Adaptive Learning: A New Decentralized Reinforcement Learning Approach for Cooperative Multiagent Systems

Multiagent systems (MASs) have received extensive attention in a variety of domains, such as robotics and distributed control. This paper focuses on how independent learners (ILs, structures used in decentralized reinforcement learning) decide on their individual behaviors to achieve coherent joint...

Full description

Saved in:
Bibliographic Details
Published inIEEE access Vol. 8; pp. 99404 - 99421
Main Authors Li, Meng-Lin, Chen, Shaofei, Chen, Jing
Format Journal Article
LanguageEnglish
Published Piscataway IEEE 2020
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN2169-3536
2169-3536
DOI10.1109/ACCESS.2020.2997899

Cover

Loading…
Abstract Multiagent systems (MASs) have received extensive attention in a variety of domains, such as robotics and distributed control. This paper focuses on how independent learners (ILs, structures used in decentralized reinforcement learning) decide on their individual behaviors to achieve coherent joint behavior. To date, Reinforcement learning(RL) approaches for ILs have not guaranteed convergence to the optimal joint policy in scenarios in which communication is difficult. Especially in a decentralized algorithm, the proportion of credit for a single agent's action in a multiagent system is not distinguished, which can lead to miscoordination of joint actions. Therefore, it is highly significant to study the mechanisms of coordination between agents in MASs. Most previous coordination mechanisms have been carried out by modeling the communication mechanism and other agent policies. These methods are applicable only to a particular system, so such algorithms do not offer generalizability, especially when there are dozens or more agents. Therefore, this paper mainly focuses on the MAS contains more than a dozen agents. By combining the method of parallel computation, the experimental environment is closer to the application scene. By studying the paradigm of centralized training and decentralized execution(CTDE), a multi-agent reinforcement learning algorithm for implicit coordination based on TD error is proposed. The new algorithm can dynamically adjust the learning rate by deeply analyzing the dissonance problem in the matrix game and combining it with a multiagent environment. By adjusting the dynamic learning rate between agents, coordination of the agents' strategies can be achieved. Experimental results show that the proposed algorithm can effectively improve the coordination ability of a MAS. Moreover, the variance of the training results is more stable than that of the hysteretic Q learning(HQL) algorithm. Hence, the problem of miscoordination in a MAS can be avoided to some extent without additional communication. Our work provides a new way to solve the miscoordination problem for reinforcement learning algorithms in the scale of dozens or more number of agents. As a new IL structure algorithm, our results should be extended and further studied.
AbstractList Multiagent systems (MASs) have received extensive attention in a variety of domains, such as robotics and distributed control. This paper focuses on how independent learners (ILs, structures used in decentralized reinforcement learning) decide on their individual behaviors to achieve coherent joint behavior. To date, Reinforcement learning(RL) approaches for ILs have not guaranteed convergence to the optimal joint policy in scenarios in which communication is difficult. Especially in a decentralized algorithm, the proportion of credit for a single agent's action in a multiagent system is not distinguished, which can lead to miscoordination of joint actions. Therefore, it is highly significant to study the mechanisms of coordination between agents in MASs. Most previous coordination mechanisms have been carried out by modeling the communication mechanism and other agent policies. These methods are applicable only to a particular system, so such algorithms do not offer generalizability, especially when there are dozens or more agents. Therefore, this paper mainly focuses on the MAS contains more than a dozen agents. By combining the method of parallel computation, the experimental environment is closer to the application scene. By studying the paradigm of centralized training and decentralized execution(CTDE), a multi-agent reinforcement learning algorithm for implicit coordination based on TD error is proposed. The new algorithm can dynamically adjust the learning rate by deeply analyzing the dissonance problem in the matrix game and combining it with a multiagent environment. By adjusting the dynamic learning rate between agents, coordination of the agents' strategies can be achieved. Experimental results show that the proposed algorithm can effectively improve the coordination ability of a MAS. Moreover, the variance of the training results is more stable than that of the hysteretic Q learning(HQL) algorithm. Hence, the problem of miscoordination in a MAS can be avoided to some extent without additional communication. Our work provides a new way to solve the miscoordination problem for reinforcement learning algorithms in the scale of dozens or more number of agents. As a new IL structure algorithm, our results should be extended and further studied.
Author Chen, Shaofei
Li, Meng-Lin
Chen, Jing
Author_xml – sequence: 1
  givenname: Meng-Lin
  orcidid: 0000-0003-3307-5490
  surname: Li
  fullname: Li, Meng-Lin
  organization: College of Intelligence Science and Technology, National University of Defence Technology, Changsha, China
– sequence: 2
  givenname: Shaofei
  surname: Chen
  fullname: Chen, Shaofei
  email: chensf005@163.com
  organization: College of Intelligence Science and Technology, National University of Defence Technology, Changsha, China
– sequence: 3
  givenname: Jing
  surname: Chen
  fullname: Chen, Jing
  email: chenjing001@vip.sina.com
  organization: College of Intelligence Science and Technology, National University of Defence Technology, Changsha, China
BookMark eNp9Uctu2zAQJIIUyKP5glwE9GyXL4lib4KStgGcFKjbM7Gili4NWVQouUX69aWjJChyCC8kZmdmlztn5LgPPRJyyeiSMao_VnV9vV4vOeV0ybVWpdZH5JSzQi9ELorj_94n5GIctzSdMkG5OiW-amGY_G_MVgix9_3mU1Zld_gnu0KL_RSh83-xzb6j712IFncJfOFm1TDEAPZXlmpZHcKAER7dbvfd5GFzIK8fxgl343vyzkE34sXTfU5-fr7-UX9drL59uamr1cJKWk6LHGxDLbOshIY20tJWSlEw5NqhsiiwAZfqrlDIbJO3wJTmgjpQ0glIhHNyM_u2AbZmiH4H8cEE8OYRCHFjIE7edmgaWzgOLKdCqdQJITkBx5Llecmd1Mnrw-yVfnm_x3Ey27CPfRrfcJlLyXRRFomlZ5aNYRwjOmP9lNYQDuvznWHUHIIyc1DmEJR5CippxSvt88Rvqy5nlUfEF4VmlHOlxD_YwaJq
CODEN IAECCG
CitedBy_id crossref_primary_10_3390_s24144741
crossref_primary_10_25046_aj070307
crossref_primary_10_1016_j_jobe_2025_112021
crossref_primary_10_1016_j_aej_2024_10_115
crossref_primary_10_1109_ACCESS_2021_3086002
crossref_primary_10_1109_ACCESS_2022_3180754
crossref_primary_10_3390_app13159016
crossref_primary_10_3390_s22145143
crossref_primary_10_1109_TKDE_2023_3336185
crossref_primary_10_1364_OE_438439
crossref_primary_10_25299_itjrd_2023_13474
Cites_doi 10.1038/nature14236
10.1109/SSCI.2016.7849837
10.1023/A:1008942012299
10.1016/j.asoc.2014.01.004
10.1007/3-540-58484-6_269
10.1109/TCYB.2015.2421338
10.1007/BF00992698
10.1109/IROS.2007.4399095
10.1016/B978-1-55860-307-3.50049-6
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020
DBID 97E
ESBDL
RIA
RIE
AAYXX
CITATION
7SC
7SP
7SR
8BQ
8FD
JG9
JQ2
L7M
L~C
L~D
DOA
DOI 10.1109/ACCESS.2020.2997899
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE Xplore Open Access Journals
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
METADEX
Computer and Information Systems Abstracts Professional
DatabaseTitleList
Materials Research Database

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2169-3536
EndPage 99421
ExternalDocumentID oai_doaj_org_article_bc6f2a1503774c0ea923a2e815582f49
10_1109_ACCESS_2020_2997899
9102277
Genre orig-research
GrantInformation_xml – fundername: National Natural Science Foundation of China
  grantid: 61702528
  funderid: 10.13039/501100001809
GroupedDBID 0R~
4.4
5VS
6IK
97E
AAJGR
ABAZT
ABVLG
ACGFS
ADBBV
AGSQL
ALMA_UNASSIGNED_HOLDINGS
BCNDV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
EJD
ESBDL
GROUPED_DOAJ
IPLJI
JAVBF
KQ8
M43
M~E
O9-
OCL
OK1
RIA
RIE
RNS
AAYXX
CITATION
RIG
7SC
7SP
7SR
8BQ
8FD
JG9
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c408t-5acb0c1c18ab0b4c0d44361e29fe7ce3ebaf0c1f67e1cb5da179230fa74f3ace3
IEDL.DBID RIE
ISSN 2169-3536
IngestDate Wed Aug 27 01:29:23 EDT 2025
Sun Jun 29 16:38:49 EDT 2025
Tue Jul 01 02:55:27 EDT 2025
Thu Apr 24 23:12:30 EDT 2025
Wed Aug 27 02:37:30 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Language English
License https://creativecommons.org/licenses/by/4.0/legalcode
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c408t-5acb0c1c18ab0b4c0d44361e29fe7ce3ebaf0c1f67e1cb5da179230fa74f3ace3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-3307-5490
OpenAccessLink https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/document/9102277
PQID 2454419686
PQPubID 4845423
PageCount 18
ParticipantIDs doaj_primary_oai_doaj_org_article_bc6f2a1503774c0ea923a2e815582f49
proquest_journals_2454419686
crossref_citationtrail_10_1109_ACCESS_2020_2997899
ieee_primary_9102277
crossref_primary_10_1109_ACCESS_2020_2997899
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20200000
2020-00-00
20200101
2020-01-01
PublicationDateYYYYMMDD 2020-01-01
PublicationDate_xml – year: 2020
  text: 20200000
PublicationDecade 2020
PublicationPlace Piscataway
PublicationPlace_xml – name: Piscataway
PublicationTitle IEEE access
PublicationTitleAbbrev Access
PublicationYear 2020
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref14
foerster (ref30) 2017
liu (ref32) 2018; 41
zheng (ref47) 2017
hausknecht (ref50) 2015
yang (ref17) 2020
ref18
samvelyan (ref9) 2019
kaitai (ref45) 1994
foerster (ref34) 2017
hausknecht (ref53) 2015
ref51
peng (ref21) 2017
van hasselt (ref40) 2015
ref48
jun (ref22) 2011; 26
sukhbaatar (ref11) 2016
sunehag (ref8) 2017
son (ref7) 2019
al gizi (ref42) 2013
sukhbaatar (ref20) 2016
brockman (ref16) 2016
vinyals (ref10) 2017
peng (ref12) 2017
ref36
foerster (ref19) 2017
rashid (ref6) 2018
li (ref13) 2018
guo (ref3) 2018
mnih (ref46) 2015; 518
ref2
hampel (ref39) 2000
hasselt (ref41) 2010
schulman (ref43) 2015
matignon (ref28) 2009
wei (ref25) 2016; 17
claus (ref4) 1998
foerster (ref29) 2016
mnih (ref52) 2016
song (ref31) 2005; 20
oroojlooyjadid (ref33) 2019
lowe (ref23) 2017
lauer (ref35) 2000
ref26
yang (ref24) 2020
panait (ref37) 2008; 9
yishu (ref44) 1988; 4
ref27
zhong (ref5) 2003; 20
ardi (ref15) 2017; 12
wiegand (ref38) 2004
yang (ref1) 2004
babaeizadeh (ref49) 2016
References_xml – year: 2017
  ident: ref10
  article-title: StarCraft II: A new challenge for reinforcement learning
  publication-title: arXiv 1708 04782
– volume: 518
  start-page: 529
  year: 2015
  ident: ref46
  article-title: Human-level control through deep reinforcement learning
  publication-title: Nature
  doi: 10.1038/nature14236
– year: 2017
  ident: ref8
  article-title: Value-decomposition networks for cooperative multi-agent learning
  publication-title: arXiv 1706 05296
– volume: 17
  start-page: 2914
  year: 2016
  ident: ref25
  article-title: Lenient learning in independent-learner stochastic cooperative games
  publication-title: J Mach Learn Res
– ident: ref51
  doi: 10.1109/SSCI.2016.7849837
– year: 2017
  ident: ref34
  article-title: Stabilising experience replay for deep multi-agent reinforcement learning
  publication-title: arXiv 1702 08887
– ident: ref2
  doi: 10.1023/A:1008942012299
– year: 2016
  ident: ref11
  article-title: Learning multiagent communication with backpropagation
  publication-title: arXiv 1605 07736
– year: 2017
  ident: ref47
  article-title: MAgent: A many-agent reinforcement learning platform for artificial collective intelligence
  publication-title: arXiv 1712 00600
– volume: 41
  start-page: 1
  year: 2018
  ident: ref32
  article-title: A survey on deep reinforcement learning
  publication-title: Chin J Comput
– ident: ref26
  doi: 10.1016/j.asoc.2014.01.004
– year: 2020
  ident: ref24
  article-title: Q-value path decomposition for deep multiagent reinforcement learning
  publication-title: arXiv 2002 03950
– year: 1994
  ident: ref45
  publication-title: Uniform Design and Uniform Designs Table
– year: 2016
  ident: ref20
  article-title: Learning multiagent communication with backpropagation
  publication-title: arXiv 1605 07736
– year: 2019
  ident: ref33
  article-title: A review of cooperative multi-agent deep reinforcement learning
  publication-title: arXiv 1908 03963
– volume: 20
  start-page: 1081
  year: 2005
  ident: ref31
  article-title: Survey of multi-agent reinforcement learning in Markov games
  publication-title: Control Decis
– start-page: 259
  year: 2018
  ident: ref13
  article-title: Path planning based on ant colony tsp algorithm
  publication-title: Proc 6th China Command Control Conf
– ident: ref36
  doi: 10.1007/3-540-58484-6_269
– volume: 26
  start-page: 1601
  year: 2011
  ident: ref22
  article-title: A review of the research progress of reinforcement learning for multi-robot systems
  publication-title: Control Decis
– year: 2018
  ident: ref6
  article-title: QMIX: Monotonic value function factorisation for deep multi-agent reinforcement learning
  publication-title: arXiv 1803 11485
– start-page: 6379
  year: 2017
  ident: ref23
  article-title: Multi-agent actor-critic for mixed cooperative-competitive environments
  publication-title: Proc Adv Neural Inf Process Syst
– start-page: 2613
  year: 2010
  ident: ref41
  article-title: Double Q-learning
  publication-title: Advances in Neural Information Processing Systems 23
– year: 2015
  ident: ref40
  article-title: Deep reinforcement learning with double Q-learning
  publication-title: arXiv 1509 06461 [cs]
– start-page: 746
  year: 1998
  ident: ref4
  article-title: The dynamics of reinforcement learning in cooperative multiagent systems
  publication-title: Proc Nat Conf Artif Intell
– year: 2013
  ident: ref42
  article-title: Fuzzy control system review
  publication-title: Int J Sci Eng Res
– volume: 20
  start-page: 317
  year: 2003
  ident: ref5
  article-title: Survey of distributed reinforcement learning algorithms in multi-agent systems
  publication-title: Control Theory Appl
– ident: ref48
  doi: 10.1109/TCYB.2015.2421338
– year: 2016
  ident: ref49
  article-title: GA3C: GPU-based A3C for deep reinforcement learning
– year: 2017
  ident: ref12
  article-title: Multiagent bidirectionally-coordinated nets: Emergence of human-level coordination in learning to play StarCraft combat games
  publication-title: arXiv 1703 10069
– ident: ref14
  doi: 10.1007/BF00992698
– year: 2009
  ident: ref28
  article-title: Coordination of independent learners in cooperative Markov games
– start-page: 1928
  year: 2016
  ident: ref52
  article-title: Asynchronous methods for deep reinforcement learning
  publication-title: Proc Int Conf Mach Learn
– ident: ref27
  doi: 10.1109/IROS.2007.4399095
– year: 2016
  ident: ref16
  article-title: OpenAI GYM
  publication-title: arXiv 1606 01540 [cs]
– year: 2020
  ident: ref17
  article-title: Qatten: A general framework for cooperative multiagent reinforcement learning
  publication-title: arXiv 2002 03939
– volume: 12
  start-page: 172
  year: 2017
  ident: ref15
  article-title: Multiagent cooperation and competition with deep reinforcement learning
  publication-title: PLoS ONE
– year: 2015
  ident: ref53
  article-title: Deep recurrent Q-Learning for partially observable MDPs
  publication-title: arXiv 1507 06527
– ident: ref18
  doi: 10.1016/B978-1-55860-307-3.50049-6
– year: 2016
  ident: ref29
  article-title: Learning to communicate with deep multi-agent reinforcement learning
  publication-title: arXiv 1605 06676
– year: 2017
  ident: ref19
  article-title: Counterfactual multi-agent policy gradients
  publication-title: arXiv 1705 08926
– year: 2017
  ident: ref21
  article-title: Multiagent bidirectionally-coordinated nets: Emergence of human-level coordination in learning to play StarCraft combat games
  publication-title: arXiv 1703 10069
– year: 2018
  ident: ref3
  article-title: Generative adversarial self-imitation learning
  publication-title: arXiv 1812 00950
– start-page: 1
  year: 2000
  ident: ref35
  article-title: An algorithm for distributed reinforcement learning in cooperative multi-agent systems
  publication-title: Proc 17th Int Conf Mach Learn
– year: 2019
  ident: ref7
  article-title: QTRAN: Learning to factorize with transformation for cooperative multi-agent reinforcement learning
  publication-title: arXiv 1905 05408
– year: 2017
  ident: ref30
  article-title: Stabilising experience replay for deep multi-agent reinforcement learning
  publication-title: arXiv 1702 08887
– volume: 9
  start-page: 423
  year: 2008
  ident: ref37
  article-title: Theoretical advantages of lenient learners: An evolutionary game theoretic perspective
  publication-title: J Mach Learn Res
– start-page: 1
  year: 2004
  ident: ref1
  article-title: Multiagent reinforcement learning for multi-robot systems: A survey
– year: 2015
  ident: ref50
  article-title: Deep recurrent Q-Learning for partially observable MDPs
  publication-title: arXiv 1507 06527
– start-page: 178
  year: 2004
  ident: ref38
  article-title: An analysis of cooperative coevolutionary algorithms
– year: 2019
  ident: ref9
  article-title: The starcraft multi-agent challenge
  publication-title: arXiv 1902 04043
– year: 2000
  ident: ref39
  article-title: Fuzzy control: Theory and practice
  publication-title: Adv Intell Soft Comput
– volume: 4
  start-page: 55
  year: 1988
  ident: ref44
  article-title: Uniformly design the construction of the table and its use table
  publication-title: Tactical Missile Technology
– year: 2015
  ident: ref43
  article-title: High-dimensional continuous control using generalized advantage estimation
  publication-title: arXiv 1506 02438 [cs]
SSID ssj0000816957
Score 2.2454686
Snippet Multiagent systems (MASs) have received extensive attention in a variety of domains, such as robotics and distributed control. This paper focuses on how...
SourceID doaj
proquest
crossref
ieee
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 99404
SubjectTerms Adaptive systems
Algorithms
Communication
Coordination
Games
Heuristic algorithms
intelligent control
Learning (artificial intelligence)
Machine learning
Multi-agent systems
multiagent system
Multiagent systems
Parallel processing
Reinforcement learning
Roads
Robotics
Training
Urban areas
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07T8QwDI4QEwyIpzg4UAZGCmmSJilbOUCIgQGBxBaliYuQ0N0JjoVfj5OG4yQkWFgb9xHH_WxHzmdCjmoRfMUhFK6qXCHRARa1iAU2UGkdEDQdpCrfW3X9IG8eq8eFVl-xJqynB-4Vd9p61XGHYYvAQMUzcBiROA4G_aDhnUxH99DnLSRTCYNNqepKZ5qhktWnzWiEM8KEkLMThGBtEtvrtytKjP25xcoPXE7O5mqdrOUokTb9122QJRhvktUF7sAt8twEN41YRTNF6tMZbShiFr2AXHH5_AGB3kHiRvVpG3AuS5vMJU5xjI4mkyn0FOA0nch18cAVzWzm2-Th6vJ-dF3kvgmFl8zMisr5lvnSl8a1rEWlBSmFKoHXHWgPAlrX4XinNJS-rYIrI4kg65yWnXAosEOWx5Mx7BLqtNcoqbXyQgbBTCeDFhgiIERC682A8C8VWp9JxWNvixebkgtW217vNurdZr0PyPH8pmnPqfG7-Hlcm7loJMROF9BMbDYT-5eZDMhWXNn5Q-qY6Wo9IMOvlbb5532zXMbGbLUyau8_Xr1PVuJ0YuEaV0OyPHt9hwOMZGbtYTLaT4Re7Yw
  priority: 102
  providerName: Directory of Open Access Journals
Title Adaptive Learning: A New Decentralized Reinforcement Learning Approach for Cooperative Multiagent Systems
URI https://ieeexplore.ieee.org/document/9102277
https://www.proquest.com/docview/2454419686
https://doaj.org/article/bc6f2a1503774c0ea923a2e815582f49
Volume 8
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3BbtQwEB21PcEBKAWxUCofODZbJ3bihFtYWlWV4ICo1JtljyeoAu2uYPfSr2fseAMChHqLkrFl69nj8WTmDcCbTgWsKwqFq2tXaD4Ai07FABuqjQmsNB2lKN-PzeW1vrqpb_bgdMqFIaIUfEbz-Jj-5YcVbqOr7KyL1xNj9mGfL25jrtbkT4kFJLraZGKhUnZn_WLBc-ArYCXnrHRNm_hdfx0-iaM_F1X5SxOn4-XiMXzYDWyMKvk63278HO_-4Gy878ifwKNsZ4p-XBiHsEfLp_DwN_bBI7jtg1tHbScyyeqXt6IXrPXEe8oxm7d3FMQnSuyqmByJk6zoMxu54G9isVqtaSQRFymn18WULZH50J_B9cX558VlkSsvFKhluylqh15iiWXrvPQaZdBaNSVV3UAGSZF3A38fGkMl-jq4MtIQysEZPSjHAs_hYLla0gsQzqBhSWMaVDoo2Q46GMVGBitZ8tjOoNpBYjHTksfqGN9sup7Izo442oijzTjO4HRqtB5ZOf4v_i5iPYlGSu30gjGyeYdaj81QObaPFVvEKMnxjFxFLRtcbTVo7uQo4jp1kiGdwfFu5di8_X_YSsfSbl3TNi__3eoVPIgDHH05x3Cw-b6l12zdbPxJ8gqcpMX9Ex2t-Js
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB6VcoAeeBXUhQI-cGy2TmzHCbewUC3Q9oBaqTfLjwmqQLsr2L301zN2vAEBQtyieGzZ-pzxeDLzDcCrVgSvKgyFVcoWkg7AohUxwAaV1oGUpsUU5Xtezy_lhyt1tQNHYy4MIqbgM5zGx_QvPyz9JrrKjtt4PdH6Ftymc1-VQ7bW6FGJJSRapTO1UMnb4242o1XQJbDiU1K7ukkMrz-Pn8TSn8uq_KGL0wFzch_OtlMb4kq-TDdrN_U3v7E2_u_cH8C9bGmybtgaD2EHF49g7xf-wX247oJdRX3HMs3q59esY6T32FvMUZvXNxjYJ0z8qj65EkdZ1mU-ckZtbLZcrnCgEWcpq9fGpC2WGdEfw-XJu4vZvMi1FwovebMulPWO-9KXjXXcSc-DlKIusWp71B4FOttTe19rLL1TwZaRiJD3VsteWBJ4AruL5QIPgFntNUlqXXshg-BNL4MWZGaQmkXnmwlUW0iMz8TksT7GV5MuKLw1A44m4mgyjhM4GjutBl6Of4u_iViPopFUO70gjEz-Ro3zdV9ZspAF2cSeo6UV2QobMrmaqpc0yH7EdRwkQzqBw-3OMVkBfDeVjMXd2rqpn_6910u4M784OzWn788_PoO7cbKDZ-cQdtffNvicbJ21e5G2-A9Ynvrv
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Adaptive+Learning%3A+A+New+Decentralized+Reinforcement+Learning+Approach+for+Cooperative+Multiagent+Systems&rft.jtitle=IEEE+access&rft.au=Li%2C+Meng-Lin&rft.au=Chen%2C+Shaofei&rft.au=Chen%2C+Jing&rft.date=2020&rft.issn=2169-3536&rft.eissn=2169-3536&rft.volume=8&rft.spage=99404&rft.epage=99421&rft_id=info:doi/10.1109%2FACCESS.2020.2997899&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_ACCESS_2020_2997899
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2169-3536&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2169-3536&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2169-3536&client=summon