieee
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 61975
SubjectTerms approximate entropy
Classification
Correlation analysis
Discrete wavelet transforms
Driver fatigue
Driving fatigue
Electrodes
electroencephalogram (EEG)
Electroencephalography
electrooculogram (EOG)
Electrooculography
Entropy
Fatigue
Feature extraction
sample entropy
spectral entropy
Time measurement
Traffic accidents
Virtual reality
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV09T8MwELUQEwwIKIjyJQ-MhDqx3cQjlBSEBCxU6mblbAchoVJBO_DvuXPSqggJFrbIcj78fLbfOed3jJ0Jr3OQsk6QirhEeQgJsuqQkJSWARBV7ug08v1D_3ak7sZ6vJLqi2LCGnngBrheZpzJJYApZIFkXlQOFBilnJMejI_HfIURK85UnIOLtG903soMpcL0LgcDbBHFcpmLjETRpfy2FEXF_jbFyo95OS42w2221bJEftl83Q5bC5NdtrmiHdhho-v3F9oM4EPE9nkeeExvSYE_EWt-hcuT53gxnNOGGC8pJH36yRcqJBxnAojZIXj5eMOriedlebPHRsPyaXCbtDkSEqdEMUs0aCFzQ78PdY1NDqaf12moU6mdqHNko44oDsiQpyEz6Myhg9CviWfg8Kuc3Gfrk7dJOGC88pXzAJlXXiooDOjgvESctSukg6rLsgVc1rUC4pTH4tVGR0IY22BsCWPbYtxl58ubpo1-xu_Vr6gfllVJ_DoWoEnY1iTsXybRZR3qxeVDcEpCXxmLjxe9atuB-mEzRQpp6LNlh__x6iO2Qc1p9miO2frsfR5OkLXM4DQa6BcYKeV2
  priority: 102
  providerName: Directory of Open Access Journals
Title Driving Fatigue Classification Based on Fusion Entropy Analysis Combining EOG and EEG
URI https://ieeexplore.ieee.org/document/8709788
https://www.proquest.com/docview/2455637532
https://doaj.org/article/29c973bb98384950acb4b944cc3db9d8
Volume 7
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3BTuMwEB0BJ_YACyyiLCAfOJKSxk4TH6GkICTgQiVuUcZ2EAK1CJoD-_U747gRuyDEzYpsy_Eb2zPj8RuAw9imGUpZR6SKmEhZdBFp1S5iKi2NGFeZ4dfIV9fDi4m6vEvvluCoewvjnPPBZ67PRX-Xb2emYVfZMckWGT35MiyTmLVvtTp_CieQ0GkWiIUGsT4-GY3oHzh6S_cTpkGX8p_Dx3P0h6QqH3Zif7yM1-FqMbA2quSx38yxb_78x9n43ZH_hLWgZ4qTVjA2YMlNN-HHO_bBLZicvTywO0GMCZ37xgmfIJNDhzxa4pQOOCuoMG7YpSYKDmp_fhMLHhNBewn6_BKiuDkX1dSKojj_BZNxcTu6iEKWhcioOJ9HKaaxzDRfQKY1TaHTw6weuHogUxPXGemzhpUklC4buESTOUgmxrBmTYUWcGXkNqxMZ1O3A6KylbGIiVVWKsw1ps5YaQz1lEuDVQ-SxfSXJlCQcyaMp9KbIrEuW8xKxqwMmPXgqGv03DJwfF39lHHtqjJ9tv9AeJRhNVJdozOJqHOZk4UYVwYVaqVoqBa1zXuwxRh2nQT4erC3kJIyLPXXMlHMsUZWX7L7eavfsMoDbP02e7Ayf2ncPmkyczzwHoADL8h_AVPp79s
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB6VcgAOvApioYAPHJttNrY38bFdsl2gWy5dqTcrYzsVAm2rsjnAr2fG8Ua8hLhZkW05_sb2zHj8DcCb3OsSpWwzUkVcpjyGjLTqkDGVlkHMm9Lxa-Tl2XSxUu8v9MUOHAxvYUIIMfgsjLkY7_L9levYVXZIskVGT3ULbtO5r3T_WmvwqHAKCaPLRC00yc3h0WxGf8HxW2ZcMBG6lL8cP5GlP6VV-WMvjgfM_AEst0Pr40o-j7sNjt3331gb_3fsD-F-0jTFUS8aj2AnrB_DvZ_4B_dg9fbmEzsUxJzwueyCiCkyOXgo4iWO6Yjzggrzjp1qouaw9utvYstkImg3wZhhQtQfT0Sz9qKuT57Aal6fzxZZyrOQOZVXm0yjzmVp-ApStzSFwUzLdhLaidQub0vSaB2rSShDOQmFIYOQjIxpy7oKLeHGyaewu75ah2cgGt84j1h45aXCyqAOzkvnqKdKOmxGUGyn37pEQs65ML7YaIzkxvaYWcbMJsxGcDA0uu45OP5d_ZhxHaoygXb8QHjYtB6prjOlRDSVrMhGzBuHCo1SNFSPxlcj2GMMh04SfCPY30qJTYv9qy0Us6yR3Vc8_3ur13Bncb48tafvzj68gLs82N6Lsw-7m5suvCS9ZoOvojj_AF8l8jM
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Driving+Fatigue+Classification+Based+on+Fusion+Entropy+Analysis+Combining+EOG+and+EEG&rft.jtitle=IEEE+access&rft.au=Wang%2C+Hongtao&rft.au=Wu%2C+Cong&rft.au=Li%2C+Ting&rft.au=He%2C+Yuebang&rft.date=2019&rft.pub=IEEE&rft.eissn=2169-3536&rft.volume=7&rft.spage=61975&rft.epage=61986&rft_id=info:doi/10.1109%2FACCESS.2019.2915533&rft.externalDocID=8709788
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2169-3536&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2169-3536&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2169-3536&client=summon