Machine Learning-Based Modeling for the Duration of Load Effect in Wood Structural Members Under Long-Term Sustained Load

The load resisting capacity of structural members will decrease when they are subjected to long-term sustained load. Such phenomenon is widely known as the duration of load effect, which is mainly caused by the damage accumulation in the material. The deterioration mechanism of the material is a typ...

Full description

Saved in:
Bibliographic Details
Published inIEEE access Vol. 8; pp. 17903 - 17915
Main Authors Qi, Peng, Li, Mengwei, Zheng, Xiuzhi, Li, Zheng, Liu, Chuang, Zeng, Xin, Tao, Duo, Qi, Xiaoya, Ma, Zhong, He, Minjuan
Format Journal Article
LanguageEnglish
Published Piscataway IEEE 2020
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The load resisting capacity of structural members will decrease when they are subjected to long-term sustained load. Such phenomenon is widely known as the duration of load effect, which is mainly caused by the damage accumulation in the material. The deterioration mechanism of the material is a typical stochastic process which is influenced by a large variety of parameters involving complex physical and chemical process. Although classical models have been proposed to evaluate the duration of load effect, it is nearly impossible to quantify the influence of various parameters and to achieve an accurate estimation. To optimize the combination of complexity and goodness-of-fit, a neural network model is proposed in this paper to evaluate the duration of load effect in wood structural members. Taking individual uncertainties into consideration, the proposed model treats the damage in wood as a Markov process and can estimate the residual strength distribution of the investigated wood structural members under long-term sustained load. The coefficient of determination reaches above 95% under sustained loading scenario, and it shows good adaptability across different wood properties. Moreover, the model can be adapted to continuously varied loading scenarios with a 98% coefficient of determination. This research aims to provide a useful and straightforward tool for accurately predicting the duration of load effect in wood structural members, and the proposed algorithm can be easily modified to deal with similar engineering problems for other construction materials.
AbstractList The load resisting capacity of structural members will decrease when they are subjected to long-term sustained load. Such phenomenon is widely known as the duration of load effect, which is mainly caused by the damage accumulation in the material. The deterioration mechanism of the material is a typical stochastic process which is influenced by a large variety of parameters involving complex physical and chemical process. Although classical models have been proposed to evaluate the duration of load effect, it is nearly impossible to quantify the influence of various parameters and to achieve an accurate estimation. To optimize the combination of complexity and goodness-of-fit, a neural network model is proposed in this paper to evaluate the duration of load effect in wood structural members. Taking individual uncertainties into consideration, the proposed model treats the damage in wood as a Markov process and can estimate the residual strength distribution of the investigated wood structural members under long-term sustained load. The coefficient of determination reaches above 95% under sustained loading scenario, and it shows good adaptability across different wood properties. Moreover, the model can be adapted to continuously varied loading scenarios with a 98% coefficient of determination. This research aims to provide a useful and straightforward tool for accurately predicting the duration of load effect in wood structural members, and the proposed algorithm can be easily modified to deal with similar engineering problems for other construction materials.
Author Qi, Peng
Li, Zheng
Zeng, Xin
He, Minjuan
Zheng, Xiuzhi
Qi, Xiaoya
Ma, Zhong
Li, Mengwei
Tao, Duo
Liu, Chuang
Author_xml – sequence: 1
  givenname: Peng
  orcidid: 0000-0003-0514-9464
  surname: Qi
  fullname: Qi, Peng
  organization: Department of Control Science and Engineering, Tongji University, Shanghai, China
– sequence: 2
  givenname: Mengwei
  surname: Li
  fullname: Li, Mengwei
  organization: Beijing Deep Singularity Technology Company, Ltd., Beijing, China
– sequence: 3
  givenname: Xiuzhi
  surname: Zheng
  fullname: Zheng, Xiuzhi
  organization: Department of Structural Engineering, Tongji University, Shanghai, China
– sequence: 4
  givenname: Zheng
  orcidid: 0000-0003-1227-8168
  surname: Li
  fullname: Li, Zheng
  email: zhengli@tongji.edu.cn
  organization: Department of Structural Engineering, Tongji University, Shanghai, China
– sequence: 5
  givenname: Chuang
  surname: Liu
  fullname: Liu, Chuang
  organization: Beijing Deep Singularity Technology Company, Ltd., Beijing, China
– sequence: 6
  givenname: Xin
  orcidid: 0000-0001-9948-2772
  surname: Zeng
  fullname: Zeng, Xin
  organization: Department of Information and Communication Engineering, Tongji University, Shanghai, China
– sequence: 7
  givenname: Duo
  surname: Tao
  fullname: Tao, Duo
  organization: Department of Structural Engineering, Tongji University, Shanghai, China
– sequence: 8
  givenname: Xiaoya
  surname: Qi
  fullname: Qi, Xiaoya
  organization: Beijing Deep Singularity Technology Company, Ltd., Beijing, China
– sequence: 9
  givenname: Zhong
  surname: Ma
  fullname: Ma, Zhong
  organization: College of Civil Engineering, Hefei University of Technology, Hefei, China
– sequence: 10
  givenname: Minjuan
  surname: He
  fullname: He, Minjuan
  organization: Department of Structural Engineering, Tongji University, Shanghai, China
BookMark eNpNkU9vGyEQxVGVSk3TfIJckHpelz8LC8fUddtItnpwoh4RC0Oylg0psId8-5BsFBWNBDN67zdI7zM6iykCQleUrCgl-tv1er3Z71eMMLJiWkql-Ad0zqjUHRdcnv33_oQuSzmQdlQbieEcPe2se5gi4C3YHKd43323BTzeJQ_H1uKQMq4PgH_M2dYpRZwC3ibr8SYEcBVPEf9NyeN9zbOrTXTEOziNkAu-ix5yEzfoLeQT3s-l2rbLvwK-oI_BHgtcvt0X6O7n5nb9u9v--XWzvt52rieqdkL73uqRSwmcM6cC7UMYBLGqHwdwSg4Dk9CKgxSaeyFYUFyrwLkaAh34BbpZuD7Zg3nM08nmJ5PsZF4HKd8bm-vkjmCkC0Q3ZD8Q3rsRdPCCCk-cZJqGMTTW14X1mNO_GUo1hzTn2L5vWC96xSlhrKn4onI5lZIhvG-lxLxEZpbIzEtk5i2y5rpaXBMAvDuUloRpwp8BeXqS8A
CODEN IAECCG
CitedBy_id crossref_primary_10_1051_e3sconf_202453302036
crossref_primary_10_1051_e3sconf_202453302035
crossref_primary_10_1007_s11831_022_09793_w
Cites_doi 10.1016/j.matdes.2013.04.044
10.1061/(ASCE)0733-9445(2004)130:9(1392)
10.1109/MSP.2012.2205597
10.1016/j.conbuildmat.2016.10.086
10.1109/TPAMI.2016.2577031
10.1016/j.parco.2009.12.005
10.1139/l78-057
10.1016/j.ijsolstr.2005.03.076
10.1016/j.strusafe.2004.10.001
10.3390/ma12081243
10.1016/S0017-9310(02)00095-9
10.1109/TPAMI.1984.4767596
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020
DBID 97E
ESBDL
RIA
RIE
AAYXX
CITATION
7SC
7SP
7SR
8BQ
8FD
JG9
JQ2
L7M
L~C
L~D
DOA
DOI 10.1109/ACCESS.2020.2966883
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005-present
IEEE Xplore Open Access Journals
IEEE All-Society Periodicals Package (ASPP) Online
IEEE Xplore
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Directory of Open Access Journals
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
METADEX
Computer and Information Systems Abstracts Professional
DatabaseTitleList Materials Research Database


Database_xml – sequence: 1
  dbid: DOA
  name: Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: RIE
  name: IEEE Xplore
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2169-3536
EndPage 17915
ExternalDocumentID oai_doaj_org_article_6cf09c8647034cbe9fd515d0c6291fbf
10_1109_ACCESS_2020_2966883
8960290
Genre orig-research
GrantInformation_xml – fundername: Shanghai Education Development Foundation
  grantid: 0200121005/081
  funderid: 10.13039/501100003024
– fundername: Beijing Advanced Innovation Center for Intelligent Robots and Systems, Beijing Institute of Technology
  funderid: 10.13039/501100012237
– fundername: State Key Laboratory of Mechanical System and Vibration
  grantid: 2018IRS14
  funderid: 10.13039/501100011415
– fundername: Chenguang Program
  grantid: 16CG20; 16CG18
– fundername: National Natural Science Foundation of China
  grantid: 51878476; 51608376; 51608160
  funderid: 10.13039/501100001809
– fundername: Open Research Fund
  grantid: MSV201916
GroupedDBID 0R~
4.4
5VS
6IK
97E
AAJGR
ABVLG
ACGFS
ADBBV
ALMA_UNASSIGNED_HOLDINGS
BCNDV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
EJD
ESBDL
GROUPED_DOAJ
IFIPE
IPLJI
JAVBF
KQ8
M43
M~E
O9-
OCL
OK1
RIA
RIE
RIG
RNS
AAYXX
CITATION
7SC
7SP
7SR
8BQ
8FD
JG9
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c408t-59d4a9b366e332c8f14ff750a84b7ec867726e26e3e6593d552f8398f3387f173
IEDL.DBID DOA
ISSN 2169-3536
IngestDate Tue Oct 22 15:12:56 EDT 2024
Thu Oct 10 19:13:06 EDT 2024
Fri Aug 23 03:24:25 EDT 2024
Wed Jun 26 19:26:39 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c408t-59d4a9b366e332c8f14ff750a84b7ec867726e26e3e6593d552f8398f3387f173
ORCID 0000-0001-9948-2772
0000-0003-0514-9464
0000-0003-1227-8168
OpenAccessLink https://doaj.org/article/6cf09c8647034cbe9fd515d0c6291fbf
PQID 2454831022
PQPubID 4845423
PageCount 13
ParticipantIDs doaj_primary_oai_doaj_org_article_6cf09c8647034cbe9fd515d0c6291fbf
proquest_journals_2454831022
crossref_primary_10_1109_ACCESS_2020_2966883
ieee_primary_8960290
PublicationCentury 2000
PublicationDate 20200000
2020-00-00
20200101
2020-01-01
PublicationDateYYYYMMDD 2020-01-01
PublicationDate_xml – year: 2020
  text: 20200000
PublicationDecade 2020
PublicationPlace Piscataway
PublicationPlace_xml – name: Piscataway
PublicationTitle IEEE access
PublicationTitleAbbrev Access
PublicationYear 2020
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref12
ref14
wood (ref3) 1951
(ref7) 2017
ref2
ref1
ref17
foschi (ref24) 1989
(ref10) 2004
ref18
foschi (ref9) 1986
graves (ref16) 2013
ioffe (ref19) 2016
ref23
ref22
loffe (ref25) 2015
ruder (ref21) 2016
bengio (ref15) 2015
(ref11) 2003
(ref8) 2014
ref4
ref6
ref5
glorot (ref20) 2011
dean (ref26) 2012
References_xml – ident: ref1
  doi: 10.1016/j.matdes.2013.04.044
– year: 1989
  ident: ref24
  article-title: Reliability-based design of wood structures
  contributor:
    fullname: foschi
– start-page: 1232
  year: 2012
  ident: ref26
  article-title: Large scale distributed deep networks
  publication-title: Proc Adv Neural Inf Process Syst
  contributor:
    fullname: dean
– year: 2015
  ident: ref25
  article-title: Batch normalization: Accelerating deep network training by reducing internal covariate shift
  publication-title: Proc Int Conf Mach Learn
  contributor:
    fullname: loffe
– ident: ref2
  doi: 10.1061/(ASCE)0733-9445(2004)130:9(1392)
– ident: ref17
  doi: 10.1109/MSP.2012.2205597
– ident: ref5
  doi: 10.1016/j.conbuildmat.2016.10.086
– year: 2017
  ident: ref7
– year: 2004
  ident: ref10
– ident: ref22
  doi: 10.1109/TPAMI.2016.2577031
– ident: ref23
  doi: 10.1016/j.parco.2009.12.005
– ident: ref6
  doi: 10.1139/l78-057
– year: 2014
  ident: ref8
– start-page: 315
  year: 2011
  ident: ref20
  article-title: Deep sparse rectifier neural networks
  publication-title: Proc 14th Int Conf Artif Intell Statist (AISTATS)
  contributor:
    fullname: glorot
– year: 2003
  ident: ref11
– year: 1951
  ident: ref3
  article-title: Relation of strength of wood to duration of stress
  contributor:
    fullname: wood
– ident: ref4
  doi: 10.1016/j.ijsolstr.2005.03.076
– ident: ref12
  doi: 10.1016/j.strusafe.2004.10.001
– ident: ref13
  doi: 10.3390/ma12081243
– ident: ref18
  doi: 10.1016/S0017-9310(02)00095-9
– year: 1986
  ident: ref9
  article-title: Another look at three duration of load models
  publication-title: Proc Wood Eng Group Meeting (IUFRO)
  contributor:
    fullname: foschi
– year: 2016
  ident: ref21
  publication-title: An overview of gradient descent optimization algorithms
  contributor:
    fullname: ruder
– ident: ref14
  doi: 10.1109/TPAMI.1984.4767596
– year: 2016
  ident: ref19
  article-title: Batch normalization: Accelerating deep network training by reducing internal covariate shift
  publication-title: arXiv 1502 03167
  contributor:
    fullname: ioffe
– year: 2015
  ident: ref15
  publication-title: Deep Learning
  contributor:
    fullname: bengio
– year: 2013
  ident: ref16
  article-title: Generating sequences with recurrent neural networks
  contributor:
    fullname: graves
SSID ssj0000816957
Score 2.2156973
Snippet The load resisting capacity of structural members will decrease when they are subjected to long-term sustained load. Such phenomenon is widely known as the...
SourceID doaj
proquest
crossref
ieee
SourceType Open Website
Aggregation Database
Publisher
StartPage 17903
SubjectTerms Algorithms
Complexity
Construction materials
Damage accumulation
damage accumulation model
duration of load
Goodness of fit
Load modeling
Loading
long-term experiment
Machine learning
Markov processes
Mathematical model
Mathematical models
Neural networks
Parameter estimation
Predictive models
Residual strength
Stochastic processes
Structural members
Timber structures
SummonAdditionalLinks – databaseName: IEEE Xplore
  dbid: RIE
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB6VnuBAgYLYUpAPHJttYjuxfWwXqgqxXNqK3izbGSOEtKnU3QP8esaPXfE6IOUQWc5okhnb3ziebwDeRhG8di423HjTyNDGxuvgGoe-V9xJxJyVtvw0XN7ID7f97R6c7HJhEDEfPsN5us3_8scpbNJW2akmuM0NBegPlDElV2u3n5IKSJheVWKhrjWnZ4sFvQOFgLydc0L1WovfFp_M0V-Lqvw1E-fl5eIAllvFyqmSb_PN2s_Djz84G_9X8yfwuOJMdlYc4yns4eoZPPqFffAQvi_zQUpklWP1S3NOS9rIUnm0lKTOCM8ywofs3aa4CZsi-zi5kRXKY_Z1xT5P08iuMgdt4u9gS0wFRu5ZLqdEnUnoNc397KrkaZH0JOA53Fy8v15cNrUSQxNkq9dNb0bpjBfDgELwoGMnYySs4bT0CkPixOMD0iVw6I0Y-55HQl46UgCsYqfEC9hfTSt8CUwp7zrJkcKeHK45JZSmlqA6HvoBZ3CyNZG9K4QbNgcqrbHFojZZ1FaLzuA8mXHXNbFl5wb6_LYOPjuE2BrSUtL0JoNHE0eCcWMbBm666OMMDpPJdkKqtWZwvHUKW0f2veWSYjyR4uSjfz_1Ch4mBcs2zTHskwnwNQGXtX-TPfYn2crq6w
  priority: 102
  providerName: IEEE
Title Machine Learning-Based Modeling for the Duration of Load Effect in Wood Structural Members Under Long-Term Sustained Load
URI https://ieeexplore.ieee.org/document/8960290
https://www.proquest.com/docview/2454831022
https://doaj.org/article/6cf09c8647034cbe9fd515d0c6291fbf
Volume 8
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07T8MwELZQJxgQT1EelQdGQhPb8WNsC1WFKAsgulm2YyOWBqkw8O852wEVMbAgZXKsS-y73N0X-b5D6DxQZ6UxoSDKqoK5MhRWOlMYb2tBDPM-VaXN7_jskd0s6sVaq694JizTA-eNG3IXSuUkZ2CazFmvQgMhuCkdJ6oKNiTvW6o1MJV8sKy4qkVHMwT3h6PJBFYEgJCUlwRyfCnpj1CUGPu7Fiu__HIKNtMdtN1liXiU324XbfjlHtpa4w7cRx_zdAzS444h9bkYQ0BqcGxuFkvMMWSjGLI7fPWelYzbgG9b0-BMWIxflvipbRt8nxhkI_sGnvvYHmSFUzMkmAxCH8Bz4_tcZQXSo4AD9Di9fpjMiq6PQuFYKd-KWjXMKEs595QSJ0PFQoBMwUhmhXeR0Y5wDxf1vFa0qWsSIG-SAeCrCJWgh6i3bJf-CGEhrKkY8QBaEtgyggoJI05UxNXc99HF15bq10yXoRPMKJXOGtBRA7rTQB-N47Z_T41c12kALEB3FqD_soA-2o9K-xYiAZQRVfbR6ZcSdfddrjRhgNBoRLnH__HoE7QZl5N_yZyiHijMn0GS8mYHyR4HqZ7wE_Y54u0
link.rule.ids 315,783,787,799,867,2109,4033,27937,27938,27939,55088
linkProvider Directory of Open Access Journals
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwELaqcgAO5VEQCwV84NhsEz9i-9guVAtseulW9GbZzrhCSBuk7h7Kr2fseFe8Dkg5RJYzmmTG9jeO5xtC3kUevHYuVsx4U4lQx8rr4CoHXirmBEDOSusu2vmV-HQtr_fI8S4XBgDy4TOYptv8L78fwiZtlZ1ohNvMYIB-TyZcMWZr7XZUUgkJI1WhFmpqc3I6m-FbYBDI6ilDXK81_235ySz9pazKX3NxXmDOH5Fuq9p4ruTbdLP20_DjD9bG_9X9MTkoSJOejq7xhOzB6il5-Av_4CG56_JRSqCFZfWmOsNFraepQFpKU6eIaCkiRPp-MzoKHSJdDK6nI-kx_bqiX4ahp5eZhTYxeNAOUomRW5oLKmFnFLrE2Z9ejplaKD0JeEauzj8sZ_Oq1GKogqj1upKmF8543rbAOQs6NiJGRBtOC68gJFY81gJeHFppeC8li4i9dMQQWMVG8edkfzWs4AWhSnnXCAYY-OSAzSmuNLYE1bAgW5iQ462J7PeRcsPmUKU2drSoTRa1xaITcpbMuOua-LJzA35-W4afbUOsDWopcIITwYOJPQK5vg4tM030cUIOk8l2Qoq1JuRo6xS2jO1bywRGeTxFyi___dRbcn--7BZ28fHi8yvyICk7btockX00B7xGGLP2b7L3_gRMsO44
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Machine+Learning-Based+Modeling+for+the+Duration+of+Load+Effect+in+Wood+Structural+Members+Under+Long-Term+Sustained+Load&rft.jtitle=IEEE+access&rft.au=Qi%2C+Peng&rft.au=He%2C+Minjuan&rft.au=Li%2C+Mengwei&rft.au=Zheng%2C+Xiuzhi&rft.date=2020&rft.issn=2169-3536&rft.eissn=2169-3536&rft.volume=8&rft.spage=17903&rft.epage=17915&rft_id=info:doi/10.1109%2FACCESS.2020.2966883&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_ACCESS_2020_2966883
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2169-3536&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2169-3536&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2169-3536&client=summon