Responses of Aquatic Nontarget Organisms in Experiments Simulating a Scenario of Contamination by Imidacloprid in a Freshwater Environment

Several studies have indicated the presence of the neonicotinoid insecticide imidacloprid (IMI) in aquatic ecosystems in concentrations up to 320.0 µg L −1 . In the present study, we evaluated the effects of the highest IMI concentration detected in surface water (320.0 µg L −1 ) on the survival of...

Full description

Saved in:
Bibliographic Details
Published inArchives of environmental contamination and toxicology Vol. 80; no. 2; pp. 437 - 449
Main Authors Queiroz, Lucas Gonçalves, do Prado, Caio César Achiles, de Almeida, Éryka Costa, Dörr, Felipe Augusto, Pinto, Ernani, da Silva, Flávio Teixeira, de Paiva, Teresa Cristina Brazil
Format Journal Article
LanguageEnglish
Published New York Springer US 01.02.2021
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Several studies have indicated the presence of the neonicotinoid insecticide imidacloprid (IMI) in aquatic ecosystems in concentrations up to 320.0 µg L −1 . In the present study, we evaluated the effects of the highest IMI concentration detected in surface water (320.0 µg L −1 ) on the survival of Chironomus sancticaroli , Daphnia similis, and Danio rerio in three different scenarios of water contamination. The enzymatic activities of glutathione S-transferase (GST), catalase (CAT), and ascorbate peroxidase (APX) in D. rerio also were determined. For this evaluation, we have simulated a lotic environment using an indoor system of artificial channels developed for the present study. In this system, three scenarios of contamination by IMI (320.0 µg L −1 ) were reproduced: one using reconstituted water (RW) and the other two using water samples collected in unpolluted (UW) and polluted (DW) areas of a river. The results indicated that the tested concentration was not able to cause mortality in D. similis and D. rerio in any proposed treatment (RW, UW, and DW). However, C. sancticaroli showed 100% of mortality in the presence of IMI in the three proposed treatments, demonstrating its potential to impact the community of aquatic nontarget insects negatively. Low IMI concentrations did not offer risks to D. rerio survival. However, we observed alterations in GST, CAT, and APX activities in treatments that used IMI and water with no evidence of pollution (i.e., RW and UW). These last results demonstrated that fish are more susceptible to the effects of IMI in unpolluted environments.
AbstractList Several studies have indicated the presence of the neonicotinoid insecticide imidacloprid (IMI) in aquatic ecosystems in concentrations up to 320.0 µg L-1. In the present study, we evaluated the effects of the highest IMI concentration detected in surface water (320.0 µg L-1) on the survival of Chironomus sancticaroli, Daphnia similis, and Danio rerio in three different scenarios of water contamination. The enzymatic activities of glutathione S-transferase (GST), catalase (CAT), and ascorbate peroxidase (APX) in D. rerio also were determined. For this evaluation, we have simulated a lotic environment using an indoor system of artificial channels developed for the present study. In this system, three scenarios of contamination by IMI (320.0 µg L-1) were reproduced: one using reconstituted water (RW) and the other two using water samples collected in unpolluted (UW) and polluted (DW) areas of a river. The results indicated that the tested concentration was not able to cause mortality in D. similis and D. rerio in any proposed treatment (RW, UW, and DW). However, C. sancticaroli showed 100% of mortality in the presence of IMI in the three proposed treatments, demonstrating its potential to impact the community of aquatic nontarget insects negatively. Low IMI concentrations did not offer risks to D. rerio survival. However, we observed alterations in GST, CAT, and APX activities in treatments that used IMI and water with no evidence of pollution (i.e., RW and UW). These last results demonstrated that fish are more susceptible to the effects of IMI in unpolluted environments.Several studies have indicated the presence of the neonicotinoid insecticide imidacloprid (IMI) in aquatic ecosystems in concentrations up to 320.0 µg L-1. In the present study, we evaluated the effects of the highest IMI concentration detected in surface water (320.0 µg L-1) on the survival of Chironomus sancticaroli, Daphnia similis, and Danio rerio in three different scenarios of water contamination. The enzymatic activities of glutathione S-transferase (GST), catalase (CAT), and ascorbate peroxidase (APX) in D. rerio also were determined. For this evaluation, we have simulated a lotic environment using an indoor system of artificial channels developed for the present study. In this system, three scenarios of contamination by IMI (320.0 µg L-1) were reproduced: one using reconstituted water (RW) and the other two using water samples collected in unpolluted (UW) and polluted (DW) areas of a river. The results indicated that the tested concentration was not able to cause mortality in D. similis and D. rerio in any proposed treatment (RW, UW, and DW). However, C. sancticaroli showed 100% of mortality in the presence of IMI in the three proposed treatments, demonstrating its potential to impact the community of aquatic nontarget insects negatively. Low IMI concentrations did not offer risks to D. rerio survival. However, we observed alterations in GST, CAT, and APX activities in treatments that used IMI and water with no evidence of pollution (i.e., RW and UW). These last results demonstrated that fish are more susceptible to the effects of IMI in unpolluted environments.
Several studies have indicated the presence of the neonicotinoid insecticide imidacloprid (IMI) in aquatic ecosystems in concentrations up to 320.0 µg L−1. In the present study, we evaluated the effects of the highest IMI concentration detected in surface water (320.0 µg L−1) on the survival of Chironomus sancticaroli, Daphnia similis, and Danio rerio in three different scenarios of water contamination. The enzymatic activities of glutathione S-transferase (GST), catalase (CAT), and ascorbate peroxidase (APX) in D. rerio also were determined. For this evaluation, we have simulated a lotic environment using an indoor system of artificial channels developed for the present study. In this system, three scenarios of contamination by IMI (320.0 µg L−1) were reproduced: one using reconstituted water (RW) and the other two using water samples collected in unpolluted (UW) and polluted (DW) areas of a river. The results indicated that the tested concentration was not able to cause mortality in D. similis and D. rerio in any proposed treatment (RW, UW, and DW). However, C. sancticaroli showed 100% of mortality in the presence of IMI in the three proposed treatments, demonstrating its potential to impact the community of aquatic nontarget insects negatively. Low IMI concentrations did not offer risks to D. rerio survival. However, we observed alterations in GST, CAT, and APX activities in treatments that used IMI and water with no evidence of pollution (i.e., RW and UW). These last results demonstrated that fish are more susceptible to the effects of IMI in unpolluted environments.
Several studies have indicated the presence of the neonicotinoid insecticide imidacloprid (IMI) in aquatic ecosystems in concentrations up to 320.0 µg L⁻¹. In the present study, we evaluated the effects of the highest IMI concentration detected in surface water (320.0 µg L⁻¹) on the survival of Chironomus sancticaroli, Daphnia similis, and Danio rerio in three different scenarios of water contamination. The enzymatic activities of glutathione S-transferase (GST), catalase (CAT), and ascorbate peroxidase (APX) in D. rerio also were determined. For this evaluation, we have simulated a lotic environment using an indoor system of artificial channels developed for the present study. In this system, three scenarios of contamination by IMI (320.0 µg L⁻¹) were reproduced: one using reconstituted water (RW) and the other two using water samples collected in unpolluted (UW) and polluted (DW) areas of a river. The results indicated that the tested concentration was not able to cause mortality in D. similis and D. rerio in any proposed treatment (RW, UW, and DW). However, C. sancticaroli showed 100% of mortality in the presence of IMI in the three proposed treatments, demonstrating its potential to impact the community of aquatic nontarget insects negatively. Low IMI concentrations did not offer risks to D. rerio survival. However, we observed alterations in GST, CAT, and APX activities in treatments that used IMI and water with no evidence of pollution (i.e., RW and UW). These last results demonstrated that fish are more susceptible to the effects of IMI in unpolluted environments.
Several studies have indicated the presence of the neonicotinoid insecticide imidacloprid (IMI) in aquatic ecosystems in concentrations up to 320.0 µg L . In the present study, we evaluated the effects of the highest IMI concentration detected in surface water (320.0 µg L ) on the survival of Chironomus sancticaroli, Daphnia similis, and Danio rerio in three different scenarios of water contamination. The enzymatic activities of glutathione S-transferase (GST), catalase (CAT), and ascorbate peroxidase (APX) in D. rerio also were determined. For this evaluation, we have simulated a lotic environment using an indoor system of artificial channels developed for the present study. In this system, three scenarios of contamination by IMI (320.0 µg L ) were reproduced: one using reconstituted water (RW) and the other two using water samples collected in unpolluted (UW) and polluted (DW) areas of a river. The results indicated that the tested concentration was not able to cause mortality in D. similis and D. rerio in any proposed treatment (RW, UW, and DW). However, C. sancticaroli showed 100% of mortality in the presence of IMI in the three proposed treatments, demonstrating its potential to impact the community of aquatic nontarget insects negatively. Low IMI concentrations did not offer risks to D. rerio survival. However, we observed alterations in GST, CAT, and APX activities in treatments that used IMI and water with no evidence of pollution (i.e., RW and UW). These last results demonstrated that fish are more susceptible to the effects of IMI in unpolluted environments.
Several studies have indicated the presence of the neonicotinoid insecticide imidacloprid (IMI) in aquatic ecosystems in concentrations up to 320.0 µg L −1 . In the present study, we evaluated the effects of the highest IMI concentration detected in surface water (320.0 µg L −1 ) on the survival of Chironomus sancticaroli , Daphnia similis, and Danio rerio in three different scenarios of water contamination. The enzymatic activities of glutathione S-transferase (GST), catalase (CAT), and ascorbate peroxidase (APX) in D. rerio also were determined. For this evaluation, we have simulated a lotic environment using an indoor system of artificial channels developed for the present study. In this system, three scenarios of contamination by IMI (320.0 µg L −1 ) were reproduced: one using reconstituted water (RW) and the other two using water samples collected in unpolluted (UW) and polluted (DW) areas of a river. The results indicated that the tested concentration was not able to cause mortality in D. similis and D. rerio in any proposed treatment (RW, UW, and DW). However, C. sancticaroli showed 100% of mortality in the presence of IMI in the three proposed treatments, demonstrating its potential to impact the community of aquatic nontarget insects negatively. Low IMI concentrations did not offer risks to D. rerio survival. However, we observed alterations in GST, CAT, and APX activities in treatments that used IMI and water with no evidence of pollution (i.e., RW and UW). These last results demonstrated that fish are more susceptible to the effects of IMI in unpolluted environments.
Author da Silva, Flávio Teixeira
Queiroz, Lucas Gonçalves
Pinto, Ernani
de Almeida, Éryka Costa
de Paiva, Teresa Cristina Brazil
do Prado, Caio César Achiles
Dörr, Felipe Augusto
Author_xml – sequence: 1
  givenname: Lucas Gonçalves
  orcidid: 0000-0003-3305-1042
  surname: Queiroz
  fullname: Queiroz, Lucas Gonçalves
  email: lucasgoncalvesqueiroz@gmail.com
  organization: Department of Biotechnology, School of Engineering of Lorena, University of São Paulo
– sequence: 2
  givenname: Caio César Achiles
  surname: do Prado
  fullname: do Prado, Caio César Achiles
  organization: Department of Biotechnology, School of Engineering of Lorena, University of São Paulo
– sequence: 3
  givenname: Éryka Costa
  surname: de Almeida
  fullname: de Almeida, Éryka Costa
  organization: Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of São Paulo
– sequence: 4
  givenname: Felipe Augusto
  surname: Dörr
  fullname: Dörr, Felipe Augusto
  organization: Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of São Paulo
– sequence: 5
  givenname: Ernani
  surname: Pinto
  fullname: Pinto, Ernani
  organization: Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of São Paulo
– sequence: 6
  givenname: Flávio Teixeira
  surname: da Silva
  fullname: da Silva, Flávio Teixeira
  organization: Department of Biotechnology, School of Engineering of Lorena, University of São Paulo
– sequence: 7
  givenname: Teresa Cristina Brazil
  surname: de Paiva
  fullname: de Paiva, Teresa Cristina Brazil
  organization: Department of Basic and Environmental Sciences, School of Engineering of Lorena, University of São Paulo
BackLink https://www.ncbi.nlm.nih.gov/pubmed/33275184$$D View this record in MEDLINE/PubMed
BookMark eNqFkc1u1DAURi1URKcDL8ACWWLDJnD9k9hZVqMpVKqoRLu3nORmcJXYUzsp9BV4apxOK6QuysqyfL4j3_udkCMfPBLynsFnBqC-JAAuZQEcinzVvBCvyIpJwQtQII7ICqCGQgrJjslJSjcAjGst35BjIbgqmZYr8ucHpn3wCRMNPT29ne3kWvo9-MnGHU70Mu6sd2lM1Hm6_b3H6Eb0U6JXbpyHDPsdtfSqRW-jC4tjs2RH5_Nb8LS5p-ej62w7hH103WKx9Cxi-vnLThjp1t-5GPzifEte93ZI-O7xXJPrs-315ltxcfn1fHN6UbQS9FSUZWk1w9ayFitQjQAJqLkUqudN3SFTdaU61kktq7K22DU8J1TZNZ1Ushdr8umg3cdwO2OazOhSi8NgPYY5GV5mF9dKwv9RWamKlSrvfE0-PkNvwhx9niNTNVNlBlWmPjxSczNiZ_JKRhvvzVMfGdAHoI0hpYi9ad30sMkpWjcYBmap3hyqN7l681B9NqwJfxZ9sr8YEodQyrDfYfz37RdSfwEQNsDs
CitedBy_id crossref_primary_10_1007_s10661_022_10418_9
crossref_primary_10_1016_j_envres_2025_121076
crossref_primary_10_1080_03601234_2023_2184158
crossref_primary_10_1016_j_cbd_2023_101103
crossref_primary_10_1021_acs_est_3c08193
crossref_primary_10_1007_s11356_023_27601_1
Cites_doi 10.1016/j.ecoenv.2016.12.025
10.1021/jf101303g
10.1002/etc.4088
10.1016/j.envpol.2018.01.102
10.1016/j.envint.2014.10.024
10.1002/clen.201000268
10.1016/j.chemosphere.2009.05.002
10.1016/S0021-9258(19)42083-8
10.1016/S0165-6147(00)01820-4
10.1016/j.aquatox.2011.03.003
10.1371/journal.pone.0089837
10.1016/j.ecoenv.2012.04.004
10.1016/S1382-6689(02)00126-6
10.1016/j.chemosphere.2017.02.047
10.1002/etc.3908
10.1016/j.aquatox.2019.105333
10.1007/s00244-007-9073-6
10.1016/j.scitotenv.2014.09.090
10.1016/J.CHEMOSPHERE.2016.10.066
10.1016/j.ecoenv.2017.10.042
10.1016/j.ecolind.2018.05.019
10.1016/S0076-6879(84)05016-3
10.1007/s11356-014-3470-y
10.1016/j.ecoenv.2018.09.107
10.1002/anie.201302550
10.1016/J.ETAP.2016.05.030
10.1007/s00128-001-0283-8
10.1016/j.scitotenv.2018.09.139
10.1016/J.CHEMOSPHERE.2017.12.077
10.1016/j.scitotenv.2019.02.202
10.1016/j.chemosphere.2019.03.002
10.1016/j.aquatox.2018.09.004
10.1016/j.ecoenv.2019.03.038
10.1016/j.ecoenv.2018.07.086
10.1016/j.scitotenv.2020.138276
10.1016/J.SCITOTENV.2019.06.301
10.1016/j.scitotenv.2016.10.158
10.1111/fwb.12711
10.1016/j.chemosphere.2009.04.045
10.1016/j.envpol.2009.03.027
10.1007/s00128-011-0515-5
10.1002/ieam.1530
10.1016/j.envpol.2018.07.100
10.1016/j.ecoenv.2013.04.006
10.1016/J.ENVPOL.2019.05.114
10.1016/j.scitotenv.2018.06.008
10.1016/j.jinorgbio.2019.110699
10.1021/acs.estlett.5b00136
10.1016/j.ecoleng.2013.07.058
10.1007/s10646-011-0802-2
10.1021/jf101824y
10.1016/0166-445X(86)90076-7
10.1016/j.ecoenv.2017.10.054
10.1007/s10333-014-0420-8
10.1016/S0742-8413(98)10133-0
10.1126/science.1236281
10.1016/S0013-9351(03)00033-1
10.1007/s11356-017-9240-x
10.4136/1980-993X
10.1021/jf504895h
10.1016/j.aquatox.2014.06.020
10.1007/s00244-007-9104-3
10.1111/j.1567-1364.2012.00826.x
10.1016/j.etap.2019.103210
10.1007/s11356-014-3471-x
10.1016/j.ecoenv.2018.09.036
10.1016/j.freeradbiomed.2015.05.036
10.1016/j.envpol.2014.06.033
10.1016/0163-7258(91)90029-L
10.1007/978-4-431-67933-2
10.1016/j.envpol.2017.12.120
10.1016/j.sbi.2014.10.005
10.1016/J.ENVPOL.2017.12.036
10.1016/j.chemosphere.2017.10.114
10.1016/j.fsi.2019.03.064
10.1007/s00244-012-9833-9
10.1016/j.chemosphere.2018.06.102
10.1371/journal.pone.0135091
ContentType Journal Article
Copyright Springer Science+Business Media, LLC, part of Springer Nature 2020
Springer Science+Business Media, LLC, part of Springer Nature 2020.
Copyright_xml – notice: Springer Science+Business Media, LLC, part of Springer Nature 2020
– notice: Springer Science+Business Media, LLC, part of Springer Nature 2020.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7T7
7TV
7U7
7WY
7WZ
7X7
7XB
87Z
88E
88I
8C1
8FD
8FI
8FJ
8FK
8FL
ABUWG
AEUYN
AFKRA
ATCPS
AZQEC
BENPR
BEZIV
BHPHI
C1K
CCPQU
DWQXO
FR3
FRNLG
FYUFA
F~G
GHDGH
GNUQQ
HCIFZ
K60
K6~
K9.
L.-
M0C
M0S
M1P
M2P
P64
PATMY
PHGZM
PHGZT
PJZUB
PKEHL
PPXIY
PQBIZ
PQBZA
PQEST
PQQKQ
PQUKI
PYCSY
Q9U
7X8
7S9
L.6
DOI 10.1007/s00244-020-00782-3
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Industrial and Applied Microbiology Abstracts (Microbiology A)
Pollution Abstracts
Toxicology Abstracts
ABI/INFORM Collection
ABI/INFORM Global (PDF only)
Health & Medical Collection (ProQuest)
ProQuest Central (purchase pre-March 2016)
ABI/INFORM Global (Alumni Edition)
Medical Database (Alumni Edition)
Science Database (Alumni Edition)
Public Health Database
Technology Research Database
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ABI/INFORM Collection (Alumni)
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
Agricultural & Environmental Science Collection
ProQuest Central Essentials
ProQuest Central
Business Premium Collection
Natural Science Collection
Environmental Sciences and Pollution Management
ProQuest One
ProQuest Central Korea
Engineering Research Database
Business Premium Collection (Alumni)
Proquest Health Research Premium Collection
ABI/INFORM Global (Corporate)
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Collection (ProQuest)
ProQuest Business Collection (Alumni Edition)
ProQuest Business Collection
ProQuest Health & Medical Complete (Alumni)
ABI/INFORM Professional Advanced
ABI/INFORM Global
ProQuest Health & Medical Collection
Medical Database
Science Database
Biotechnology and BioEngineering Abstracts
Environmental Science Database
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
One Business (ProQuest)
ProQuest One Business (Alumni)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
Environmental Science Collection
ProQuest Central Basic
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
ProQuest Business Collection (Alumni Edition)
ProQuest Central Student
ProQuest Central Essentials
SciTech Premium Collection
ABI/INFORM Complete
Environmental Sciences and Pollution Management
ProQuest One Sustainability
Health Research Premium Collection
Natural Science Collection
Health & Medical Research Collection
Industrial and Applied Microbiology Abstracts (Microbiology A)
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Business Premium Collection
ABI/INFORM Global
ProQuest Science Journals (Alumni Edition)
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
ProQuest Business Collection
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
Environmental Science Collection
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
Environmental Science Database
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
ABI/INFORM Global (Corporate)
ProQuest One Business
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
Pollution Abstracts
ProQuest Central
ABI/INFORM Professional Advanced
ProQuest Health & Medical Research Collection
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Agricultural & Environmental Science Collection
ABI/INFORM Complete (Alumni Edition)
ProQuest Public Health
ABI/INFORM Global (Alumni Edition)
ProQuest Central Basic
Toxicology Abstracts
ProQuest Science Journals
ProQuest Medical Library
ProQuest One Business (Alumni)
ProQuest Central (Alumni)
Business Premium Collection (Alumni)
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList MEDLINE - Academic
ProQuest Business Collection (Alumni Edition)
AGRICOLA
MEDLINE

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: BENPR
  name: ProQuest Central Database Suite (ProQuest)
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Ecology
EISSN 1432-0703
EndPage 449
ExternalDocumentID 33275184
10_1007_s00244_020_00782_3
Genre Journal Article
GrantInformation_xml – fundername: Coordenação de Aperfeiçoamento de Pessoal de Nível Superior
  grantid: 001
  funderid: http://dx.doi.org/10.13039/501100002322
– fundername: Coordenação de Aperfeiçoamento de Pessoal de Nível Superior
  grantid: 001
GroupedDBID ---
-5A
-5G
-5~
-BR
-EM
-Y2
-~C
-~X
.86
.GJ
.VR
06D
0R~
0VY
199
1N0
1SB
2.D
203
23N
28-
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
36B
3V.
4.4
406
408
409
40D
40E
4P2
53G
5GY
5QI
5VS
67M
67Z
6NX
78A
7WY
7X7
7XC
88E
88I
8C1
8FE
8FH
8FI
8FJ
8FL
8UJ
95-
95.
95~
96X
A8Z
AAAVM
AABHQ
AACDK
AAHBH
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACGOD
ACHSB
ACHXU
ACKIV
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACPRK
ACZOJ
ADBBV
ADHHG
ADHIR
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEUYN
AEVLU
AEXYK
AFBBN
AFEXP
AFGCZ
AFKRA
AFLOW
AFQWF
AFRAH
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHMBA
AHSBF
AHYZX
AI.
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALIPV
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARMRJ
ASPBG
ATCPS
AVWKF
AXYYD
AYJHY
AZFZN
AZQEC
B-.
BA0
BBWZM
BDATZ
BENPR
BEZIV
BGNMA
BHPHI
BPHCQ
BSONS
BVXVI
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DWQXO
EBD
EBLON
EBS
EDH
EIOEI
EJD
EMB
EMOBN
ESBYG
F5P
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRNLG
FRRFC
FSGXE
FWDCC
FYUFA
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ6
GQ7
GQ8
GROUPED_ABI_INFORM_COMPLETE
GXS
H13
HCIFZ
HF~
HG5
HG6
HMCUK
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I09
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
K60
K6~
KDC
KOV
KOW
L8X
LAS
LLZTM
M0C
M1P
M2P
M4Y
MA-
ML.
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
P19
P2P
PATMY
PF0
PKN
PQBIZ
PQBZA
PQQKQ
PROAC
PSQYO
PT4
PT5
PYCSY
Q2X
QF4
QM4
QN7
QO4
QOK
QOS
R4E
R89
R9I
RHV
RIG
RNI
RNS
ROL
RPX
RRX
RSV
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCK
SCLPG
SDH
SDM
SEV
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SV3
SZN
T13
T16
TSG
TSK
TSV
TUC
TWZ
U2A
U9L
UG4
UKHRP
UOJIU
UTJUX
UZXMN
VC2
VFIZW
VH1
W23
W48
W4F
WH7
WIP
WJK
WK6
WK8
YLTOR
Z45
Z5O
Z7U
Z7V
Z7W
Z7Y
Z7Z
Z83
Z86
Z8O
Z8P
Z8Q
Z8S
Z8T
Z8W
ZMTXR
~02
~EX
~KM
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ACSTC
ADHKG
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
CGR
CUY
CVF
ECM
EIF
NPM
7T7
7TV
7U7
7XB
8FD
8FK
ABRTQ
C1K
FR3
K9.
L.-
P64
PJZUB
PKEHL
PPXIY
PQEST
PQUKI
Q9U
7X8
7S9
L.6
ID FETCH-LOGICAL-c408t-555a81eca1ce607b3040e82437f2b9de17967d1d484659aedb255a75dbd474f3
IEDL.DBID 7X7
ISSN 0090-4341
1432-0703
IngestDate Fri Jul 11 07:14:01 EDT 2025
Fri Jul 11 03:42:44 EDT 2025
Fri Jul 25 22:59:36 EDT 2025
Wed Feb 19 02:29:08 EST 2025
Tue Jul 01 04:07:05 EDT 2025
Thu Apr 24 23:09:58 EDT 2025
Fri Feb 21 02:49:13 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 2
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c408t-555a81eca1ce607b3040e82437f2b9de17967d1d484659aedb255a75dbd474f3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0003-3305-1042
PMID 33275184
PQID 2491757617
PQPubID 54049
PageCount 13
ParticipantIDs proquest_miscellaneous_2524328740
proquest_miscellaneous_2467615714
proquest_journals_2491757617
pubmed_primary_33275184
crossref_citationtrail_10_1007_s00244_020_00782_3
crossref_primary_10_1007_s00244_020_00782_3
springer_journals_10_1007_s00244_020_00782_3
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20210200
2021-02-00
2021-Feb
20210201
PublicationDateYYYYMMDD 2021-02-01
PublicationDate_xml – month: 2
  year: 2021
  text: 20210200
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
– name: United States
PublicationTitle Archives of environmental contamination and toxicology
PublicationTitleAbbrev Arch Environ Contam Toxicol
PublicationTitleAlternate Arch Environ Contam Toxicol
PublicationYear 2021
Publisher Springer US
Springer Nature B.V
Publisher_xml – name: Springer US
– name: Springer Nature B.V
References GeWYanSWangJOxidative stress and DNA damage induced by imidacloprid in zebrafish (Danio rerio)J Agric Food Chem201563185618621:CAS:528:DC%2BC2MXht12lt78%3D10.1021/jf504895h
FonsecaALRochaOLaboratory cultures of the native species ChironomusActa Limnol Bras200416153161
MiloševićDStojanovićKDjurdjevićAThe response of chironomid taxonomy- and functional trait-based metrics to fish farm effluent pollution in lotic systemsEnviron Pollut2018242105810661:CAS:528:DC%2BC1cXhsVOlurrJ10.1016/j.envpol.2018.07.100
CunhaDGFCalijuriMdCLamparelliMCA trophic state index for tropical/subtropical reservoirs (TSI tsr)Ecol Eng20136012613410.1016/j.ecoleng.2013.07.058
HabigWHPabstMJJakobyWBGlutathione S-Transferases—the first enzymatic step in mercapturic acid formationJ Biol Chem1974249713071401:CAS:528:DyaE2MXltlahtg%3D%3D10.1016/S0021-9258(19)42083-8
HladikMLKolpinDWKuivilaKMWidespread occurrence of neonicotinoid insecticides in streams in a high corn and soybean producing region, USAEnviron Pollut20141931891961:CAS:528:DC%2BC2cXht1ensbnJ10.1016/j.envpol.2014.06.033
Van DijkTCVan StaalduinenMAVan Der SluijsJPMacro-invertebrate decline in surface water polluted with imidaclopridPLoS ONE201310.1371/journal.pone.0089837
ZhangHDaviesKJAFormanHJOxidative stress response and Nrf2 signaling in agingFree Radic Biol Med2015883143361:CAS:528:DC%2BC2MXhtFemu73O10.1016/j.freeradbiomed.2015.05.036
NarraMRRajenderKReddyRRInsecticides induced stress response and recuperation in fish: biomarkers in blood and tissues related to oxidative damageChemosphere20171683503571:CAS:528:DC%2BC28XhslKntbrM10.1016/J.CHEMOSPHERE.2016.10.066
SumonKARitikaAKPeetersETHMEffects of imidacloprid on the ecology of sub-tropical freshwater microcosmsEnviron Pollut20182364324411:CAS:528:DC%2BC1cXisVehtbs%3D10.1016/j.envpol.2018.01.102
SellaththuraiSPriyathilakaTTLeeJMolecular cloning, characterization, and expression level analysis of a marine teleost homolog of catalase from big belly seahorse (Hippocampus abdominalis)Fish Shellfish Immunol2019896476591:CAS:528:DC%2BC1MXnslOqtLg%3D10.1016/j.fsi.2019.03.064
AlexanderACCulpJMBairdDJCessnaAJNutrient–insecticide interactions decouple density-dependent predation pressure in aquatic insectsFreshw Biol201661209021011:CAS:528:DC%2BC28XhvVWnurnF10.1111/fwb.12711
LaNLamersMBannwarthMImidacloprid concentrations in paddy rice fields in northern Vietnam: measurement and probabilistic modelingPaddy Water Environ20141319120310.1007/s10333-014-0420-8
MorJ-RDolédecSAcuñaVInvertebrate community responses to urban wastewater effluent pollution under different hydro-morphological conditionsEnviron Pollut20192524834921:CAS:528:DC%2BC1MXhtFeqs7fO10.1016/J.ENVPOL.2019.05.114
AndersonJCDubetzCPalaceVPNeonicotinoids in the Canadian aquatic environment: a literature review on current use products with a focus on fate, exposure, and biological effectsSci Tot Environ20155054094221:CAS:528:DC%2BC2cXhslehtLjP10.1016/j.scitotenv.2014.09.090
TišlerTJemecAMozetičBTrebšePHazard identification of imidacloprid to aquatic environmentChemosphere2009769079141:CAS:528:DC%2BD1MXptVaqurg%3D10.1016/j.chemosphere.2009.05.002
HayasakaDKorenagaTSuzukiKCumulative ecological impacts of two successive annual treatments of imidacloprid and fipronil on aquatic communities of paddy mesocosmsEcotoxicol Environ Saf2012803553621:CAS:528:DC%2BC38Xms1ylsbo%3D10.1016/j.ecoenv.2012.04.004
DantzgerDDJonssonCMAoyamaHMixtures of diflubenzuron and p-chloroaniline changes the activities of enzymes biomarkers on tilapia fish (Oreochromis niloticus) in the presence and absence of soilEcotoxicol Environ Saf20181483673761:CAS:528:DC%2BC2sXhslektL7K10.1016/j.ecoenv.2017.10.054
RabyMNowierskiMPerlovDAcute toxicity of 6 neonicotinoid insecticides to freshwater invertebratesEnviron Toxicol Chem201837143014451:CAS:528:DC%2BC1cXnt1eitb0%3D10.1002/etc.4088
Van der OostRBeyerJVermeulenNPEFish bioaccumulation and biomarkers in environmental risk assessment: a reviewEnviron Toxicol Pharmacol2003135714910.1016/S1382-6689(02)00126-6
BeketovMALiessMPotential of 11 pesticides to initiate downstream drift of stream macroinvertebratesArch Environ Contam Toxicol2008552472531:CAS:528:DC%2BD1cXnsVWjsrk%3D10.1007/s00244-007-9104-3
DomenicaAMariaAStefaniaBNeonicotinoids and bees: the case of the European regulatory risk assessmentSci Tot Environ20175799669711:CAS:528:DC%2BC28XhvFCgt7vM10.1016/j.scitotenv.2016.10.158
JeschkePNauenRSchindlerMElbertAOverview of the status and global strategy for neonicotinoidsJ Agric Food Chem201159289729081:CAS:528:DC%2BC3cXns1Clsrk%3D10.1021/jf101303g
KobashiKHaradaTAdachiYComparative ecotoxicity of imidacloprid and dinotefuran to aquatic insects in rice mesocosmsEcotoxicol Environ Saf20171381221291:CAS:528:DC%2BC2sXislShsA%3D%3D10.1016/j.ecoenv.2016.12.025
PestanaJLTAlexanderACCulpJMStructural and functional responses of benthic invertebrates to imidacloprid in outdoor stream mesocosmsEnviron Pollut2009157232823341:CAS:528:DC%2BD1MXntVGhtrc%3D10.1016/j.envpol.2009.03.027
RicoAArenas-SánchezAPasqualiniJEffects of imidacloprid and a neonicotinoid mixture on aquatic invertebrate communities under Mediterranean conditionsAquat Toxicol20182041301431:CAS:528:DC%2BC1cXhslOju7jI10.1016/j.aquatox.2018.09.004
PisaLWBelzuncesLPBonmatinJMEffects of neonicotinoids and fipronil on non-target invertebratesEnviron Sci Pollut Res201522681021:CAS:528:DC%2BC2cXhsFOmu7nO10.1007/s11356-014-3471-x
XiaXXiaXHuoWToxic effects of imidacloprid on adult loach (Misgurnus anguillicaudatus)Environ Toxicol Pharmacol2016451321391:CAS:528:DC%2BC28Xps1aqtL0%3D10.1016/J.ETAP.2016.05.030
SilvaMSGMMarigoALSViveirosWKuhlmannMLFrequency of mentum deformity in Chironomus sancticaroli (Diptera: Chironomidae) in a laboratory cultureRev Ambient e Agua2019141810.4136/1980-993X
DeLeveLDKaplowitzNGlutathione metabolism and its role in hepatotoxicityPharmacol Ther1991522873051:CAS:528:DyaK38XlsVOlsr0%3D10.1016/0163-7258(91)90029-L
QiSWangDZhuLNeonicotinoid insecticides imidacloprid, guadipyr, and cycloxaprid induce acute oxidative stress in Daphnia magnaEcotoxicol Environ Saf20181483523581:CAS:528:DC%2BC2sXhslektL7P10.1016/j.ecoenv.2017.10.042
MatsudaKBuckinghamSDKleierDNeonicotinoids: insecticides acting on insect nicotinic acetylcholine receptorsTrends Pharmacol Sci2001225735801:CAS:528:DC%2BD3MXotFSmsbY%3D10.1016/S0165-6147(00)01820-4
StoughtonSJLiberKCulpJCessnaAAcute and chronic toxicity of imidacloprid to the aquatic invertebrates Chironomus tentans and Hyalella azteca under constant- and pulse-exposure conditionsArch Environ Contam Toxicol2008546626731:CAS:528:DC%2BD1cXkt12gu74%3D10.1007/s00244-007-9073-6
HongXZhaoXTianXChanges of hematological and biochemical parameters revealed genotoxicity and immunotoxicity of neonicotinoids on Chinese rare minnows (Gobiocypris rarus)Environ Pollut20182338628711:CAS:528:DC%2BC2sXhvF2jtL3K10.1016/J.ENVPOL.2017.12.036
Kreuger J, Graaf S, Patring J, Adielsson S (2010) Pesticides in surface water in areas with open ground and greenhouse horticultural crops in Sweden 2008
BöttgerRFeibickeMSchallerJDudelGEffects of low-dosed imidacloprid pulses on the functional role of the caged amphipod Gammarus roeseli in stream mesocosmsEcotoxicol Environ Saf201393931001:CAS:528:DC%2BC3sXnsFSrtrY%3D10.1016/j.ecoenv.2013.04.006
DouglasMTChanterDOPellIBBurneyGMA proposal for the reduction of animal numbers required for the acute toxicity to fish test (LC50 determination)Aquat Toxicol198682432491:CAS:528:DyaL28Xlt1yru7k%3D10.1016/0166-445X(86)90076-7
CoelhoSOliveiraRPereiraSAssessing lethal and sub-lethal effects of trichlorfon on different trophic levelsAquat Toxicol20111031911981:CAS:528:DC%2BC3MXlvVaiur0%3D10.1016/j.aquatox.2011.03.003
RabyMZhaoXHaoCRelative chronic sensitivity of neonicotinoid insecticides to Ceriodaphnia dubia and Daphnia magnaEcotoxicol Environ Saf20181632382441:CAS:528:DC%2BC1cXhsVSht7jI10.1016/j.ecoenv.2018.07.086
BradfordMMA rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye bindingAnal Biochem1976722482541:CAS:528:DC%2BC2cXhvFWgsL3L10.1016/j.sbi.2014.10.005
StaraABellinviaRVelisekJAcute exposure of common yabby (Cherax destructor) to the neonicotinoid pesticideSci Tot Environ20196657187231:CAS:528:DC%2BC1MXjt1Chtr4%3D10.1016/j.scitotenv.2019.02.202
WoodTJGoulsonDThe environmental risks of neonicotinoid pesticides: a review of the evidence post 2013Environ Sci Pollut Res20172417285173251:CAS:528:DC%2BC2sXhtVCktLvE10.1007/s11356-017-9240-x
XingZChowLReesHInfluences of sampling methodologies on pesticide-residue detection in stream waterArch Environ Contam Toxicol2013642082181:CAS:528:DC%2BC3sXhsFegsb4%3D10.1007/s00244-012-9833-9
EgaasESandvikMFjeldESome effects of the fungicide propiconazole on cytochrome P450 and glutathione S-transferase in brown trout (Salmo trutta)Comp Biochem Physiol Part C Pharmacol Toxicol Endocrinol19991223373441:STN:280:DyaK1M3mslWgtA%3D%3D10.1016/S0742-8413(98)10133-0
SinhaAKAbdElgawadHZintaGNutritional status as the key modulator of antioxidant responses induced by high environmental ammonia and salinity stress in European sea bass (Dicentrarchus labrax)PLoS ONE2015101291:CAS:528:DC%2BC28XmtlCitw%3D%3D10.1371/journal.pone.0135091
IturburuFGBertrandLMendietaJRAn integrated biomarker response study explains more than the sum of the parts: oxidative stress in the fish Australoheros facetus exposed to imidaclopridEcol Indic2018933513571:CAS:528:DC%2BC1cXps1Kktro%3D10.1016/j.ecolind.2018.05.019
BarnettBGRThe use of sodium azide in the Winkler Method for the determination of dissolved oxygenSewage Work J1939117817871:CAS:528:DyaH3cXmsl2n
Chará-SernaAMEpeleLBMorrisseyCARichardsonJSNutrients and sediment modify the impacts of a neonicotinoid insecticide on freshwater community structure and ecosystem functioningSci Tot Environ20196921291130310.1016/J.SCITOTENV.2019.06.301
StarnerKGohKSDetections of the neonicotinoid insecticide imidacloprid in surface waters of three agricultural regions of California, USA, 2010–2011Bull Enviro
Y Chen (782_CR12) 2018; 166
MR Narra (782_CR52) 2017; 168
HM Semchyshyn (782_CR60) 2012; 12
P Jeschke (782_CR37) 2011; 59
D Hayasaka (782_CR30) 2012; 21
CA Morrissey (782_CR50) 2015; 74
S Coelho (782_CR13) 2011; 103
S Gupta (782_CR27) 2002; 68
IC Yadav (782_CR83) 2018; 640–641
Z Lu (782_CR45) 2015; 2
782_CR20
D Milošević (782_CR48) 2018; 242
M Vieira (782_CR76) 2019; 71
JC Anderson (782_CR4) 2015; 505
I Yamamoto (782_CR84) 1999
S Wu (782_CR80) 2018; 235
ML Hladik (782_CR31) 2014; 193
X Hong (782_CR32) 2018; 233
R Böttger (782_CR8) 2013; 93
Y Wang (782_CR78) 2018; 165
N La (782_CR42) 2014; 13
VV Husak (782_CR35) 2014; 155
A Rico (782_CR58) 2018; 204
R Van der Oost (782_CR73) 2003; 13
MT Douglas (782_CR19) 1986; 8
782_CR1
AK Sinha (782_CR64) 2015; 10
OV Lushchak (782_CR46) 2009; 76
TJ Wood (782_CR79) 2017; 24
C Vignet (782_CR77) 2019; 225
A Slaninova (782_CR65) 2009; 30
J-R Mor (782_CR49) 2019; 252
A Topal (782_CR71) 2017; 175
A Domenica (782_CR18) 2017; 579
AL Fonseca (782_CR23) 2004; 16
M Giraudo (782_CR26) 2017; 36
A Stara (782_CR66) 2019; 665
DGF Cunha (782_CR14) 2013; 60
Y Nakano (782_CR51) 1981; 22
H Zhang (782_CR85) 2015; 88
Y Hong (782_CR33) 2020; 729
LD DeLeve (782_CR16) 1991; 52
S Kagabu (782_CR39) 2011; 59
Y Shan (782_CR61) 2020; 218
P Jeschke (782_CR38) 2013; 52
JLT Pestana (782_CR53) 2009; 157
K Matsuda (782_CR47) 2001; 22
LW Pisa (782_CR54) 2015; 22
AC Alexander (782_CR3) 2016; 61
E Egaas (782_CR21) 1999; 122
782_CR41
N Simon-Delso (782_CR63) 2015; 22
CED Vieira (782_CR75) 2018; 195
DD Dantzger (782_CR15) 2018; 148
KA Sumon (782_CR69) 2018; 236
L Gebicka (782_CR25) 2019; 197
H Aebi (782_CR2) 1984; 105
NN Chandran (782_CR10) 2018; 209
K Starner (782_CR67) 2012; 88
W Ge (782_CR24) 2015; 63
FG Iturburu (782_CR36) 2018; 93
X Xia (782_CR81) 2016; 45
S Qi (782_CR55) 2018; 148
K Kobashi (782_CR40) 2017; 138
MSGM Silva (782_CR62) 2019; 14
MM Bradford (782_CR9) 1976; 72
T Tišler (782_CR70) 2009; 76
WH Habig (782_CR28) 1974; 249
TC Van Dijk (782_CR74) 2013
M Lamers (782_CR43) 2011; 39
M Raby (782_CR56) 2018; 37
BGR Barnett (782_CR5) 1939; 11
AMB do Amaral (782_CR17) 2018; 191
C Uguz (782_CR72) 2003; 92
Z Xing (782_CR82) 2013; 64
K Fenner (782_CR22) 2013; 341
M Raby (782_CR57) 2018; 163
D Hayasaka (782_CR29) 2012; 80
AM Chará-Serna (782_CR11) 2019; 692
M Le Moal (782_CR44) 2019; 651
S Sellaththurai (782_CR59) 2019; 89
SJ Stoughton (782_CR68) 2008; 54
MA Beketov (782_CR7) 2008; 55
AJ Bartlett (782_CR6) 2019; 175
SE Hook (782_CR34) 2014; 10
References_xml – reference: SumonKARitikaAKPeetersETHMEffects of imidacloprid on the ecology of sub-tropical freshwater microcosmsEnviron Pollut20182364324411:CAS:528:DC%2BC1cXisVehtbs%3D10.1016/j.envpol.2018.01.102
– reference: EgaasESandvikMFjeldESome effects of the fungicide propiconazole on cytochrome P450 and glutathione S-transferase in brown trout (Salmo trutta)Comp Biochem Physiol Part C Pharmacol Toxicol Endocrinol19991223373441:STN:280:DyaK1M3mslWgtA%3D%3D10.1016/S0742-8413(98)10133-0
– reference: LaNLamersMBannwarthMImidacloprid concentrations in paddy rice fields in northern Vietnam: measurement and probabilistic modelingPaddy Water Environ20141319120310.1007/s10333-014-0420-8
– reference: FonsecaALRochaOLaboratory cultures of the native species ChironomusActa Limnol Bras200416153161
– reference: SellaththuraiSPriyathilakaTTLeeJMolecular cloning, characterization, and expression level analysis of a marine teleost homolog of catalase from big belly seahorse (Hippocampus abdominalis)Fish Shellfish Immunol2019896476591:CAS:528:DC%2BC1MXnslOqtLg%3D10.1016/j.fsi.2019.03.064
– reference: BradfordMMA rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye bindingAnal Biochem1976722482541:CAS:528:DC%2BC2cXhvFWgsL3L10.1016/j.sbi.2014.10.005
– reference: MorrisseyCAMineauPDevriesJHNeonicotinoid contamination of global surface waters and associated risk to aquatic invertebrates: a reviewEnviron Int2015742913031:CAS:528:DC%2BC2cXhvFGrsrrF10.1016/j.envint.2014.10.024
– reference: VieiraCEDPérezMRAcayabaRDDNA damage and oxidative stress induced by imidacloprid exposure in different tissues of the neotropical fish Prochilodus lineatusChemosphere20181951251341:CAS:528:DC%2BC2sXitVWnsr7J10.1016/J.CHEMOSPHERE.2017.12.077
– reference: NakanoYAsadaKHydrogen peroxide is scavenged by ascorbate-specific peroxidase in spinach chloroplastsPlant Cell Physiol1981228678801:CAS:528:DyaL3MXltFWqur0%3D
– reference: TišlerTJemecAMozetičBTrebšePHazard identification of imidacloprid to aquatic environmentChemosphere2009769079141:CAS:528:DC%2BD1MXptVaqurg%3D10.1016/j.chemosphere.2009.05.002
– reference: HongXZhaoXTianXChanges of hematological and biochemical parameters revealed genotoxicity and immunotoxicity of neonicotinoids on Chinese rare minnows (Gobiocypris rarus)Environ Pollut20182338628711:CAS:528:DC%2BC2sXhvF2jtL3K10.1016/J.ENVPOL.2017.12.036
– reference: YadavICWatanabeHSoil erosion and transport of Imidacloprid and Clothianidin in the upland field under simulated rainfall conditionSci Tot Environ2018640–641135413641:CAS:528:DC%2BC1cXhtFSrurzL10.1016/j.scitotenv.2018.06.008
– reference: BartlettAJHedgesAMIntiniKDAcute and chronic toxicity of neonicotinoid and butenolide insecticides to the freshwater amphipod, Hyalella aztecaEcotoxicol Environ Saf20191752152231:CAS:528:DC%2BC1MXls1eiurc%3D10.1016/j.ecoenv.2019.03.038
– reference: CunhaDGFCalijuriMdCLamparelliMCA trophic state index for tropical/subtropical reservoirs (TSI tsr)Ecol Eng20136012613410.1016/j.ecoleng.2013.07.058
– reference: QiSWangDZhuLNeonicotinoid insecticides imidacloprid, guadipyr, and cycloxaprid induce acute oxidative stress in Daphnia magnaEcotoxicol Environ Saf20181483523581:CAS:528:DC%2BC2sXhslektL7P10.1016/j.ecoenv.2017.10.042
– reference: AebiHCatalase in vitroMethods Enzymol19841051211261:CAS:528:DyaL2cXltVKis7s%3D
– reference: DantzgerDDJonssonCMAoyamaHMixtures of diflubenzuron and p-chloroaniline changes the activities of enzymes biomarkers on tilapia fish (Oreochromis niloticus) in the presence and absence of soilEcotoxicol Environ Saf20181483673761:CAS:528:DC%2BC2sXhslektL7K10.1016/j.ecoenv.2017.10.054
– reference: DouglasMTChanterDOPellIBBurneyGMA proposal for the reduction of animal numbers required for the acute toxicity to fish test (LC50 determination)Aquat Toxicol198682432491:CAS:528:DyaL28Xlt1yru7k%3D10.1016/0166-445X(86)90076-7
– reference: JeschkePNauenRSchindlerMElbertAOverview of the status and global strategy for neonicotinoidsJ Agric Food Chem201159289729081:CAS:528:DC%2BC3cXns1Clsrk%3D10.1021/jf101303g
– reference: SinhaAKAbdElgawadHZintaGNutritional status as the key modulator of antioxidant responses induced by high environmental ammonia and salinity stress in European sea bass (Dicentrarchus labrax)PLoS ONE2015101291:CAS:528:DC%2BC28XmtlCitw%3D%3D10.1371/journal.pone.0135091
– reference: MorJ-RDolédecSAcuñaVInvertebrate community responses to urban wastewater effluent pollution under different hydro-morphological conditionsEnviron Pollut20192524834921:CAS:528:DC%2BC1MXhtFeqs7fO10.1016/J.ENVPOL.2019.05.114
– reference: TopalAAlakGOzkaracaMNeurotoxic responses in brain tissues of rainbow trout exposed to imidacloprid pesticide: assessment of 8-hydroxy-2-deoxyguanosine activity, oxidative stress and acetylcholinesterase activityChemosphere20171751861911:CAS:528:DC%2BC2sXjtVelurk%3D10.1016/j.chemosphere.2017.02.047
– reference: EFSA (2018) Evaluation of the data on clothianidin, imidacloprid and thiamethoxam for the updated risk assessment to bees for seed treatments and granules in the EU
– reference: HayasakaDKorenagaTSuzukiKCumulative ecological impacts of two successive annual treatments of imidacloprid and fipronil on aquatic communities of paddy mesocosmsEcotoxicol Environ Saf2012803553621:CAS:528:DC%2BC38Xms1ylsbo%3D10.1016/j.ecoenv.2012.04.004
– reference: WoodTJGoulsonDThe environmental risks of neonicotinoid pesticides: a review of the evidence post 2013Environ Sci Pollut Res20172417285173251:CAS:528:DC%2BC2sXhtVCktLvE10.1007/s11356-017-9240-x
– reference: ZhangHDaviesKJAFormanHJOxidative stress response and Nrf2 signaling in agingFree Radic Biol Med2015883143361:CAS:528:DC%2BC2MXhtFemu73O10.1016/j.freeradbiomed.2015.05.036
– reference: Kreuger J, Graaf S, Patring J, Adielsson S (2010) Pesticides in surface water in areas with open ground and greenhouse horticultural crops in Sweden 2008
– reference: do AmaralAMBde Lima Costa GomesJWeimerGHSeasonal implications on toxicity biomarkers of Loricariichthys anus (Valenciennes, 1835) from a subtropical reservoirChemosphere20181918768851:CAS:528:DC%2BC2sXhslChsrrI10.1016/j.chemosphere.2017.10.114
– reference: StarnerKGohKSDetections of the neonicotinoid insecticide imidacloprid in surface waters of three agricultural regions of California, USA, 2010–2011Bull Environ Contam Toxicol2012883163211:CAS:528:DC%2BC38XitFansrc%3D10.1007/s00128-011-0515-5
– reference: XiaXXiaXHuoWToxic effects of imidacloprid on adult loach (Misgurnus anguillicaudatus)Environ Toxicol Pharmacol2016451321391:CAS:528:DC%2BC28Xps1aqtL0%3D10.1016/J.ETAP.2016.05.030
– reference: JeschkePNauenRBeckMENicotinic acetylcholine receptor agonists: a milestone for modern crop protectionAngew Chem Int Ed201352946494851:CAS:528:DC%2BC3sXht1CrtrfP10.1002/anie.201302550
– reference: KagabuSDiscovery of imidacloprid and further developments from strategic molecular designsJ Agric Food Chem201159288728961:CAS:528:DC%2BC3cXhtVeltbvE10.1021/jf101824y
– reference: BeketovMALiessMPotential of 11 pesticides to initiate downstream drift of stream macroinvertebratesArch Environ Contam Toxicol2008552472531:CAS:528:DC%2BD1cXnsVWjsrk%3D10.1007/s00244-007-9104-3
– reference: XingZChowLReesHInfluences of sampling methodologies on pesticide-residue detection in stream waterArch Environ Contam Toxicol2013642082181:CAS:528:DC%2BC3sXhsFegsb4%3D10.1007/s00244-012-9833-9
– reference: SilvaMSGMMarigoALSViveirosWKuhlmannMLFrequency of mentum deformity in Chironomus sancticaroli (Diptera: Chironomidae) in a laboratory cultureRev Ambient e Agua2019141810.4136/1980-993X
– reference: StoughtonSJLiberKCulpJCessnaAAcute and chronic toxicity of imidacloprid to the aquatic invertebrates Chironomus tentans and Hyalella azteca under constant- and pulse-exposure conditionsArch Environ Contam Toxicol2008546626731:CAS:528:DC%2BD1cXkt12gu74%3D10.1007/s00244-007-9073-6
– reference: GebickaLKrych-MadejJThe role of catalases in the prevention/promotion of oxidative stressJ Inorg Biochem20191971106991:CAS:528:DC%2BC1MXovVCnt74%3D10.1016/j.jinorgbio.2019.110699
– reference: VignetCCappelloTFuQImidacloprid induces adverse effects on fish early life stages that are more severe in Japanese medaka (Oryzias latipes) than in zebrafish (Danio rerio)Chemosphere20192254704781:CAS:528:DC%2BC1MXltFymsLs%3D10.1016/j.chemosphere.2019.03.002
– reference: RicoAArenas-SánchezAPasqualiniJEffects of imidacloprid and a neonicotinoid mixture on aquatic invertebrate communities under Mediterranean conditionsAquat Toxicol20182041301431:CAS:528:DC%2BC1cXhslOju7jI10.1016/j.aquatox.2018.09.004
– reference: WangYHanYXuPThe metabolism distribution and effect of imidacloprid in chinese lizards (Eremias argus) following oral exposureEcotoxicol Environ Saf20181654764831:CAS:528:DC%2BC1cXhslSktLnO10.1016/j.ecoenv.2018.09.036
– reference: YamamotoICasidaJENicotinoid insecticides and the nicotinic acetylcholine receptor19991BerlinSpringer10.1007/978-4-431-67933-2
– reference: PestanaJLTAlexanderACCulpJMStructural and functional responses of benthic invertebrates to imidacloprid in outdoor stream mesocosmsEnviron Pollut2009157232823341:CAS:528:DC%2BD1MXntVGhtrc%3D10.1016/j.envpol.2009.03.027
– reference: ShanYYanSHongXEffect of imidacloprid on the behavior, antioxidant system, multixenobiotic resistance, and histopathology of Asian freshwater clams (Corbicula fluminea)Aquat Toxicol20202181053331:CAS:528:DC%2BC1MXit1ekt7bM10.1016/j.aquatox.2019.105333
– reference: GiraudoMCottinGEsperanzaMTranscriptional and cellular effects of benzotriazole UV stabilizers UV-234 and UV-328 in the freshwater invertebrates Chlamydomonas reinhardtii and Daphnia magnaEnviron Toxicol Chem201736333333421:CAS:528:DC%2BC2sXhsVKgu7jL10.1002/etc.3908
– reference: AndersonJCDubetzCPalaceVPNeonicotinoids in the Canadian aquatic environment: a literature review on current use products with a focus on fate, exposure, and biological effectsSci Tot Environ20155054094221:CAS:528:DC%2BC2cXhslehtLjP10.1016/j.scitotenv.2014.09.090
– reference: DeLeveLDKaplowitzNGlutathione metabolism and its role in hepatotoxicityPharmacol Ther1991522873051:CAS:528:DyaK38XlsVOlsr0%3D10.1016/0163-7258(91)90029-L
– reference: SlaninovaASmutnaMModraHSvobodovaZA review: oxidative stress in fish induced by pesticidesNeuroendocrinol Lett2009302121:CAS:528:DC%2BC3cXktF2ltbc%3D
– reference: WuSLiXLiuXJoint toxic effects of triazophos and imidacloprid on zebrafish (Danio rerio)Environ Pollut20182354704811:CAS:528:DC%2BC1cXkslyksA%3D%3D10.1016/j.envpol.2017.12.120
– reference: FennerKCanonicaSWackettLPElsnerMEvaluating pesticide degradation in the environment: blind spots and emerging opportunitiesScience20133417527581:CAS:528:DC%2BC3sXht1GhurjE10.1126/science.1236281
– reference: Chará-SernaAMEpeleLBMorrisseyCARichardsonJSNutrients and sediment modify the impacts of a neonicotinoid insecticide on freshwater community structure and ecosystem functioningSci Tot Environ20196921291130310.1016/J.SCITOTENV.2019.06.301
– reference: LushchakOVKubrakOIStoreyJMLow toxic herbicide Roundup induces mild oxidative stress in goldfish tissuesChemosphere2009769329371:CAS:528:DC%2BD1MXptVaqu7o%3D10.1016/j.chemosphere.2009.04.045
– reference: ChandranNNFojtovaDBlahovaLAcute and (sub)chronic toxicity of the neonicotinoid imidacloprid on Chironomus ripariusChemosphere20182095685771:CAS:528:DC%2BC1cXht1SjtrzN10.1016/j.chemosphere.2018.06.102
– reference: HongYHuangYWuSEffects of imidacloprid on the oxidative stress, detoxification and gut microbiota of Chinese mitten crab, Eriocheir sinensisSci Tot Environ20207291382761:CAS:528:DC%2BB3cXosVymtr0%3D10.1016/j.scitotenv.2020.138276
– reference: Van DijkTCVan StaalduinenMAVan Der SluijsJPMacro-invertebrate decline in surface water polluted with imidaclopridPLoS ONE201310.1371/journal.pone.0089837
– reference: GeWYanSWangJOxidative stress and DNA damage induced by imidacloprid in zebrafish (Danio rerio)J Agric Food Chem201563185618621:CAS:528:DC%2BC2MXht12lt78%3D10.1021/jf504895h
– reference: MatsudaKBuckinghamSDKleierDNeonicotinoids: insecticides acting on insect nicotinic acetylcholine receptorsTrends Pharmacol Sci2001225735801:CAS:528:DC%2BD3MXotFSmsbY%3D10.1016/S0165-6147(00)01820-4
– reference: BöttgerRFeibickeMSchallerJDudelGEffects of low-dosed imidacloprid pulses on the functional role of the caged amphipod Gammarus roeseli in stream mesocosmsEcotoxicol Environ Saf201393931001:CAS:528:DC%2BC3sXnsFSrtrY%3D10.1016/j.ecoenv.2013.04.006
– reference: VieiraMSoaresAMVMNunesBBiomarker-based assessment of the toxicity of the antifungal clotrimazol to the microcrustacean Daphnia magnaEnviron Toxicol Pharmacol2019711032101:CAS:528:DC%2BC1MXhtlWiu73J10.1016/j.etap.2019.103210
– reference: HladikMLKolpinDWKuivilaKMWidespread occurrence of neonicotinoid insecticides in streams in a high corn and soybean producing region, USAEnviron Pollut20141931891961:CAS:528:DC%2BC2cXht1ensbnJ10.1016/j.envpol.2014.06.033
– reference: SemchyshynHMLozinskaLMFructose protects baker’s yeast against peroxide stress: potential role of catalase and superoxide dismutaseFEMS Yeast Res2012127617731:CAS:528:DC%2BC38Xhs1Srtb7E10.1111/j.1567-1364.2012.00826.x
– reference: ABNT (2016) NBR 12713: aquatic ecotoxicology—acute toxicity—test with Daphnia spp (Cladocera, Crustacea), pp 1–27
– reference: KobashiKHaradaTAdachiYComparative ecotoxicity of imidacloprid and dinotefuran to aquatic insects in rice mesocosmsEcotoxicol Environ Saf20171381221291:CAS:528:DC%2BC2sXislShsA%3D%3D10.1016/j.ecoenv.2016.12.025
– reference: IturburuFGBertrandLMendietaJRAn integrated biomarker response study explains more than the sum of the parts: oxidative stress in the fish Australoheros facetus exposed to imidaclopridEcol Indic2018933513571:CAS:528:DC%2BC1cXps1Kktro%3D10.1016/j.ecolind.2018.05.019
– reference: BarnettBGRThe use of sodium azide in the Winkler Method for the determination of dissolved oxygenSewage Work J1939117817871:CAS:528:DyaH3cXmsl2n
– reference: HayasakaDKorenagaTSuzukiKDifferences in susceptibility of five cladoceran species to two systemic insecticides, imidacloprid and fipronilEcotoxicology2012214214271:CAS:528:DC%2BC38XitFamsb8%3D10.1007/s10646-011-0802-2
– reference: HusakVVMosiichukNMMaksymivIVHistopathological and biochemical changes in goldfish kidney due to exposure to the herbicide Sencor may be related to induction of oxidative stressAquat Toxicol20141551811891:CAS:528:DC%2BC2cXht1ensbvJ10.1016/j.aquatox.2014.06.020
– reference: ChenYYuKHassanMOccurrence, distribution and risk assessment of pesticides in a river-reservoir systemEcotoxicol Environ Saf20181663203271:CAS:528:DC%2BC1cXhvVejt77N10.1016/j.ecoenv.2018.09.107
– reference: Simon-DelsoNAmaral-RogersVBelzuncesLPSystemic insecticides (Neonicotinoids and fipronil): trends, uses, mode of action and metabolitesEnviron Sci Pollut Res2015225341:CAS:528:DC%2BC2cXhsFOlur%2FO10.1007/s11356-014-3470-y
– reference: PisaLWBelzuncesLPBonmatinJMEffects of neonicotinoids and fipronil on non-target invertebratesEnviron Sci Pollut Res201522681021:CAS:528:DC%2BC2cXhsFOmu7nO10.1007/s11356-014-3471-x
– reference: Van der OostRBeyerJVermeulenNPEFish bioaccumulation and biomarkers in environmental risk assessment: a reviewEnviron Toxicol Pharmacol2003135714910.1016/S1382-6689(02)00126-6
– reference: DomenicaAMariaAStefaniaBNeonicotinoids and bees: the case of the European regulatory risk assessmentSci Tot Environ20175799669711:CAS:528:DC%2BC28XhvFCgt7vM10.1016/j.scitotenv.2016.10.158
– reference: LuZChallisJKWongCSQuantum yields for direct photolysis of neonicotinoid insecticides in water: implications for exposure to nontarget aquatic organismsEnviron Sci Technol Lett201521881921:CAS:528:DC%2BC2MXhtVShtLvO10.1021/acs.estlett.5b00136
– reference: HabigWHPabstMJJakobyWBGlutathione S-Transferases—the first enzymatic step in mercapturic acid formationJ Biol Chem1974249713071401:CAS:528:DyaE2MXltlahtg%3D%3D10.1016/S0021-9258(19)42083-8
– reference: Le MoalMGascuel-odouxCMénesguenAEutrophication: a new wine in an old bottle?Sci Tot Environ20196511111:CAS:528:DC%2BC1cXhslehurzM10.1016/j.scitotenv.2018.09.139
– reference: LamersMAnyushevaMLaNPesticide pollution in surface- and groundwater by paddy rice cultivation: a case study from Northern VietnamClean: Soil, Air, Water2011393563611:CAS:528:DC%2BC3MXksFeju7k%3D10.1002/clen.201000268
– reference: StaraABellinviaRVelisekJAcute exposure of common yabby (Cherax destructor) to the neonicotinoid pesticideSci Tot Environ20196657187231:CAS:528:DC%2BC1MXjt1Chtr4%3D10.1016/j.scitotenv.2019.02.202
– reference: RabyMNowierskiMPerlovDAcute toxicity of 6 neonicotinoid insecticides to freshwater invertebratesEnviron Toxicol Chem201837143014451:CAS:528:DC%2BC1cXnt1eitb0%3D10.1002/etc.4088
– reference: NarraMRRajenderKReddyRRInsecticides induced stress response and recuperation in fish: biomarkers in blood and tissues related to oxidative damageChemosphere20171683503571:CAS:528:DC%2BC28XhslKntbrM10.1016/J.CHEMOSPHERE.2016.10.066
– reference: UguzCIscanMErgüvenAThe bioaccumulation of nonyphenol and its adverse effect on the liver of rainbow trout (Onchorynchus mykiss)Environ Res2003922622701:CAS:528:DC%2BD3sXksVyrt7k%3D10.1016/S0013-9351(03)00033-1
– reference: CoelhoSOliveiraRPereiraSAssessing lethal and sub-lethal effects of trichlorfon on different trophic levelsAquat Toxicol20111031911981:CAS:528:DC%2BC3MXlvVaiur0%3D10.1016/j.aquatox.2011.03.003
– reference: RabyMZhaoXHaoCRelative chronic sensitivity of neonicotinoid insecticides to Ceriodaphnia dubia and Daphnia magnaEcotoxicol Environ Saf20181632382441:CAS:528:DC%2BC1cXhsVSht7jI10.1016/j.ecoenv.2018.07.086
– reference: AlexanderACCulpJMBairdDJCessnaAJNutrient–insecticide interactions decouple density-dependent predation pressure in aquatic insectsFreshw Biol201661209021011:CAS:528:DC%2BC28XhvVWnurnF10.1111/fwb.12711
– reference: GuptaSGajbhiyeVAgnihotriNLeaching behaviour of imidacloprid formulations in soilBull Environ Contam Toxicol2002685025081:CAS:528:DC%2BD38XhvVCntbg%3D10.1007/s00128-001-0283-8
– reference: HookSEGallagherEPBatleyGEThe role of biomarkers in the assessment of aquatic ecosystem healthIntegr Environ Assess Manag2014103273411:CAS:528:DC%2BC2cXhtVCjsrvM10.1002/ieam.1530
– reference: MiloševićDStojanovićKDjurdjevićAThe response of chironomid taxonomy- and functional trait-based metrics to fish farm effluent pollution in lotic systemsEnviron Pollut2018242105810661:CAS:528:DC%2BC1cXhsVOlurrJ10.1016/j.envpol.2018.07.100
– volume: 138
  start-page: 122
  year: 2017
  ident: 782_CR40
  publication-title: Ecotoxicol Environ Saf
  doi: 10.1016/j.ecoenv.2016.12.025
– volume: 59
  start-page: 2897
  year: 2011
  ident: 782_CR37
  publication-title: J Agric Food Chem
  doi: 10.1021/jf101303g
– volume: 37
  start-page: 1430
  year: 2018
  ident: 782_CR56
  publication-title: Environ Toxicol Chem
  doi: 10.1002/etc.4088
– volume: 236
  start-page: 432
  year: 2018
  ident: 782_CR69
  publication-title: Environ Pollut
  doi: 10.1016/j.envpol.2018.01.102
– volume: 74
  start-page: 291
  year: 2015
  ident: 782_CR50
  publication-title: Environ Int
  doi: 10.1016/j.envint.2014.10.024
– volume: 39
  start-page: 356
  year: 2011
  ident: 782_CR43
  publication-title: Clean: Soil, Air, Water
  doi: 10.1002/clen.201000268
– volume: 76
  start-page: 907
  year: 2009
  ident: 782_CR70
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2009.05.002
– volume: 249
  start-page: 7130
  year: 1974
  ident: 782_CR28
  publication-title: J Biol Chem
  doi: 10.1016/S0021-9258(19)42083-8
– volume: 22
  start-page: 573
  year: 2001
  ident: 782_CR47
  publication-title: Trends Pharmacol Sci
  doi: 10.1016/S0165-6147(00)01820-4
– volume: 103
  start-page: 191
  year: 2011
  ident: 782_CR13
  publication-title: Aquat Toxicol
  doi: 10.1016/j.aquatox.2011.03.003
– year: 2013
  ident: 782_CR74
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0089837
– volume: 22
  start-page: 867
  year: 1981
  ident: 782_CR51
  publication-title: Plant Cell Physiol
– volume: 80
  start-page: 355
  year: 2012
  ident: 782_CR29
  publication-title: Ecotoxicol Environ Saf
  doi: 10.1016/j.ecoenv.2012.04.004
– volume: 13
  start-page: 57
  year: 2003
  ident: 782_CR73
  publication-title: Environ Toxicol Pharmacol
  doi: 10.1016/S1382-6689(02)00126-6
– volume: 175
  start-page: 186
  year: 2017
  ident: 782_CR71
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2017.02.047
– volume: 36
  start-page: 3333
  year: 2017
  ident: 782_CR26
  publication-title: Environ Toxicol Chem
  doi: 10.1002/etc.3908
– volume: 218
  start-page: 105333
  year: 2020
  ident: 782_CR61
  publication-title: Aquat Toxicol
  doi: 10.1016/j.aquatox.2019.105333
– volume: 54
  start-page: 662
  year: 2008
  ident: 782_CR68
  publication-title: Arch Environ Contam Toxicol
  doi: 10.1007/s00244-007-9073-6
– volume: 505
  start-page: 409
  year: 2015
  ident: 782_CR4
  publication-title: Sci Tot Environ
  doi: 10.1016/j.scitotenv.2014.09.090
– volume: 168
  start-page: 350
  year: 2017
  ident: 782_CR52
  publication-title: Chemosphere
  doi: 10.1016/J.CHEMOSPHERE.2016.10.066
– volume: 148
  start-page: 352
  year: 2018
  ident: 782_CR55
  publication-title: Ecotoxicol Environ Saf
  doi: 10.1016/j.ecoenv.2017.10.042
– volume: 93
  start-page: 351
  year: 2018
  ident: 782_CR36
  publication-title: Ecol Indic
  doi: 10.1016/j.ecolind.2018.05.019
– ident: 782_CR20
– volume: 105
  start-page: 121
  year: 1984
  ident: 782_CR2
  publication-title: Methods Enzymol
  doi: 10.1016/S0076-6879(84)05016-3
– volume: 22
  start-page: 5
  year: 2015
  ident: 782_CR63
  publication-title: Environ Sci Pollut Res
  doi: 10.1007/s11356-014-3470-y
– volume: 11
  start-page: 781
  year: 1939
  ident: 782_CR5
  publication-title: Sewage Work J
– volume: 166
  start-page: 320
  year: 2018
  ident: 782_CR12
  publication-title: Ecotoxicol Environ Saf
  doi: 10.1016/j.ecoenv.2018.09.107
– volume: 52
  start-page: 9464
  year: 2013
  ident: 782_CR38
  publication-title: Angew Chem Int Ed
  doi: 10.1002/anie.201302550
– volume: 45
  start-page: 132
  year: 2016
  ident: 782_CR81
  publication-title: Environ Toxicol Pharmacol
  doi: 10.1016/J.ETAP.2016.05.030
– volume: 68
  start-page: 502
  year: 2002
  ident: 782_CR27
  publication-title: Bull Environ Contam Toxicol
  doi: 10.1007/s00128-001-0283-8
– volume: 651
  start-page: 1
  year: 2019
  ident: 782_CR44
  publication-title: Sci Tot Environ
  doi: 10.1016/j.scitotenv.2018.09.139
– volume: 195
  start-page: 125
  year: 2018
  ident: 782_CR75
  publication-title: Chemosphere
  doi: 10.1016/J.CHEMOSPHERE.2017.12.077
– volume: 665
  start-page: 718
  year: 2019
  ident: 782_CR66
  publication-title: Sci Tot Environ
  doi: 10.1016/j.scitotenv.2019.02.202
– volume: 225
  start-page: 470
  year: 2019
  ident: 782_CR77
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2019.03.002
– volume: 204
  start-page: 130
  year: 2018
  ident: 782_CR58
  publication-title: Aquat Toxicol
  doi: 10.1016/j.aquatox.2018.09.004
– volume: 175
  start-page: 215
  year: 2019
  ident: 782_CR6
  publication-title: Ecotoxicol Environ Saf
  doi: 10.1016/j.ecoenv.2019.03.038
– volume: 163
  start-page: 238
  year: 2018
  ident: 782_CR57
  publication-title: Ecotoxicol Environ Saf
  doi: 10.1016/j.ecoenv.2018.07.086
– volume: 729
  start-page: 138276
  year: 2020
  ident: 782_CR33
  publication-title: Sci Tot Environ
  doi: 10.1016/j.scitotenv.2020.138276
– volume: 30
  start-page: 2
  year: 2009
  ident: 782_CR65
  publication-title: Neuroendocrinol Lett
– volume: 692
  start-page: 1291
  year: 2019
  ident: 782_CR11
  publication-title: Sci Tot Environ
  doi: 10.1016/J.SCITOTENV.2019.06.301
– volume: 579
  start-page: 966
  year: 2017
  ident: 782_CR18
  publication-title: Sci Tot Environ
  doi: 10.1016/j.scitotenv.2016.10.158
– volume: 61
  start-page: 2090
  year: 2016
  ident: 782_CR3
  publication-title: Freshw Biol
  doi: 10.1111/fwb.12711
– ident: 782_CR41
– volume: 76
  start-page: 932
  year: 2009
  ident: 782_CR46
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2009.04.045
– volume: 157
  start-page: 2328
  year: 2009
  ident: 782_CR53
  publication-title: Environ Pollut
  doi: 10.1016/j.envpol.2009.03.027
– volume: 88
  start-page: 316
  year: 2012
  ident: 782_CR67
  publication-title: Bull Environ Contam Toxicol
  doi: 10.1007/s00128-011-0515-5
– volume: 10
  start-page: 327
  year: 2014
  ident: 782_CR34
  publication-title: Integr Environ Assess Manag
  doi: 10.1002/ieam.1530
– volume: 242
  start-page: 1058
  year: 2018
  ident: 782_CR48
  publication-title: Environ Pollut
  doi: 10.1016/j.envpol.2018.07.100
– volume: 93
  start-page: 93
  year: 2013
  ident: 782_CR8
  publication-title: Ecotoxicol Environ Saf
  doi: 10.1016/j.ecoenv.2013.04.006
– volume: 252
  start-page: 483
  year: 2019
  ident: 782_CR49
  publication-title: Environ Pollut
  doi: 10.1016/J.ENVPOL.2019.05.114
– volume: 640–641
  start-page: 1354
  year: 2018
  ident: 782_CR83
  publication-title: Sci Tot Environ
  doi: 10.1016/j.scitotenv.2018.06.008
– volume: 197
  start-page: 110699
  year: 2019
  ident: 782_CR25
  publication-title: J Inorg Biochem
  doi: 10.1016/j.jinorgbio.2019.110699
– volume: 2
  start-page: 188
  year: 2015
  ident: 782_CR45
  publication-title: Environ Sci Technol Lett
  doi: 10.1021/acs.estlett.5b00136
– volume: 60
  start-page: 126
  year: 2013
  ident: 782_CR14
  publication-title: Ecol Eng
  doi: 10.1016/j.ecoleng.2013.07.058
– volume: 21
  start-page: 421
  year: 2012
  ident: 782_CR30
  publication-title: Ecotoxicology
  doi: 10.1007/s10646-011-0802-2
– volume: 59
  start-page: 2887
  year: 2011
  ident: 782_CR39
  publication-title: J Agric Food Chem
  doi: 10.1021/jf101824y
– volume: 8
  start-page: 243
  year: 1986
  ident: 782_CR19
  publication-title: Aquat Toxicol
  doi: 10.1016/0166-445X(86)90076-7
– ident: 782_CR1
– volume: 148
  start-page: 367
  year: 2018
  ident: 782_CR15
  publication-title: Ecotoxicol Environ Saf
  doi: 10.1016/j.ecoenv.2017.10.054
– volume: 13
  start-page: 191
  year: 2014
  ident: 782_CR42
  publication-title: Paddy Water Environ
  doi: 10.1007/s10333-014-0420-8
– volume: 122
  start-page: 337
  year: 1999
  ident: 782_CR21
  publication-title: Comp Biochem Physiol Part C Pharmacol Toxicol Endocrinol
  doi: 10.1016/S0742-8413(98)10133-0
– volume: 341
  start-page: 752
  year: 2013
  ident: 782_CR22
  publication-title: Science
  doi: 10.1126/science.1236281
– volume: 92
  start-page: 262
  year: 2003
  ident: 782_CR72
  publication-title: Environ Res
  doi: 10.1016/S0013-9351(03)00033-1
– volume: 24
  start-page: 17285
  year: 2017
  ident: 782_CR79
  publication-title: Environ Sci Pollut Res
  doi: 10.1007/s11356-017-9240-x
– volume: 14
  start-page: 1
  year: 2019
  ident: 782_CR62
  publication-title: Rev Ambient e Agua
  doi: 10.4136/1980-993X
– volume: 63
  start-page: 1856
  year: 2015
  ident: 782_CR24
  publication-title: J Agric Food Chem
  doi: 10.1021/jf504895h
– volume: 155
  start-page: 181
  year: 2014
  ident: 782_CR35
  publication-title: Aquat Toxicol
  doi: 10.1016/j.aquatox.2014.06.020
– volume: 55
  start-page: 247
  year: 2008
  ident: 782_CR7
  publication-title: Arch Environ Contam Toxicol
  doi: 10.1007/s00244-007-9104-3
– volume: 16
  start-page: 153
  year: 2004
  ident: 782_CR23
  publication-title: Acta Limnol Bras
– volume: 12
  start-page: 761
  year: 2012
  ident: 782_CR60
  publication-title: FEMS Yeast Res
  doi: 10.1111/j.1567-1364.2012.00826.x
– volume: 71
  start-page: 103210
  year: 2019
  ident: 782_CR76
  publication-title: Environ Toxicol Pharmacol
  doi: 10.1016/j.etap.2019.103210
– volume: 22
  start-page: 68
  year: 2015
  ident: 782_CR54
  publication-title: Environ Sci Pollut Res
  doi: 10.1007/s11356-014-3471-x
– volume: 165
  start-page: 476
  year: 2018
  ident: 782_CR78
  publication-title: Ecotoxicol Environ Saf
  doi: 10.1016/j.ecoenv.2018.09.036
– volume: 88
  start-page: 314
  year: 2015
  ident: 782_CR85
  publication-title: Free Radic Biol Med
  doi: 10.1016/j.freeradbiomed.2015.05.036
– volume: 193
  start-page: 189
  year: 2014
  ident: 782_CR31
  publication-title: Environ Pollut
  doi: 10.1016/j.envpol.2014.06.033
– volume: 52
  start-page: 287
  year: 1991
  ident: 782_CR16
  publication-title: Pharmacol Ther
  doi: 10.1016/0163-7258(91)90029-L
– volume-title: Nicotinoid insecticides and the nicotinic acetylcholine receptor
  year: 1999
  ident: 782_CR84
  doi: 10.1007/978-4-431-67933-2
– volume: 235
  start-page: 470
  year: 2018
  ident: 782_CR80
  publication-title: Environ Pollut
  doi: 10.1016/j.envpol.2017.12.120
– volume: 72
  start-page: 248
  year: 1976
  ident: 782_CR9
  publication-title: Anal Biochem
  doi: 10.1016/j.sbi.2014.10.005
– volume: 233
  start-page: 862
  year: 2018
  ident: 782_CR32
  publication-title: Environ Pollut
  doi: 10.1016/J.ENVPOL.2017.12.036
– volume: 191
  start-page: 876
  year: 2018
  ident: 782_CR17
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2017.10.114
– volume: 89
  start-page: 647
  year: 2019
  ident: 782_CR59
  publication-title: Fish Shellfish Immunol
  doi: 10.1016/j.fsi.2019.03.064
– volume: 64
  start-page: 208
  year: 2013
  ident: 782_CR82
  publication-title: Arch Environ Contam Toxicol
  doi: 10.1007/s00244-012-9833-9
– volume: 209
  start-page: 568
  year: 2018
  ident: 782_CR10
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2018.06.102
– volume: 10
  start-page: 1
  year: 2015
  ident: 782_CR64
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0135091
SSID ssj0012884
Score 2.3447063
Snippet Several studies have indicated the presence of the neonicotinoid insecticide imidacloprid (IMI) in aquatic ecosystems in concentrations up to 320.0 µg L −1 ....
Several studies have indicated the presence of the neonicotinoid insecticide imidacloprid (IMI) in aquatic ecosystems in concentrations up to 320.0 µg L . In...
Several studies have indicated the presence of the neonicotinoid insecticide imidacloprid (IMI) in aquatic ecosystems in concentrations up to 320.0 µg L−1. In...
Several studies have indicated the presence of the neonicotinoid insecticide imidacloprid (IMI) in aquatic ecosystems in concentrations up to 320.0 µg L-1. In...
Several studies have indicated the presence of the neonicotinoid insecticide imidacloprid (IMI) in aquatic ecosystems in concentrations up to 320.0 µg L⁻¹. In...
SourceID proquest
pubmed
crossref
springer
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 437
SubjectTerms Animals
Aquatic ecosystems
Aquatic insects
Aquatic Organisms
Archives & records
ascorbate peroxidase
Ascorbic acid
Catalase
Chironomidae
Chironomus
Contamination
Crustaceans
Danio rerio
Daphnia - drug effects
Daphnia similis
Earth and Environmental Science
Ecosystem
Ecotoxicology
Environment
Environmental Chemistry
Environmental Health
Enzymatic activity
Enzymes
fish
Fresh Water
freshwater
Freshwater environments
Glutathione
Glutathione Transferase
Imidacloprid
Indoor environments
Insecticides
Insecticides - analysis
Insects
L-Ascorbate peroxidase
Lotic environment
lotic systems
Monitoring/Environmental Analysis
Mortality
Neonicotinoids - analysis
Neonicotinoids - toxicity
Nitro Compounds - analysis
Nitro Compounds - toxicity
Nontarget organisms
Peroxidase
Pesticides
Pollution
rivers
Soil Science & Conservation
Surface water
Survival
Toxicology
Water analysis
Water Pollutants, Chemical - analysis
Water Pollutants, Chemical - toxicity
Water pollution
Water sampling
Zebrafish
SummonAdditionalLinks – databaseName: SpringerLink Journals (ICM)
  dbid: U2A
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LaxwxDDZtSqGXkqSvbZLiQG-JwTO2157jUnZJCskhD8ht8GvahexMm9lQ8hf6qyt5HqEkDfQ8GiMsyZKQ9ImQzw58quGWM1WoAAlKpZgrlGCZ4y7kSnhtcDj55HR6dCm_XqmrfiisHbrdh5JkeqnHYTd0J5JhupP8GhPPyQuFuTto8WU-G2sHuTEd9nLBmYRHuh-VefyMv93RgxjzQX00uZ3FJnndx4t01gl4izyL9TZ5OU9Y03dvyO-zrsc1trSp6OwnAnd7etrUXYc37UYt21VLlzWdj2j-LT1frtLirvobtfTcxxpy5gbPQLgqi_0xKDHq7ujxahmsv26AwYCnWLqAFP37LwhSb-j8fk7uLblYzC--HLF-vQLzkps1U0pZk0VvMx-nXDsB9hwNAhRWuStCBFOd6pAFCSGKKmwMDtIPq1VwQWpZiXdko27q-IFQzaOXxmuRh0JCZmsKGSDsyoLmofChmpBsuOTS99DjuAHjuhxBk5NgShBMmQRTigk5GP_50QFvPEm9O8iu7I2wLSGzhOBIQ4w2IfvjZzAfrInYOja3SDMFAqUz-QSNgkvBvQB8Qt53ejGyJESOhSv4-3BQlHsG_s3vx_8j3yGvcuylSd3iu2RjfXMb9yAYWrtPSff_AHcJ_q8
  priority: 102
  providerName: Springer Nature
Title Responses of Aquatic Nontarget Organisms in Experiments Simulating a Scenario of Contamination by Imidacloprid in a Freshwater Environment
URI https://link.springer.com/article/10.1007/s00244-020-00782-3
https://www.ncbi.nlm.nih.gov/pubmed/33275184
https://www.proquest.com/docview/2491757617
https://www.proquest.com/docview/2467615714
https://www.proquest.com/docview/2524328740
Volume 80
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3di9QwEA96h-CL-O3qeUTwTYNtk2zSJ1mPrqfiIvcB61PJV8-F2_buuofcv-Bf7Uza7SKH-9JCm4Shk2Tm18z8hpC3FmyqTkzCZC49AJRKMptLzlKbWJ9J7pTG5OTvs_Hhqfg6l_P-h1vbh1Wu98S4UfvG4T_yDwATwNIB6FYfLy4ZVo3C09W-hMZdsovUZRjSpeYD4IKtV3cszHnCBGzXfdJMTJ1D4yQYgqdoJRn_1zDd8jZvnZRGAzR9SB70niOddKp-RO6E-jG5V0TW6Zsn5M9RF-0aWtpUdHKJFN6Ozpq6i_WmXdJlu2zpoqbFwOvf0uPFMpbwqs-ooccu1ICeGxwDiasMRsqg7qi9oV-WC2_ceQMCehzF0CmA9V-_wV29osUmY-4pOZkWJweHrC-0wJxI9IpJKY1OgzOpC-NEWQ4rO2ikKqwym_sAi3asfOoFOCsyN8FbACJGSW-9UKLiz8hO3dThBaEqCU5op3jmcwEYV-fCgwOWepX43PlqRNL1Ry5dT0KOtTDOy4E-OSqmBMWUUTElH5F3Q5-LjoJja-u9te7Kfjm25WbyjMib4TUsJDwdMXVorrHNGBpIlYotbSR8FKwQkIzI825eDCJxnuERFvR-v54oGwH-L-_L7fK-IvczjKKJceJ7ZGd1dR1egxu0svtxrsNVH6T7ZHfy-ee3Au6fitmPI3h6mk3-AmncBuM
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwED-NTgheEN90DDASPIE1J7Hr5AGhAalatlVoK9LeIsd2WKU12ZpOU_8F_hf-R875qtBE3_acs3XynX33y30BvEvRpoZMMSoiYRCgZIKmkQiol7LU-CLQMnTFyUeTwegn_34qTrfgT1sL49Iq2zexeqhNod0_8j2ECWjpEHTLzxeX1E2NctHVdoRGrRYHdnWNkK38NP6G8n3v-8N4-nVEm6kCVHMWLqkQQoWe1crTdsBkinie2dD15cv8NDIWNXQgjWc4WmYRKWtS9LqVFCY1XPIswG3vwDYPEMn0YPtLPPlx3IUt_DCs2z5HjHK0D02VTlWr56whpw6tVWaZBv9awhvu7Y3QbGXxhg_hQeOqkv1atx7Bls0fw924anO9egK_j-v0WluSIiP7l65nuCaTIq-Ty0ld5VnOSzLLSdwNEijJyWxezQzLfxFFTrTNEa4Xbg_XKUu51BynLCRdkfF8ZpQ-L5BB43ZRZLiw5dk1-scLEq9L9J7C9DZk8Ax6eZHbF0Aks5qHWga-iTiC6jDiBj0-z0hmIm2yPnjtISe66Xruhm-cJ12_5kowCQomqQSTBH340K25qHt-bKTebWWXNPe_TNba2oe33We8uS4co3JbXDmaARII6fENNAIPxY0kYH14XutFx1IQ-C5mhqs_toqyZuD__O5s5vcN3BtNjw6Tw_Hk4CXc910KT5Wkvgu95eLKvkIfbJm-bjSfQHLLd-0vJDo_Sg
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZKEYgL4s1CASPBCaw6ib1ODghVdFddCitEi9Rb5FdgpW7Sbraq9i_wj_h3zDiPFarYW8-xrZFnPDNf5kXIGwM2NeWaM5lJBwClkMxkMmGR4cbFMrEqxeLkr9PhwQ_x-USebJE_XS0MplV2OjEoaldZ_Ee-CzABLB2AbrVbtGkR3_bHH8_OGU6QwkhrN06jEZFDv7oE-FZ_mOwDr9_G8Xh0_OmAtRMGmBU8XTIppU4jb3Vk_ZArA9ie-xR79BWxyZwHaR0qFzkBVlpm2jsDHrhW0hknlCgSOPYGuakSGeETUyc91gOtnzYNoDPOBFiKtl4nVO2hXRQMcVsw0Cz51yZecXSvBGmD7RvfI3dbp5XuNVJ2n2z58gG5NQoNr1cPye_vTaKtr2lV0L1z7B5u6bQqmzRz2tR71vOazko66kcK1PRoNg_Tw8qfVNMj60sA7hWegT2zNCbpoNhQs6KT-cxpe1oBgQ5P0XS88PWvS_CUF3S0LtZ7RI6vgwOPyXZZlf4poYp7K1KrkthlAuB1mgkHvl_kFHeZdcWARN0l57btf45jOE7zvnNzYEwOjMkDY_JkQN71e86a7h8bV-90vMtbTVDna7kdkNf9Z3jDGJjRpa8ucM0QFkgViQ1rJFwKDifgA_KkkYuepCSJMXoGu993grIm4P_0PttM7ytyG15Y_mUyPXxO7sSYyxOy1XfI9nJx4V-AM7Y0L4PYU5Jf8zP7C6yEQho
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Responses+of+Aquatic+Nontarget+Organisms+in+Experiments+Simulating+a+Scenario+of+Contamination+by+Imidacloprid+in+a+Freshwater+Environment&rft.jtitle=Archives+of+environmental+contamination+and+toxicology&rft.au=Queiroz%2C+Lucas+Gon%C3%A7alves&rft.au=do+Prado%2C+Caio+C%C3%A9sar+Achiles&rft.au=de+Almeida%2C+%C3%89ryka+Costa&rft.au=D%C3%B6rr%2C+Felipe+Augusto&rft.date=2021-02-01&rft.issn=1432-0703&rft.eissn=1432-0703&rft.volume=80&rft.issue=2&rft.spage=437&rft_id=info:doi/10.1007%2Fs00244-020-00782-3&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0090-4341&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0090-4341&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0090-4341&client=summon