Personalized QoS Prediction for Service Recommendation With a Service-Oriented Tensor Model

Quality of Service (QoS) value is usually unknown in service recommendation practice. There are some matrix factorization approaches for predicting the unknown value with a user-service model, which uses a single collaboration with the user's neighbor when looking for different services. Howeve...

Full description

Saved in:
Bibliographic Details
Published inIEEE access Vol. 7; pp. 55721 - 55731
Main Authors Guo, Lantian, Mu, Dejun, Cai, Xiaoyan, Tian, Gang, Hao, Fei
Format Journal Article
LanguageEnglish
Published Piscataway IEEE 2019
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Quality of Service (QoS) value is usually unknown in service recommendation practice. There are some matrix factorization approaches for predicting the unknown value with a user-service model, which uses a single collaboration with the user's neighbor when looking for different services. However, the QoS value is highly related to the service provider and participants. The services are considered in various collaboration based on different users. By considering the context of services, this paper proposes a QoS prediction model using tensor decomposition based on service collaboration called Service-oriented Tensor (SOT). The prediction approach analyzes service collaboration from other similar services and relevant users by using a three-order tensor. Compared with the traditional model, the experiment results show that the proposed model achieves better prediction accuracy.
AbstractList Quality of Service (QoS) value is usually unknown in service recommendation practice. There are some matrix factorization approaches for predicting the unknown value with a user-service model, which uses a single collaboration with the user's neighbor when looking for different services. However, the QoS value is highly related to the service provider and participants. The services are considered in various collaboration based on different users. By considering the context of services, this paper proposes a QoS prediction model using tensor decomposition based on service collaboration called Service-oriented Tensor (SOT). The prediction approach analyzes service collaboration from other similar services and relevant users by using a three-order tensor. Compared with the traditional model, the experiment results show that the proposed model achieves better prediction accuracy.
Author Guo, Lantian
Cai, Xiaoyan
Tian, Gang
Hao, Fei
Mu, Dejun
Author_xml – sequence: 1
  givenname: Lantian
  orcidid: 0000-0002-1792-4926
  surname: Guo
  fullname: Guo, Lantian
  organization: School of Automation and Electronic Engineering, Qingdao University of Science and Technology, Qingdao, China
– sequence: 2
  givenname: Dejun
  orcidid: 0000-0002-2568-0861
  surname: Mu
  fullname: Mu, Dejun
  organization: School of Automation, Northwestern Polytechnical University, Xi'an, China
– sequence: 3
  givenname: Xiaoyan
  orcidid: 0000-0002-1406-107X
  surname: Cai
  fullname: Cai, Xiaoyan
  organization: School of Automation, Northwestern Polytechnical University, Xi'an, China
– sequence: 4
  givenname: Gang
  orcidid: 0000-0003-0161-3020
  surname: Tian
  fullname: Tian, Gang
  organization: School of Computer Science and Engineering, Shandong University of Science and Technology, Qingdao, China
– sequence: 5
  givenname: Fei
  orcidid: 0000-0001-5288-5523
  surname: Hao
  fullname: Hao, Fei
  email: fhao@snnu.edu.cn
  organization: School of Computer Science, Shaanxi Normal University, Xi'an, China
BookMark eNpNUctOwzAQtFCRKIUv6CUS5xS_Yx-ripdUxKMgDhwsx9mAqzYGOyDB15M2ULGXXc3szEo7h2jQhAYQGhM8IQTr0-lsdrZYTCgmekI1oQKLPTSkROqcCSYH_-YDdJzSEnelOkgUQ_R8CzGFxq78N1TZXVhktxEq71ofmqwOMVtA_PQOsntwYb2GprJb6sm3r5n9Y_Ob6KFpO4cHaFKnug4VrI7Qfm1XCY5_-wg9np89zC7z-c3F1Ww6zx3Hqs1FYZ1wSnGumaIU12XBqJaMFKrWjumyxkTiAhOwssJcMKgFOIV1UZbSgWUjdNX7VsEuzVv0axu_TLDebIEQX4yNrXcrMKLSsgKsalYAV6UrmS4IBltSq6TrDo_QSe_1FsP7B6TWLMNH7P6TDOVCSCIk590W67dcDClFqHdXCTabUEwfitmEYn5D6VTjXuUBYKdQUnOtFPsB16mJfg
CODEN IAECCG
CitedBy_id crossref_primary_10_1007_s10489_021_02851_z
crossref_primary_10_1109_ACCESS_2019_2937879
crossref_primary_10_3934_mbe_2022068
crossref_primary_10_1109_TSC_2020_2995571
crossref_primary_10_3390_info12060242
crossref_primary_10_1016_j_jmsy_2020_12_019
crossref_primary_10_1109_ACCESS_2020_3043773
crossref_primary_10_1016_j_future_2020_03_062
crossref_primary_10_1109_TSC_2020_3041626
Cites_doi 10.1016/j.neucom.2019.01.028
10.1016/j.eswa.2018.11.003
10.1109/ICWS.2011.86
10.1109/ICWS.2014.51
10.1109/TSC.2016.2584058
10.1109/ACCESS.2016.2573314
10.1109/TKDE.2018.2840993
10.1007/978-3-319-90092-6_10
10.1137/07070111X
10.1186/s13673-018-0161-6
10.1007/978-3-642-41230-1_20
10.1186/s13673-017-0094-5
10.1145/2843948
10.1109/ICWS.2009.30
10.1109/TSMCA.2012.2210409
10.1016/j.engappai.2014.10.010
10.1109/TSC.2012.31
10.1109/ICWS.2007.140
10.1109/TPAMI.2014.2353639
10.1007/s10586-016-0565-x
10.1007/s10619-017-7199-8
10.1109/TSC.2011.59
10.1145/2566486.2568001
10.1109/SCC.2012.36
10.1145/371920.372071
10.1155/2019/8950508
10.1109/TCYB.2014.2374695
10.1109/TSC.2010.52
10.1109/ISSRE.2011.17
10.1109/TETC.2013.2274044
10.1109/ICWS.2014.32
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019
DBID 97E
ESBDL
RIA
RIE
AAYXX
CITATION
7SC
7SP
7SR
8BQ
8FD
JG9
JQ2
L7M
L~C
L~D
DOA
DOI 10.1109/ACCESS.2019.2912505
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE Xplore Open Access Journals
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library Online
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
METADEX
Computer and Information Systems Abstracts Professional
DatabaseTitleList

Materials Research Database
Database_xml – sequence: 1
  dbid: DOA
  name: Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: RIE
  name: IEEE Electronic Library Online
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2169-3536
EndPage 55731
ExternalDocumentID oai_doaj_org_article_5d96de08f37e48bcb39710eab2a86cb7
10_1109_ACCESS_2019_2912505
8694988
Genre orig-research
GrantInformation_xml – fundername: National Natural Science Foundation of China
  grantid: 61672433; 61872296; 61772429; 61702317; 61702305
  funderid: 10.13039/501100001809
GroupedDBID 0R~
4.4
5VS
6IK
97E
AAJGR
ABVLG
ACGFS
ADBBV
ALMA_UNASSIGNED_HOLDINGS
BCNDV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
EJD
ESBDL
GROUPED_DOAJ
IFIPE
IPLJI
JAVBF
KQ8
M43
M~E
O9-
OCL
OK1
RIA
RIE
RIG
RNS
AAYXX
CITATION
7SC
7SP
7SR
8BQ
8FD
JG9
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c408t-57ac5c8844938220fb732963178f9c39bf0160701ea6d0453ef5ec8097bb6cea3
IEDL.DBID DOA
ISSN 2169-3536
IngestDate Tue Oct 22 15:08:16 EDT 2024
Thu Oct 10 15:50:09 EDT 2024
Fri Aug 23 00:50:48 EDT 2024
Wed Jun 26 19:28:06 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c408t-57ac5c8844938220fb732963178f9c39bf0160701ea6d0453ef5ec8097bb6cea3
ORCID 0000-0002-1406-107X
0000-0003-0161-3020
0000-0002-2568-0861
0000-0002-1792-4926
0000-0001-5288-5523
OpenAccessLink https://doaj.org/article/5d96de08f37e48bcb39710eab2a86cb7
PQID 2455615644
PQPubID 4845423
PageCount 11
ParticipantIDs ieee_primary_8694988
proquest_journals_2455615644
crossref_primary_10_1109_ACCESS_2019_2912505
doaj_primary_oai_doaj_org_article_5d96de08f37e48bcb39710eab2a86cb7
PublicationCentury 2000
PublicationDate 20190000
2019-00-00
20190101
2019-01-01
PublicationDateYYYYMMDD 2019-01-01
PublicationDate_xml – year: 2019
  text: 20190000
PublicationDecade 2010
PublicationPlace Piscataway
PublicationPlace_xml – name: Piscataway
PublicationTitle IEEE access
PublicationTitleAbbrev Access
PublicationYear 2019
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref34
ref12
ref15
ref14
tang (ref18) 2012
ref31
ref30
ref33
ref32
ref10
ref2
ref1
ref17
ref16
ref19
ref24
mnih (ref35) 2007
ref23
ref26
ref25
ref20
ref22
ref21
kuleshov (ref28) 2015
ref29
ref8
kluver (ref11) 2018
ref7
ref9
ref4
ref3
cichocki (ref27) 2009
ref6
ref5
paterek (ref36) 2007
References_xml – ident: ref5
  doi: 10.1016/j.neucom.2019.01.028
– ident: ref12
  doi: 10.1016/j.eswa.2018.11.003
– start-page: 5
  year: 2007
  ident: ref36
  article-title: Improving regularized singular value decomposition for collaborative filtering
  publication-title: Proc KDD Cup Workshop
  contributor:
    fullname: paterek
– ident: ref15
  doi: 10.1109/ICWS.2011.86
– ident: ref17
  doi: 10.1109/ICWS.2014.51
– ident: ref25
  doi: 10.1109/TSC.2016.2584058
– start-page: 202
  year: 2012
  ident: ref18
  article-title: Location-aware collaborative filtering for QoS-based service recommendation
  publication-title: Proc of the IEEE International Conf on Web services (ICWS)
  contributor:
    fullname: tang
– ident: ref1
  doi: 10.1109/ACCESS.2016.2573314
– ident: ref6
  doi: 10.1109/TKDE.2018.2840993
– start-page: 344
  year: 2018
  ident: ref11
  article-title: Rating-based collaborative filtering: Algorithms and evaluation
  publication-title: Social Information Access
  doi: 10.1007/978-3-319-90092-6_10
  contributor:
    fullname: kluver
– ident: ref29
  doi: 10.1137/07070111X
– ident: ref4
  doi: 10.1186/s13673-018-0161-6
– year: 2009
  ident: ref27
  publication-title: Nonnegative Matrix and Tensor Factorizations Applications to Exploratory Multi-Way Data Analysis and Blind Source Separation
  contributor:
    fullname: cichocki
– ident: ref23
  doi: 10.1007/978-3-642-41230-1_20
– ident: ref9
  doi: 10.1186/s13673-017-0094-5
– start-page: 1257
  year: 2007
  ident: ref35
  article-title: Probabilistic matrix factorization
  publication-title: Proc 21st Int Conf Neural Inf Process Syst (NIPS)
  contributor:
    fullname: mnih
– ident: ref8
  doi: 10.1145/2843948
– start-page: 507
  year: 2015
  ident: ref28
  article-title: Tensor factorization via matrix factorization
  publication-title: Artificial Intelligence and Statistics
  contributor:
    fullname: kuleshov
– ident: ref34
  doi: 10.1109/ICWS.2009.30
– ident: ref16
  doi: 10.1109/TSMCA.2012.2210409
– ident: ref22
  doi: 10.1016/j.engappai.2014.10.010
– ident: ref14
  doi: 10.1109/TSC.2012.31
– ident: ref32
  doi: 10.1109/ICWS.2007.140
– ident: ref19
  doi: 10.1109/TPAMI.2014.2353639
– ident: ref10
  doi: 10.1007/s10586-016-0565-x
– ident: ref3
  doi: 10.1007/s10619-017-7199-8
– ident: ref21
  doi: 10.1109/TSC.2011.59
– ident: ref30
  doi: 10.1145/2566486.2568001
– ident: ref20
  doi: 10.1109/SCC.2012.36
– ident: ref33
  doi: 10.1145/371920.372071
– ident: ref2
  doi: 10.1155/2019/8950508
– ident: ref31
  doi: 10.1109/TCYB.2014.2374695
– ident: ref13
  doi: 10.1109/TSC.2010.52
– ident: ref26
  doi: 10.1109/ISSRE.2011.17
– ident: ref7
  doi: 10.1109/TETC.2013.2274044
– ident: ref24
  doi: 10.1109/ICWS.2014.32
SSID ssj0000816957
Score 2.2569773
Snippet Quality of Service (QoS) value is usually unknown in service recommendation practice. There are some matrix factorization approaches for predicting the unknown...
SourceID doaj
proquest
crossref
ieee
SourceType Open Website
Aggregation Database
Publisher
StartPage 55721
SubjectTerms Collaboration
Computational modeling
Data models
Mathematical analysis
Model accuracy
Prediction models
Predictive models
QoS prediction
Quality of service
service collaboration
service recommendation
Service-oriented tensor
Solid modeling
tensor decomposition
Tensors
SummonAdditionalLinks – databaseName: IEEE Electronic Library Online
  dbid: RIE
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1NT9wwEB0Bp_bQD6DqtrTygSNZnNiO7SNdFSEkWipARerBip2ximh3q232wq-vJ3FWlPbALUrixMmzPc_2zBuAfUw2HoMQBba-KqRvVNGUxhYieBM1tsHWFCh89qk-uZKn1-p6Aw7WsTCI2Duf4ZQO-738dhFWtFR2aGorrTGbsGl4NcRqrddTKIGEVToLC5XcHh7NZukbyHvLTitbkq3_y_j0Gv05qco_I3FvXo6fw9lYscGr5Ha66vw03D3QbHxszV_As8wz2dHQMF7CBs634ek99cEd-HY-EvE7bNmXxQU7X9K2DUHFEpdleRxhNEX9mV4wpF9iX2-676wZrxafSSk58VZ2mWbEqRRlV_uxC1fHHy9nJ0XOtVAEyU1XKN0EFYyR0orEGXj0WlSpc5baRBuE9bGXouMlNnWbaKDAqDAYbrX3dcBGvIKt-WKOr4FpH1EkjHkZhORemzZGFYUMJOxTRT6BgxEE92uQ1HD9VIRbN2DmCDOXMZvABwJqfSvpYfcn0g92uXs51dq6RW6i0CiNDz7RrJJj46vG1MHrCewQKOuHZDwmsDfC7nLf_e0qSSlDVSKKb_5f6i08oQoOCzF7sNUtV_guUZPOv-_b5B8YdOIH
  priority: 102
  providerName: IEEE
Title Personalized QoS Prediction for Service Recommendation With a Service-Oriented Tensor Model
URI https://ieeexplore.ieee.org/document/8694988
https://www.proquest.com/docview/2455615644
https://doaj.org/article/5d96de08f37e48bcb39710eab2a86cb7
Volume 7
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV09T8MwELVQJxgQUBCFUnlgJGDHdmyPpaKqkIAiikBisGLnLJCgoFIWfj124qIiBhbWfPtdfPcu8b1D6BBCjAfHWAaVzTNuS5GVVOmMOau8hMrpIhYKX1wWo1t-fi_ul1p9xTVhjTxwA9yJqHRRAVGeSeDKOhsCKCVQ2rxUhbNNHTkVS8lU7YMVLbSQSWaIEn3SHwzCiOJaLn2caxoj_49QVCv2pxYrv_xyHWyGG2g9sUTcb55uE63AdAutLWkHttHDeEGjP6HC1683eDyLP10i0DgwUZy8AI4J5ssLpOZJ-O5p_ojLxd7sKuocB9aJJyGfDWfF3mjP2-h2eDYZjLLUKSFznKh5JmTphFOKc81CxCfeSpaHqUWl8toxbX0tJEcolEUVSBwDL8ApoqW1hYOS7aDW9HUKuwhL64EFCxHqGCdWqsp74Rl3UZYn96SDjhagmbdGEMPUiQTRpsHYRIxNwriDTiOw34dGNet6Q7CxSTY2f9m4g9rRLN8XUYXmWqkO6i7MZNLMezc5jw0_RaB5e_9x6320GofTfHTpotZ89gEHgYbMba9-43p1xeAXwXjaPw
link.rule.ids 315,786,790,802,870,2115,4043,27954,27955,27956,55107
linkProvider Directory of Open Access Journals
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB6VcgAOvErF9gE-cGy2TmzH9rFdUS3QLUVsRSUOVuyMBQJ2UZu99NfjyWNFgQO3KIkTJ5_t-WzPfAPwCpONxyBEhrUvMukrlVW5sZkI3kSNdbAlBQrPzsrphXx7qS434GAdC4OIrfMZjumw3cuvl2FFS2WHprTSGnMH7iY7z3UXrbVeUaEUElbpXloo5_bwaDJJX0H-W3Zc2Jys_S3z06r092lV_hqLWwNz8ghmQ9U6v5Jv41Xjx-HmD9XG_637Y3jYM0121DWNJ7CBi6fw4Df9wS34fD5Q8Rus2YflR3Z-RRs3BBZLbJb1IwmjSeqP9IIuARP79LX5wqrhavaetJITc2XzNCdOpSi_2vdncHHyej6ZZn22hSxIbppM6SqoYIyUViTWwKPXokjdM9cm2iCsj60YHc-xKutEBAVGhcFwq70vA1ZiGzYXywU-B6Z9RJFQ5nkQkntt6hhVFDKQtE8R-QgOBhDcz05Uw7WTEW5dh5kjzFyP2QiOCaj1raSI3Z5IP9j1Hcyp2pY1chOFRml88Ilo5RwrX1SmDF6PYItAWT-kx2MEewPsru-9166QlDRUJaq48-9SL-HedD47dadvzt7twn2qbLcsswebzdUK9xNRafyLtn3-Aiad5Vs
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Personalized+QoS+Prediction+for+Service+Recommendation+With+a+Service-Oriented+Tensor+Model&rft.jtitle=IEEE+access&rft.au=Guo%2C+Lantian&rft.au=Mu%2C+Dejun&rft.au=Cai%2C+Xiaoyan&rft.au=Tian%2C+Gang&rft.date=2019&rft.issn=2169-3536&rft.eissn=2169-3536&rft.volume=7&rft.spage=55721&rft.epage=55731&rft_id=info:doi/10.1109%2FACCESS.2019.2912505&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_ACCESS_2019_2912505
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2169-3536&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2169-3536&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2169-3536&client=summon