Online Fault Diagnosis for Photovoltaic Arrays Based on Fisher Discrimination Dictionary Learning for Sparse Representation

The nonlinear output characteristics of PV arrays and maximum power point tracking (MPPT) techniques bring more difficulties to fault diagnosis. The fault diagnosis model based on electrical transient time-domain analysis is an effective method for solving the above problems. However, existing studi...

Full description

Saved in:
Bibliographic Details
Published inIEEE access Vol. 9; pp. 30180 - 30192
Main Authors Xi, Peng, Lin, Peijie, Lin, Yaohai, Zhou, Haifang, Cheng, Shuying, Chen, Zhicong, Wu, Lijun
Format Journal Article
LanguageEnglish
Published Piscataway IEEE 2021
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN2169-3536
2169-3536
DOI10.1109/ACCESS.2021.3059431

Cover

Abstract The nonlinear output characteristics of PV arrays and maximum power point tracking (MPPT) techniques bring more difficulties to fault diagnosis. The fault diagnosis model based on electrical transient time-domain analysis is an effective method for solving the above problems. However, existing studies using transient processes usually train their models by extensive labeled datasets, and some approaches apply normalization methods with environmental condition sensors or reference PV panels. Therefore, Fisher discrimination dictionary learning (FDDL) for sparse representation is explored for diagnosing PV array faults, including line-to-line faults (LLF), open-circuit faults (OCF), and partial shading faults (PSF), with a small labeled dataset, and a dynamic normalization method without additional sensors is proposed to process transient data. Moreover, LLF and PSF that have similar characteristics under low mismatch should be further distinguished. The proposed model is designed with two stages. In the first stage, a multiple classifier trained using small labeled datasets with all fault types is applied to diagnose all kinds of studied PV array faults. Then, a dictionary only for PSF and LLF is learned in the second stage to further identify LLF and PSF. Finally, a 1.8 kW rooftop grid-connected PV system with <inline-formula> <tex-math notation="LaTeX">6\times3 </tex-math></inline-formula> PV arrays is applied to validate the performance of the proposed model. The comparison result shows the superiority of the proposed model.
AbstractList The nonlinear output characteristics of PV arrays and maximum power point tracking (MPPT) techniques bring more difficulties to fault diagnosis. The fault diagnosis model based on electrical transient time-domain analysis is an effective method for solving the above problems. However, existing studies using transient processes usually train their models by extensive labeled datasets, and some approaches apply normalization methods with environmental condition sensors or reference PV panels. Therefore, Fisher discrimination dictionary learning (FDDL) for sparse representation is explored for diagnosing PV array faults, including line-to-line faults (LLF), open-circuit faults (OCF), and partial shading faults (PSF), with a small labeled dataset, and a dynamic normalization method without additional sensors is proposed to process transient data. Moreover, LLF and PSF that have similar characteristics under low mismatch should be further distinguished. The proposed model is designed with two stages. In the first stage, a multiple classifier trained using small labeled datasets with all fault types is applied to diagnose all kinds of studied PV array faults. Then, a dictionary only for PSF and LLF is learned in the second stage to further identify LLF and PSF. Finally, a 1.8 kW rooftop grid-connected PV system with [Formula Omitted] PV arrays is applied to validate the performance of the proposed model. The comparison result shows the superiority of the proposed model.
The nonlinear output characteristics of PV arrays and maximum power point tracking (MPPT) techniques bring more difficulties to fault diagnosis. The fault diagnosis model based on electrical transient time-domain analysis is an effective method for solving the above problems. However, existing studies using transient processes usually train their models by extensive labeled datasets, and some approaches apply normalization methods with environmental condition sensors or reference PV panels. Therefore, Fisher discrimination dictionary learning (FDDL) for sparse representation is explored for diagnosing PV array faults, including line-to-line faults (LLF), open-circuit faults (OCF), and partial shading faults (PSF), with a small labeled dataset, and a dynamic normalization method without additional sensors is proposed to process transient data. Moreover, LLF and PSF that have similar characteristics under low mismatch should be further distinguished. The proposed model is designed with two stages. In the first stage, a multiple classifier trained using small labeled datasets with all fault types is applied to diagnose all kinds of studied PV array faults. Then, a dictionary only for PSF and LLF is learned in the second stage to further identify LLF and PSF. Finally, a 1.8 kW rooftop grid-connected PV system with <inline-formula> <tex-math notation="LaTeX">6\times3 </tex-math></inline-formula> PV arrays is applied to validate the performance of the proposed model. The comparison result shows the superiority of the proposed model.
The nonlinear output characteristics of PV arrays and maximum power point tracking (MPPT) techniques bring more difficulties to fault diagnosis. The fault diagnosis model based on electrical transient time-domain analysis is an effective method for solving the above problems. However, existing studies using transient processes usually train their models by extensive labeled datasets, and some approaches apply normalization methods with environmental condition sensors or reference PV panels. Therefore, Fisher discrimination dictionary learning (FDDL) for sparse representation is explored for diagnosing PV array faults, including line-to-line faults (LLF), open-circuit faults (OCF), and partial shading faults (PSF), with a small labeled dataset, and a dynamic normalization method without additional sensors is proposed to process transient data. Moreover, LLF and PSF that have similar characteristics under low mismatch should be further distinguished. The proposed model is designed with two stages. In the first stage, a multiple classifier trained using small labeled datasets with all fault types is applied to diagnose all kinds of studied PV array faults. Then, a dictionary only for PSF and LLF is learned in the second stage to further identify LLF and PSF. Finally, a 1.8 kW rooftop grid-connected PV system with <tex-math notation="LaTeX">$6\times3$ </tex-math> PV arrays is applied to validate the performance of the proposed model. The comparison result shows the superiority of the proposed model.
Author Xi, Peng
Zhou, Haifang
Cheng, Shuying
Chen, Zhicong
Lin, Peijie
Wu, Lijun
Lin, Yaohai
Author_xml – sequence: 1
  givenname: Peng
  surname: Xi
  fullname: Xi, Peng
  organization: School of Physics and Information Engineering, Fuzhou University, Fuzhou, China
– sequence: 2
  givenname: Peijie
  orcidid: 0000-0001-7990-5926
  surname: Lin
  fullname: Lin, Peijie
  email: linpeijie@fzu.edu.cn
  organization: School of Physics and Information Engineering, Fuzhou University, Fuzhou, China
– sequence: 3
  givenname: Yaohai
  surname: Lin
  fullname: Lin, Yaohai
  organization: College of Computer and Information Sciences, Fujian Agriculture and Forest University, Fuzhou, China
– sequence: 4
  givenname: Haifang
  surname: Zhou
  fullname: Zhou, Haifang
  organization: School of Physics and Information Engineering, Fuzhou University, Fuzhou, China
– sequence: 5
  givenname: Shuying
  orcidid: 0000-0001-5544-9794
  surname: Cheng
  fullname: Cheng, Shuying
  organization: School of Physics and Information Engineering, Fuzhou University, Fuzhou, China
– sequence: 6
  givenname: Zhicong
  orcidid: 0000-0002-3471-6395
  surname: Chen
  fullname: Chen, Zhicong
  organization: School of Physics and Information Engineering, Fuzhou University, Fuzhou, China
– sequence: 7
  givenname: Lijun
  surname: Wu
  fullname: Wu, Lijun
  organization: School of Physics and Information Engineering, Fuzhou University, Fuzhou, China
BookMark eNp9UcFuGyEUXFWplDTJF-SC1LNd2Lewy9F14jaSpVRxc0YsvHWwtuACrhT154u9aVX1UC7DG96MBs276swHj1V1w-icMSo_LJbLu81mXtOazYFy2QB7U13UTMgZcBBnf93Pq-uUdrScrlC8vah-PvjReSQrfRgzuXV660NyiQwhki_PIYcfYczaGbKIUb8k8lEntCR4snLpGWNRJBPdN-d1doW9deaIOr6QNerond-erDZ7HROSR9xHTOjzafuqejvoMeH1K15WT6u7r8vPs_XDp_vlYj0zDe3yjHMDNW1BwsA46w1Qy3Rdxha4tSCsNgJrO1heoKO2F61EaCzvUZuhNXBZ3U--Nuid2pe4JZ8K2qkTEeJW6ZidGVGhMFa2NTLTiga0kB0I2QsuYODdYPvi9X7y2sfw_YApq104RF_iq7qRwKUE1pUtOW2ZGFKKOCjjpj_nqN2oGFXH6tRUnTpWp16rK1r4R_s78f9VN5PKIeIfRQnUiPL6C67CqHg
CODEN IAECCG
CitedBy_id crossref_primary_10_3390_en14227770
crossref_primary_10_1016_j_heliyon_2023_e21491
crossref_primary_10_1016_j_engappai_2024_108991
crossref_primary_10_1109_TCSVT_2023_3247600
crossref_primary_10_1016_j_rineng_2024_102299
crossref_primary_10_1080_15567036_2021_1919792
crossref_primary_10_1109_ACCESS_2021_3110013
crossref_primary_10_1016_j_renene_2021_11_125
crossref_primary_10_1016_j_egyr_2024_04_026
crossref_primary_10_1109_JSEN_2022_3140922
Cites_doi 10.1016/j.rser.2017.10.107
10.1109/JPHOTOV.2019.2892189
10.1016/j.enconman.2019.06.062
10.1016/j.solener.2018.12.048
10.1109/ACCESS.2020.2977116
10.1016/j.rser.2018.03.082
10.1002/er.5945
10.1109/ICASSP.2018.8461482
10.1109/TIE.2015.2448066
10.1109/ACCESS.2019.2921238
10.1109/ICCV.2011.6126286
10.1109/ICoSC.2013.6750940
10.1109/TIA.2018.2841818
10.1109/TPAMI.2008.79
10.1016/j.solener.2013.05.001
10.1016/j.rser.2018.03.062
10.1109/TSG.2016.2587244
10.1109/APEC.2012.6165803
10.1109/TIE.2017.2703681
10.3390/en11010213
10.1109/ISIE45063.2020.9152421
10.1016/j.renene.2020.01.010
10.1016/j.rser.2016.03.049
10.1109/JPHOTOV.2019.2900706
10.1016/j.energy.2019.03.092
10.1109/JPHOTOV.2020.3011068
10.1016/j.esr.2019.01.006
10.1109/ACCESS.2019.2902949
10.1016/j.rser.2017.08.017
10.1109/ICIP.2010.5652363
10.1016/j.enconman.2019.06.042
10.1016/j.rser.2017.09.101
10.1016/j.enconman.2018.10.040
10.1109/ICCCSP.2018.8452844
10.1109/TPEL.2018.2884292
10.1109/JSTARS.2019.2925456
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021
DBID 97E
ESBDL
RIA
RIE
AAYXX
CITATION
7SC
7SP
7SR
8BQ
8FD
JG9
JQ2
L7M
L~C
L~D
DOA
DOI 10.1109/ACCESS.2021.3059431
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE Xplore Open Access Journals
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
METADEX
Computer and Information Systems Abstracts Professional
DatabaseTitleList Materials Research Database


Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2169-3536
EndPage 30192
ExternalDocumentID oai_doaj_org_article_e6cd972e1c7643a698369b6563f58fdb
10_1109_ACCESS_2021_3059431
9354631
Genre orig-research
GrantInformation_xml – fundername: Foundation of Fujian Provincial Department of Industry and Information Technology of China
  grantid: 82318075
– fundername: Foundation of Fujian Provincial Department of Science and Technology of China
  grantid: 2018J01774; 2018J01645; 2019H0006
  funderid: 10.13039/501100005270
GroupedDBID 0R~
4.4
5VS
6IK
97E
AAJGR
ABAZT
ABVLG
ACGFS
ADBBV
AGSQL
ALMA_UNASSIGNED_HOLDINGS
BCNDV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
EJD
ESBDL
GROUPED_DOAJ
IPLJI
JAVBF
KQ8
M43
M~E
O9-
OCL
OK1
RIA
RIE
RNS
AAYXX
CITATION
RIG
7SC
7SP
7SR
8BQ
8FD
JG9
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c408t-55c3207393f151bc30d1a2393735dd36dac6e2dfd56e280db679e34d5beacf7c3
IEDL.DBID RIE
ISSN 2169-3536
IngestDate Wed Aug 27 01:23:30 EDT 2025
Mon Jun 30 02:37:16 EDT 2025
Tue Jul 01 04:03:15 EDT 2025
Thu Apr 24 22:57:27 EDT 2025
Wed Aug 27 02:26:51 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Language English
License https://creativecommons.org/licenses/by/4.0/legalcode
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c408t-55c3207393f151bc30d1a2393735dd36dac6e2dfd56e280db679e34d5beacf7c3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-3471-6395
0000-0001-5544-9794
0000-0001-7990-5926
OpenAccessLink https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/document/9354631
PQID 2493599318
PQPubID 4845423
PageCount 13
ParticipantIDs doaj_primary_oai_doaj_org_article_e6cd972e1c7643a698369b6563f58fdb
crossref_citationtrail_10_1109_ACCESS_2021_3059431
proquest_journals_2493599318
crossref_primary_10_1109_ACCESS_2021_3059431
ieee_primary_9354631
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20210000
2021-00-00
20210101
2021-01-01
PublicationDateYYYYMMDD 2021-01-01
PublicationDate_xml – year: 2021
  text: 20210000
PublicationDecade 2020
PublicationPlace Piscataway
PublicationPlace_xml – name: Piscataway
PublicationTitle IEEE access
PublicationTitleAbbrev Access
PublicationYear 2021
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref35
ref13
ref34
ref12
ref37
ref15
ref36
ref14
ref31
ref30
ref33
ref11
ref32
ref10
ref2
ref1
ref17
ref16
ref19
ref18
ref24
ref23
ref26
ref25
ref20
ref22
ref21
ref28
ref27
ref29
ref8
ref7
ref9
ref4
detollenaere (ref3) 2020
ref6
ref5
References_xml – ident: ref13
  doi: 10.1016/j.rser.2017.10.107
– ident: ref8
  doi: 10.1109/JPHOTOV.2019.2892189
– ident: ref20
  doi: 10.1016/j.enconman.2019.06.062
– ident: ref33
  doi: 10.1016/j.solener.2018.12.048
– ident: ref24
  doi: 10.1109/ACCESS.2020.2977116
– ident: ref5
  doi: 10.1016/j.rser.2018.03.082
– ident: ref22
  doi: 10.1002/er.5945
– ident: ref27
  doi: 10.1109/ICASSP.2018.8461482
– ident: ref15
  doi: 10.1109/TIE.2015.2448066
– ident: ref23
  doi: 10.1109/ACCESS.2019.2921238
– ident: ref30
  doi: 10.1109/ICCV.2011.6126286
– year: 2020
  ident: ref3
  article-title: Snapshot of global PV markets 2020 PVPS task 1 strategic PV analysis and outreach
– ident: ref10
  doi: 10.1109/ICoSC.2013.6750940
– ident: ref14
  doi: 10.1109/TIA.2018.2841818
– ident: ref34
  doi: 10.1109/TPAMI.2008.79
– ident: ref11
  doi: 10.1016/j.solener.2013.05.001
– ident: ref32
  doi: 10.1016/j.rser.2018.03.062
– ident: ref31
  doi: 10.1109/TSG.2016.2587244
– ident: ref17
  doi: 10.1109/APEC.2012.6165803
– ident: ref19
  doi: 10.1109/TIE.2017.2703681
– ident: ref21
  doi: 10.3390/en11010213
– ident: ref36
  doi: 10.1109/ISIE45063.2020.9152421
– ident: ref25
  doi: 10.1016/j.renene.2020.01.010
– ident: ref12
  doi: 10.1016/j.rser.2016.03.049
– ident: ref6
  doi: 10.1109/JPHOTOV.2019.2900706
– ident: ref2
  doi: 10.1016/j.energy.2019.03.092
– ident: ref26
  doi: 10.1109/JPHOTOV.2020.3011068
– ident: ref1
  doi: 10.1016/j.esr.2019.01.006
– ident: ref37
  doi: 10.1109/ACCESS.2019.2902949
– ident: ref9
  doi: 10.1016/j.rser.2017.08.017
– ident: ref35
  doi: 10.1109/ICIP.2010.5652363
– ident: ref7
  doi: 10.1016/j.enconman.2019.06.042
– ident: ref4
  doi: 10.1016/j.rser.2017.09.101
– ident: ref18
  doi: 10.1016/j.enconman.2018.10.040
– ident: ref29
  doi: 10.1109/ICCCSP.2018.8452844
– ident: ref16
  doi: 10.1109/TPEL.2018.2884292
– ident: ref28
  doi: 10.1109/JSTARS.2019.2925456
SSID ssj0000816957
Score 2.269688
Snippet The nonlinear output characteristics of PV arrays and maximum power point tracking (MPPT) techniques bring more difficulties to fault diagnosis. The fault...
SourceID doaj
proquest
crossref
ieee
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 30180
SubjectTerms Arrays
Circuit faults
Circuits
Data models
Datasets
Dictionaries
Discrimination
Fault diagnosis
Feature extraction
fisher discrimination criterion
fisher discrimination dictionary learning
Learning
Machine learning
Maximum power tracking
Photovoltaic array
Photovoltaic cells
Photovoltaic systems
Representations
Roofs
Sensors
sparse representation
Time domain analysis
Transient analysis
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NaxUxEA_SU3sQtRWftpKDR9duNptkc2xf-yiCUqqF3kI-VSj7ynvbQ_GfdyZJH08EvXhadklmNzOz8xEmvyHknRqSctH1DUKfNH2Ef84OfWyi8Dwqn3xKuA_56bO8uO4_3oibrVZfWBNW4IEL446j9EGrLjKvwHlaqQcutYMohCcxpODQ-ra63Uqmsg0emNRCVZgh1urjk_kcVgQJYcc-cAQp4ew3V5QR-2uLlT_scnY2i2fkaY0S6Un5uufkSRxfkL0t7MB98rOAhNKFvb-d6FmpmPuxphCE0svvy2kJdgfSfg9EVvZhTU_BXQW6HGlpdg4z0GBgIQyKBm7zAQe7eqAVcvVbJvXlDjLfSK9ywWw9pzQekOvF-df5RVM7KTS-b4epEcD5LoPfJfDwzvM2MIvgZ4qLELgM1svYhRQEXIY2OKl05H0QDuxyUp6_JDvjcoyvCE09l1YC_y1H6LzW2eS5YkkqFqVMfka6R6YaX2HGsdvFrcnpRqtNkYRBSZgqiRl5v5l0V1A2_j78FKW1GYoQ2fkBKI6pimP-pTgzso-y3hDRHDsDAO3DR9mb-juvDeSoXEAkx4bX_-PVb8guLqfs5BySnWl1H48gtpnc26zGvwCcsPUw
  priority: 102
  providerName: Directory of Open Access Journals
Title Online Fault Diagnosis for Photovoltaic Arrays Based on Fisher Discrimination Dictionary Learning for Sparse Representation
URI https://ieeexplore.ieee.org/document/9354631
https://www.proquest.com/docview/2493599318
https://doaj.org/article/e6cd972e1c7643a698369b6563f58fdb
Volume 9
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwELZKT3DgVRBLS-UDx2abxLGdHNuFVYVUhIBKvVl-jKGiSqrd7KH0zzN-bMRLiFMesq2JPns8Mxl_Q8hr2XppwDRFoD4pGsA1p9sGCuCWgbTeeh_ikOfvxdlF8-6SX-6Qo-ksDADE5DOYh9v4L98NdhNCZccdC-Tt6Ovcw2mWzmpN8ZRQQKLjMhMLVWV3fLJY4DegC1hXcxZoSVj1y-YTOfpzUZU_NHHcXpaPyPlWsJRV8m2-Gc3cfv-Ns_F_JX9MHmY7k56kifGE7ED_lDz4iX1wj9wlmlG61Jvrkb5JOXdXa4pmLP3wdRgH1FyjvrI4yErfrukpbniODj1N5dKxR1A5IZUmgIuP8YiEXt3STNr6JQ716QZ9Z6AfY8ptPunUPyMXy7efF2dFrsVQ2KZsx4IjdnWkz_NoIxjLSlfpQJ8mGXeOCaetgNp5x_HSls4I2QFrHDeo2b207DnZ7YceXhDqGya0QDtSs0C-VxrtLZOVF7ICIbydkXoLkrKZqDzUy7hW0WEpO5WQVQFZlZGdkaOp003i6fh389OA_tQ0kGzHF4iaymtWgbCukzVUVqLdpkXXMtEZFJx53npnZmQvID0NkkGekYPtXFJZIawVermMoy1YtS__3muf3A8CpujOAdkdVxt4hfbOaA5jnOAwTvcfQ2L_rQ
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwELaqcgAOUCiILS34wLHZJnFsJ8d26WqBboWglXqz_CwVVVLtZg8tf57xYyMoCHHKQ7bl6LPn4cx8g9A7XjuurKoyT32SVRb2nKwrm1mqieXaaef8OeT8lM3Oq48X9GID7Q-5MNbaEHxmx_42_Ms3nV75o7KDhnjydvB1HoDer2jM1hpOVHwJiYbyRC1U5M3B4WQCXwFOYFmMiScmIcVv6iew9KeyKn_I4qBgpk_RfD21GFfyfbzq1Vjf3WNt_N-5b6EnydLEh3FpPEMbtn2OHv_CP7iNfkSiUTyVq-sev49Rd1dLDIYs_vyt6zuQXb280jDIQt4u8RGoPIO7FseC6dDDCx0fTOPhhceQJCEXtzjRtl6Gob7egPds8ZcQdJtyndoX6Hx6fDaZZakaQ6arvO4zCuiVgUDPgZWgNMlNIT2BGifUGMKM1MyWxhkKlzo3ivHGkspQBbLdcU1eos22a-0rhF1FmGRgSUri6fdyJZ0mvHCMF5Yxp0eoXIMkdKIq9xUzrkVwWfJGRGSFR1YkZEdof-h0E5k6_t38yKM_NPU02-EFoCbSrhWWadPw0haag-UmWVMT1iiYOHG0dkaN0LZHehgkgTxCu-u1JJJIWArwcwkFa7Cod_7e6y16ODubn4iTD6efXqNHfrLxrGcXbfaLld0D66dXb8Ki_wm9TAIU
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Online+Fault+Diagnosis+for+Photovoltaic+Arrays+Based+on+Fisher+Discrimination+Dictionary+Learning+for+Sparse+Representation&rft.jtitle=IEEE+access&rft.au=Xi%2C+Peng&rft.au=Lin%2C+Peijie&rft.au=Lin%2C+Yaohai&rft.au=Zhou%2C+Haifang&rft.date=2021&rft.pub=IEEE&rft.eissn=2169-3536&rft.volume=9&rft.spage=30180&rft.epage=30192&rft_id=info:doi/10.1109%2FACCESS.2021.3059431&rft.externalDocID=9354631
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2169-3536&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2169-3536&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2169-3536&client=summon