Driving Fatigue Classification Based on Fusion Entropy Analysis Combining EOG and EEG
The rising number of traffic accidents has become a major issue in our daily life, which has attracted the concern of society and governments. To deal with this issue, in our previous study, we have designed a real-time driving fatigue detection system using power spectrum density and sample entropy...
Saved in:
Published in | IEEE access Vol. 7; pp. 61975 - 61986 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Piscataway
IEEE
2019
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
ISSN | 2169-3536 2169-3536 |
DOI | 10.1109/ACCESS.2019.2915533 |
Cover
Abstract | The rising number of traffic accidents has become a major issue in our daily life, which has attracted the concern of society and governments. To deal with this issue, in our previous study, we have designed a real-time driving fatigue detection system using power spectrum density and sample entropy. By using the wireless technology and dry electrodes for EEG collection, we further integrated virtual reality simulated driving environment, which made our study more applicable to realistic settings. However, the high accuracy of classification for driving fatigue has not been obtained. To measure the time series complexity of the EEG signal, we proposed a fusion entropy (sample entropy, approximate entropy, and spectral entropy) analysis method of EEG and EOG. First, a sample entropy was applied for feature extraction from the horizontal and vertical EOG. Second, an approximate entropy, sample entropy, and spectral entropy features of each sub-band of EEG are extracted. Third, feature fusion for sub-band is performed by canonical correlation analysis (CCA). Finally, the features of EOG and EEG are classified using a relevant vector machine (RVM). Twenty-two subjects participated in the driving fatigue experiments for a duration of 90 min. The results demonstrated that the fusion entropy analysis combining EOG and EEG could provide an alternative method for driving fatigue detection, and the average accuracy rate was up to 99.1 ± 1.2%. The authors further analyzed the effect of feature fusion in four sub-bands (<inline-formula> <tex-math notation="LaTeX">\delta </tex-math></inline-formula>, <inline-formula> <tex-math notation="LaTeX">\alpha </tex-math></inline-formula>, <inline-formula> <tex-math notation="LaTeX">\beta </tex-math></inline-formula>, and <inline-formula> <tex-math notation="LaTeX">\theta </tex-math></inline-formula>) and compared with every single sub-band on classification performance, it is proved that the former is superior to the latter presenting the proposed method can provide effective indicators for driving fatigue detection. |
---|---|
AbstractList | The rising number of traffic accidents has become a major issue in our daily life, which has attracted the concern of society and governments. To deal with this issue, in our previous study, we have designed a real-time driving fatigue detection system using power spectrum density and sample entropy. By using the wireless technology and dry electrodes for EEG collection, we further integrated virtual reality simulated driving environment, which made our study more applicable to realistic settings. However, the high accuracy of classification for driving fatigue has not been obtained. To measure the time series complexity of the EEG signal, we proposed a fusion entropy (sample entropy, approximate entropy, and spectral entropy) analysis method of EEG and EOG. First, a sample entropy was applied for feature extraction from the horizontal and vertical EOG. Second, an approximate entropy, sample entropy, and spectral entropy features of each sub-band of EEG are extracted. Third, feature fusion for sub-band is performed by canonical correlation analysis (CCA). Finally, the features of EOG and EEG are classified using a relevant vector machine (RVM). Twenty-two subjects participated in the driving fatigue experiments for a duration of 90 min. The results demonstrated that the fusion entropy analysis combining EOG and EEG could provide an alternative method for driving fatigue detection, and the average accuracy rate was up to 99.1 ± 1.2%. The authors further analyzed the effect of feature fusion in four sub-bands (δ, α, β and θ) and compared with every single sub-band on classification performance, it is proved that the former is superior to the latter presenting the proposed method can provide effective indicators for driving fatigue detection. The rising number of traffic accidents has become a major issue in our daily life, which has attracted the concern of society and governments. To deal with this issue, in our previous study, we have designed a real-time driving fatigue detection system using power spectrum density and sample entropy. By using the wireless technology and dry electrodes for EEG collection, we further integrated virtual reality simulated driving environment, which made our study more applicable to realistic settings. However, the high accuracy of classification for driving fatigue has not been obtained. To measure the time series complexity of the EEG signal, we proposed a fusion entropy (sample entropy, approximate entropy, and spectral entropy) analysis method of EEG and EOG. First, a sample entropy was applied for feature extraction from the horizontal and vertical EOG. Second, an approximate entropy, sample entropy, and spectral entropy features of each sub-band of EEG are extracted. Third, feature fusion for sub-band is performed by canonical correlation analysis (CCA). Finally, the features of EOG and EEG are classified using a relevant vector machine (RVM). Twenty-two subjects participated in the driving fatigue experiments for a duration of 90 min. The results demonstrated that the fusion entropy analysis combining EOG and EEG could provide an alternative method for driving fatigue detection, and the average accuracy rate was up to 99.1 ± 1.2%. The authors further analyzed the effect of feature fusion in four sub-bands (<inline-formula> <tex-math notation="LaTeX">\delta </tex-math></inline-formula>, <inline-formula> <tex-math notation="LaTeX">\alpha </tex-math></inline-formula>, <inline-formula> <tex-math notation="LaTeX">\beta </tex-math></inline-formula>, and <inline-formula> <tex-math notation="LaTeX">\theta </tex-math></inline-formula>) and compared with every single sub-band on classification performance, it is proved that the former is superior to the latter presenting the proposed method can provide effective indicators for driving fatigue detection. |
Author | Wu, Cong Li, Ting Wang, Hongtao He, Yuebang Bezerianos, Anastasios Chen, Peng |
Author_xml | – sequence: 1 givenname: Hongtao orcidid: 0000-0002-6564-5753 surname: Wang fullname: Wang, Hongtao email: nushongtaowang@qq.com organization: Faculty of Intelligent Manufacturing, Wuyi University, Jiangmen, China – sequence: 2 givenname: Cong surname: Wu fullname: Wu, Cong organization: Faculty of Intelligent Manufacturing, Wuyi University, Jiangmen, China – sequence: 3 givenname: Ting surname: Li fullname: Li, Ting organization: Faculty of Intelligent Manufacturing, Wuyi University, Jiangmen, China – sequence: 4 givenname: Yuebang surname: He fullname: He, Yuebang organization: Faculty of Intelligent Manufacturing, Wuyi University, Jiangmen, China – sequence: 5 givenname: Peng surname: Chen fullname: Chen, Peng organization: Faculty of Intelligent Manufacturing, Wuyi University, Jiangmen, China – sequence: 6 givenname: Anastasios surname: Bezerianos fullname: Bezerianos, Anastasios email: tassos.bezerianos@nus.edu.sg organization: Centre for Life Sciences, Singapore Institute for Neurotechnology, National University of Singapore, Singapore |
BookMark | eNqFUclOwzAQtRBIrF_AJRLnFtsTx_axhLQgIfUAnC3HcSpXIS52itS_x20qhLgwl1k0783yLtFp73uL0C3BU0KwvJ-VZfX6OqWYyCmVhDGAE3RBSSEnwKA4_RWfo5sY1ziZSCXGL9D7Y3Bfrl9lcz241dZmZadjdK0zKfd99qCjbbIUzLdxn1f9EPxml8163e2ii1npP2rX7xmq5SLTfZNV1eIanbW6i_bm6K_Q-7x6K58mL8vFczl7mZgci2HCaoaBS8pFztq0j5UFb4ltCTCDWy5IYzAraA2WE0slljlnomiLAhhmoA1coeeRt_F6rTbBfeiwU147dSj4sFI6DM50VlFpJIe6lgJELhnWps5rmefGQFPLRiSuu5FrE_zn1sZBrf02pDOjojljBXAGNHXB2GWCjzHY9mcqwWovhxrlUHs51FGOhJJ_UMYNhwcPQbvuH-ztiHXW2p9pgmPJhYBvde2XQA |
CODEN | IAECCG |
CitedBy_id | crossref_primary_10_1016_j_brainresbull_2025_111223 crossref_primary_10_1109_TITS_2020_3013278 crossref_primary_10_1088_1741_2552_adbd77 crossref_primary_10_1007_s00521_023_08491_3 crossref_primary_10_1016_j_bbe_2021_08_003 crossref_primary_10_3390_bs14111090 crossref_primary_10_3390_electronics9111850 crossref_primary_10_3390_ijerph19137878 crossref_primary_10_1016_j_bspc_2023_105638 crossref_primary_10_1109_ACCESS_2019_2929644 crossref_primary_10_1109_TCYB_2021_3123842 crossref_primary_10_1109_ACCESS_2020_3018962 crossref_primary_10_1109_TNSRE_2023_3339768 crossref_primary_10_1016_j_sna_2023_114895 crossref_primary_10_1109_TNSRE_2020_2999599 crossref_primary_10_3390_s24123754 crossref_primary_10_7717_peerj_15744 crossref_primary_10_1016_j_heliyon_2024_e36431 crossref_primary_10_1109_ACCESS_2024_3426079 crossref_primary_10_1088_1741_2552_ab933e crossref_primary_10_1109_JSEN_2022_3201015 crossref_primary_10_1109_ACCESS_2025_3545094 crossref_primary_10_3390_s21216985 crossref_primary_10_1109_ACCESS_2019_2939593 crossref_primary_10_1109_TAFFC_2021_3133443 crossref_primary_10_1049_bme2_12108 crossref_primary_10_4103_jmss_jmss_119_21 crossref_primary_10_3390_su162410984 crossref_primary_10_1109_TITS_2023_3348517 crossref_primary_10_1016_j_jsr_2024_05_015 crossref_primary_10_1109_ACCESS_2019_2960157 crossref_primary_10_1016_j_neucom_2024_128961 crossref_primary_10_1007_s11517_023_03000_z crossref_primary_10_1109_TCBB_2020_3018137 crossref_primary_10_3390_app11157132 crossref_primary_10_1016_j_bspc_2021_102748 crossref_primary_10_1080_10255842_2024_2324878 crossref_primary_10_1109_JSEN_2024_3471699 crossref_primary_10_1109_JSEN_2020_3012404 crossref_primary_10_1109_TIM_2024_3400360 crossref_primary_10_1016_j_compbiomed_2021_104809 crossref_primary_10_3390_electronics13101798 crossref_primary_10_1016_j_dsp_2024_104856 crossref_primary_10_1016_j_dibe_2023_100198 crossref_primary_10_1109_ACCESS_2021_3100478 crossref_primary_10_1016_j_measurement_2022_111648 crossref_primary_10_1109_ACCESS_2021_3052935 crossref_primary_10_3390_su15129405 crossref_primary_10_3389_fnins_2024_1479793 crossref_primary_10_1109_ACCESS_2024_3354177 crossref_primary_10_1109_THMS_2020_3016088 crossref_primary_10_1093_sleepadvances_zpae009 crossref_primary_10_1186_s13640_021_00575_1 crossref_primary_10_1109_ACCESS_2024_3524452 crossref_primary_10_1177_15500594231192817 |
Cites_doi | 10.1109/IJCNN.2014.6889642 10.1023/B:BRAT.0000006333.93597.9d 10.1016/j.jneumeth.2016.07.012 10.1016/j.bbe.2015.11.001 10.1109/TITS.2016.2582900 10.1631/jzus.C1400150 10.1093/acprof:oso/9780195058239.001.0001 10.1016/j.bbe.2015.11.003 10.1109/TITS.2013.2275192 10.1088/1741-2552/aa5a98 10.1016/j.procs.2014.07.045 10.1007/s11571-015-9363-z 10.1016/j.eswa.2007.12.043 10.1142/S0129065715500021 10.1117/1.3657506 10.1016/j.cmpb.2016.01.020 10.1088/1741-2560/10/4/046003 10.1016/j.ergon.2004.09.006 10.1109/TPAMI.2010.86 10.1016/j.knosys.2017.05.005 10.1049/iet-smt.2017.0284 10.1007/s11571-018-9485-1 10.1016/S0378-4371(02)00958-5 10.1038/srep43933 10.1016/j.bspc.2015.09.002 10.1007/s13177-015-0112-9 10.1007/s11571-014-9296-y 10.1016/j.eswa.2013.07.108 10.1152/jn.90989.2008 10.1016/j.knosys.2015.01.007 10.1016/j.jneumeth.2014.07.002 10.1023/A:1005553931564 10.1177/0018720813500305 10.1145/2682899 10.3758/s13428-017-0928-0 10.1109/TBME.2011.2116018 10.1109/EMBC.2017.8037351 10.1016/j.neucom.2016.09.011 10.1016/S0301-0511(00)00085-5 10.1152/ajpheart.2000.278.6.H2039 10.1016/j.aap.2009.11.011 10.14257/ijca.2016.9.3.30 10.1016/S0166-4115(08)62386-9 10.1016/j.medengphy.2013.07.011 10.1109/NER.2015.7146721 10.1016/j.cageo.2016.12.005 10.3389/fnins.2017.00103 10.1109/3477.931536 10.1109/TBME.2010.2077291 10.1109/EMBC.2017.8037359 10.1007/s11571-018-9481-5 10.1109/JBHI.2016.2544061 10.1016/j.cmpb.2016.09.008 10.1007/s10548-015-0429-3 10.1088/2057-1976/2/3/035003 10.1093/bioinformatics/17.6.509 10.1007/BF01581275 10.1016/j.jneumeth.2010.01.010 10.1016/j.neucom.2016.12.062 10.1016/j.bbe.2018.04.004 10.1016/j.bspc.2016.05.009 10.1016/j.patrec.2006.11.007 10.1016/j.jneumeth.2003.10.009 10.1073/pnas.88.6.2297 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019 |
DBID | 97E ESBDL RIA RIE AAYXX CITATION 7SC 7SP 7SR 8BQ 8FD JG9 JQ2 L7M L~C L~D DOA |
DOI | 10.1109/ACCESS.2019.2915533 |
DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE Xplore Open Access Journals IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Xplore CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts METADEX Technology Research Database Materials Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace METADEX Computer and Information Systems Abstracts Professional |
DatabaseTitleList | Materials Research Database |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: RIE name: IEEE/IET Electronic Library (IEL) (UW System Shared) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 2169-3536 |
EndPage | 61986 |
ExternalDocumentID | oai_doaj_org_article_29c973bb98384950acb4b944cc3db9d8 10_1109_ACCESS_2019_2915533 8709788 |
Genre | orig-research |
GrantInformation_xml | – fundername: Jiangmen Brain-like Computation and Hybrid Intelligence R&D Center grantid: [2018]359; [2019]26 – fundername: Defence Science Organisation (DSO), Singapore grantid: R-719-000-027-592 – fundername: Natural Science Foundation of Guangdong Province grantid: 2018A030313882 funderid: 10.13039/501100003453 – fundername: Wuyi University grantid: 2018td01 funderid: 10.13039/501100007310 – fundername: Projects for International Scientific and Technological Cooperation grantid: 2018A05056084 – fundername: Technology Development Project of Guangdong Province grantid: 2017A010101034 |
GroupedDBID | 0R~ 4.4 5VS 6IK 97E AAJGR ABAZT ABVLG ACGFS ADBBV AGSQL ALMA_UNASSIGNED_HOLDINGS BCNDV BEFXN BFFAM BGNUA BKEBE BPEOZ EBS EJD ESBDL GROUPED_DOAJ IPLJI JAVBF KQ8 M43 M~E O9- OCL OK1 RIA RIE RNS AAYXX CITATION RIG 7SC 7SP 7SR 8BQ 8FD JG9 JQ2 L7M L~C L~D |
ID | FETCH-LOGICAL-c408t-5b5037927845f695e967f1ef135c0f781dc0562b3e71e290947586f6635053ac3 |
IEDL.DBID | RIE |
ISSN | 2169-3536 |
IngestDate | Wed Aug 27 01:13:51 EDT 2025 Fri Jun 27 07:15:54 EDT 2025 Thu Apr 24 22:53:56 EDT 2025 Tue Jul 01 02:41:29 EDT 2025 Wed Aug 27 02:46:56 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Language | English |
License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/OAPA.html |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c408t-5b5037927845f695e967f1ef135c0f781dc0562b3e71e290947586f6635053ac3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-6564-5753 |
OpenAccessLink | https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/document/8709788 |
PQID | 2455637532 |
PQPubID | 4845423 |
PageCount | 12 |
ParticipantIDs | ieee_primary_8709788 crossref_citationtrail_10_1109_ACCESS_2019_2915533 proquest_journals_2455637532 crossref_primary_10_1109_ACCESS_2019_2915533 doaj_primary_oai_doaj_org_article_29c973bb98384950acb4b944cc3db9d8 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20190000 2019-00-00 20190101 2019-01-01 |
PublicationDateYYYYMMDD | 2019-01-01 |
PublicationDate_xml | – year: 2019 text: 20190000 |
PublicationDecade | 2010 |
PublicationPlace | Piscataway |
PublicationPlace_xml | – name: Piscataway |
PublicationTitle | IEEE access |
PublicationTitleAbbrev | Access |
PublicationYear | 2019 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref57 ref13 amiri (ref47) 2009; 7 ref56 ref12 ref59 ref15 ref14 ref53 ref52 ref55 ref11 ref54 ref10 burrus (ref50) 1997 ref17 ref16 ref19 ref18 coifman (ref49) 1994 ref51 ref46 ko (ref71) 2015 ref45 ref48 rau (ref3) 2005 ref42 ref41 ref44 ref43 (ref1) 2017 ref8 ref7 ref9 ref6 hanley (ref65) 1989; 29 ref5 ref40 ref35 ref34 ref37 ref36 ref75 ref31 ref74 ref30 ref33 kohavi (ref63) 1995; 14 ref32 ref2 ref39 ref38 ref70 ref73 ref72 zhao (ref4) 2011; 7 ref68 ref24 ref23 ref26 ref69 ref25 ref64 ref20 ref66 ref22 ref28 ref27 tipping (ref58) 2003 ref29 ref60 ref61 gharagozlou (ref21) 2015; 44 hart (ref62) 1988; 52 lee (ref67) 2001; 31 |
References_xml | – ident: ref36 doi: 10.1109/IJCNN.2014.6889642 – ident: ref44 doi: 10.1023/B:BRAT.0000006333.93597.9d – ident: ref52 doi: 10.1016/j.jneumeth.2016.07.012 – ident: ref26 doi: 10.1016/j.bbe.2015.11.001 – ident: ref8 doi: 10.1109/TITS.2016.2582900 – ident: ref41 doi: 10.1631/jzus.C1400150 – ident: ref34 doi: 10.1093/acprof:oso/9780195058239.001.0001 – volume: 44 start-page: 1693 year: 2015 ident: ref21 article-title: Detecting driver mental fatigue based on EEG alpha power changes during simulated driving publication-title: Iranian Jour Publ Health – ident: ref30 doi: 10.1016/j.bbe.2015.11.003 – ident: ref24 doi: 10.1109/TITS.2013.2275192 – start-page: 363 year: 1994 ident: ref49 article-title: Signal processing and compression with wavelet packets publication-title: Wavelets and Their Applications – ident: ref39 doi: 10.1088/1741-2552/aa5a98 – ident: ref20 doi: 10.1016/j.procs.2014.07.045 – ident: ref10 doi: 10.1007/s11571-015-9363-z – ident: ref19 doi: 10.1016/j.eswa.2007.12.043 – ident: ref9 doi: 10.1142/S0129065715500021 – ident: ref12 doi: 10.1117/1.3657506 – ident: ref68 doi: 10.1016/j.cmpb.2016.01.020 – volume: 29 start-page: 307 year: 1989 ident: ref65 article-title: Receiver operating characteristic (ROC) methodology: The state of the art publication-title: Crit Rev Diagnostic Imag – ident: ref16 doi: 10.1088/1741-2560/10/4/046003 – ident: ref18 doi: 10.1016/j.ergon.2004.09.006 – ident: ref37 doi: 10.1109/TPAMI.2010.86 – ident: ref27 doi: 10.1016/j.knosys.2017.05.005 – ident: ref23 doi: 10.1049/iet-smt.2017.0284 – ident: ref75 doi: 10.1007/s11571-018-9485-1 – year: 2017 ident: ref1 publication-title: More Than 1 2 Million Adolescents Die Every Year Nearly All Preventable – year: 2005 ident: ref3 article-title: Drowsy driver detection and warning system for commercial vehicle drivers: Field operational test design, data analyses, and progress – ident: ref48 doi: 10.1016/S0378-4371(02)00958-5 – ident: ref74 doi: 10.1038/srep43933 – ident: ref25 doi: 10.1016/j.bspc.2015.09.002 – ident: ref40 doi: 10.1007/s13177-015-0112-9 – ident: ref42 doi: 10.1007/s11571-014-9296-y – ident: ref13 doi: 10.1016/j.eswa.2013.07.108 – ident: ref46 doi: 10.1152/jn.90989.2008 – ident: ref17 doi: 10.1016/j.knosys.2015.01.007 – ident: ref5 doi: 10.1016/j.jneumeth.2014.07.002 – ident: ref56 doi: 10.1023/A:1005553931564 – ident: ref15 doi: 10.1177/0018720813500305 – year: 2003 ident: ref58 article-title: Fast marginal likelihood maximisation for sparse Bayesian models publication-title: Proc AISTATS – ident: ref43 doi: 10.1145/2682899 – ident: ref35 doi: 10.3758/s13428-017-0928-0 – ident: ref14 doi: 10.1109/TBME.2011.2116018 – ident: ref60 doi: 10.1109/EMBC.2017.8037351 – ident: ref28 doi: 10.1016/j.neucom.2016.09.011 – ident: ref66 doi: 10.1016/S0301-0511(00)00085-5 – ident: ref54 doi: 10.1152/ajpheart.2000.278.6.H2039 – ident: ref2 doi: 10.1016/j.aap.2009.11.011 – ident: ref72 doi: 10.14257/ijca.2016.9.3.30 – volume: 52 start-page: 139 year: 1988 ident: ref62 article-title: Development of NASA-TLX (Task Load Index): Results of empirical and theoretical research publication-title: Advances in Psychology doi: 10.1016/S0166-4115(08)62386-9 – ident: ref70 doi: 10.1016/j.medengphy.2013.07.011 – ident: ref38 doi: 10.1109/NER.2015.7146721 – ident: ref57 doi: 10.1016/j.cageo.2016.12.005 – ident: ref73 doi: 10.3389/fnins.2017.00103 – volume: 31 start-page: 426 year: 2001 ident: ref67 article-title: An efficient fuzzy classifier with feature selection based on fuzzy entropy publication-title: IEEE Trans Syst Man Cybern C Appl Rev doi: 10.1109/3477.931536 – ident: ref6 doi: 10.1109/TBME.2010.2077291 – ident: ref61 doi: 10.1109/EMBC.2017.8037359 – volume: 14 start-page: 1137 year: 1995 ident: ref63 article-title: A study of cross-validation and bootstrap for accuracy estimation and model selection publication-title: Proc Int Joint Conf AI – start-page: 1 year: 2015 ident: ref71 article-title: Single channel wireless EEG device for real-time fatigue level detection publication-title: Proc Int Joint Conf Neural Netw (IJCNN) – ident: ref33 doi: 10.1007/s11571-018-9481-5 – year: 1997 ident: ref50 publication-title: Introduction to Wavelets and Wavelet Transforms A Primer – ident: ref11 doi: 10.1109/JBHI.2016.2544061 – volume: 7 start-page: 248 year: 2009 ident: ref47 article-title: Comparison of different methods of wavelet and wavelet packet transform in processing ground motion records publication-title: International Journal of Civil Engineering – ident: ref51 doi: 10.1016/j.cmpb.2016.09.008 – ident: ref55 doi: 10.1007/s10548-015-0429-3 – ident: ref31 doi: 10.1088/2057-1976/2/3/035003 – ident: ref64 doi: 10.1093/bioinformatics/17.6.509 – ident: ref59 doi: 10.1007/BF01581275 – volume: 7 start-page: 1157 year: 2011 ident: ref4 article-title: Automatic classification of driving mental fatigue with EEG by wavelet packet energy and KPCA-SVM publication-title: Int J Innov Comput – ident: ref7 doi: 10.1016/j.jneumeth.2010.01.010 – ident: ref32 doi: 10.1016/j.neucom.2016.12.062 – ident: ref22 doi: 10.1016/j.bbe.2018.04.004 – ident: ref29 doi: 10.1016/j.bspc.2016.05.009 – ident: ref69 doi: 10.1016/j.patrec.2006.11.007 – ident: ref45 doi: 10.1016/j.jneumeth.2003.10.009 – ident: ref53 doi: 10.1073/pnas.88.6.2297 |
SSID | ssj0000816957 |
Score | 2.4130054 |
Snippet | The rising number of traffic accidents has become a major issue in our daily life, which has attracted the concern of society and governments. To deal with... |
SourceID | doaj proquest crossref ieee |
SourceType | Open Website Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 61975 |
SubjectTerms | approximate entropy Classification Correlation analysis Discrete wavelet transforms Driver fatigue Driving fatigue Electrodes electroencephalogram (EEG) Electroencephalography electrooculogram (EOG) Electrooculography Entropy Fatigue Feature extraction sample entropy spectral entropy Time measurement Traffic accidents Virtual reality |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV09T8MwELUQEwwIKIjyJQ-MhDqx3cQjlBSEBCxU6mblbAchoVJBO_DvuXPSqggJFrbIcj78fLbfOed3jJ0Jr3OQsk6QirhEeQgJsuqQkJSWARBV7ug08v1D_3ak7sZ6vJLqi2LCGnngBrheZpzJJYApZIFkXlQOFBilnJMejI_HfIURK85UnIOLtG903soMpcL0LgcDbBHFcpmLjETRpfy2FEXF_jbFyo95OS42w2221bJEftl83Q5bC5NdtrmiHdhho-v3F9oM4EPE9nkeeExvSYE_EWt-hcuT53gxnNOGGC8pJH36yRcqJBxnAojZIXj5eMOriedlebPHRsPyaXCbtDkSEqdEMUs0aCFzQ78PdY1NDqaf12moU6mdqHNko44oDsiQpyEz6Myhg9CviWfg8Kuc3Gfrk7dJOGC88pXzAJlXXiooDOjgvESctSukg6rLsgVc1rUC4pTH4tVGR0IY22BsCWPbYtxl58ubpo1-xu_Vr6gfllVJ_DoWoEnY1iTsXybRZR3qxeVDcEpCXxmLjxe9atuB-mEzRQpp6LNlh__x6iO2Qc1p9miO2frsfR5OkLXM4DQa6BcYKeV2 priority: 102 providerName: Directory of Open Access Journals |
Title | Driving Fatigue Classification Based on Fusion Entropy Analysis Combining EOG and EEG |
URI | https://ieeexplore.ieee.org/document/8709788 https://www.proquest.com/docview/2455637532 https://doaj.org/article/29c973bb98384950acb4b944cc3db9d8 |
Volume | 7 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3BTuMwEB0BJ_YACyyiLCAfOJKSxk4TH6GkICTgQiVuUcZ2EAK1CJoD-_U747gRuyDEzYpsy_Eb2zPj8RuAw9imGUpZR6SKmEhZdBFp1S5iKi2NGFeZ4dfIV9fDi4m6vEvvluCoewvjnPPBZ67PRX-Xb2emYVfZMckWGT35MiyTmLVvtTp_CieQ0GkWiIUGsT4-GY3oHzh6S_cTpkGX8p_Dx3P0h6QqH3Zif7yM1-FqMbA2quSx38yxb_78x9n43ZH_hLWgZ4qTVjA2YMlNN-HHO_bBLZicvTywO0GMCZ37xgmfIJNDhzxa4pQOOCuoMG7YpSYKDmp_fhMLHhNBewn6_BKiuDkX1dSKojj_BZNxcTu6iEKWhcioOJ9HKaaxzDRfQKY1TaHTw6weuHogUxPXGemzhpUklC4buESTOUgmxrBmTYUWcGXkNqxMZ1O3A6KylbGIiVVWKsw1ps5YaQz1lEuDVQ-SxfSXJlCQcyaMp9KbIrEuW8xKxqwMmPXgqGv03DJwfF39lHHtqjJ9tv9AeJRhNVJdozOJqHOZk4UYVwYVaqVoqBa1zXuwxRh2nQT4erC3kJIyLPXXMlHMsUZWX7L7eavfsMoDbP02e7Ayf2ncPmkyczzwHoADL8h_AVPp79s |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB6VcgAOvApioYAPHJttNrY38bFdsl2gWy5dqTcrYzsVAm2rsjnAr2fG8Ua8hLhZkW05_sb2zHj8DcCb3OsSpWwzUkVcpjyGjLTqkDGVlkHMm9Lxa-Tl2XSxUu8v9MUOHAxvYUIIMfgsjLkY7_L9levYVXZIskVGT3ULbtO5r3T_WmvwqHAKCaPLRC00yc3h0WxGf8HxW2ZcMBG6lL8cP5GlP6VV-WMvjgfM_AEst0Pr40o-j7sNjt3331gb_3fsD-F-0jTFUS8aj2AnrB_DvZ_4B_dg9fbmEzsUxJzwueyCiCkyOXgo4iWO6Yjzggrzjp1qouaw9utvYstkImg3wZhhQtQfT0Sz9qKuT57Aal6fzxZZyrOQOZVXm0yjzmVp-ApStzSFwUzLdhLaidQub0vSaB2rSShDOQmFIYOQjIxpy7oKLeHGyaewu75ah2cgGt84j1h45aXCyqAOzkvnqKdKOmxGUGyn37pEQs65ML7YaIzkxvaYWcbMJsxGcDA0uu45OP5d_ZhxHaoygXb8QHjYtB6prjOlRDSVrMhGzBuHCo1SNFSPxlcj2GMMh04SfCPY30qJTYv9qy0Us6yR3Vc8_3ur13Bncb48tafvzj68gLs82N6Lsw-7m5suvCS9ZoOvojj_AF8l8jM |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Driving+Fatigue+Classification+Based+on+Fusion+Entropy+Analysis+Combining+EOG+and+EEG&rft.jtitle=IEEE+access&rft.au=Wang%2C+Hongtao&rft.au=Wu%2C+Cong&rft.au=Li%2C+Ting&rft.au=He%2C+Yuebang&rft.date=2019&rft.pub=IEEE&rft.eissn=2169-3536&rft.volume=7&rft.spage=61975&rft.epage=61986&rft_id=info:doi/10.1109%2FACCESS.2019.2915533&rft.externalDocID=8709788 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2169-3536&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2169-3536&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2169-3536&client=summon |