Online Fault Diagnosis for Photovoltaic Arrays Based on Fisher Discrimination Dictionary Learning for Sparse Representation
The nonlinear output characteristics of PV arrays and maximum power point tracking (MPPT) techniques bring more difficulties to fault diagnosis. The fault diagnosis model based on electrical transient time-domain analysis is an effective method for solving the above problems. However, existing studi...
Saved in:
Published in | IEEE access Vol. 9; pp. 30180 - 30192 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
Piscataway
IEEE
2021
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
ISSN | 2169-3536 2169-3536 |
DOI | 10.1109/ACCESS.2021.3059431 |
Cover
Abstract | The nonlinear output characteristics of PV arrays and maximum power point tracking (MPPT) techniques bring more difficulties to fault diagnosis. The fault diagnosis model based on electrical transient time-domain analysis is an effective method for solving the above problems. However, existing studies using transient processes usually train their models by extensive labeled datasets, and some approaches apply normalization methods with environmental condition sensors or reference PV panels. Therefore, Fisher discrimination dictionary learning (FDDL) for sparse representation is explored for diagnosing PV array faults, including line-to-line faults (LLF), open-circuit faults (OCF), and partial shading faults (PSF), with a small labeled dataset, and a dynamic normalization method without additional sensors is proposed to process transient data. Moreover, LLF and PSF that have similar characteristics under low mismatch should be further distinguished. The proposed model is designed with two stages. In the first stage, a multiple classifier trained using small labeled datasets with all fault types is applied to diagnose all kinds of studied PV array faults. Then, a dictionary only for PSF and LLF is learned in the second stage to further identify LLF and PSF. Finally, a 1.8 kW rooftop grid-connected PV system with <inline-formula> <tex-math notation="LaTeX">6\times3 </tex-math></inline-formula> PV arrays is applied to validate the performance of the proposed model. The comparison result shows the superiority of the proposed model. |
---|---|
AbstractList | The nonlinear output characteristics of PV arrays and maximum power point tracking (MPPT) techniques bring more difficulties to fault diagnosis. The fault diagnosis model based on electrical transient time-domain analysis is an effective method for solving the above problems. However, existing studies using transient processes usually train their models by extensive labeled datasets, and some approaches apply normalization methods with environmental condition sensors or reference PV panels. Therefore, Fisher discrimination dictionary learning (FDDL) for sparse representation is explored for diagnosing PV array faults, including line-to-line faults (LLF), open-circuit faults (OCF), and partial shading faults (PSF), with a small labeled dataset, and a dynamic normalization method without additional sensors is proposed to process transient data. Moreover, LLF and PSF that have similar characteristics under low mismatch should be further distinguished. The proposed model is designed with two stages. In the first stage, a multiple classifier trained using small labeled datasets with all fault types is applied to diagnose all kinds of studied PV array faults. Then, a dictionary only for PSF and LLF is learned in the second stage to further identify LLF and PSF. Finally, a 1.8 kW rooftop grid-connected PV system with [Formula Omitted] PV arrays is applied to validate the performance of the proposed model. The comparison result shows the superiority of the proposed model. The nonlinear output characteristics of PV arrays and maximum power point tracking (MPPT) techniques bring more difficulties to fault diagnosis. The fault diagnosis model based on electrical transient time-domain analysis is an effective method for solving the above problems. However, existing studies using transient processes usually train their models by extensive labeled datasets, and some approaches apply normalization methods with environmental condition sensors or reference PV panels. Therefore, Fisher discrimination dictionary learning (FDDL) for sparse representation is explored for diagnosing PV array faults, including line-to-line faults (LLF), open-circuit faults (OCF), and partial shading faults (PSF), with a small labeled dataset, and a dynamic normalization method without additional sensors is proposed to process transient data. Moreover, LLF and PSF that have similar characteristics under low mismatch should be further distinguished. The proposed model is designed with two stages. In the first stage, a multiple classifier trained using small labeled datasets with all fault types is applied to diagnose all kinds of studied PV array faults. Then, a dictionary only for PSF and LLF is learned in the second stage to further identify LLF and PSF. Finally, a 1.8 kW rooftop grid-connected PV system with <inline-formula> <tex-math notation="LaTeX">6\times3 </tex-math></inline-formula> PV arrays is applied to validate the performance of the proposed model. The comparison result shows the superiority of the proposed model. The nonlinear output characteristics of PV arrays and maximum power point tracking (MPPT) techniques bring more difficulties to fault diagnosis. The fault diagnosis model based on electrical transient time-domain analysis is an effective method for solving the above problems. However, existing studies using transient processes usually train their models by extensive labeled datasets, and some approaches apply normalization methods with environmental condition sensors or reference PV panels. Therefore, Fisher discrimination dictionary learning (FDDL) for sparse representation is explored for diagnosing PV array faults, including line-to-line faults (LLF), open-circuit faults (OCF), and partial shading faults (PSF), with a small labeled dataset, and a dynamic normalization method without additional sensors is proposed to process transient data. Moreover, LLF and PSF that have similar characteristics under low mismatch should be further distinguished. The proposed model is designed with two stages. In the first stage, a multiple classifier trained using small labeled datasets with all fault types is applied to diagnose all kinds of studied PV array faults. Then, a dictionary only for PSF and LLF is learned in the second stage to further identify LLF and PSF. Finally, a 1.8 kW rooftop grid-connected PV system with <tex-math notation="LaTeX">$6\times3$ </tex-math> PV arrays is applied to validate the performance of the proposed model. The comparison result shows the superiority of the proposed model. |
Author | Xi, Peng Zhou, Haifang Cheng, Shuying Chen, Zhicong Lin, Peijie Wu, Lijun Lin, Yaohai |
Author_xml | – sequence: 1 givenname: Peng surname: Xi fullname: Xi, Peng organization: School of Physics and Information Engineering, Fuzhou University, Fuzhou, China – sequence: 2 givenname: Peijie orcidid: 0000-0001-7990-5926 surname: Lin fullname: Lin, Peijie email: linpeijie@fzu.edu.cn organization: School of Physics and Information Engineering, Fuzhou University, Fuzhou, China – sequence: 3 givenname: Yaohai surname: Lin fullname: Lin, Yaohai organization: College of Computer and Information Sciences, Fujian Agriculture and Forest University, Fuzhou, China – sequence: 4 givenname: Haifang surname: Zhou fullname: Zhou, Haifang organization: School of Physics and Information Engineering, Fuzhou University, Fuzhou, China – sequence: 5 givenname: Shuying orcidid: 0000-0001-5544-9794 surname: Cheng fullname: Cheng, Shuying organization: School of Physics and Information Engineering, Fuzhou University, Fuzhou, China – sequence: 6 givenname: Zhicong orcidid: 0000-0002-3471-6395 surname: Chen fullname: Chen, Zhicong organization: School of Physics and Information Engineering, Fuzhou University, Fuzhou, China – sequence: 7 givenname: Lijun surname: Wu fullname: Wu, Lijun organization: School of Physics and Information Engineering, Fuzhou University, Fuzhou, China |
BookMark | eNp9UcFuGyEUXFWplDTJF-SC1LNd2Lewy9F14jaSpVRxc0YsvHWwtuACrhT154u9aVX1UC7DG96MBs276swHj1V1w-icMSo_LJbLu81mXtOazYFy2QB7U13UTMgZcBBnf93Pq-uUdrScrlC8vah-PvjReSQrfRgzuXV660NyiQwhki_PIYcfYczaGbKIUb8k8lEntCR4snLpGWNRJBPdN-d1doW9deaIOr6QNerond-erDZ7HROSR9xHTOjzafuqejvoMeH1K15WT6u7r8vPs_XDp_vlYj0zDe3yjHMDNW1BwsA46w1Qy3Rdxha4tSCsNgJrO1heoKO2F61EaCzvUZuhNXBZ3U--Nuid2pe4JZ8K2qkTEeJW6ZidGVGhMFa2NTLTiga0kB0I2QsuYODdYPvi9X7y2sfw_YApq104RF_iq7qRwKUE1pUtOW2ZGFKKOCjjpj_nqN2oGFXH6tRUnTpWp16rK1r4R_s78f9VN5PKIeIfRQnUiPL6C67CqHg |
CODEN | IAECCG |
CitedBy_id | crossref_primary_10_3390_en14227770 crossref_primary_10_1016_j_heliyon_2023_e21491 crossref_primary_10_1016_j_engappai_2024_108991 crossref_primary_10_1109_TCSVT_2023_3247600 crossref_primary_10_1016_j_rineng_2024_102299 crossref_primary_10_1080_15567036_2021_1919792 crossref_primary_10_1109_ACCESS_2021_3110013 crossref_primary_10_1016_j_renene_2021_11_125 crossref_primary_10_1016_j_egyr_2024_04_026 crossref_primary_10_1109_JSEN_2022_3140922 |
Cites_doi | 10.1016/j.rser.2017.10.107 10.1109/JPHOTOV.2019.2892189 10.1016/j.enconman.2019.06.062 10.1016/j.solener.2018.12.048 10.1109/ACCESS.2020.2977116 10.1016/j.rser.2018.03.082 10.1002/er.5945 10.1109/ICASSP.2018.8461482 10.1109/TIE.2015.2448066 10.1109/ACCESS.2019.2921238 10.1109/ICCV.2011.6126286 10.1109/ICoSC.2013.6750940 10.1109/TIA.2018.2841818 10.1109/TPAMI.2008.79 10.1016/j.solener.2013.05.001 10.1016/j.rser.2018.03.062 10.1109/TSG.2016.2587244 10.1109/APEC.2012.6165803 10.1109/TIE.2017.2703681 10.3390/en11010213 10.1109/ISIE45063.2020.9152421 10.1016/j.renene.2020.01.010 10.1016/j.rser.2016.03.049 10.1109/JPHOTOV.2019.2900706 10.1016/j.energy.2019.03.092 10.1109/JPHOTOV.2020.3011068 10.1016/j.esr.2019.01.006 10.1109/ACCESS.2019.2902949 10.1016/j.rser.2017.08.017 10.1109/ICIP.2010.5652363 10.1016/j.enconman.2019.06.042 10.1016/j.rser.2017.09.101 10.1016/j.enconman.2018.10.040 10.1109/ICCCSP.2018.8452844 10.1109/TPEL.2018.2884292 10.1109/JSTARS.2019.2925456 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021 |
DBID | 97E ESBDL RIA RIE AAYXX CITATION 7SC 7SP 7SR 8BQ 8FD JG9 JQ2 L7M L~C L~D DOA |
DOI | 10.1109/ACCESS.2021.3059431 |
DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE Xplore Open Access Journals IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts METADEX Technology Research Database Materials Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace METADEX Computer and Information Systems Abstracts Professional |
DatabaseTitleList | Materials Research Database |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 2169-3536 |
EndPage | 30192 |
ExternalDocumentID | oai_doaj_org_article_e6cd972e1c7643a698369b6563f58fdb 10_1109_ACCESS_2021_3059431 9354631 |
Genre | orig-research |
GrantInformation_xml | – fundername: Foundation of Fujian Provincial Department of Industry and Information Technology of China grantid: 82318075 – fundername: Foundation of Fujian Provincial Department of Science and Technology of China grantid: 2018J01774; 2018J01645; 2019H0006 funderid: 10.13039/501100005270 |
GroupedDBID | 0R~ 4.4 5VS 6IK 97E AAJGR ABAZT ABVLG ACGFS ADBBV AGSQL ALMA_UNASSIGNED_HOLDINGS BCNDV BEFXN BFFAM BGNUA BKEBE BPEOZ EBS EJD ESBDL GROUPED_DOAJ IPLJI JAVBF KQ8 M43 M~E O9- OCL OK1 RIA RIE RNS AAYXX CITATION RIG 7SC 7SP 7SR 8BQ 8FD JG9 JQ2 L7M L~C L~D |
ID | FETCH-LOGICAL-c408t-55c3207393f151bc30d1a2393735dd36dac6e2dfd56e280db679e34d5beacf7c3 |
IEDL.DBID | RIE |
ISSN | 2169-3536 |
IngestDate | Wed Aug 27 01:23:30 EDT 2025 Mon Jun 30 02:37:16 EDT 2025 Tue Jul 01 04:03:15 EDT 2025 Thu Apr 24 22:57:27 EDT 2025 Wed Aug 27 02:26:51 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Language | English |
License | https://creativecommons.org/licenses/by/4.0/legalcode |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c408t-55c3207393f151bc30d1a2393735dd36dac6e2dfd56e280db679e34d5beacf7c3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-3471-6395 0000-0001-5544-9794 0000-0001-7990-5926 |
OpenAccessLink | https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/document/9354631 |
PQID | 2493599318 |
PQPubID | 4845423 |
PageCount | 13 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_e6cd972e1c7643a698369b6563f58fdb crossref_citationtrail_10_1109_ACCESS_2021_3059431 proquest_journals_2493599318 crossref_primary_10_1109_ACCESS_2021_3059431 ieee_primary_9354631 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20210000 2021-00-00 20210101 2021-01-01 |
PublicationDateYYYYMMDD | 2021-01-01 |
PublicationDate_xml | – year: 2021 text: 20210000 |
PublicationDecade | 2020 |
PublicationPlace | Piscataway |
PublicationPlace_xml | – name: Piscataway |
PublicationTitle | IEEE access |
PublicationTitleAbbrev | Access |
PublicationYear | 2021 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref35 ref13 ref34 ref12 ref37 ref15 ref36 ref14 ref31 ref30 ref33 ref11 ref32 ref10 ref2 ref1 ref17 ref16 ref19 ref18 ref24 ref23 ref26 ref25 ref20 ref22 ref21 ref28 ref27 ref29 ref8 ref7 ref9 ref4 detollenaere (ref3) 2020 ref6 ref5 |
References_xml | – ident: ref13 doi: 10.1016/j.rser.2017.10.107 – ident: ref8 doi: 10.1109/JPHOTOV.2019.2892189 – ident: ref20 doi: 10.1016/j.enconman.2019.06.062 – ident: ref33 doi: 10.1016/j.solener.2018.12.048 – ident: ref24 doi: 10.1109/ACCESS.2020.2977116 – ident: ref5 doi: 10.1016/j.rser.2018.03.082 – ident: ref22 doi: 10.1002/er.5945 – ident: ref27 doi: 10.1109/ICASSP.2018.8461482 – ident: ref15 doi: 10.1109/TIE.2015.2448066 – ident: ref23 doi: 10.1109/ACCESS.2019.2921238 – ident: ref30 doi: 10.1109/ICCV.2011.6126286 – year: 2020 ident: ref3 article-title: Snapshot of global PV markets 2020 PVPS task 1 strategic PV analysis and outreach – ident: ref10 doi: 10.1109/ICoSC.2013.6750940 – ident: ref14 doi: 10.1109/TIA.2018.2841818 – ident: ref34 doi: 10.1109/TPAMI.2008.79 – ident: ref11 doi: 10.1016/j.solener.2013.05.001 – ident: ref32 doi: 10.1016/j.rser.2018.03.062 – ident: ref31 doi: 10.1109/TSG.2016.2587244 – ident: ref17 doi: 10.1109/APEC.2012.6165803 – ident: ref19 doi: 10.1109/TIE.2017.2703681 – ident: ref21 doi: 10.3390/en11010213 – ident: ref36 doi: 10.1109/ISIE45063.2020.9152421 – ident: ref25 doi: 10.1016/j.renene.2020.01.010 – ident: ref12 doi: 10.1016/j.rser.2016.03.049 – ident: ref6 doi: 10.1109/JPHOTOV.2019.2900706 – ident: ref2 doi: 10.1016/j.energy.2019.03.092 – ident: ref26 doi: 10.1109/JPHOTOV.2020.3011068 – ident: ref1 doi: 10.1016/j.esr.2019.01.006 – ident: ref37 doi: 10.1109/ACCESS.2019.2902949 – ident: ref9 doi: 10.1016/j.rser.2017.08.017 – ident: ref35 doi: 10.1109/ICIP.2010.5652363 – ident: ref7 doi: 10.1016/j.enconman.2019.06.042 – ident: ref4 doi: 10.1016/j.rser.2017.09.101 – ident: ref18 doi: 10.1016/j.enconman.2018.10.040 – ident: ref29 doi: 10.1109/ICCCSP.2018.8452844 – ident: ref16 doi: 10.1109/TPEL.2018.2884292 – ident: ref28 doi: 10.1109/JSTARS.2019.2925456 |
SSID | ssj0000816957 |
Score | 2.269688 |
Snippet | The nonlinear output characteristics of PV arrays and maximum power point tracking (MPPT) techniques bring more difficulties to fault diagnosis. The fault... |
SourceID | doaj proquest crossref ieee |
SourceType | Open Website Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 30180 |
SubjectTerms | Arrays Circuit faults Circuits Data models Datasets Dictionaries Discrimination Fault diagnosis Feature extraction fisher discrimination criterion fisher discrimination dictionary learning Learning Machine learning Maximum power tracking Photovoltaic array Photovoltaic cells Photovoltaic systems Representations Roofs Sensors sparse representation Time domain analysis Transient analysis |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NaxUxEA_SU3sQtRWftpKDR9duNptkc2xf-yiCUqqF3kI-VSj7ynvbQ_GfdyZJH08EvXhadklmNzOz8xEmvyHknRqSctH1DUKfNH2Ef84OfWyi8Dwqn3xKuA_56bO8uO4_3oibrVZfWBNW4IEL446j9EGrLjKvwHlaqQcutYMohCcxpODQ-ra63Uqmsg0emNRCVZgh1urjk_kcVgQJYcc-cAQp4ew3V5QR-2uLlT_scnY2i2fkaY0S6Un5uufkSRxfkL0t7MB98rOAhNKFvb-d6FmpmPuxphCE0svvy2kJdgfSfg9EVvZhTU_BXQW6HGlpdg4z0GBgIQyKBm7zAQe7eqAVcvVbJvXlDjLfSK9ywWw9pzQekOvF-df5RVM7KTS-b4epEcD5LoPfJfDwzvM2MIvgZ4qLELgM1svYhRQEXIY2OKl05H0QDuxyUp6_JDvjcoyvCE09l1YC_y1H6LzW2eS5YkkqFqVMfka6R6YaX2HGsdvFrcnpRqtNkYRBSZgqiRl5v5l0V1A2_j78FKW1GYoQ2fkBKI6pimP-pTgzso-y3hDRHDsDAO3DR9mb-juvDeSoXEAkx4bX_-PVb8guLqfs5BySnWl1H48gtpnc26zGvwCcsPUw priority: 102 providerName: Directory of Open Access Journals |
Title | Online Fault Diagnosis for Photovoltaic Arrays Based on Fisher Discrimination Dictionary Learning for Sparse Representation |
URI | https://ieeexplore.ieee.org/document/9354631 https://www.proquest.com/docview/2493599318 https://doaj.org/article/e6cd972e1c7643a698369b6563f58fdb |
Volume | 9 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwELZKT3DgVRBLS-UDx2abxLGdHNuFVYVUhIBKvVl-jKGiSqrd7KH0zzN-bMRLiFMesq2JPns8Mxl_Q8hr2XppwDRFoD4pGsA1p9sGCuCWgbTeeh_ikOfvxdlF8-6SX-6Qo-ksDADE5DOYh9v4L98NdhNCZccdC-Tt6Ovcw2mWzmpN8ZRQQKLjMhMLVWV3fLJY4DegC1hXcxZoSVj1y-YTOfpzUZU_NHHcXpaPyPlWsJRV8m2-Gc3cfv-Ns_F_JX9MHmY7k56kifGE7ED_lDz4iX1wj9wlmlG61Jvrkb5JOXdXa4pmLP3wdRgH1FyjvrI4yErfrukpbniODj1N5dKxR1A5IZUmgIuP8YiEXt3STNr6JQ716QZ9Z6AfY8ptPunUPyMXy7efF2dFrsVQ2KZsx4IjdnWkz_NoIxjLSlfpQJ8mGXeOCaetgNp5x_HSls4I2QFrHDeo2b207DnZ7YceXhDqGya0QDtSs0C-VxrtLZOVF7ICIbydkXoLkrKZqDzUy7hW0WEpO5WQVQFZlZGdkaOp003i6fh389OA_tQ0kGzHF4iaymtWgbCukzVUVqLdpkXXMtEZFJx53npnZmQvID0NkkGekYPtXFJZIawVermMoy1YtS__3muf3A8CpujOAdkdVxt4hfbOaA5jnOAwTvcfQ2L_rQ |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwELaqcgAOUCiILS34wLHZJnFsJ8d26WqBboWglXqz_CwVVVLtZg8tf57xYyMoCHHKQ7bl6LPn4cx8g9A7XjuurKoyT32SVRb2nKwrm1mqieXaaef8OeT8lM3Oq48X9GID7Q-5MNbaEHxmx_42_Ms3nV75o7KDhnjydvB1HoDer2jM1hpOVHwJiYbyRC1U5M3B4WQCXwFOYFmMiScmIcVv6iew9KeyKn_I4qBgpk_RfD21GFfyfbzq1Vjf3WNt_N-5b6EnydLEh3FpPEMbtn2OHv_CP7iNfkSiUTyVq-sev49Rd1dLDIYs_vyt6zuQXb280jDIQt4u8RGoPIO7FseC6dDDCx0fTOPhhceQJCEXtzjRtl6Gob7egPds8ZcQdJtyndoX6Hx6fDaZZakaQ6arvO4zCuiVgUDPgZWgNMlNIT2BGifUGMKM1MyWxhkKlzo3ivHGkspQBbLdcU1eos22a-0rhF1FmGRgSUri6fdyJZ0mvHCMF5Yxp0eoXIMkdKIq9xUzrkVwWfJGRGSFR1YkZEdof-h0E5k6_t38yKM_NPU02-EFoCbSrhWWadPw0haag-UmWVMT1iiYOHG0dkaN0LZHehgkgTxCu-u1JJJIWArwcwkFa7Cod_7e6y16ODubn4iTD6efXqNHfrLxrGcXbfaLld0D66dXb8Ki_wm9TAIU |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Online+Fault+Diagnosis+for+Photovoltaic+Arrays+Based+on+Fisher+Discrimination+Dictionary+Learning+for+Sparse+Representation&rft.jtitle=IEEE+access&rft.au=Xi%2C+Peng&rft.au=Lin%2C+Peijie&rft.au=Lin%2C+Yaohai&rft.au=Zhou%2C+Haifang&rft.date=2021&rft.pub=IEEE&rft.eissn=2169-3536&rft.volume=9&rft.spage=30180&rft.epage=30192&rft_id=info:doi/10.1109%2FACCESS.2021.3059431&rft.externalDocID=9354631 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2169-3536&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2169-3536&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2169-3536&client=summon |