Jasmonic acid-regulated putrescine biosynthesis attenuates cold-induced oxidative stress in tomato plants
•Cold promotes accumulation of putrescine (Put) and jasmonic acid (JA).•JA increases Put accumulation and cold tolerance.•Suppression of JA signaling reduces Put accumulation.•JA-regulated Put biosynthesis attenuates cold-triggered oxidative stress. Previous studies have shown that jasmonic acid (JA...
Saved in:
Published in | Scientia horticulturae Vol. 288; p. 110373 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
15.10.2021
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | •Cold promotes accumulation of putrescine (Put) and jasmonic acid (JA).•JA increases Put accumulation and cold tolerance.•Suppression of JA signaling reduces Put accumulation.•JA-regulated Put biosynthesis attenuates cold-triggered oxidative stress.
Previous studies have shown that jasmonic acid (JA) and putrescine (Put), a major polyamine, are both accumulated in tomato plants upon cold treatment. However, it is unclear whether JA regulates Put biosynthesis in tomato plants under the cold condition. The goal of the present work was to determine whether JA regulates Put biosynthesis and how JA-regulated Put accumulation affects cold tolerance in tomato plants. We found that among three major polyamines, putrescine was predominantly accumulated in cold-stressed tomato plants and exogenous putrescine markedly alleviated cold-induced oxidative stress, indicating an important role of putrescine in tomato cold response. We then identified ADC1 as a major putrescine biosynthetic gene in response to cold and JA. Further experiments using a JA biosynthesis inhibitor sodium diethyldithiocarbamate (DIECA), MeJA and an ADC (arginine decarboxylase 1) enzyme inhibitor difluoromethylarginine (DFMA) confirmed that JA functions in the putrescine biosynthesis by acting on ADC. Finally, we found that RNAi-mediated suppression of MYC2, a master regulator of JA signaling, decreased the expression of ADC1, reduced putrescine accumulation and enhanced cold-induced oxidative damages, implying that JA-induced putrescine biosynthesis relies, at least partially, on MYC2 in tomato plants. Our study thus establishes a link between JA signaling and polyamine metabolism in tomato plants under cold stress. Our data support that JA signaling is crucial for putrescine biosynthesis during cold stress and JA-induced accumulation of putrescine mitigates cold-induced oxidative stress in plants. |
---|---|
AbstractList | •Cold promotes accumulation of putrescine (Put) and jasmonic acid (JA).•JA increases Put accumulation and cold tolerance.•Suppression of JA signaling reduces Put accumulation.•JA-regulated Put biosynthesis attenuates cold-triggered oxidative stress.
Previous studies have shown that jasmonic acid (JA) and putrescine (Put), a major polyamine, are both accumulated in tomato plants upon cold treatment. However, it is unclear whether JA regulates Put biosynthesis in tomato plants under the cold condition. The goal of the present work was to determine whether JA regulates Put biosynthesis and how JA-regulated Put accumulation affects cold tolerance in tomato plants. We found that among three major polyamines, putrescine was predominantly accumulated in cold-stressed tomato plants and exogenous putrescine markedly alleviated cold-induced oxidative stress, indicating an important role of putrescine in tomato cold response. We then identified ADC1 as a major putrescine biosynthetic gene in response to cold and JA. Further experiments using a JA biosynthesis inhibitor sodium diethyldithiocarbamate (DIECA), MeJA and an ADC (arginine decarboxylase 1) enzyme inhibitor difluoromethylarginine (DFMA) confirmed that JA functions in the putrescine biosynthesis by acting on ADC. Finally, we found that RNAi-mediated suppression of MYC2, a master regulator of JA signaling, decreased the expression of ADC1, reduced putrescine accumulation and enhanced cold-induced oxidative damages, implying that JA-induced putrescine biosynthesis relies, at least partially, on MYC2 in tomato plants. Our study thus establishes a link between JA signaling and polyamine metabolism in tomato plants under cold stress. Our data support that JA signaling is crucial for putrescine biosynthesis during cold stress and JA-induced accumulation of putrescine mitigates cold-induced oxidative stress in plants. Previous studies have shown that jasmonic acid (JA) and putrescine (Put), a major polyamine, are both accumulated in tomato plants upon cold treatment. However, it is unclear whether JA regulates Put biosynthesis in tomato plants under the cold condition. The goal of the present work was to determine whether JA regulates Put biosynthesis and how JA-regulated Put accumulation affects cold tolerance in tomato plants. We found that among three major polyamines, putrescine was predominantly accumulated in cold-stressed tomato plants and exogenous putrescine markedly alleviated cold-induced oxidative stress, indicating an important role of putrescine in tomato cold response. We then identified ADC1 as a major putrescine biosynthetic gene in response to cold and JA. Further experiments using a JA biosynthesis inhibitor sodium diethyldithiocarbamate (DIECA), MeJA and an ADC (arginine decarboxylase 1) enzyme inhibitor difluoromethylarginine (DFMA) confirmed that JA functions in the putrescine biosynthesis by acting on ADC. Finally, we found that RNAi-mediated suppression of MYC2, a master regulator of JA signaling, decreased the expression of ADC1, reduced putrescine accumulation and enhanced cold-induced oxidative damages, implying that JA-induced putrescine biosynthesis relies, at least partially, on MYC2 in tomato plants. Our study thus establishes a link between JA signaling and polyamine metabolism in tomato plants under cold stress. Our data support that JA signaling is crucial for putrescine biosynthesis during cold stress and JA-induced accumulation of putrescine mitigates cold-induced oxidative stress in plants. |
ArticleNumber | 110373 |
Author | Xu, Ning Zhang, Shuoxin Wang, Meiling Ding, Fei Wang, Chuang |
Author_xml | – sequence: 1 givenname: Fei orcidid: 0000-0002-1287-881X surname: Ding fullname: Ding, Fei email: dingfei@lcu.edu.cn organization: School of Life Sciences, Liaocheng University, Liaocheng 252000, China – sequence: 2 givenname: Chuang surname: Wang fullname: Wang, Chuang organization: Department of Agriculture and Animal Husbandry, Liaocheng Vocational & Technical College, Liaocheng 252000, China – sequence: 3 givenname: Ning surname: Xu fullname: Xu, Ning organization: Department of Agriculture and Animal Husbandry, Liaocheng Vocational & Technical College, Liaocheng 252000, China – sequence: 4 givenname: Meiling surname: Wang fullname: Wang, Meiling organization: School of Life Sciences, Liaocheng University, Liaocheng 252000, China – sequence: 5 givenname: Shuoxin surname: Zhang fullname: Zhang, Shuoxin organization: College of Forestry, Northwest A&F University, Yangling 712100, China |
BookMark | eNqFkDtvFDEURi0UJDYhPwHJJc1s_JqXKBCKgIAi0UBteew7cFez9uLrici_j1eTiiaVm3M-XZ9LdhFTBMbeSbGXQnY3hz15hFjcXgkl91IK3etXbCeHfmwqMVywndDCNEbp4Q27JDoIIaQ0447hd0fHFNFz5zE0GX6viysQ-GktGepuBD5hosdY_gAhcVcKxLUixH1aQoMxrL7y6R8GV_ABOJ1F4hh5SUdXEj8tLhZ6y17PbiG4fn6v2K8vn3_e3jX3P75-u_1033gjhtK0Q6-mMEvp5mkQetJgpk5pqYKeZq38PIWxh9a0s_JqaNUoe9X2cgJjzNi7Tl-x99vuKae_K1CxRyQPSz0C0kpWdbqr5CiGin7YUJ8TUYbZeiz1EymW7HCxUthzYHuwz4HtObDdAle7_c8-ZTy6_Pii93HzoFZ4QMgbVSNiBl9sSPjCwhNaB5yt |
CitedBy_id | crossref_primary_10_1007_s11103_025_01566_w crossref_primary_10_3389_fpls_2021_763284 crossref_primary_10_1016_j_fgb_2024_103864 crossref_primary_10_1016_j_freeradbiomed_2023_02_008 crossref_primary_10_1007_s00299_022_02883_w crossref_primary_10_1007_s00344_024_11412_w crossref_primary_10_32604_biocell_2022_020391 crossref_primary_10_1016_j_ijbiomac_2022_12_059 crossref_primary_10_3390_agronomy13071902 crossref_primary_10_1007_s11101_024_09913_3 crossref_primary_10_1016_j_scienta_2022_111231 crossref_primary_10_1016_j_postharvbio_2022_111960 crossref_primary_10_3390_plants13081055 crossref_primary_10_1016_j_jplph_2022_153834 crossref_primary_10_3390_agronomy14122933 crossref_primary_10_1016_j_postharvbio_2025_113423 crossref_primary_10_1093_plphys_kiad578 crossref_primary_10_3390_plants13192715 crossref_primary_10_3390_ijms241210342 crossref_primary_10_1016_j_plaphy_2022_03_026 crossref_primary_10_3389_fpls_2022_994100 crossref_primary_10_1016_j_scienta_2023_112313 crossref_primary_10_1016_j_plaphy_2023_108083 crossref_primary_10_3389_fpls_2022_760460 crossref_primary_10_1016_j_scienta_2022_111621 crossref_primary_10_1186_s12870_023_04449_8 crossref_primary_10_1021_acs_jafc_3c08710 crossref_primary_10_1007_s10725_022_00897_8 crossref_primary_10_3389_fpls_2022_1013445 crossref_primary_10_3390_plants12244080 crossref_primary_10_1007_s12011_022_03470_6 crossref_primary_10_3389_fpls_2021_812396 crossref_primary_10_1016_j_postharvbio_2023_112448 crossref_primary_10_1093_hr_uhae125 crossref_primary_10_1007_s00122_024_04697_8 crossref_primary_10_1016_j_envexpbot_2022_105073 crossref_primary_10_1016_j_plantsci_2025_112477 crossref_primary_10_1007_s12011_022_03245_z crossref_primary_10_37221_eaef_16_2_53 crossref_primary_10_3389_fpls_2022_868874 crossref_primary_10_3390_plants12203648 crossref_primary_10_1016_j_envexpbot_2023_105473 crossref_primary_10_3390_plants12010060 crossref_primary_10_3389_fnut_2021_769715 crossref_primary_10_1093_hr_uhac227 |
Cites_doi | 10.1093/jxb/erj103 10.3389/fpls.2019.00816 10.1105/tpc.111.089870 10.1105/tpc.106.048017 10.3390/antiox9030218 10.1104/pp.010843 10.1104/pp.15.01171 10.1016/j.scienta.2017.03.029 10.1105/tpc.19.00617 10.1034/j.1399-3054.2002.1150306.x 10.3390/plants8060184 10.1105/tpc.19.00297 10.1016/j.scienta.2016.11.010 10.1105/tpc.15.00110 10.1002/jcp.25236 10.3389/fpls.2018.01945 10.1016/0003-2697(84)90039-3 10.1105/tpc.111.083261 10.1016/j.scienta.2020.109765 10.3390/ijms19113673 10.1105/tpc.113.112631 10.1093/jxb/err460 10.3390/agronomy9120795 10.1016/j.scienta.2019.108550 10.1016/j.gene.2019.144230 10.1016/j.scienta.2019.108949 10.1007/s11738-015-1980-y 10.1007/s00425-007-0562-7 10.1007/s11738-014-1672-z 10.3389/fpls.2020.599111 10.1146/annurev.arplant.55.031903.141701 10.1104/pp.124.3.1315 10.1007/s11103-012-9886-1 10.1016/S1360-1385(00)01808-2 10.1104/pp.110.166595 10.1046/j.1365-313X.2001.01100.x 10.1111/j.1365-3040.2012.02551.x 10.1016/j.cell.2016.08.029 10.3390/antiox7110169 10.1105/tpc.16.00953 10.1074/jbc.R116.731661 |
ContentType | Journal Article |
Copyright | 2021 |
Copyright_xml | – notice: 2021 |
DBID | AAYXX CITATION 7S9 L.6 |
DOI | 10.1016/j.scienta.2021.110373 |
DatabaseName | CrossRef AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Agriculture |
EISSN | 1879-1018 |
ExternalDocumentID | 10_1016_j_scienta_2021_110373 S0304423821004805 |
GroupedDBID | --K --M .~1 0R~ 123 1B1 1RT 1~. 1~5 4.4 457 4G. 5VS 7-5 71M 8P~ 9JM AABNK AABVA AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AATLK AAXUO ABFRF ABGRD ABJNI ABMAC ABYKQ ACDAQ ACGFO ACGFS ACIUM ACRLP ADBBV ADEZE ADQTV AEBSH AEFWE AEKER AENEX AEQOU AFKWA AFTJW AFXIZ AGUBO AGYEJ AHHHB AIEXJ AIKHN AITUG AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BKOJK BLXMC CBWCG CS3 DU5 EBS EFJIC EFLBG EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA IHE J1W KOM LW9 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 ROL RPZ SAB SDF SDG SES SPCBC SSA SSZ T5K Y6R ~G- ~KM AAHBH AALCJ AAQXK AATTM AAXKI AAYWO AAYXX ABFNM ABWVN ABXDB ACRPL ACVFH ADCNI ADMUD ADNMO AEIPS AEUPX AFJKZ AFPUW AGCQF AGHFR AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN BNPGV CITATION EJD FEDTE FGOYB G-2 GROUPED_DOAJ HLV HVGLF HZ~ R2- RIG SEW SSH WUQ XOL 7S9 EFKBS L.6 |
ID | FETCH-LOGICAL-c408t-5872bdf11afb803b3e4b62312d3bf32cfbd97e545f2c28529172571be44497a63 |
IEDL.DBID | .~1 |
ISSN | 0304-4238 |
IngestDate | Tue Aug 05 10:03:09 EDT 2025 Tue Jul 01 02:36:00 EDT 2025 Thu Apr 24 22:52:14 EDT 2025 Fri Feb 23 02:46:08 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Arginine decarboxylase Cold stress Putrescine Polyamines Solanum lycopersicum Jasmonic acid |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c408t-5872bdf11afb803b3e4b62312d3bf32cfbd97e545f2c28529172571be44497a63 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0002-1287-881X |
PQID | 2636497908 |
PQPubID | 24069 |
ParticipantIDs | proquest_miscellaneous_2636497908 crossref_citationtrail_10_1016_j_scienta_2021_110373 crossref_primary_10_1016_j_scienta_2021_110373 elsevier_sciencedirect_doi_10_1016_j_scienta_2021_110373 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-10-15 |
PublicationDateYYYYMMDD | 2021-10-15 |
PublicationDate_xml | – month: 10 year: 2021 text: 2021-10-15 day: 15 |
PublicationDecade | 2020 |
PublicationTitle | Scientia horticulturae |
PublicationYear | 2021 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Du, Zhao, Tzeng, Liu, Deng, Yang, Zhai, Wu, Huang, Zhou, Wang, Chen, Zhong, Li, Li (bib0015) 2017; 29 Shan, Wang, Chua, Jiang, Peng, Xie (bib0035) 2011; 155 Qi, Wang, Huang, Liu, Gao, Liu, Song, Xie (bib0033) 2015; 27 Song, Diao, Qi (bib0037) 2014; 75 Wang, Zhang, Ding (bib0040) 2020; 9 Fortes, Agudelo-Romero, Pimentel, Alkan (bib0016) 2019 Allen, Ort (bib0001) 2001; 6 Docimo, Reichelt, Schneider, Kai, Kunert, Gershenzon, D'Auria (bib0012) 2012; 78 Dreyer, Dietz (bib0014) 2018; 7 Qi, Song, Ren, Wu, Huang, Chen, Fan, Peng, Ren, Xiea (bib0032) 2011; 23 Zhu, Gan, Shen, Xia (bib0045) 2006; 57 Chen, Sun, Zhai, Zhou, Qi, Xu, Wang, Chen, Jiang, Qi, Li, Palme, Li (bib0006) 2011; 23 Ding, Wang, Zhang, Ai (bib0011) 2016 Garstka, Venema, Rumak, Gieczewska, Rosiak, Koziol-Lipinska, Kierdaszuk, Vredenberg, Mostowska (bib0017) 2007; 226 Pegg (bib0030) 2016 Liu, Fu, Bei, Luan (bib0026) 2000; 124 Zhuo, Sakuraba, Yanagisawa (bib0047) 2020; 32 Hanfrey, Sommer, Mayer, Burtin, Michael (bib0020) 2001; 27 Krasensky, Jonak (bib0024) 2015; 63 Ding, Wang, Zhang (bib0009) 2018; 19 Tsaniklidis, Pappi, Tsafouros, Charova, Nikoloudakis, Roussos, Paschalidis, Delis (bib0038) 2020; 727 Wang, Zhang, Ding (bib0041) 2019; 9 Diao, Song, Qi (bib0007) 2015; 37 Ming, Zhang, Wang, Khan, Dahro, Liu (bib0028) 2020 Hu, Jiang, Wang, Yu (bib0022) 2013; 25 Saadati, Baninasab, Mobli, Gholami (bib0034) 2021; 276 Wang, Guo, Li, Wang, Onac, Zhou, Xia, Shi, Yu, Zhou (bib0039) 2016; 170 Ding, Liu, Zhang (bib0008) 2017; 219 Song, Diao, Qi (bib0036) 2014; 36 Kim, Kim, Han, Lee, Chang (bib0023) 2002; 115 Che, Zhang, Zhu, Li, Wang, Si (bib0004) 2020; 261 Chen, Shao, Yin, Younis, Zheng (bib0005) 2019; 9 Zhao, Wang, Shan, Fan, Kuang, Wu, Li, Chen, He, Chen, Lu (bib0044) 2013; 36 Phornvillay, Pongprasert, Wongs-Aree, Uthairatanakij, Srilaong (bib0031) 2019; 256 Yu, Jia, Liu (bib0043) 2019; 8 Patterson, MacRae, Ferguson (bib0029) 1984; 139 An, Wang, Zhang, You, Hao (bib0002) 2020 Han, Zhang, Yang, Hu (bib0019) 2020; 32 Ding, Wang, Zhang (bib0010) 2017; 214 Yamamoto, Shim, Fujihara (bib0042) 2017 Lu, Guan, Gu, Yang, Wang, Qi, Li, Liu (bib0027) 2021; 11 Apel, Hirt (bib0003) 2004; 55 Grossi, Phanstiel, Rippe, Swärd, Alajbegovic, Albinsson, Forte, Persson, Hellstrand, Nilsson (bib0018) 2016; 231 Zhu (bib0046) 2016; 167 Dombrecht, Gang, Sprague, Kirkegaard, Ross, Reid, Fitt, Sewelam, Schenk, Manners, Kazana (bib0013) 2007; 19 He, Fukushige, Hildebrand, Gan (bib0021) 2002; 128 Li, Jia, Lian, Yang, Li, Yang (bib0025) 2014 Grossi (10.1016/j.scienta.2021.110373_bib0018) 2016; 231 Apel (10.1016/j.scienta.2021.110373_bib0003) 2004; 55 Chen (10.1016/j.scienta.2021.110373_bib0005) 2019; 9 Diao (10.1016/j.scienta.2021.110373_bib0007) 2015; 37 Zhao (10.1016/j.scienta.2021.110373_bib0044) 2013; 36 Wang (10.1016/j.scienta.2021.110373_bib0041) 2019; 9 Chen (10.1016/j.scienta.2021.110373_bib0006) 2011; 23 Yamamoto (10.1016/j.scienta.2021.110373_bib0042) 2017 Saadati (10.1016/j.scienta.2021.110373_bib0034) 2021; 276 Che (10.1016/j.scienta.2021.110373_bib0004) 2020; 261 Du (10.1016/j.scienta.2021.110373_bib0015) 2017; 29 Zhuo (10.1016/j.scienta.2021.110373_bib0047) 2020; 32 Yu (10.1016/j.scienta.2021.110373_bib0043) 2019; 8 Fortes (10.1016/j.scienta.2021.110373_bib0016) 2019 Zhu (10.1016/j.scienta.2021.110373_bib0045) 2006; 57 Qi (10.1016/j.scienta.2021.110373_bib0033) 2015; 27 Ding (10.1016/j.scienta.2021.110373_bib0010) 2017; 214 Song (10.1016/j.scienta.2021.110373_bib0036) 2014; 36 Garstka (10.1016/j.scienta.2021.110373_bib0017) 2007; 226 Wang (10.1016/j.scienta.2021.110373_bib0039) 2016; 170 An (10.1016/j.scienta.2021.110373_bib0002) 2020 Ming (10.1016/j.scienta.2021.110373_bib0028) 2020 Song (10.1016/j.scienta.2021.110373_bib0037) 2014; 75 Ding (10.1016/j.scienta.2021.110373_bib0011) 2016 Dombrecht (10.1016/j.scienta.2021.110373_bib0013) 2007; 19 Ding (10.1016/j.scienta.2021.110373_bib0008) 2017; 219 Ding (10.1016/j.scienta.2021.110373_bib0009) 2018; 19 Docimo (10.1016/j.scienta.2021.110373_bib0012) 2012; 78 Dreyer (10.1016/j.scienta.2021.110373_bib0014) 2018; 7 Krasensky (10.1016/j.scienta.2021.110373_bib0024) 2015; 63 Qi (10.1016/j.scienta.2021.110373_bib0032) 2011; 23 Li (10.1016/j.scienta.2021.110373_bib0025) 2014 Liu (10.1016/j.scienta.2021.110373_bib0026) 2000; 124 Patterson (10.1016/j.scienta.2021.110373_bib0029) 1984; 139 Allen (10.1016/j.scienta.2021.110373_bib0001) 2001; 6 Hu (10.1016/j.scienta.2021.110373_bib0022) 2013; 25 Tsaniklidis (10.1016/j.scienta.2021.110373_bib0038) 2020; 727 Zhu (10.1016/j.scienta.2021.110373_bib0046) 2016; 167 Han (10.1016/j.scienta.2021.110373_bib0019) 2020; 32 Pegg (10.1016/j.scienta.2021.110373_bib0030) 2016 He (10.1016/j.scienta.2021.110373_bib0021) 2002; 128 Hanfrey (10.1016/j.scienta.2021.110373_bib0020) 2001; 27 Kim (10.1016/j.scienta.2021.110373_bib0023) 2002; 115 Lu (10.1016/j.scienta.2021.110373_bib0027) 2021; 11 Shan (10.1016/j.scienta.2021.110373_bib0035) 2011; 155 Phornvillay (10.1016/j.scienta.2021.110373_bib0031) 2019; 256 Wang (10.1016/j.scienta.2021.110373_bib0040) 2020; 9 |
References_xml | – volume: 23 start-page: 3335 year: 2011 end-page: 3352 ident: bib0006 article-title: The basic helix-loop-helix transcription factor MYC2 directly represses plethora expression during jasmonate-mediated modulation of the root stem cell niche in arabidopsis publication-title: Plant Cell – volume: 63 start-page: 1593 year: 2015 end-page: 1608 ident: bib0024 article-title: Drought, salt, and temperature stress-induced metabolic rearrangements and regulatory networks publication-title: J. Exp. Bot. – volume: 27 year: 2001 ident: bib0020 article-title: Arabidopsis polyamine biosynthesis: absence of ornithine decarboxylase and the mechanism of arginine decarboxylase activity publication-title: Plant J. – volume: 226 year: 2007 ident: bib0017 article-title: Contrasting effect of dark-chilling on chloroplast structure and arrangement of chlorophyll-protein complexes in pea and tomato: Plants with a different susceptibility to non-freezing temperature publication-title: Planta – volume: 170 start-page: 459 year: 2016 end-page: 471 ident: bib0039 article-title: Phytochrome a and b function antagonistically to regulate cold tolerance via abscisic acid-dependent jasmonate signaling publication-title: Plant Physiol. – volume: 261 year: 2020 ident: bib0004 article-title: Enhanced tolerance of the transgenic potato plants overexpressing Cu/Zn superoxide dismutase to low temperature publication-title: Sci. Hortic. (Amsterdam). – volume: 231 year: 2016 ident: bib0018 article-title: Inhibition of polyamine uptake potentiates the anti-proliferative effect of polyamine synthesis inhibition and preserves the contractile phenotype of vascular smooth muscle cells publication-title: J. Cell. Physiol. – volume: 128 start-page: 876 year: 2002 end-page: 884 ident: bib0021 article-title: Evidence supporting a role of jasmonic acid in Arabidopsis leaf senescence publication-title: Plant Physiol. – volume: 214 start-page: 27 year: 2017 end-page: 33 ident: bib0010 article-title: Overexpression of a Calvin cycle enzyme SBPase improves tolerance to chilling-induced oxidative stress in tomato plants publication-title: Sci. Hortic. (Amsterdam). – volume: 78 year: 2012 ident: bib0012 article-title: The first step in the biosynthesis of cocaine in Erythroxylum coca: The characterization of arginine and ornithine decarboxylases publication-title: Plant Mol. Biol. – volume: 219 start-page: 264 year: 2017 end-page: 271 ident: bib0008 article-title: Exogenous melatonin ameliorates cold-induced damage in tomato plants publication-title: Sci. Hortic. (Amsterdam). – start-page: 1 year: 2016 end-page: 14 ident: bib0011 article-title: Changes in SBPase activity influence photosynthetic capacity, growth, and tolerance to chilling stress in transgenic tomato plants publication-title: Sci. Rep – volume: 19 start-page: 3673 year: 2018 ident: bib0009 article-title: Sedoheptulose-1,7-bisphosphatase is involved in methyl jasmonate- and dark-induced leaf senescence in tomato plants publication-title: Int. J. Mol. Sci. – volume: 55 start-page: 373 year: 2004 end-page: 399 ident: bib0003 article-title: REACTIVE OXYGEN SPECIES: Metabolism, oxidative stress, and signal transduction publication-title: Annu. Rev. Plant Biol. – volume: 115 year: 2002 ident: bib0023 article-title: ABA and polyamines act independently in primary leaves of cold-stressed tomato (Lycopersicon esculentum) publication-title: Physiol. Plant. – volume: 167 start-page: 313 year: 2016 end-page: 324 ident: bib0046 article-title: Abiotic stress signaling and responses in plants publication-title: Cell – volume: 23 year: 2011 ident: bib0032 article-title: The jasmonate-ZIM-domain proteins interact with the WD-repeat/bHLH/MYB complexes to regulate jasmonate-mediated anthocyanin accumulation and trichome initiation in Arabidopsis thaliana publication-title: Plant Cell – volume: 8 year: 2019 ident: bib0043 article-title: Polyamine oxidases play various roles in plant development and abiotic stress tolerance publication-title: Plants – year: 2020 ident: bib0028 article-title: The JA-responsive MYC2- BADH-like transcriptional regulatory module in Poncirus trifoliata contributes to cold tolerance by modulation of glycine betaine biosynthesis publication-title: New Phytol. – year: 2016 ident: bib0030 article-title: Functions of polyamines in mammals publication-title: J. Biol. Chem. – volume: 256 year: 2019 ident: bib0031 article-title: Exogenous putrescine treatment delays chilling injury in okra pod (Abelmoschus esculentus) stored at low storage temperature publication-title: Sci. Hortic. (Amsterdam). – volume: 25 start-page: 2907 year: 2013 end-page: 2924 ident: bib0022 article-title: Jasmonate regulates the inducer Of CBF expression-C-repeat binding Factor/DRE binding factor1 cascade and freezing tolerance in Arabidopsis publication-title: Plant Cell – volume: 27 start-page: 1634 year: 2015 end-page: 1649 ident: bib0033 article-title: Regulation of jasmonate-induced leaf senescence by antagonism between bHLH subgroup IIIe and IIId factors in Arabidopsis publication-title: Plant Cell – volume: 36 year: 2014 ident: bib0036 article-title: Putrescine enhances chilling tolerance of tomato (Lycopersicon esculentum Mill.) through modulating antioxidant systems publication-title: Acta Physiol. Plant. – volume: 29 start-page: 1883 year: 2017 end-page: 1906 ident: bib0015 article-title: MYC2 orchestrates a hierarchical transcriptional cascade that regulates jasmonate-mediated plant immunity in tomato publication-title: Plant Cell – volume: 7 year: 2018 ident: bib0014 article-title: Reactive oxygen species and the redox-regulatory network in cold stress acclimation publication-title: Antioxidants – volume: 11 year: 2021 ident: bib0027 article-title: Exogenous DA-6 improves the low night temperature tolerance of tomato through regulating cytokinin publication-title: Front. Plant Sci. – year: 2020 ident: bib0002 article-title: Apple B-box protein BBX37 regulates jasmonic acid-mediated cold tolerance through the JAZ-BBX37-ICE1-CBF pathway and undergoes MIEL1-mediated ubiquitination and degradation publication-title: New Phytol. – volume: 9 start-page: 1 year: 2019 end-page: 13 ident: bib0005 article-title: Polyamine function in plants: Metabolism, regulation on development, and roles in abiotic stress responses publication-title: Front. Plant Sci. – year: 2019 ident: bib0016 article-title: Transcriptional modulation of polyamine metabolism in fruit species under abiotic and biotic stress publication-title: Front. Plant Sci. – volume: 57 year: 2006 ident: bib0045 article-title: Interactions between jasmonates and ethylene in the regulation of root hair development in Arabidopsis publication-title: J. Exp. Bot. – volume: 155 start-page: 751 year: 2011 end-page: 764 ident: bib0035 article-title: The role of Arabidopsis rubisco activase in jasmonate-induced leaf senescence publication-title: Plant Physiol. – volume: 727 year: 2020 ident: bib0038 article-title: Polyamine homeostasis in tomato biotic/abiotic stress cross-tolerance publication-title: Gene – volume: 32 year: 2020 ident: bib0047 article-title: A Jasmonate-Activated MYC2-Dof2.1-MYC2 Transcriptional Loop Promotes Leaf Senescence in Arabidopsis publication-title: Plant Cell – start-page: 61 year: 2017 ident: bib0042 article-title: Inhibition of putrescine biosynthesis enhanced salt stress sensitivity and decreased spermidine content in rice seedlings publication-title: Biol. Plant. – start-page: 454 year: 2014 ident: bib0025 article-title: Jasmonic acid enhancement of anthocyanin accumulation is dependent on phytochrome A signaling pathway under far-red light in Arabidopsis publication-title: Biochem. Biophys. Res. Commun. – volume: 124 year: 2000 ident: bib0026 article-title: Inward potassium channel in guard cells as a target for polyamine regulation of stomatal movements publication-title: Plant Physiol. – volume: 36 year: 2013 ident: bib0044 article-title: Induction of jasmonate signalling regulators MaMYC2s and their physical interactions with MaICE1 in methyl jasmonate-induced chilling tolerance in banana fruit publication-title: Plant Cell Environ. – volume: 32 year: 2020 ident: bib0019 article-title: Arabidopsis JAZ proteins interact with and suppress RHD6 transcription factor to regulate jasmonate-stimulated root hair development publication-title: Plant Cell – volume: 75 year: 2014 ident: bib0037 article-title: Polyamine metabolism and biosynthetic genes expression in tomato (Lycopersicon esculentum Mill.) seedlings during cold acclimation publication-title: Plant Growth Regul. – volume: 19 year: 2007 ident: bib0013 article-title: MYC2 differentially modulates diverse jasmonate-dependent functions in Arabidopsis publication-title: Plant Cell – volume: 9 year: 2020 ident: bib0040 article-title: Melatonin mitigates chilling-induced oxidative stress and photosynthesis inhibition in tomato plants publication-title: Antioxidants – volume: 37 year: 2015 ident: bib0007 article-title: Exogenous spermidine enhances chilling tolerance of tomato (Solanum lycopersicum L.) seedlings via involvement in polyamines metabolism and physiological parameter levels publication-title: Acta Physiol. Plant. – volume: 6 start-page: 36 year: 2001 end-page: 42 ident: bib0001 article-title: Impacts of chilling temperatures on photosynthesis in warm-climate plants publication-title: Trends Plant. Sci. – volume: 139 start-page: 487 year: 1984 end-page: 492 ident: bib0029 article-title: Estimation of hydrogen peroxide in plant extracts using titanium(IV) publication-title: Anal. Biochem. – volume: 9 year: 2019 ident: bib0041 article-title: Exogenous melatonin delays methyl jasmonate-triggered senescence in tomato leaves publication-title: Agronomy – volume: 276 year: 2021 ident: bib0034 article-title: Foliar application of potassium to improve the freezing tolerance of olive leaves by increasing some osmolite compounds and antioxidant activity publication-title: Sci. Hortic. (Amsterdam). – volume: 57 year: 2006 ident: 10.1016/j.scienta.2021.110373_bib0045 article-title: Interactions between jasmonates and ethylene in the regulation of root hair development in Arabidopsis publication-title: J. Exp. Bot. doi: 10.1093/jxb/erj103 – year: 2019 ident: 10.1016/j.scienta.2021.110373_bib0016 article-title: Transcriptional modulation of polyamine metabolism in fruit species under abiotic and biotic stress publication-title: Front. Plant Sci. doi: 10.3389/fpls.2019.00816 – volume: 23 start-page: 3335 year: 2011 ident: 10.1016/j.scienta.2021.110373_bib0006 article-title: The basic helix-loop-helix transcription factor MYC2 directly represses plethora expression during jasmonate-mediated modulation of the root stem cell niche in arabidopsis publication-title: Plant Cell doi: 10.1105/tpc.111.089870 – volume: 19 year: 2007 ident: 10.1016/j.scienta.2021.110373_bib0013 article-title: MYC2 differentially modulates diverse jasmonate-dependent functions in Arabidopsis publication-title: Plant Cell doi: 10.1105/tpc.106.048017 – year: 2020 ident: 10.1016/j.scienta.2021.110373_bib0028 article-title: The JA-responsive MYC2- BADH-like transcriptional regulatory module in Poncirus trifoliata contributes to cold tolerance by modulation of glycine betaine biosynthesis publication-title: New Phytol. – volume: 9 year: 2020 ident: 10.1016/j.scienta.2021.110373_bib0040 article-title: Melatonin mitigates chilling-induced oxidative stress and photosynthesis inhibition in tomato plants publication-title: Antioxidants doi: 10.3390/antiox9030218 – volume: 128 start-page: 876 year: 2002 ident: 10.1016/j.scienta.2021.110373_bib0021 article-title: Evidence supporting a role of jasmonic acid in Arabidopsis leaf senescence publication-title: Plant Physiol. doi: 10.1104/pp.010843 – volume: 170 start-page: 459 year: 2016 ident: 10.1016/j.scienta.2021.110373_bib0039 article-title: Phytochrome a and b function antagonistically to regulate cold tolerance via abscisic acid-dependent jasmonate signaling publication-title: Plant Physiol. doi: 10.1104/pp.15.01171 – volume: 219 start-page: 264 year: 2017 ident: 10.1016/j.scienta.2021.110373_bib0008 article-title: Exogenous melatonin ameliorates cold-induced damage in tomato plants publication-title: Sci. Hortic. (Amsterdam). doi: 10.1016/j.scienta.2017.03.029 – volume: 32 year: 2020 ident: 10.1016/j.scienta.2021.110373_bib0019 article-title: Arabidopsis JAZ proteins interact with and suppress RHD6 transcription factor to regulate jasmonate-stimulated root hair development publication-title: Plant Cell doi: 10.1105/tpc.19.00617 – volume: 115 year: 2002 ident: 10.1016/j.scienta.2021.110373_bib0023 article-title: ABA and polyamines act independently in primary leaves of cold-stressed tomato (Lycopersicon esculentum) publication-title: Physiol. Plant. doi: 10.1034/j.1399-3054.2002.1150306.x – year: 2020 ident: 10.1016/j.scienta.2021.110373_bib0002 article-title: Apple B-box protein BBX37 regulates jasmonic acid-mediated cold tolerance through the JAZ-BBX37-ICE1-CBF pathway and undergoes MIEL1-mediated ubiquitination and degradation publication-title: New Phytol. – volume: 75 year: 2014 ident: 10.1016/j.scienta.2021.110373_bib0037 article-title: Polyamine metabolism and biosynthetic genes expression in tomato (Lycopersicon esculentum Mill.) seedlings during cold acclimation publication-title: Plant Growth Regul. – volume: 8 year: 2019 ident: 10.1016/j.scienta.2021.110373_bib0043 article-title: Polyamine oxidases play various roles in plant development and abiotic stress tolerance publication-title: Plants doi: 10.3390/plants8060184 – volume: 32 year: 2020 ident: 10.1016/j.scienta.2021.110373_bib0047 article-title: A Jasmonate-Activated MYC2-Dof2.1-MYC2 Transcriptional Loop Promotes Leaf Senescence in Arabidopsis publication-title: Plant Cell doi: 10.1105/tpc.19.00297 – volume: 214 start-page: 27 year: 2017 ident: 10.1016/j.scienta.2021.110373_bib0010 article-title: Overexpression of a Calvin cycle enzyme SBPase improves tolerance to chilling-induced oxidative stress in tomato plants publication-title: Sci. Hortic. (Amsterdam). doi: 10.1016/j.scienta.2016.11.010 – start-page: 454 year: 2014 ident: 10.1016/j.scienta.2021.110373_bib0025 article-title: Jasmonic acid enhancement of anthocyanin accumulation is dependent on phytochrome A signaling pathway under far-red light in Arabidopsis publication-title: Biochem. Biophys. Res. Commun. – volume: 27 start-page: 1634 year: 2015 ident: 10.1016/j.scienta.2021.110373_bib0033 article-title: Regulation of jasmonate-induced leaf senescence by antagonism between bHLH subgroup IIIe and IIId factors in Arabidopsis publication-title: Plant Cell doi: 10.1105/tpc.15.00110 – volume: 231 year: 2016 ident: 10.1016/j.scienta.2021.110373_bib0018 article-title: Inhibition of polyamine uptake potentiates the anti-proliferative effect of polyamine synthesis inhibition and preserves the contractile phenotype of vascular smooth muscle cells publication-title: J. Cell. Physiol. doi: 10.1002/jcp.25236 – start-page: 1 year: 2016 ident: 10.1016/j.scienta.2021.110373_bib0011 article-title: Changes in SBPase activity influence photosynthetic capacity, growth, and tolerance to chilling stress in transgenic tomato plants publication-title: Sci. Rep – volume: 9 start-page: 1 year: 2019 ident: 10.1016/j.scienta.2021.110373_bib0005 article-title: Polyamine function in plants: Metabolism, regulation on development, and roles in abiotic stress responses publication-title: Front. Plant Sci. doi: 10.3389/fpls.2018.01945 – volume: 139 start-page: 487 year: 1984 ident: 10.1016/j.scienta.2021.110373_bib0029 article-title: Estimation of hydrogen peroxide in plant extracts using titanium(IV) publication-title: Anal. Biochem. doi: 10.1016/0003-2697(84)90039-3 – volume: 23 year: 2011 ident: 10.1016/j.scienta.2021.110373_bib0032 article-title: The jasmonate-ZIM-domain proteins interact with the WD-repeat/bHLH/MYB complexes to regulate jasmonate-mediated anthocyanin accumulation and trichome initiation in Arabidopsis thaliana publication-title: Plant Cell doi: 10.1105/tpc.111.083261 – volume: 276 year: 2021 ident: 10.1016/j.scienta.2021.110373_bib0034 article-title: Foliar application of potassium to improve the freezing tolerance of olive leaves by increasing some osmolite compounds and antioxidant activity publication-title: Sci. Hortic. (Amsterdam). doi: 10.1016/j.scienta.2020.109765 – volume: 19 start-page: 3673 year: 2018 ident: 10.1016/j.scienta.2021.110373_bib0009 article-title: Sedoheptulose-1,7-bisphosphatase is involved in methyl jasmonate- and dark-induced leaf senescence in tomato plants publication-title: Int. J. Mol. Sci. doi: 10.3390/ijms19113673 – volume: 25 start-page: 2907 year: 2013 ident: 10.1016/j.scienta.2021.110373_bib0022 article-title: Jasmonate regulates the inducer Of CBF expression-C-repeat binding Factor/DRE binding factor1 cascade and freezing tolerance in Arabidopsis publication-title: Plant Cell doi: 10.1105/tpc.113.112631 – volume: 63 start-page: 1593 year: 2015 ident: 10.1016/j.scienta.2021.110373_bib0024 article-title: Drought, salt, and temperature stress-induced metabolic rearrangements and regulatory networks publication-title: J. Exp. Bot. doi: 10.1093/jxb/err460 – volume: 9 year: 2019 ident: 10.1016/j.scienta.2021.110373_bib0041 article-title: Exogenous melatonin delays methyl jasmonate-triggered senescence in tomato leaves publication-title: Agronomy doi: 10.3390/agronomy9120795 – volume: 256 year: 2019 ident: 10.1016/j.scienta.2021.110373_bib0031 article-title: Exogenous putrescine treatment delays chilling injury in okra pod (Abelmoschus esculentus) stored at low storage temperature publication-title: Sci. Hortic. (Amsterdam). doi: 10.1016/j.scienta.2019.108550 – volume: 727 year: 2020 ident: 10.1016/j.scienta.2021.110373_bib0038 article-title: Polyamine homeostasis in tomato biotic/abiotic stress cross-tolerance publication-title: Gene doi: 10.1016/j.gene.2019.144230 – volume: 261 year: 2020 ident: 10.1016/j.scienta.2021.110373_bib0004 article-title: Enhanced tolerance of the transgenic potato plants overexpressing Cu/Zn superoxide dismutase to low temperature publication-title: Sci. Hortic. (Amsterdam). doi: 10.1016/j.scienta.2019.108949 – volume: 37 year: 2015 ident: 10.1016/j.scienta.2021.110373_bib0007 article-title: Exogenous spermidine enhances chilling tolerance of tomato (Solanum lycopersicum L.) seedlings via involvement in polyamines metabolism and physiological parameter levels publication-title: Acta Physiol. Plant. doi: 10.1007/s11738-015-1980-y – volume: 226 year: 2007 ident: 10.1016/j.scienta.2021.110373_bib0017 article-title: Contrasting effect of dark-chilling on chloroplast structure and arrangement of chlorophyll-protein complexes in pea and tomato: Plants with a different susceptibility to non-freezing temperature publication-title: Planta doi: 10.1007/s00425-007-0562-7 – volume: 36 year: 2014 ident: 10.1016/j.scienta.2021.110373_bib0036 article-title: Putrescine enhances chilling tolerance of tomato (Lycopersicon esculentum Mill.) through modulating antioxidant systems publication-title: Acta Physiol. Plant. doi: 10.1007/s11738-014-1672-z – volume: 11 year: 2021 ident: 10.1016/j.scienta.2021.110373_bib0027 article-title: Exogenous DA-6 improves the low night temperature tolerance of tomato through regulating cytokinin publication-title: Front. Plant Sci. doi: 10.3389/fpls.2020.599111 – volume: 55 start-page: 373 year: 2004 ident: 10.1016/j.scienta.2021.110373_bib0003 article-title: REACTIVE OXYGEN SPECIES: Metabolism, oxidative stress, and signal transduction publication-title: Annu. Rev. Plant Biol. doi: 10.1146/annurev.arplant.55.031903.141701 – volume: 124 year: 2000 ident: 10.1016/j.scienta.2021.110373_bib0026 article-title: Inward potassium channel in guard cells as a target for polyamine regulation of stomatal movements publication-title: Plant Physiol. doi: 10.1104/pp.124.3.1315 – volume: 78 year: 2012 ident: 10.1016/j.scienta.2021.110373_bib0012 article-title: The first step in the biosynthesis of cocaine in Erythroxylum coca: The characterization of arginine and ornithine decarboxylases publication-title: Plant Mol. Biol. doi: 10.1007/s11103-012-9886-1 – volume: 6 start-page: 36 year: 2001 ident: 10.1016/j.scienta.2021.110373_bib0001 article-title: Impacts of chilling temperatures on photosynthesis in warm-climate plants publication-title: Trends Plant. Sci. doi: 10.1016/S1360-1385(00)01808-2 – volume: 155 start-page: 751 year: 2011 ident: 10.1016/j.scienta.2021.110373_bib0035 article-title: The role of Arabidopsis rubisco activase in jasmonate-induced leaf senescence publication-title: Plant Physiol. doi: 10.1104/pp.110.166595 – volume: 27 year: 2001 ident: 10.1016/j.scienta.2021.110373_bib0020 article-title: Arabidopsis polyamine biosynthesis: absence of ornithine decarboxylase and the mechanism of arginine decarboxylase activity publication-title: Plant J. doi: 10.1046/j.1365-313X.2001.01100.x – volume: 36 year: 2013 ident: 10.1016/j.scienta.2021.110373_bib0044 article-title: Induction of jasmonate signalling regulators MaMYC2s and their physical interactions with MaICE1 in methyl jasmonate-induced chilling tolerance in banana fruit publication-title: Plant Cell Environ. doi: 10.1111/j.1365-3040.2012.02551.x – volume: 167 start-page: 313 year: 2016 ident: 10.1016/j.scienta.2021.110373_bib0046 article-title: Abiotic stress signaling and responses in plants publication-title: Cell doi: 10.1016/j.cell.2016.08.029 – volume: 7 year: 2018 ident: 10.1016/j.scienta.2021.110373_bib0014 article-title: Reactive oxygen species and the redox-regulatory network in cold stress acclimation publication-title: Antioxidants doi: 10.3390/antiox7110169 – volume: 29 start-page: 1883 year: 2017 ident: 10.1016/j.scienta.2021.110373_bib0015 article-title: MYC2 orchestrates a hierarchical transcriptional cascade that regulates jasmonate-mediated plant immunity in tomato publication-title: Plant Cell doi: 10.1105/tpc.16.00953 – year: 2016 ident: 10.1016/j.scienta.2021.110373_bib0030 article-title: Functions of polyamines in mammals publication-title: J. Biol. Chem. doi: 10.1074/jbc.R116.731661 – start-page: 61 year: 2017 ident: 10.1016/j.scienta.2021.110373_bib0042 article-title: Inhibition of putrescine biosynthesis enhanced salt stress sensitivity and decreased spermidine content in rice seedlings publication-title: Biol. Plant. |
SSID | ssj0001149 |
Score | 2.531832 |
Snippet | •Cold promotes accumulation of putrescine (Put) and jasmonic acid (JA).•JA increases Put accumulation and cold tolerance.•Suppression of JA signaling reduces... Previous studies have shown that jasmonic acid (JA) and putrescine (Put), a major polyamine, are both accumulated in tomato plants upon cold treatment.... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 110373 |
SubjectTerms | Arginine decarboxylase biosynthesis cold Cold stress cold tolerance cold treatment genes Jasmonic acid oxidative stress Polyamines Putrescine sodium Solanum lycopersicum tomatoes |
Title | Jasmonic acid-regulated putrescine biosynthesis attenuates cold-induced oxidative stress in tomato plants |
URI | https://dx.doi.org/10.1016/j.scienta.2021.110373 https://www.proquest.com/docview/2636497908 |
Volume | 288 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1La9wwEBYhvbSHkr5o-ggq9Kpd62XJxyU0bFOaSxvITViWVBxSe1nvQnvJb--MLTe0UAI92ljGHo1mPjHzfSLkvYxaem04syklpqLRzDZFw6ItldE8QdJAgvPni3J9qc6v9NUBOZ25MNhWmWP_FNPHaJ3vLLM1l5u2XX7Boh6AASv4SIxGorlSBr18cXvX5gF4v5oqCYrh03csnuX1IpMOYZsoODbESyP_lZ_-itRj-jk7Io8zbqSr6dOekIPYPSWPVt-2WTsjPiPteT18R6VbWjdtYNvplPkY6GaPhBCsoFPf9sPPDkDf0A4UpTW7PYJNCu4QGGzPYaID7X-0YdQDpxOThLYd3fUAbXu6ucG-mefk8uzD19M1yycpsEYVdse0NcKHxHmdvC2kl1F5wD1cBOmTFE3yoTIRwFQSjbBawB4OljL3USlVmbqUL8hh13fxJaE2VrXQtSlrq1WZuPceRQhV4DKFUPhjomb7uSbLjONpFzdu7ie7dtnsDs3uJrMfk8XvYZtJZ-O-AXaeHPeHwzjIBfcNfTdPpoPFhBWSuov9fnCilCX8cFXYV___-tfkIV5hguP6DTncbffxLSCXnT8ZXfOEPFh9_LS--AVb-e_f |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1La9wwEBbp5tD2UNIXTdO0KvSqrPWy5eMSGjavvTSB3IRlScUhtZf1LrT_PjNrOaWFEujVZoQ9kmY-MfN9IuSLDFo6XXBmYoxMhUIzU2c1CyZXheYRkgYSnC8X-fxand3omx1yPHJhsK0yxf4hpm-jdXoyTd6cLptm-g2LegAGjOBbYrR-QnZRnUpPyO7s9Hy-eAjIAPnLoZigGBr8JvJMb48S7xBOioJjT7ws5L9S1F_BepuBTvbIiwQd6Wz4updkJ7SvyPPZ91WSzwivSXNW9T9Q7JZWdePZarhoPni63CAnBIvo1DVd_6sF3Nc3PUV1zXaDeJPCivAMTugw1552Pxu_lQSnA5mENi1dd4BuO7q8w9aZN-T65OvV8ZylyxRYrTKzZtoUwvnIeRWdyaSTQTmAPlx46aIUdXS-LALgqShqYbSAYxzsZu6CUqosqly-JZO2a8M7Qk0oK6GrIq-MVnnkzjnUIVSey-h95vaJGv1n66Q0jhde3NmxpezWJrdbdLsd3L5Pjh7MloPUxmMGZpwc-8easZAOHjP9PE6mhf2ERZKqDd2mtyKXOfxwmZn3_z_8J_J0fnV5YS9OF-cH5Bm-wXzH9QcyWa824RCAzNp9TAv1HpCi8pA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Jasmonic+acid-regulated+putrescine+biosynthesis+attenuates+cold-induced+oxidative+stress+in+tomato+plants&rft.jtitle=Scientia+horticulturae&rft.au=Ding%2C+Fei&rft.au=Wang%2C+Chuang&rft.au=Xu%2C+Ning&rft.au=Wang%2C+Meiling&rft.date=2021-10-15&rft.issn=0304-4238&rft.volume=288+p.110373-&rft_id=info:doi/10.1016%2Fj.scienta.2021.110373&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0304-4238&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0304-4238&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0304-4238&client=summon |