Responses of Aquatic Nontarget Organisms in Experiments Simulating a Scenario of Contamination by Imidacloprid in a Freshwater Environment
Several studies have indicated the presence of the neonicotinoid insecticide imidacloprid (IMI) in aquatic ecosystems in concentrations up to 320.0 µg L −1 . In the present study, we evaluated the effects of the highest IMI concentration detected in surface water (320.0 µg L −1 ) on the survival of...
Saved in:
Published in | Archives of environmental contamination and toxicology Vol. 80; no. 2; pp. 437 - 449 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
New York
Springer US
01.02.2021
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Several studies have indicated the presence of the neonicotinoid insecticide imidacloprid (IMI) in aquatic ecosystems in concentrations up to 320.0 µg L
−1
. In the present study, we evaluated the effects of the highest IMI concentration detected in surface water (320.0 µg L
−1
) on the survival of
Chironomus sancticaroli
,
Daphnia similis,
and
Danio rerio
in three different scenarios of water contamination. The enzymatic activities of glutathione S-transferase (GST), catalase (CAT), and ascorbate peroxidase (APX) in
D. rerio
also were determined. For this evaluation, we have simulated a lotic environment using an indoor system of artificial channels developed for the present study. In this system, three scenarios of contamination by IMI (320.0 µg L
−1
) were reproduced: one using reconstituted water (RW) and the other two using water samples collected in unpolluted (UW) and polluted (DW) areas of a river. The results indicated that the tested concentration was not able to cause mortality in
D. similis
and
D. rerio
in any proposed treatment (RW, UW, and DW). However,
C. sancticaroli
showed 100% of mortality in the presence of IMI in the three proposed treatments, demonstrating its potential to impact the community of aquatic nontarget insects negatively. Low IMI concentrations did not offer risks to
D. rerio
survival. However, we observed alterations in GST, CAT, and APX activities in treatments that used IMI and water with no evidence of pollution (i.e., RW and UW). These last results demonstrated that fish are more susceptible to the effects of IMI in unpolluted environments. |
---|---|
AbstractList | Several studies have indicated the presence of the neonicotinoid insecticide imidacloprid (IMI) in aquatic ecosystems in concentrations up to 320.0 µg L-1. In the present study, we evaluated the effects of the highest IMI concentration detected in surface water (320.0 µg L-1) on the survival of Chironomus sancticaroli, Daphnia similis, and Danio rerio in three different scenarios of water contamination. The enzymatic activities of glutathione S-transferase (GST), catalase (CAT), and ascorbate peroxidase (APX) in D. rerio also were determined. For this evaluation, we have simulated a lotic environment using an indoor system of artificial channels developed for the present study. In this system, three scenarios of contamination by IMI (320.0 µg L-1) were reproduced: one using reconstituted water (RW) and the other two using water samples collected in unpolluted (UW) and polluted (DW) areas of a river. The results indicated that the tested concentration was not able to cause mortality in D. similis and D. rerio in any proposed treatment (RW, UW, and DW). However, C. sancticaroli showed 100% of mortality in the presence of IMI in the three proposed treatments, demonstrating its potential to impact the community of aquatic nontarget insects negatively. Low IMI concentrations did not offer risks to D. rerio survival. However, we observed alterations in GST, CAT, and APX activities in treatments that used IMI and water with no evidence of pollution (i.e., RW and UW). These last results demonstrated that fish are more susceptible to the effects of IMI in unpolluted environments.Several studies have indicated the presence of the neonicotinoid insecticide imidacloprid (IMI) in aquatic ecosystems in concentrations up to 320.0 µg L-1. In the present study, we evaluated the effects of the highest IMI concentration detected in surface water (320.0 µg L-1) on the survival of Chironomus sancticaroli, Daphnia similis, and Danio rerio in three different scenarios of water contamination. The enzymatic activities of glutathione S-transferase (GST), catalase (CAT), and ascorbate peroxidase (APX) in D. rerio also were determined. For this evaluation, we have simulated a lotic environment using an indoor system of artificial channels developed for the present study. In this system, three scenarios of contamination by IMI (320.0 µg L-1) were reproduced: one using reconstituted water (RW) and the other two using water samples collected in unpolluted (UW) and polluted (DW) areas of a river. The results indicated that the tested concentration was not able to cause mortality in D. similis and D. rerio in any proposed treatment (RW, UW, and DW). However, C. sancticaroli showed 100% of mortality in the presence of IMI in the three proposed treatments, demonstrating its potential to impact the community of aquatic nontarget insects negatively. Low IMI concentrations did not offer risks to D. rerio survival. However, we observed alterations in GST, CAT, and APX activities in treatments that used IMI and water with no evidence of pollution (i.e., RW and UW). These last results demonstrated that fish are more susceptible to the effects of IMI in unpolluted environments. Several studies have indicated the presence of the neonicotinoid insecticide imidacloprid (IMI) in aquatic ecosystems in concentrations up to 320.0 µg L−1. In the present study, we evaluated the effects of the highest IMI concentration detected in surface water (320.0 µg L−1) on the survival of Chironomus sancticaroli, Daphnia similis, and Danio rerio in three different scenarios of water contamination. The enzymatic activities of glutathione S-transferase (GST), catalase (CAT), and ascorbate peroxidase (APX) in D. rerio also were determined. For this evaluation, we have simulated a lotic environment using an indoor system of artificial channels developed for the present study. In this system, three scenarios of contamination by IMI (320.0 µg L−1) were reproduced: one using reconstituted water (RW) and the other two using water samples collected in unpolluted (UW) and polluted (DW) areas of a river. The results indicated that the tested concentration was not able to cause mortality in D. similis and D. rerio in any proposed treatment (RW, UW, and DW). However, C. sancticaroli showed 100% of mortality in the presence of IMI in the three proposed treatments, demonstrating its potential to impact the community of aquatic nontarget insects negatively. Low IMI concentrations did not offer risks to D. rerio survival. However, we observed alterations in GST, CAT, and APX activities in treatments that used IMI and water with no evidence of pollution (i.e., RW and UW). These last results demonstrated that fish are more susceptible to the effects of IMI in unpolluted environments. Several studies have indicated the presence of the neonicotinoid insecticide imidacloprid (IMI) in aquatic ecosystems in concentrations up to 320.0 µg L⁻¹. In the present study, we evaluated the effects of the highest IMI concentration detected in surface water (320.0 µg L⁻¹) on the survival of Chironomus sancticaroli, Daphnia similis, and Danio rerio in three different scenarios of water contamination. The enzymatic activities of glutathione S-transferase (GST), catalase (CAT), and ascorbate peroxidase (APX) in D. rerio also were determined. For this evaluation, we have simulated a lotic environment using an indoor system of artificial channels developed for the present study. In this system, three scenarios of contamination by IMI (320.0 µg L⁻¹) were reproduced: one using reconstituted water (RW) and the other two using water samples collected in unpolluted (UW) and polluted (DW) areas of a river. The results indicated that the tested concentration was not able to cause mortality in D. similis and D. rerio in any proposed treatment (RW, UW, and DW). However, C. sancticaroli showed 100% of mortality in the presence of IMI in the three proposed treatments, demonstrating its potential to impact the community of aquatic nontarget insects negatively. Low IMI concentrations did not offer risks to D. rerio survival. However, we observed alterations in GST, CAT, and APX activities in treatments that used IMI and water with no evidence of pollution (i.e., RW and UW). These last results demonstrated that fish are more susceptible to the effects of IMI in unpolluted environments. Several studies have indicated the presence of the neonicotinoid insecticide imidacloprid (IMI) in aquatic ecosystems in concentrations up to 320.0 µg L . In the present study, we evaluated the effects of the highest IMI concentration detected in surface water (320.0 µg L ) on the survival of Chironomus sancticaroli, Daphnia similis, and Danio rerio in three different scenarios of water contamination. The enzymatic activities of glutathione S-transferase (GST), catalase (CAT), and ascorbate peroxidase (APX) in D. rerio also were determined. For this evaluation, we have simulated a lotic environment using an indoor system of artificial channels developed for the present study. In this system, three scenarios of contamination by IMI (320.0 µg L ) were reproduced: one using reconstituted water (RW) and the other two using water samples collected in unpolluted (UW) and polluted (DW) areas of a river. The results indicated that the tested concentration was not able to cause mortality in D. similis and D. rerio in any proposed treatment (RW, UW, and DW). However, C. sancticaroli showed 100% of mortality in the presence of IMI in the three proposed treatments, demonstrating its potential to impact the community of aquatic nontarget insects negatively. Low IMI concentrations did not offer risks to D. rerio survival. However, we observed alterations in GST, CAT, and APX activities in treatments that used IMI and water with no evidence of pollution (i.e., RW and UW). These last results demonstrated that fish are more susceptible to the effects of IMI in unpolluted environments. Several studies have indicated the presence of the neonicotinoid insecticide imidacloprid (IMI) in aquatic ecosystems in concentrations up to 320.0 µg L −1 . In the present study, we evaluated the effects of the highest IMI concentration detected in surface water (320.0 µg L −1 ) on the survival of Chironomus sancticaroli , Daphnia similis, and Danio rerio in three different scenarios of water contamination. The enzymatic activities of glutathione S-transferase (GST), catalase (CAT), and ascorbate peroxidase (APX) in D. rerio also were determined. For this evaluation, we have simulated a lotic environment using an indoor system of artificial channels developed for the present study. In this system, three scenarios of contamination by IMI (320.0 µg L −1 ) were reproduced: one using reconstituted water (RW) and the other two using water samples collected in unpolluted (UW) and polluted (DW) areas of a river. The results indicated that the tested concentration was not able to cause mortality in D. similis and D. rerio in any proposed treatment (RW, UW, and DW). However, C. sancticaroli showed 100% of mortality in the presence of IMI in the three proposed treatments, demonstrating its potential to impact the community of aquatic nontarget insects negatively. Low IMI concentrations did not offer risks to D. rerio survival. However, we observed alterations in GST, CAT, and APX activities in treatments that used IMI and water with no evidence of pollution (i.e., RW and UW). These last results demonstrated that fish are more susceptible to the effects of IMI in unpolluted environments. |
Author | da Silva, Flávio Teixeira Queiroz, Lucas Gonçalves Pinto, Ernani de Almeida, Éryka Costa de Paiva, Teresa Cristina Brazil do Prado, Caio César Achiles Dörr, Felipe Augusto |
Author_xml | – sequence: 1 givenname: Lucas Gonçalves orcidid: 0000-0003-3305-1042 surname: Queiroz fullname: Queiroz, Lucas Gonçalves email: lucasgoncalvesqueiroz@gmail.com organization: Department of Biotechnology, School of Engineering of Lorena, University of São Paulo – sequence: 2 givenname: Caio César Achiles surname: do Prado fullname: do Prado, Caio César Achiles organization: Department of Biotechnology, School of Engineering of Lorena, University of São Paulo – sequence: 3 givenname: Éryka Costa surname: de Almeida fullname: de Almeida, Éryka Costa organization: Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of São Paulo – sequence: 4 givenname: Felipe Augusto surname: Dörr fullname: Dörr, Felipe Augusto organization: Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of São Paulo – sequence: 5 givenname: Ernani surname: Pinto fullname: Pinto, Ernani organization: Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of São Paulo – sequence: 6 givenname: Flávio Teixeira surname: da Silva fullname: da Silva, Flávio Teixeira organization: Department of Biotechnology, School of Engineering of Lorena, University of São Paulo – sequence: 7 givenname: Teresa Cristina Brazil surname: de Paiva fullname: de Paiva, Teresa Cristina Brazil organization: Department of Basic and Environmental Sciences, School of Engineering of Lorena, University of São Paulo |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/33275184$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkc1u1DAURi1URKcDL8ACWWLDJnD9k9hZVqMpVKqoRLu3nORmcJXYUzsp9BV4apxOK6QuysqyfL4j3_udkCMfPBLynsFnBqC-JAAuZQEcinzVvBCvyIpJwQtQII7ICqCGQgrJjslJSjcAjGst35BjIbgqmZYr8ucHpn3wCRMNPT29ne3kWvo9-MnGHU70Mu6sd2lM1Hm6_b3H6Eb0U6JXbpyHDPsdtfSqRW-jC4tjs2RH5_Nb8LS5p-ej62w7hH103WKx9Cxi-vnLThjp1t-5GPzifEte93ZI-O7xXJPrs-315ltxcfn1fHN6UbQS9FSUZWk1w9ayFitQjQAJqLkUqudN3SFTdaU61kktq7K22DU8J1TZNZ1Ushdr8umg3cdwO2OazOhSi8NgPYY5GV5mF9dKwv9RWamKlSrvfE0-PkNvwhx9niNTNVNlBlWmPjxSczNiZ_JKRhvvzVMfGdAHoI0hpYi9ad30sMkpWjcYBmap3hyqN7l681B9NqwJfxZ9sr8YEodQyrDfYfz37RdSfwEQNsDs |
CitedBy_id | crossref_primary_10_1007_s10661_022_10418_9 crossref_primary_10_1016_j_envres_2025_121076 crossref_primary_10_1080_03601234_2023_2184158 crossref_primary_10_1016_j_cbd_2023_101103 crossref_primary_10_1021_acs_est_3c08193 crossref_primary_10_1007_s11356_023_27601_1 |
Cites_doi | 10.1016/j.ecoenv.2016.12.025 10.1021/jf101303g 10.1002/etc.4088 10.1016/j.envpol.2018.01.102 10.1016/j.envint.2014.10.024 10.1002/clen.201000268 10.1016/j.chemosphere.2009.05.002 10.1016/S0021-9258(19)42083-8 10.1016/S0165-6147(00)01820-4 10.1016/j.aquatox.2011.03.003 10.1371/journal.pone.0089837 10.1016/j.ecoenv.2012.04.004 10.1016/S1382-6689(02)00126-6 10.1016/j.chemosphere.2017.02.047 10.1002/etc.3908 10.1016/j.aquatox.2019.105333 10.1007/s00244-007-9073-6 10.1016/j.scitotenv.2014.09.090 10.1016/J.CHEMOSPHERE.2016.10.066 10.1016/j.ecoenv.2017.10.042 10.1016/j.ecolind.2018.05.019 10.1016/S0076-6879(84)05016-3 10.1007/s11356-014-3470-y 10.1016/j.ecoenv.2018.09.107 10.1002/anie.201302550 10.1016/J.ETAP.2016.05.030 10.1007/s00128-001-0283-8 10.1016/j.scitotenv.2018.09.139 10.1016/J.CHEMOSPHERE.2017.12.077 10.1016/j.scitotenv.2019.02.202 10.1016/j.chemosphere.2019.03.002 10.1016/j.aquatox.2018.09.004 10.1016/j.ecoenv.2019.03.038 10.1016/j.ecoenv.2018.07.086 10.1016/j.scitotenv.2020.138276 10.1016/J.SCITOTENV.2019.06.301 10.1016/j.scitotenv.2016.10.158 10.1111/fwb.12711 10.1016/j.chemosphere.2009.04.045 10.1016/j.envpol.2009.03.027 10.1007/s00128-011-0515-5 10.1002/ieam.1530 10.1016/j.envpol.2018.07.100 10.1016/j.ecoenv.2013.04.006 10.1016/J.ENVPOL.2019.05.114 10.1016/j.scitotenv.2018.06.008 10.1016/j.jinorgbio.2019.110699 10.1021/acs.estlett.5b00136 10.1016/j.ecoleng.2013.07.058 10.1007/s10646-011-0802-2 10.1021/jf101824y 10.1016/0166-445X(86)90076-7 10.1016/j.ecoenv.2017.10.054 10.1007/s10333-014-0420-8 10.1016/S0742-8413(98)10133-0 10.1126/science.1236281 10.1016/S0013-9351(03)00033-1 10.1007/s11356-017-9240-x 10.4136/1980-993X 10.1021/jf504895h 10.1016/j.aquatox.2014.06.020 10.1007/s00244-007-9104-3 10.1111/j.1567-1364.2012.00826.x 10.1016/j.etap.2019.103210 10.1007/s11356-014-3471-x 10.1016/j.ecoenv.2018.09.036 10.1016/j.freeradbiomed.2015.05.036 10.1016/j.envpol.2014.06.033 10.1016/0163-7258(91)90029-L 10.1007/978-4-431-67933-2 10.1016/j.envpol.2017.12.120 10.1016/j.sbi.2014.10.005 10.1016/J.ENVPOL.2017.12.036 10.1016/j.chemosphere.2017.10.114 10.1016/j.fsi.2019.03.064 10.1007/s00244-012-9833-9 10.1016/j.chemosphere.2018.06.102 10.1371/journal.pone.0135091 |
ContentType | Journal Article |
Copyright | Springer Science+Business Media, LLC, part of Springer Nature 2020 Springer Science+Business Media, LLC, part of Springer Nature 2020. |
Copyright_xml | – notice: Springer Science+Business Media, LLC, part of Springer Nature 2020 – notice: Springer Science+Business Media, LLC, part of Springer Nature 2020. |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7T7 7TV 7U7 7WY 7WZ 7X7 7XB 87Z 88E 88I 8C1 8FD 8FI 8FJ 8FK 8FL ABUWG AEUYN AFKRA ATCPS AZQEC BENPR BEZIV BHPHI C1K CCPQU DWQXO FR3 FRNLG FYUFA F~G GHDGH GNUQQ HCIFZ K60 K6~ K9. L.- M0C M0S M1P M2P P64 PATMY PHGZM PHGZT PJZUB PKEHL PPXIY PQBIZ PQBZA PQEST PQQKQ PQUKI PYCSY Q9U 7X8 7S9 L.6 |
DOI | 10.1007/s00244-020-00782-3 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Industrial and Applied Microbiology Abstracts (Microbiology A) Pollution Abstracts Toxicology Abstracts ABI/INFORM Collection ABI/INFORM Global (PDF only) Health & Medical Collection (ProQuest) ProQuest Central (purchase pre-March 2016) ABI/INFORM Global (Alumni Edition) Medical Database (Alumni Edition) Science Database (Alumni Edition) Public Health Database Technology Research Database Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ABI/INFORM Collection (Alumni) ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland Agricultural & Environmental Science Collection ProQuest Central Essentials ProQuest Central Business Premium Collection Natural Science Collection Environmental Sciences and Pollution Management ProQuest One ProQuest Central Korea Engineering Research Database Business Premium Collection (Alumni) Proquest Health Research Premium Collection ABI/INFORM Global (Corporate) Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Collection (ProQuest) ProQuest Business Collection (Alumni Edition) ProQuest Business Collection ProQuest Health & Medical Complete (Alumni) ABI/INFORM Professional Advanced ABI/INFORM Global ProQuest Health & Medical Collection Medical Database Science Database Biotechnology and BioEngineering Abstracts Environmental Science Database ProQuest Central Premium ProQuest One Academic (New) ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing One Business (ProQuest) ProQuest One Business (Alumni) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition Environmental Science Collection ProQuest Central Basic MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) ProQuest Business Collection (Alumni Edition) ProQuest Central Student ProQuest Central Essentials SciTech Premium Collection ABI/INFORM Complete Environmental Sciences and Pollution Management ProQuest One Sustainability Health Research Premium Collection Natural Science Collection Health & Medical Research Collection Industrial and Applied Microbiology Abstracts (Microbiology A) ProQuest Central (New) ProQuest Medical Library (Alumni) Business Premium Collection ABI/INFORM Global ProQuest Science Journals (Alumni Edition) ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) ProQuest Business Collection ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts Environmental Science Collection ProQuest Health & Medical Complete ProQuest One Academic UKI Edition Environmental Science Database Engineering Research Database ProQuest One Academic ProQuest One Academic (New) ABI/INFORM Global (Corporate) ProQuest One Business Technology Research Database ProQuest One Academic Middle East (New) ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing Pollution Abstracts ProQuest Central ABI/INFORM Professional Advanced ProQuest Health & Medical Research Collection Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Agricultural & Environmental Science Collection ABI/INFORM Complete (Alumni Edition) ProQuest Public Health ABI/INFORM Global (Alumni Edition) ProQuest Central Basic Toxicology Abstracts ProQuest Science Journals ProQuest Medical Library ProQuest One Business (Alumni) ProQuest Central (Alumni) Business Premium Collection (Alumni) MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | MEDLINE - Academic ProQuest Business Collection (Alumni Edition) AGRICOLA MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: BENPR name: ProQuest Central Database Suite (ProQuest) url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Ecology |
EISSN | 1432-0703 |
EndPage | 449 |
ExternalDocumentID | 33275184 10_1007_s00244_020_00782_3 |
Genre | Journal Article |
GrantInformation_xml | – fundername: Coordenação de Aperfeiçoamento de Pessoal de Nível Superior grantid: 001 funderid: http://dx.doi.org/10.13039/501100002322 – fundername: Coordenação de Aperfeiçoamento de Pessoal de Nível Superior grantid: 001 |
GroupedDBID | --- -5A -5G -5~ -BR -EM -Y2 -~C -~X .86 .GJ .VR 06D 0R~ 0VY 199 1N0 1SB 2.D 203 23N 28- 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2~H 30V 36B 3V. 4.4 406 408 409 40D 40E 4P2 53G 5GY 5QI 5VS 67M 67Z 6NX 78A 7WY 7X7 7XC 88E 88I 8C1 8FE 8FH 8FI 8FJ 8FL 8UJ 95- 95. 95~ 96X A8Z AAAVM AABHQ AACDK AAHBH AAHNG AAIAL AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDZT ABECU ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABUWG ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACGOD ACHSB ACHXU ACKIV ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACPRK ACZOJ ADBBV ADHHG ADHIR ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEUYN AEVLU AEXYK AFBBN AFEXP AFGCZ AFKRA AFLOW AFQWF AFRAH AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHMBA AHSBF AHYZX AI. AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALIPV ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARMRJ ASPBG ATCPS AVWKF AXYYD AYJHY AZFZN AZQEC B-. BA0 BBWZM BDATZ BENPR BEZIV BGNMA BHPHI BPHCQ BSONS BVXVI CAG CCPQU COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DWQXO EBD EBLON EBS EDH EIOEI EJD EMB EMOBN ESBYG F5P FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRNLG FRRFC FSGXE FWDCC FYUFA GGCAI GGRSB GJIRD GNUQQ GNWQR GQ6 GQ7 GQ8 GROUPED_ABI_INFORM_COMPLETE GXS H13 HCIFZ HF~ HG5 HG6 HMCUK HMJXF HQYDN HRMNR HVGLF HZ~ I09 IHE IJ- IKXTQ ITM IWAJR IXC IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ K60 K6~ KDC KOV KOW L8X LAS LLZTM M0C M1P M2P M4Y MA- ML. N2Q N9A NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM P19 P2P PATMY PF0 PKN PQBIZ PQBZA PQQKQ PROAC PSQYO PT4 PT5 PYCSY Q2X QF4 QM4 QN7 QO4 QOK QOS R4E R89 R9I RHV RIG RNI RNS ROL RPX RRX RSV RZK S16 S1Z S26 S27 S28 S3B SAP SCK SCLPG SDH SDM SEV SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SV3 SZN T13 T16 TSG TSK TSV TUC TWZ U2A U9L UG4 UKHRP UOJIU UTJUX UZXMN VC2 VFIZW VH1 W23 W48 W4F WH7 WIP WJK WK6 WK8 YLTOR Z45 Z5O Z7U Z7V Z7W Z7Y Z7Z Z83 Z86 Z8O Z8P Z8Q Z8S Z8T Z8W ZMTXR ~02 ~EX ~KM AAPKM AAYXX ABBRH ABDBE ABFSG ACSTC ADHKG AEZWR AFDZB AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION PHGZM PHGZT CGR CUY CVF ECM EIF NPM 7T7 7TV 7U7 7XB 8FD 8FK ABRTQ C1K FR3 K9. L.- P64 PJZUB PKEHL PPXIY PQEST PQUKI Q9U 7X8 7S9 L.6 |
ID | FETCH-LOGICAL-c408t-555a81eca1ce607b3040e82437f2b9de17967d1d484659aedb255a75dbd474f3 |
IEDL.DBID | 7X7 |
ISSN | 0090-4341 1432-0703 |
IngestDate | Fri Jul 11 07:14:01 EDT 2025 Fri Jul 11 03:42:44 EDT 2025 Fri Jul 25 22:59:36 EDT 2025 Wed Feb 19 02:29:08 EST 2025 Tue Jul 01 04:07:05 EDT 2025 Thu Apr 24 23:09:58 EDT 2025 Fri Feb 21 02:49:13 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c408t-555a81eca1ce607b3040e82437f2b9de17967d1d484659aedb255a75dbd474f3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0003-3305-1042 |
PMID | 33275184 |
PQID | 2491757617 |
PQPubID | 54049 |
PageCount | 13 |
ParticipantIDs | proquest_miscellaneous_2524328740 proquest_miscellaneous_2467615714 proquest_journals_2491757617 pubmed_primary_33275184 crossref_citationtrail_10_1007_s00244_020_00782_3 crossref_primary_10_1007_s00244_020_00782_3 springer_journals_10_1007_s00244_020_00782_3 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20210200 2021-02-00 2021-Feb 20210201 |
PublicationDateYYYYMMDD | 2021-02-01 |
PublicationDate_xml | – month: 2 year: 2021 text: 20210200 |
PublicationDecade | 2020 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York – name: United States |
PublicationTitle | Archives of environmental contamination and toxicology |
PublicationTitleAbbrev | Arch Environ Contam Toxicol |
PublicationTitleAlternate | Arch Environ Contam Toxicol |
PublicationYear | 2021 |
Publisher | Springer US Springer Nature B.V |
Publisher_xml | – name: Springer US – name: Springer Nature B.V |
References | GeWYanSWangJOxidative stress and DNA damage induced by imidacloprid in zebrafish (Danio rerio)J Agric Food Chem201563185618621:CAS:528:DC%2BC2MXht12lt78%3D10.1021/jf504895h FonsecaALRochaOLaboratory cultures of the native species ChironomusActa Limnol Bras200416153161 MiloševićDStojanovićKDjurdjevićAThe response of chironomid taxonomy- and functional trait-based metrics to fish farm effluent pollution in lotic systemsEnviron Pollut2018242105810661:CAS:528:DC%2BC1cXhsVOlurrJ10.1016/j.envpol.2018.07.100 CunhaDGFCalijuriMdCLamparelliMCA trophic state index for tropical/subtropical reservoirs (TSI tsr)Ecol Eng20136012613410.1016/j.ecoleng.2013.07.058 HabigWHPabstMJJakobyWBGlutathione S-Transferases—the first enzymatic step in mercapturic acid formationJ Biol Chem1974249713071401:CAS:528:DyaE2MXltlahtg%3D%3D10.1016/S0021-9258(19)42083-8 HladikMLKolpinDWKuivilaKMWidespread occurrence of neonicotinoid insecticides in streams in a high corn and soybean producing region, USAEnviron Pollut20141931891961:CAS:528:DC%2BC2cXht1ensbnJ10.1016/j.envpol.2014.06.033 Van DijkTCVan StaalduinenMAVan Der SluijsJPMacro-invertebrate decline in surface water polluted with imidaclopridPLoS ONE201310.1371/journal.pone.0089837 ZhangHDaviesKJAFormanHJOxidative stress response and Nrf2 signaling in agingFree Radic Biol Med2015883143361:CAS:528:DC%2BC2MXhtFemu73O10.1016/j.freeradbiomed.2015.05.036 NarraMRRajenderKReddyRRInsecticides induced stress response and recuperation in fish: biomarkers in blood and tissues related to oxidative damageChemosphere20171683503571:CAS:528:DC%2BC28XhslKntbrM10.1016/J.CHEMOSPHERE.2016.10.066 SumonKARitikaAKPeetersETHMEffects of imidacloprid on the ecology of sub-tropical freshwater microcosmsEnviron Pollut20182364324411:CAS:528:DC%2BC1cXisVehtbs%3D10.1016/j.envpol.2018.01.102 SellaththuraiSPriyathilakaTTLeeJMolecular cloning, characterization, and expression level analysis of a marine teleost homolog of catalase from big belly seahorse (Hippocampus abdominalis)Fish Shellfish Immunol2019896476591:CAS:528:DC%2BC1MXnslOqtLg%3D10.1016/j.fsi.2019.03.064 AlexanderACCulpJMBairdDJCessnaAJNutrient–insecticide interactions decouple density-dependent predation pressure in aquatic insectsFreshw Biol201661209021011:CAS:528:DC%2BC28XhvVWnurnF10.1111/fwb.12711 LaNLamersMBannwarthMImidacloprid concentrations in paddy rice fields in northern Vietnam: measurement and probabilistic modelingPaddy Water Environ20141319120310.1007/s10333-014-0420-8 MorJ-RDolédecSAcuñaVInvertebrate community responses to urban wastewater effluent pollution under different hydro-morphological conditionsEnviron Pollut20192524834921:CAS:528:DC%2BC1MXhtFeqs7fO10.1016/J.ENVPOL.2019.05.114 AndersonJCDubetzCPalaceVPNeonicotinoids in the Canadian aquatic environment: a literature review on current use products with a focus on fate, exposure, and biological effectsSci Tot Environ20155054094221:CAS:528:DC%2BC2cXhslehtLjP10.1016/j.scitotenv.2014.09.090 TišlerTJemecAMozetičBTrebšePHazard identification of imidacloprid to aquatic environmentChemosphere2009769079141:CAS:528:DC%2BD1MXptVaqurg%3D10.1016/j.chemosphere.2009.05.002 HayasakaDKorenagaTSuzukiKCumulative ecological impacts of two successive annual treatments of imidacloprid and fipronil on aquatic communities of paddy mesocosmsEcotoxicol Environ Saf2012803553621:CAS:528:DC%2BC38Xms1ylsbo%3D10.1016/j.ecoenv.2012.04.004 DantzgerDDJonssonCMAoyamaHMixtures of diflubenzuron and p-chloroaniline changes the activities of enzymes biomarkers on tilapia fish (Oreochromis niloticus) in the presence and absence of soilEcotoxicol Environ Saf20181483673761:CAS:528:DC%2BC2sXhslektL7K10.1016/j.ecoenv.2017.10.054 RabyMNowierskiMPerlovDAcute toxicity of 6 neonicotinoid insecticides to freshwater invertebratesEnviron Toxicol Chem201837143014451:CAS:528:DC%2BC1cXnt1eitb0%3D10.1002/etc.4088 Van der OostRBeyerJVermeulenNPEFish bioaccumulation and biomarkers in environmental risk assessment: a reviewEnviron Toxicol Pharmacol2003135714910.1016/S1382-6689(02)00126-6 BeketovMALiessMPotential of 11 pesticides to initiate downstream drift of stream macroinvertebratesArch Environ Contam Toxicol2008552472531:CAS:528:DC%2BD1cXnsVWjsrk%3D10.1007/s00244-007-9104-3 DomenicaAMariaAStefaniaBNeonicotinoids and bees: the case of the European regulatory risk assessmentSci Tot Environ20175799669711:CAS:528:DC%2BC28XhvFCgt7vM10.1016/j.scitotenv.2016.10.158 JeschkePNauenRSchindlerMElbertAOverview of the status and global strategy for neonicotinoidsJ Agric Food Chem201159289729081:CAS:528:DC%2BC3cXns1Clsrk%3D10.1021/jf101303g KobashiKHaradaTAdachiYComparative ecotoxicity of imidacloprid and dinotefuran to aquatic insects in rice mesocosmsEcotoxicol Environ Saf20171381221291:CAS:528:DC%2BC2sXislShsA%3D%3D10.1016/j.ecoenv.2016.12.025 PestanaJLTAlexanderACCulpJMStructural and functional responses of benthic invertebrates to imidacloprid in outdoor stream mesocosmsEnviron Pollut2009157232823341:CAS:528:DC%2BD1MXntVGhtrc%3D10.1016/j.envpol.2009.03.027 RicoAArenas-SánchezAPasqualiniJEffects of imidacloprid and a neonicotinoid mixture on aquatic invertebrate communities under Mediterranean conditionsAquat Toxicol20182041301431:CAS:528:DC%2BC1cXhslOju7jI10.1016/j.aquatox.2018.09.004 PisaLWBelzuncesLPBonmatinJMEffects of neonicotinoids and fipronil on non-target invertebratesEnviron Sci Pollut Res201522681021:CAS:528:DC%2BC2cXhsFOmu7nO10.1007/s11356-014-3471-x XiaXXiaXHuoWToxic effects of imidacloprid on adult loach (Misgurnus anguillicaudatus)Environ Toxicol Pharmacol2016451321391:CAS:528:DC%2BC28Xps1aqtL0%3D10.1016/J.ETAP.2016.05.030 SilvaMSGMMarigoALSViveirosWKuhlmannMLFrequency of mentum deformity in Chironomus sancticaroli (Diptera: Chironomidae) in a laboratory cultureRev Ambient e Agua2019141810.4136/1980-993X DeLeveLDKaplowitzNGlutathione metabolism and its role in hepatotoxicityPharmacol Ther1991522873051:CAS:528:DyaK38XlsVOlsr0%3D10.1016/0163-7258(91)90029-L QiSWangDZhuLNeonicotinoid insecticides imidacloprid, guadipyr, and cycloxaprid induce acute oxidative stress in Daphnia magnaEcotoxicol Environ Saf20181483523581:CAS:528:DC%2BC2sXhslektL7P10.1016/j.ecoenv.2017.10.042 MatsudaKBuckinghamSDKleierDNeonicotinoids: insecticides acting on insect nicotinic acetylcholine receptorsTrends Pharmacol Sci2001225735801:CAS:528:DC%2BD3MXotFSmsbY%3D10.1016/S0165-6147(00)01820-4 StoughtonSJLiberKCulpJCessnaAAcute and chronic toxicity of imidacloprid to the aquatic invertebrates Chironomus tentans and Hyalella azteca under constant- and pulse-exposure conditionsArch Environ Contam Toxicol2008546626731:CAS:528:DC%2BD1cXkt12gu74%3D10.1007/s00244-007-9073-6 HongXZhaoXTianXChanges of hematological and biochemical parameters revealed genotoxicity and immunotoxicity of neonicotinoids on Chinese rare minnows (Gobiocypris rarus)Environ Pollut20182338628711:CAS:528:DC%2BC2sXhvF2jtL3K10.1016/J.ENVPOL.2017.12.036 Kreuger J, Graaf S, Patring J, Adielsson S (2010) Pesticides in surface water in areas with open ground and greenhouse horticultural crops in Sweden 2008 BöttgerRFeibickeMSchallerJDudelGEffects of low-dosed imidacloprid pulses on the functional role of the caged amphipod Gammarus roeseli in stream mesocosmsEcotoxicol Environ Saf201393931001:CAS:528:DC%2BC3sXnsFSrtrY%3D10.1016/j.ecoenv.2013.04.006 DouglasMTChanterDOPellIBBurneyGMA proposal for the reduction of animal numbers required for the acute toxicity to fish test (LC50 determination)Aquat Toxicol198682432491:CAS:528:DyaL28Xlt1yru7k%3D10.1016/0166-445X(86)90076-7 CoelhoSOliveiraRPereiraSAssessing lethal and sub-lethal effects of trichlorfon on different trophic levelsAquat Toxicol20111031911981:CAS:528:DC%2BC3MXlvVaiur0%3D10.1016/j.aquatox.2011.03.003 RabyMZhaoXHaoCRelative chronic sensitivity of neonicotinoid insecticides to Ceriodaphnia dubia and Daphnia magnaEcotoxicol Environ Saf20181632382441:CAS:528:DC%2BC1cXhsVSht7jI10.1016/j.ecoenv.2018.07.086 BradfordMMA rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye bindingAnal Biochem1976722482541:CAS:528:DC%2BC2cXhvFWgsL3L10.1016/j.sbi.2014.10.005 StaraABellinviaRVelisekJAcute exposure of common yabby (Cherax destructor) to the neonicotinoid pesticideSci Tot Environ20196657187231:CAS:528:DC%2BC1MXjt1Chtr4%3D10.1016/j.scitotenv.2019.02.202 WoodTJGoulsonDThe environmental risks of neonicotinoid pesticides: a review of the evidence post 2013Environ Sci Pollut Res20172417285173251:CAS:528:DC%2BC2sXhtVCktLvE10.1007/s11356-017-9240-x XingZChowLReesHInfluences of sampling methodologies on pesticide-residue detection in stream waterArch Environ Contam Toxicol2013642082181:CAS:528:DC%2BC3sXhsFegsb4%3D10.1007/s00244-012-9833-9 EgaasESandvikMFjeldESome effects of the fungicide propiconazole on cytochrome P450 and glutathione S-transferase in brown trout (Salmo trutta)Comp Biochem Physiol Part C Pharmacol Toxicol Endocrinol19991223373441:STN:280:DyaK1M3mslWgtA%3D%3D10.1016/S0742-8413(98)10133-0 SinhaAKAbdElgawadHZintaGNutritional status as the key modulator of antioxidant responses induced by high environmental ammonia and salinity stress in European sea bass (Dicentrarchus labrax)PLoS ONE2015101291:CAS:528:DC%2BC28XmtlCitw%3D%3D10.1371/journal.pone.0135091 IturburuFGBertrandLMendietaJRAn integrated biomarker response study explains more than the sum of the parts: oxidative stress in the fish Australoheros facetus exposed to imidaclopridEcol Indic2018933513571:CAS:528:DC%2BC1cXps1Kktro%3D10.1016/j.ecolind.2018.05.019 BarnettBGRThe use of sodium azide in the Winkler Method for the determination of dissolved oxygenSewage Work J1939117817871:CAS:528:DyaH3cXmsl2n Chará-SernaAMEpeleLBMorrisseyCARichardsonJSNutrients and sediment modify the impacts of a neonicotinoid insecticide on freshwater community structure and ecosystem functioningSci Tot Environ20196921291130310.1016/J.SCITOTENV.2019.06.301 StarnerKGohKSDetections of the neonicotinoid insecticide imidacloprid in surface waters of three agricultural regions of California, USA, 2010–2011Bull Enviro Y Chen (782_CR12) 2018; 166 MR Narra (782_CR52) 2017; 168 HM Semchyshyn (782_CR60) 2012; 12 P Jeschke (782_CR37) 2011; 59 D Hayasaka (782_CR30) 2012; 21 CA Morrissey (782_CR50) 2015; 74 S Coelho (782_CR13) 2011; 103 S Gupta (782_CR27) 2002; 68 IC Yadav (782_CR83) 2018; 640–641 Z Lu (782_CR45) 2015; 2 782_CR20 D Milošević (782_CR48) 2018; 242 M Vieira (782_CR76) 2019; 71 JC Anderson (782_CR4) 2015; 505 I Yamamoto (782_CR84) 1999 S Wu (782_CR80) 2018; 235 ML Hladik (782_CR31) 2014; 193 X Hong (782_CR32) 2018; 233 R Böttger (782_CR8) 2013; 93 Y Wang (782_CR78) 2018; 165 N La (782_CR42) 2014; 13 VV Husak (782_CR35) 2014; 155 A Rico (782_CR58) 2018; 204 R Van der Oost (782_CR73) 2003; 13 MT Douglas (782_CR19) 1986; 8 782_CR1 AK Sinha (782_CR64) 2015; 10 OV Lushchak (782_CR46) 2009; 76 TJ Wood (782_CR79) 2017; 24 C Vignet (782_CR77) 2019; 225 A Slaninova (782_CR65) 2009; 30 J-R Mor (782_CR49) 2019; 252 A Topal (782_CR71) 2017; 175 A Domenica (782_CR18) 2017; 579 AL Fonseca (782_CR23) 2004; 16 M Giraudo (782_CR26) 2017; 36 A Stara (782_CR66) 2019; 665 DGF Cunha (782_CR14) 2013; 60 Y Nakano (782_CR51) 1981; 22 H Zhang (782_CR85) 2015; 88 Y Hong (782_CR33) 2020; 729 LD DeLeve (782_CR16) 1991; 52 S Kagabu (782_CR39) 2011; 59 Y Shan (782_CR61) 2020; 218 P Jeschke (782_CR38) 2013; 52 JLT Pestana (782_CR53) 2009; 157 K Matsuda (782_CR47) 2001; 22 LW Pisa (782_CR54) 2015; 22 AC Alexander (782_CR3) 2016; 61 E Egaas (782_CR21) 1999; 122 782_CR41 N Simon-Delso (782_CR63) 2015; 22 CED Vieira (782_CR75) 2018; 195 DD Dantzger (782_CR15) 2018; 148 KA Sumon (782_CR69) 2018; 236 L Gebicka (782_CR25) 2019; 197 H Aebi (782_CR2) 1984; 105 NN Chandran (782_CR10) 2018; 209 K Starner (782_CR67) 2012; 88 W Ge (782_CR24) 2015; 63 FG Iturburu (782_CR36) 2018; 93 X Xia (782_CR81) 2016; 45 S Qi (782_CR55) 2018; 148 K Kobashi (782_CR40) 2017; 138 MSGM Silva (782_CR62) 2019; 14 MM Bradford (782_CR9) 1976; 72 T Tišler (782_CR70) 2009; 76 WH Habig (782_CR28) 1974; 249 TC Van Dijk (782_CR74) 2013 M Lamers (782_CR43) 2011; 39 M Raby (782_CR56) 2018; 37 BGR Barnett (782_CR5) 1939; 11 AMB do Amaral (782_CR17) 2018; 191 C Uguz (782_CR72) 2003; 92 Z Xing (782_CR82) 2013; 64 K Fenner (782_CR22) 2013; 341 M Raby (782_CR57) 2018; 163 D Hayasaka (782_CR29) 2012; 80 AM Chará-Serna (782_CR11) 2019; 692 M Le Moal (782_CR44) 2019; 651 S Sellaththurai (782_CR59) 2019; 89 SJ Stoughton (782_CR68) 2008; 54 MA Beketov (782_CR7) 2008; 55 AJ Bartlett (782_CR6) 2019; 175 SE Hook (782_CR34) 2014; 10 |
References_xml | – reference: SumonKARitikaAKPeetersETHMEffects of imidacloprid on the ecology of sub-tropical freshwater microcosmsEnviron Pollut20182364324411:CAS:528:DC%2BC1cXisVehtbs%3D10.1016/j.envpol.2018.01.102 – reference: EgaasESandvikMFjeldESome effects of the fungicide propiconazole on cytochrome P450 and glutathione S-transferase in brown trout (Salmo trutta)Comp Biochem Physiol Part C Pharmacol Toxicol Endocrinol19991223373441:STN:280:DyaK1M3mslWgtA%3D%3D10.1016/S0742-8413(98)10133-0 – reference: LaNLamersMBannwarthMImidacloprid concentrations in paddy rice fields in northern Vietnam: measurement and probabilistic modelingPaddy Water Environ20141319120310.1007/s10333-014-0420-8 – reference: FonsecaALRochaOLaboratory cultures of the native species ChironomusActa Limnol Bras200416153161 – reference: SellaththuraiSPriyathilakaTTLeeJMolecular cloning, characterization, and expression level analysis of a marine teleost homolog of catalase from big belly seahorse (Hippocampus abdominalis)Fish Shellfish Immunol2019896476591:CAS:528:DC%2BC1MXnslOqtLg%3D10.1016/j.fsi.2019.03.064 – reference: BradfordMMA rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye bindingAnal Biochem1976722482541:CAS:528:DC%2BC2cXhvFWgsL3L10.1016/j.sbi.2014.10.005 – reference: MorrisseyCAMineauPDevriesJHNeonicotinoid contamination of global surface waters and associated risk to aquatic invertebrates: a reviewEnviron Int2015742913031:CAS:528:DC%2BC2cXhvFGrsrrF10.1016/j.envint.2014.10.024 – reference: VieiraCEDPérezMRAcayabaRDDNA damage and oxidative stress induced by imidacloprid exposure in different tissues of the neotropical fish Prochilodus lineatusChemosphere20181951251341:CAS:528:DC%2BC2sXitVWnsr7J10.1016/J.CHEMOSPHERE.2017.12.077 – reference: NakanoYAsadaKHydrogen peroxide is scavenged by ascorbate-specific peroxidase in spinach chloroplastsPlant Cell Physiol1981228678801:CAS:528:DyaL3MXltFWqur0%3D – reference: TišlerTJemecAMozetičBTrebšePHazard identification of imidacloprid to aquatic environmentChemosphere2009769079141:CAS:528:DC%2BD1MXptVaqurg%3D10.1016/j.chemosphere.2009.05.002 – reference: HongXZhaoXTianXChanges of hematological and biochemical parameters revealed genotoxicity and immunotoxicity of neonicotinoids on Chinese rare minnows (Gobiocypris rarus)Environ Pollut20182338628711:CAS:528:DC%2BC2sXhvF2jtL3K10.1016/J.ENVPOL.2017.12.036 – reference: YadavICWatanabeHSoil erosion and transport of Imidacloprid and Clothianidin in the upland field under simulated rainfall conditionSci Tot Environ2018640–641135413641:CAS:528:DC%2BC1cXhtFSrurzL10.1016/j.scitotenv.2018.06.008 – reference: BartlettAJHedgesAMIntiniKDAcute and chronic toxicity of neonicotinoid and butenolide insecticides to the freshwater amphipod, Hyalella aztecaEcotoxicol Environ Saf20191752152231:CAS:528:DC%2BC1MXls1eiurc%3D10.1016/j.ecoenv.2019.03.038 – reference: CunhaDGFCalijuriMdCLamparelliMCA trophic state index for tropical/subtropical reservoirs (TSI tsr)Ecol Eng20136012613410.1016/j.ecoleng.2013.07.058 – reference: QiSWangDZhuLNeonicotinoid insecticides imidacloprid, guadipyr, and cycloxaprid induce acute oxidative stress in Daphnia magnaEcotoxicol Environ Saf20181483523581:CAS:528:DC%2BC2sXhslektL7P10.1016/j.ecoenv.2017.10.042 – reference: AebiHCatalase in vitroMethods Enzymol19841051211261:CAS:528:DyaL2cXltVKis7s%3D – reference: DantzgerDDJonssonCMAoyamaHMixtures of diflubenzuron and p-chloroaniline changes the activities of enzymes biomarkers on tilapia fish (Oreochromis niloticus) in the presence and absence of soilEcotoxicol Environ Saf20181483673761:CAS:528:DC%2BC2sXhslektL7K10.1016/j.ecoenv.2017.10.054 – reference: DouglasMTChanterDOPellIBBurneyGMA proposal for the reduction of animal numbers required for the acute toxicity to fish test (LC50 determination)Aquat Toxicol198682432491:CAS:528:DyaL28Xlt1yru7k%3D10.1016/0166-445X(86)90076-7 – reference: JeschkePNauenRSchindlerMElbertAOverview of the status and global strategy for neonicotinoidsJ Agric Food Chem201159289729081:CAS:528:DC%2BC3cXns1Clsrk%3D10.1021/jf101303g – reference: SinhaAKAbdElgawadHZintaGNutritional status as the key modulator of antioxidant responses induced by high environmental ammonia and salinity stress in European sea bass (Dicentrarchus labrax)PLoS ONE2015101291:CAS:528:DC%2BC28XmtlCitw%3D%3D10.1371/journal.pone.0135091 – reference: MorJ-RDolédecSAcuñaVInvertebrate community responses to urban wastewater effluent pollution under different hydro-morphological conditionsEnviron Pollut20192524834921:CAS:528:DC%2BC1MXhtFeqs7fO10.1016/J.ENVPOL.2019.05.114 – reference: TopalAAlakGOzkaracaMNeurotoxic responses in brain tissues of rainbow trout exposed to imidacloprid pesticide: assessment of 8-hydroxy-2-deoxyguanosine activity, oxidative stress and acetylcholinesterase activityChemosphere20171751861911:CAS:528:DC%2BC2sXjtVelurk%3D10.1016/j.chemosphere.2017.02.047 – reference: EFSA (2018) Evaluation of the data on clothianidin, imidacloprid and thiamethoxam for the updated risk assessment to bees for seed treatments and granules in the EU – reference: HayasakaDKorenagaTSuzukiKCumulative ecological impacts of two successive annual treatments of imidacloprid and fipronil on aquatic communities of paddy mesocosmsEcotoxicol Environ Saf2012803553621:CAS:528:DC%2BC38Xms1ylsbo%3D10.1016/j.ecoenv.2012.04.004 – reference: WoodTJGoulsonDThe environmental risks of neonicotinoid pesticides: a review of the evidence post 2013Environ Sci Pollut Res20172417285173251:CAS:528:DC%2BC2sXhtVCktLvE10.1007/s11356-017-9240-x – reference: ZhangHDaviesKJAFormanHJOxidative stress response and Nrf2 signaling in agingFree Radic Biol Med2015883143361:CAS:528:DC%2BC2MXhtFemu73O10.1016/j.freeradbiomed.2015.05.036 – reference: Kreuger J, Graaf S, Patring J, Adielsson S (2010) Pesticides in surface water in areas with open ground and greenhouse horticultural crops in Sweden 2008 – reference: do AmaralAMBde Lima Costa GomesJWeimerGHSeasonal implications on toxicity biomarkers of Loricariichthys anus (Valenciennes, 1835) from a subtropical reservoirChemosphere20181918768851:CAS:528:DC%2BC2sXhslChsrrI10.1016/j.chemosphere.2017.10.114 – reference: StarnerKGohKSDetections of the neonicotinoid insecticide imidacloprid in surface waters of three agricultural regions of California, USA, 2010–2011Bull Environ Contam Toxicol2012883163211:CAS:528:DC%2BC38XitFansrc%3D10.1007/s00128-011-0515-5 – reference: XiaXXiaXHuoWToxic effects of imidacloprid on adult loach (Misgurnus anguillicaudatus)Environ Toxicol Pharmacol2016451321391:CAS:528:DC%2BC28Xps1aqtL0%3D10.1016/J.ETAP.2016.05.030 – reference: JeschkePNauenRBeckMENicotinic acetylcholine receptor agonists: a milestone for modern crop protectionAngew Chem Int Ed201352946494851:CAS:528:DC%2BC3sXht1CrtrfP10.1002/anie.201302550 – reference: KagabuSDiscovery of imidacloprid and further developments from strategic molecular designsJ Agric Food Chem201159288728961:CAS:528:DC%2BC3cXhtVeltbvE10.1021/jf101824y – reference: BeketovMALiessMPotential of 11 pesticides to initiate downstream drift of stream macroinvertebratesArch Environ Contam Toxicol2008552472531:CAS:528:DC%2BD1cXnsVWjsrk%3D10.1007/s00244-007-9104-3 – reference: XingZChowLReesHInfluences of sampling methodologies on pesticide-residue detection in stream waterArch Environ Contam Toxicol2013642082181:CAS:528:DC%2BC3sXhsFegsb4%3D10.1007/s00244-012-9833-9 – reference: SilvaMSGMMarigoALSViveirosWKuhlmannMLFrequency of mentum deformity in Chironomus sancticaroli (Diptera: Chironomidae) in a laboratory cultureRev Ambient e Agua2019141810.4136/1980-993X – reference: StoughtonSJLiberKCulpJCessnaAAcute and chronic toxicity of imidacloprid to the aquatic invertebrates Chironomus tentans and Hyalella azteca under constant- and pulse-exposure conditionsArch Environ Contam Toxicol2008546626731:CAS:528:DC%2BD1cXkt12gu74%3D10.1007/s00244-007-9073-6 – reference: GebickaLKrych-MadejJThe role of catalases in the prevention/promotion of oxidative stressJ Inorg Biochem20191971106991:CAS:528:DC%2BC1MXovVCnt74%3D10.1016/j.jinorgbio.2019.110699 – reference: VignetCCappelloTFuQImidacloprid induces adverse effects on fish early life stages that are more severe in Japanese medaka (Oryzias latipes) than in zebrafish (Danio rerio)Chemosphere20192254704781:CAS:528:DC%2BC1MXltFymsLs%3D10.1016/j.chemosphere.2019.03.002 – reference: RicoAArenas-SánchezAPasqualiniJEffects of imidacloprid and a neonicotinoid mixture on aquatic invertebrate communities under Mediterranean conditionsAquat Toxicol20182041301431:CAS:528:DC%2BC1cXhslOju7jI10.1016/j.aquatox.2018.09.004 – reference: WangYHanYXuPThe metabolism distribution and effect of imidacloprid in chinese lizards (Eremias argus) following oral exposureEcotoxicol Environ Saf20181654764831:CAS:528:DC%2BC1cXhslSktLnO10.1016/j.ecoenv.2018.09.036 – reference: YamamotoICasidaJENicotinoid insecticides and the nicotinic acetylcholine receptor19991BerlinSpringer10.1007/978-4-431-67933-2 – reference: PestanaJLTAlexanderACCulpJMStructural and functional responses of benthic invertebrates to imidacloprid in outdoor stream mesocosmsEnviron Pollut2009157232823341:CAS:528:DC%2BD1MXntVGhtrc%3D10.1016/j.envpol.2009.03.027 – reference: ShanYYanSHongXEffect of imidacloprid on the behavior, antioxidant system, multixenobiotic resistance, and histopathology of Asian freshwater clams (Corbicula fluminea)Aquat Toxicol20202181053331:CAS:528:DC%2BC1MXit1ekt7bM10.1016/j.aquatox.2019.105333 – reference: GiraudoMCottinGEsperanzaMTranscriptional and cellular effects of benzotriazole UV stabilizers UV-234 and UV-328 in the freshwater invertebrates Chlamydomonas reinhardtii and Daphnia magnaEnviron Toxicol Chem201736333333421:CAS:528:DC%2BC2sXhsVKgu7jL10.1002/etc.3908 – reference: AndersonJCDubetzCPalaceVPNeonicotinoids in the Canadian aquatic environment: a literature review on current use products with a focus on fate, exposure, and biological effectsSci Tot Environ20155054094221:CAS:528:DC%2BC2cXhslehtLjP10.1016/j.scitotenv.2014.09.090 – reference: DeLeveLDKaplowitzNGlutathione metabolism and its role in hepatotoxicityPharmacol Ther1991522873051:CAS:528:DyaK38XlsVOlsr0%3D10.1016/0163-7258(91)90029-L – reference: SlaninovaASmutnaMModraHSvobodovaZA review: oxidative stress in fish induced by pesticidesNeuroendocrinol Lett2009302121:CAS:528:DC%2BC3cXktF2ltbc%3D – reference: WuSLiXLiuXJoint toxic effects of triazophos and imidacloprid on zebrafish (Danio rerio)Environ Pollut20182354704811:CAS:528:DC%2BC1cXkslyksA%3D%3D10.1016/j.envpol.2017.12.120 – reference: FennerKCanonicaSWackettLPElsnerMEvaluating pesticide degradation in the environment: blind spots and emerging opportunitiesScience20133417527581:CAS:528:DC%2BC3sXht1GhurjE10.1126/science.1236281 – reference: Chará-SernaAMEpeleLBMorrisseyCARichardsonJSNutrients and sediment modify the impacts of a neonicotinoid insecticide on freshwater community structure and ecosystem functioningSci Tot Environ20196921291130310.1016/J.SCITOTENV.2019.06.301 – reference: LushchakOVKubrakOIStoreyJMLow toxic herbicide Roundup induces mild oxidative stress in goldfish tissuesChemosphere2009769329371:CAS:528:DC%2BD1MXptVaqu7o%3D10.1016/j.chemosphere.2009.04.045 – reference: ChandranNNFojtovaDBlahovaLAcute and (sub)chronic toxicity of the neonicotinoid imidacloprid on Chironomus ripariusChemosphere20182095685771:CAS:528:DC%2BC1cXht1SjtrzN10.1016/j.chemosphere.2018.06.102 – reference: HongYHuangYWuSEffects of imidacloprid on the oxidative stress, detoxification and gut microbiota of Chinese mitten crab, Eriocheir sinensisSci Tot Environ20207291382761:CAS:528:DC%2BB3cXosVymtr0%3D10.1016/j.scitotenv.2020.138276 – reference: Van DijkTCVan StaalduinenMAVan Der SluijsJPMacro-invertebrate decline in surface water polluted with imidaclopridPLoS ONE201310.1371/journal.pone.0089837 – reference: GeWYanSWangJOxidative stress and DNA damage induced by imidacloprid in zebrafish (Danio rerio)J Agric Food Chem201563185618621:CAS:528:DC%2BC2MXht12lt78%3D10.1021/jf504895h – reference: MatsudaKBuckinghamSDKleierDNeonicotinoids: insecticides acting on insect nicotinic acetylcholine receptorsTrends Pharmacol Sci2001225735801:CAS:528:DC%2BD3MXotFSmsbY%3D10.1016/S0165-6147(00)01820-4 – reference: BöttgerRFeibickeMSchallerJDudelGEffects of low-dosed imidacloprid pulses on the functional role of the caged amphipod Gammarus roeseli in stream mesocosmsEcotoxicol Environ Saf201393931001:CAS:528:DC%2BC3sXnsFSrtrY%3D10.1016/j.ecoenv.2013.04.006 – reference: VieiraMSoaresAMVMNunesBBiomarker-based assessment of the toxicity of the antifungal clotrimazol to the microcrustacean Daphnia magnaEnviron Toxicol Pharmacol2019711032101:CAS:528:DC%2BC1MXhtlWiu73J10.1016/j.etap.2019.103210 – reference: HladikMLKolpinDWKuivilaKMWidespread occurrence of neonicotinoid insecticides in streams in a high corn and soybean producing region, USAEnviron Pollut20141931891961:CAS:528:DC%2BC2cXht1ensbnJ10.1016/j.envpol.2014.06.033 – reference: SemchyshynHMLozinskaLMFructose protects baker’s yeast against peroxide stress: potential role of catalase and superoxide dismutaseFEMS Yeast Res2012127617731:CAS:528:DC%2BC38Xhs1Srtb7E10.1111/j.1567-1364.2012.00826.x – reference: ABNT (2016) NBR 12713: aquatic ecotoxicology—acute toxicity—test with Daphnia spp (Cladocera, Crustacea), pp 1–27 – reference: KobashiKHaradaTAdachiYComparative ecotoxicity of imidacloprid and dinotefuran to aquatic insects in rice mesocosmsEcotoxicol Environ Saf20171381221291:CAS:528:DC%2BC2sXislShsA%3D%3D10.1016/j.ecoenv.2016.12.025 – reference: IturburuFGBertrandLMendietaJRAn integrated biomarker response study explains more than the sum of the parts: oxidative stress in the fish Australoheros facetus exposed to imidaclopridEcol Indic2018933513571:CAS:528:DC%2BC1cXps1Kktro%3D10.1016/j.ecolind.2018.05.019 – reference: BarnettBGRThe use of sodium azide in the Winkler Method for the determination of dissolved oxygenSewage Work J1939117817871:CAS:528:DyaH3cXmsl2n – reference: HayasakaDKorenagaTSuzukiKDifferences in susceptibility of five cladoceran species to two systemic insecticides, imidacloprid and fipronilEcotoxicology2012214214271:CAS:528:DC%2BC38XitFamsb8%3D10.1007/s10646-011-0802-2 – reference: HusakVVMosiichukNMMaksymivIVHistopathological and biochemical changes in goldfish kidney due to exposure to the herbicide Sencor may be related to induction of oxidative stressAquat Toxicol20141551811891:CAS:528:DC%2BC2cXht1ensbvJ10.1016/j.aquatox.2014.06.020 – reference: ChenYYuKHassanMOccurrence, distribution and risk assessment of pesticides in a river-reservoir systemEcotoxicol Environ Saf20181663203271:CAS:528:DC%2BC1cXhvVejt77N10.1016/j.ecoenv.2018.09.107 – reference: Simon-DelsoNAmaral-RogersVBelzuncesLPSystemic insecticides (Neonicotinoids and fipronil): trends, uses, mode of action and metabolitesEnviron Sci Pollut Res2015225341:CAS:528:DC%2BC2cXhsFOlur%2FO10.1007/s11356-014-3470-y – reference: PisaLWBelzuncesLPBonmatinJMEffects of neonicotinoids and fipronil on non-target invertebratesEnviron Sci Pollut Res201522681021:CAS:528:DC%2BC2cXhsFOmu7nO10.1007/s11356-014-3471-x – reference: Van der OostRBeyerJVermeulenNPEFish bioaccumulation and biomarkers in environmental risk assessment: a reviewEnviron Toxicol Pharmacol2003135714910.1016/S1382-6689(02)00126-6 – reference: DomenicaAMariaAStefaniaBNeonicotinoids and bees: the case of the European regulatory risk assessmentSci Tot Environ20175799669711:CAS:528:DC%2BC28XhvFCgt7vM10.1016/j.scitotenv.2016.10.158 – reference: LuZChallisJKWongCSQuantum yields for direct photolysis of neonicotinoid insecticides in water: implications for exposure to nontarget aquatic organismsEnviron Sci Technol Lett201521881921:CAS:528:DC%2BC2MXhtVShtLvO10.1021/acs.estlett.5b00136 – reference: HabigWHPabstMJJakobyWBGlutathione S-Transferases—the first enzymatic step in mercapturic acid formationJ Biol Chem1974249713071401:CAS:528:DyaE2MXltlahtg%3D%3D10.1016/S0021-9258(19)42083-8 – reference: Le MoalMGascuel-odouxCMénesguenAEutrophication: a new wine in an old bottle?Sci Tot Environ20196511111:CAS:528:DC%2BC1cXhslehurzM10.1016/j.scitotenv.2018.09.139 – reference: LamersMAnyushevaMLaNPesticide pollution in surface- and groundwater by paddy rice cultivation: a case study from Northern VietnamClean: Soil, Air, Water2011393563611:CAS:528:DC%2BC3MXksFeju7k%3D10.1002/clen.201000268 – reference: StaraABellinviaRVelisekJAcute exposure of common yabby (Cherax destructor) to the neonicotinoid pesticideSci Tot Environ20196657187231:CAS:528:DC%2BC1MXjt1Chtr4%3D10.1016/j.scitotenv.2019.02.202 – reference: RabyMNowierskiMPerlovDAcute toxicity of 6 neonicotinoid insecticides to freshwater invertebratesEnviron Toxicol Chem201837143014451:CAS:528:DC%2BC1cXnt1eitb0%3D10.1002/etc.4088 – reference: NarraMRRajenderKReddyRRInsecticides induced stress response and recuperation in fish: biomarkers in blood and tissues related to oxidative damageChemosphere20171683503571:CAS:528:DC%2BC28XhslKntbrM10.1016/J.CHEMOSPHERE.2016.10.066 – reference: UguzCIscanMErgüvenAThe bioaccumulation of nonyphenol and its adverse effect on the liver of rainbow trout (Onchorynchus mykiss)Environ Res2003922622701:CAS:528:DC%2BD3sXksVyrt7k%3D10.1016/S0013-9351(03)00033-1 – reference: CoelhoSOliveiraRPereiraSAssessing lethal and sub-lethal effects of trichlorfon on different trophic levelsAquat Toxicol20111031911981:CAS:528:DC%2BC3MXlvVaiur0%3D10.1016/j.aquatox.2011.03.003 – reference: RabyMZhaoXHaoCRelative chronic sensitivity of neonicotinoid insecticides to Ceriodaphnia dubia and Daphnia magnaEcotoxicol Environ Saf20181632382441:CAS:528:DC%2BC1cXhsVSht7jI10.1016/j.ecoenv.2018.07.086 – reference: AlexanderACCulpJMBairdDJCessnaAJNutrient–insecticide interactions decouple density-dependent predation pressure in aquatic insectsFreshw Biol201661209021011:CAS:528:DC%2BC28XhvVWnurnF10.1111/fwb.12711 – reference: GuptaSGajbhiyeVAgnihotriNLeaching behaviour of imidacloprid formulations in soilBull Environ Contam Toxicol2002685025081:CAS:528:DC%2BD38XhvVCntbg%3D10.1007/s00128-001-0283-8 – reference: HookSEGallagherEPBatleyGEThe role of biomarkers in the assessment of aquatic ecosystem healthIntegr Environ Assess Manag2014103273411:CAS:528:DC%2BC2cXhtVCjsrvM10.1002/ieam.1530 – reference: MiloševićDStojanovićKDjurdjevićAThe response of chironomid taxonomy- and functional trait-based metrics to fish farm effluent pollution in lotic systemsEnviron Pollut2018242105810661:CAS:528:DC%2BC1cXhsVOlurrJ10.1016/j.envpol.2018.07.100 – volume: 138 start-page: 122 year: 2017 ident: 782_CR40 publication-title: Ecotoxicol Environ Saf doi: 10.1016/j.ecoenv.2016.12.025 – volume: 59 start-page: 2897 year: 2011 ident: 782_CR37 publication-title: J Agric Food Chem doi: 10.1021/jf101303g – volume: 37 start-page: 1430 year: 2018 ident: 782_CR56 publication-title: Environ Toxicol Chem doi: 10.1002/etc.4088 – volume: 236 start-page: 432 year: 2018 ident: 782_CR69 publication-title: Environ Pollut doi: 10.1016/j.envpol.2018.01.102 – volume: 74 start-page: 291 year: 2015 ident: 782_CR50 publication-title: Environ Int doi: 10.1016/j.envint.2014.10.024 – volume: 39 start-page: 356 year: 2011 ident: 782_CR43 publication-title: Clean: Soil, Air, Water doi: 10.1002/clen.201000268 – volume: 76 start-page: 907 year: 2009 ident: 782_CR70 publication-title: Chemosphere doi: 10.1016/j.chemosphere.2009.05.002 – volume: 249 start-page: 7130 year: 1974 ident: 782_CR28 publication-title: J Biol Chem doi: 10.1016/S0021-9258(19)42083-8 – volume: 22 start-page: 573 year: 2001 ident: 782_CR47 publication-title: Trends Pharmacol Sci doi: 10.1016/S0165-6147(00)01820-4 – volume: 103 start-page: 191 year: 2011 ident: 782_CR13 publication-title: Aquat Toxicol doi: 10.1016/j.aquatox.2011.03.003 – year: 2013 ident: 782_CR74 publication-title: PLoS ONE doi: 10.1371/journal.pone.0089837 – volume: 22 start-page: 867 year: 1981 ident: 782_CR51 publication-title: Plant Cell Physiol – volume: 80 start-page: 355 year: 2012 ident: 782_CR29 publication-title: Ecotoxicol Environ Saf doi: 10.1016/j.ecoenv.2012.04.004 – volume: 13 start-page: 57 year: 2003 ident: 782_CR73 publication-title: Environ Toxicol Pharmacol doi: 10.1016/S1382-6689(02)00126-6 – volume: 175 start-page: 186 year: 2017 ident: 782_CR71 publication-title: Chemosphere doi: 10.1016/j.chemosphere.2017.02.047 – volume: 36 start-page: 3333 year: 2017 ident: 782_CR26 publication-title: Environ Toxicol Chem doi: 10.1002/etc.3908 – volume: 218 start-page: 105333 year: 2020 ident: 782_CR61 publication-title: Aquat Toxicol doi: 10.1016/j.aquatox.2019.105333 – volume: 54 start-page: 662 year: 2008 ident: 782_CR68 publication-title: Arch Environ Contam Toxicol doi: 10.1007/s00244-007-9073-6 – volume: 505 start-page: 409 year: 2015 ident: 782_CR4 publication-title: Sci Tot Environ doi: 10.1016/j.scitotenv.2014.09.090 – volume: 168 start-page: 350 year: 2017 ident: 782_CR52 publication-title: Chemosphere doi: 10.1016/J.CHEMOSPHERE.2016.10.066 – volume: 148 start-page: 352 year: 2018 ident: 782_CR55 publication-title: Ecotoxicol Environ Saf doi: 10.1016/j.ecoenv.2017.10.042 – volume: 93 start-page: 351 year: 2018 ident: 782_CR36 publication-title: Ecol Indic doi: 10.1016/j.ecolind.2018.05.019 – ident: 782_CR20 – volume: 105 start-page: 121 year: 1984 ident: 782_CR2 publication-title: Methods Enzymol doi: 10.1016/S0076-6879(84)05016-3 – volume: 22 start-page: 5 year: 2015 ident: 782_CR63 publication-title: Environ Sci Pollut Res doi: 10.1007/s11356-014-3470-y – volume: 11 start-page: 781 year: 1939 ident: 782_CR5 publication-title: Sewage Work J – volume: 166 start-page: 320 year: 2018 ident: 782_CR12 publication-title: Ecotoxicol Environ Saf doi: 10.1016/j.ecoenv.2018.09.107 – volume: 52 start-page: 9464 year: 2013 ident: 782_CR38 publication-title: Angew Chem Int Ed doi: 10.1002/anie.201302550 – volume: 45 start-page: 132 year: 2016 ident: 782_CR81 publication-title: Environ Toxicol Pharmacol doi: 10.1016/J.ETAP.2016.05.030 – volume: 68 start-page: 502 year: 2002 ident: 782_CR27 publication-title: Bull Environ Contam Toxicol doi: 10.1007/s00128-001-0283-8 – volume: 651 start-page: 1 year: 2019 ident: 782_CR44 publication-title: Sci Tot Environ doi: 10.1016/j.scitotenv.2018.09.139 – volume: 195 start-page: 125 year: 2018 ident: 782_CR75 publication-title: Chemosphere doi: 10.1016/J.CHEMOSPHERE.2017.12.077 – volume: 665 start-page: 718 year: 2019 ident: 782_CR66 publication-title: Sci Tot Environ doi: 10.1016/j.scitotenv.2019.02.202 – volume: 225 start-page: 470 year: 2019 ident: 782_CR77 publication-title: Chemosphere doi: 10.1016/j.chemosphere.2019.03.002 – volume: 204 start-page: 130 year: 2018 ident: 782_CR58 publication-title: Aquat Toxicol doi: 10.1016/j.aquatox.2018.09.004 – volume: 175 start-page: 215 year: 2019 ident: 782_CR6 publication-title: Ecotoxicol Environ Saf doi: 10.1016/j.ecoenv.2019.03.038 – volume: 163 start-page: 238 year: 2018 ident: 782_CR57 publication-title: Ecotoxicol Environ Saf doi: 10.1016/j.ecoenv.2018.07.086 – volume: 729 start-page: 138276 year: 2020 ident: 782_CR33 publication-title: Sci Tot Environ doi: 10.1016/j.scitotenv.2020.138276 – volume: 30 start-page: 2 year: 2009 ident: 782_CR65 publication-title: Neuroendocrinol Lett – volume: 692 start-page: 1291 year: 2019 ident: 782_CR11 publication-title: Sci Tot Environ doi: 10.1016/J.SCITOTENV.2019.06.301 – volume: 579 start-page: 966 year: 2017 ident: 782_CR18 publication-title: Sci Tot Environ doi: 10.1016/j.scitotenv.2016.10.158 – volume: 61 start-page: 2090 year: 2016 ident: 782_CR3 publication-title: Freshw Biol doi: 10.1111/fwb.12711 – ident: 782_CR41 – volume: 76 start-page: 932 year: 2009 ident: 782_CR46 publication-title: Chemosphere doi: 10.1016/j.chemosphere.2009.04.045 – volume: 157 start-page: 2328 year: 2009 ident: 782_CR53 publication-title: Environ Pollut doi: 10.1016/j.envpol.2009.03.027 – volume: 88 start-page: 316 year: 2012 ident: 782_CR67 publication-title: Bull Environ Contam Toxicol doi: 10.1007/s00128-011-0515-5 – volume: 10 start-page: 327 year: 2014 ident: 782_CR34 publication-title: Integr Environ Assess Manag doi: 10.1002/ieam.1530 – volume: 242 start-page: 1058 year: 2018 ident: 782_CR48 publication-title: Environ Pollut doi: 10.1016/j.envpol.2018.07.100 – volume: 93 start-page: 93 year: 2013 ident: 782_CR8 publication-title: Ecotoxicol Environ Saf doi: 10.1016/j.ecoenv.2013.04.006 – volume: 252 start-page: 483 year: 2019 ident: 782_CR49 publication-title: Environ Pollut doi: 10.1016/J.ENVPOL.2019.05.114 – volume: 640–641 start-page: 1354 year: 2018 ident: 782_CR83 publication-title: Sci Tot Environ doi: 10.1016/j.scitotenv.2018.06.008 – volume: 197 start-page: 110699 year: 2019 ident: 782_CR25 publication-title: J Inorg Biochem doi: 10.1016/j.jinorgbio.2019.110699 – volume: 2 start-page: 188 year: 2015 ident: 782_CR45 publication-title: Environ Sci Technol Lett doi: 10.1021/acs.estlett.5b00136 – volume: 60 start-page: 126 year: 2013 ident: 782_CR14 publication-title: Ecol Eng doi: 10.1016/j.ecoleng.2013.07.058 – volume: 21 start-page: 421 year: 2012 ident: 782_CR30 publication-title: Ecotoxicology doi: 10.1007/s10646-011-0802-2 – volume: 59 start-page: 2887 year: 2011 ident: 782_CR39 publication-title: J Agric Food Chem doi: 10.1021/jf101824y – volume: 8 start-page: 243 year: 1986 ident: 782_CR19 publication-title: Aquat Toxicol doi: 10.1016/0166-445X(86)90076-7 – ident: 782_CR1 – volume: 148 start-page: 367 year: 2018 ident: 782_CR15 publication-title: Ecotoxicol Environ Saf doi: 10.1016/j.ecoenv.2017.10.054 – volume: 13 start-page: 191 year: 2014 ident: 782_CR42 publication-title: Paddy Water Environ doi: 10.1007/s10333-014-0420-8 – volume: 122 start-page: 337 year: 1999 ident: 782_CR21 publication-title: Comp Biochem Physiol Part C Pharmacol Toxicol Endocrinol doi: 10.1016/S0742-8413(98)10133-0 – volume: 341 start-page: 752 year: 2013 ident: 782_CR22 publication-title: Science doi: 10.1126/science.1236281 – volume: 92 start-page: 262 year: 2003 ident: 782_CR72 publication-title: Environ Res doi: 10.1016/S0013-9351(03)00033-1 – volume: 24 start-page: 17285 year: 2017 ident: 782_CR79 publication-title: Environ Sci Pollut Res doi: 10.1007/s11356-017-9240-x – volume: 14 start-page: 1 year: 2019 ident: 782_CR62 publication-title: Rev Ambient e Agua doi: 10.4136/1980-993X – volume: 63 start-page: 1856 year: 2015 ident: 782_CR24 publication-title: J Agric Food Chem doi: 10.1021/jf504895h – volume: 155 start-page: 181 year: 2014 ident: 782_CR35 publication-title: Aquat Toxicol doi: 10.1016/j.aquatox.2014.06.020 – volume: 55 start-page: 247 year: 2008 ident: 782_CR7 publication-title: Arch Environ Contam Toxicol doi: 10.1007/s00244-007-9104-3 – volume: 16 start-page: 153 year: 2004 ident: 782_CR23 publication-title: Acta Limnol Bras – volume: 12 start-page: 761 year: 2012 ident: 782_CR60 publication-title: FEMS Yeast Res doi: 10.1111/j.1567-1364.2012.00826.x – volume: 71 start-page: 103210 year: 2019 ident: 782_CR76 publication-title: Environ Toxicol Pharmacol doi: 10.1016/j.etap.2019.103210 – volume: 22 start-page: 68 year: 2015 ident: 782_CR54 publication-title: Environ Sci Pollut Res doi: 10.1007/s11356-014-3471-x – volume: 165 start-page: 476 year: 2018 ident: 782_CR78 publication-title: Ecotoxicol Environ Saf doi: 10.1016/j.ecoenv.2018.09.036 – volume: 88 start-page: 314 year: 2015 ident: 782_CR85 publication-title: Free Radic Biol Med doi: 10.1016/j.freeradbiomed.2015.05.036 – volume: 193 start-page: 189 year: 2014 ident: 782_CR31 publication-title: Environ Pollut doi: 10.1016/j.envpol.2014.06.033 – volume: 52 start-page: 287 year: 1991 ident: 782_CR16 publication-title: Pharmacol Ther doi: 10.1016/0163-7258(91)90029-L – volume-title: Nicotinoid insecticides and the nicotinic acetylcholine receptor year: 1999 ident: 782_CR84 doi: 10.1007/978-4-431-67933-2 – volume: 235 start-page: 470 year: 2018 ident: 782_CR80 publication-title: Environ Pollut doi: 10.1016/j.envpol.2017.12.120 – volume: 72 start-page: 248 year: 1976 ident: 782_CR9 publication-title: Anal Biochem doi: 10.1016/j.sbi.2014.10.005 – volume: 233 start-page: 862 year: 2018 ident: 782_CR32 publication-title: Environ Pollut doi: 10.1016/J.ENVPOL.2017.12.036 – volume: 191 start-page: 876 year: 2018 ident: 782_CR17 publication-title: Chemosphere doi: 10.1016/j.chemosphere.2017.10.114 – volume: 89 start-page: 647 year: 2019 ident: 782_CR59 publication-title: Fish Shellfish Immunol doi: 10.1016/j.fsi.2019.03.064 – volume: 64 start-page: 208 year: 2013 ident: 782_CR82 publication-title: Arch Environ Contam Toxicol doi: 10.1007/s00244-012-9833-9 – volume: 209 start-page: 568 year: 2018 ident: 782_CR10 publication-title: Chemosphere doi: 10.1016/j.chemosphere.2018.06.102 – volume: 10 start-page: 1 year: 2015 ident: 782_CR64 publication-title: PLoS ONE doi: 10.1371/journal.pone.0135091 |
SSID | ssj0012884 |
Score | 2.3447063 |
Snippet | Several studies have indicated the presence of the neonicotinoid insecticide imidacloprid (IMI) in aquatic ecosystems in concentrations up to 320.0 µg L
−1
.... Several studies have indicated the presence of the neonicotinoid insecticide imidacloprid (IMI) in aquatic ecosystems in concentrations up to 320.0 µg L . In... Several studies have indicated the presence of the neonicotinoid insecticide imidacloprid (IMI) in aquatic ecosystems in concentrations up to 320.0 µg L−1. In... Several studies have indicated the presence of the neonicotinoid insecticide imidacloprid (IMI) in aquatic ecosystems in concentrations up to 320.0 µg L-1. In... Several studies have indicated the presence of the neonicotinoid insecticide imidacloprid (IMI) in aquatic ecosystems in concentrations up to 320.0 µg L⁻¹. In... |
SourceID | proquest pubmed crossref springer |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 437 |
SubjectTerms | Animals Aquatic ecosystems Aquatic insects Aquatic Organisms Archives & records ascorbate peroxidase Ascorbic acid Catalase Chironomidae Chironomus Contamination Crustaceans Danio rerio Daphnia - drug effects Daphnia similis Earth and Environmental Science Ecosystem Ecotoxicology Environment Environmental Chemistry Environmental Health Enzymatic activity Enzymes fish Fresh Water freshwater Freshwater environments Glutathione Glutathione Transferase Imidacloprid Indoor environments Insecticides Insecticides - analysis Insects L-Ascorbate peroxidase Lotic environment lotic systems Monitoring/Environmental Analysis Mortality Neonicotinoids - analysis Neonicotinoids - toxicity Nitro Compounds - analysis Nitro Compounds - toxicity Nontarget organisms Peroxidase Pesticides Pollution rivers Soil Science & Conservation Surface water Survival Toxicology Water analysis Water Pollutants, Chemical - analysis Water Pollutants, Chemical - toxicity Water pollution Water sampling Zebrafish |
SummonAdditionalLinks | – databaseName: SpringerLink Journals (ICM) dbid: U2A link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LaxwxDDZtSqGXkqSvbZLiQG-JwTO2157jUnZJCskhD8ht8GvahexMm9lQ8hf6qyt5HqEkDfQ8GiMsyZKQ9ImQzw58quGWM1WoAAlKpZgrlGCZ4y7kSnhtcDj55HR6dCm_XqmrfiisHbrdh5JkeqnHYTd0J5JhupP8GhPPyQuFuTto8WU-G2sHuTEd9nLBmYRHuh-VefyMv93RgxjzQX00uZ3FJnndx4t01gl4izyL9TZ5OU9Y03dvyO-zrsc1trSp6OwnAnd7etrUXYc37UYt21VLlzWdj2j-LT1frtLirvobtfTcxxpy5gbPQLgqi_0xKDHq7ujxahmsv26AwYCnWLqAFP37LwhSb-j8fk7uLblYzC--HLF-vQLzkps1U0pZk0VvMx-nXDsB9hwNAhRWuStCBFOd6pAFCSGKKmwMDtIPq1VwQWpZiXdko27q-IFQzaOXxmuRh0JCZmsKGSDsyoLmofChmpBsuOTS99DjuAHjuhxBk5NgShBMmQRTigk5GP_50QFvPEm9O8iu7I2wLSGzhOBIQ4w2IfvjZzAfrInYOja3SDMFAqUz-QSNgkvBvQB8Qt53ejGyJESOhSv4-3BQlHsG_s3vx_8j3yGvcuylSd3iu2RjfXMb9yAYWrtPSff_AHcJ_q8 priority: 102 providerName: Springer Nature |
Title | Responses of Aquatic Nontarget Organisms in Experiments Simulating a Scenario of Contamination by Imidacloprid in a Freshwater Environment |
URI | https://link.springer.com/article/10.1007/s00244-020-00782-3 https://www.ncbi.nlm.nih.gov/pubmed/33275184 https://www.proquest.com/docview/2491757617 https://www.proquest.com/docview/2467615714 https://www.proquest.com/docview/2524328740 |
Volume | 80 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3di9QwEA96h-CL-O3qeUTwTYNtk2zSJ1mPrqfiIvcB61PJV8-F2_buuofcv-Bf7Uza7SKH-9JCm4Shk2Tm18z8hpC3FmyqTkzCZC49AJRKMptLzlKbWJ9J7pTG5OTvs_Hhqfg6l_P-h1vbh1Wu98S4UfvG4T_yDwATwNIB6FYfLy4ZVo3C09W-hMZdsovUZRjSpeYD4IKtV3cszHnCBGzXfdJMTJ1D4yQYgqdoJRn_1zDd8jZvnZRGAzR9SB70niOddKp-RO6E-jG5V0TW6Zsn5M9RF-0aWtpUdHKJFN6Ozpq6i_WmXdJlu2zpoqbFwOvf0uPFMpbwqs-ooccu1ICeGxwDiasMRsqg7qi9oV-WC2_ceQMCehzF0CmA9V-_wV29osUmY-4pOZkWJweHrC-0wJxI9IpJKY1OgzOpC-NEWQ4rO2ikKqwym_sAi3asfOoFOCsyN8FbACJGSW-9UKLiz8hO3dThBaEqCU5op3jmcwEYV-fCgwOWepX43PlqRNL1Ry5dT0KOtTDOy4E-OSqmBMWUUTElH5F3Q5-LjoJja-u9te7Kfjm25WbyjMib4TUsJDwdMXVorrHNGBpIlYotbSR8FKwQkIzI825eDCJxnuERFvR-v54oGwH-L-_L7fK-IvczjKKJceJ7ZGd1dR1egxu0svtxrsNVH6T7ZHfy-ee3Au6fitmPI3h6mk3-AmncBuM |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwED-NTgheEN90DDASPIE1J7Hr5AGhAalatlVoK9LeIsd2WKU12ZpOU_8F_hf-R875qtBE3_acs3XynX33y30BvEvRpoZMMSoiYRCgZIKmkQiol7LU-CLQMnTFyUeTwegn_34qTrfgT1sL49Iq2zexeqhNod0_8j2ECWjpEHTLzxeX1E2NctHVdoRGrRYHdnWNkK38NP6G8n3v-8N4-nVEm6kCVHMWLqkQQoWe1crTdsBkinie2dD15cv8NDIWNXQgjWc4WmYRKWtS9LqVFCY1XPIswG3vwDYPEMn0YPtLPPlx3IUt_DCs2z5HjHK0D02VTlWr56whpw6tVWaZBv9awhvu7Y3QbGXxhg_hQeOqkv1atx7Bls0fw924anO9egK_j-v0WluSIiP7l65nuCaTIq-Ty0ld5VnOSzLLSdwNEijJyWxezQzLfxFFTrTNEa4Xbg_XKUu51BynLCRdkfF8ZpQ-L5BB43ZRZLiw5dk1-scLEq9L9J7C9DZk8Ax6eZHbF0Aks5qHWga-iTiC6jDiBj0-z0hmIm2yPnjtISe66Xruhm-cJ12_5kowCQomqQSTBH340K25qHt-bKTebWWXNPe_TNba2oe33We8uS4co3JbXDmaARII6fENNAIPxY0kYH14XutFx1IQ-C5mhqs_toqyZuD__O5s5vcN3BtNjw6Tw_Hk4CXc910KT5Wkvgu95eLKvkIfbJm-bjSfQHLLd-0vJDo_Sg |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZKEYgL4s1CASPBCaw6ib1ODghVdFddCitEi9Rb5FdgpW7Sbraq9i_wj_h3zDiPFarYW8-xrZFnPDNf5kXIGwM2NeWaM5lJBwClkMxkMmGR4cbFMrEqxeLkr9PhwQ_x-USebJE_XS0MplV2OjEoaldZ_Ee-CzABLB2AbrVbtGkR3_bHH8_OGU6QwkhrN06jEZFDv7oE-FZ_mOwDr9_G8Xh0_OmAtRMGmBU8XTIppU4jb3Vk_ZArA9ie-xR79BWxyZwHaR0qFzkBVlpm2jsDHrhW0hknlCgSOPYGuakSGeETUyc91gOtnzYNoDPOBFiKtl4nVO2hXRQMcVsw0Cz51yZecXSvBGmD7RvfI3dbp5XuNVJ2n2z58gG5NQoNr1cPye_vTaKtr2lV0L1z7B5u6bQqmzRz2tR71vOazko66kcK1PRoNg_Tw8qfVNMj60sA7hWegT2zNCbpoNhQs6KT-cxpe1oBgQ5P0XS88PWvS_CUF3S0LtZ7RI6vgwOPyXZZlf4poYp7K1KrkthlAuB1mgkHvl_kFHeZdcWARN0l57btf45jOE7zvnNzYEwOjMkDY_JkQN71e86a7h8bV-90vMtbTVDna7kdkNf9Z3jDGJjRpa8ucM0QFkgViQ1rJFwKDifgA_KkkYuepCSJMXoGu993grIm4P_0PttM7ytyG15Y_mUyPXxO7sSYyxOy1XfI9nJx4V-AM7Y0L4PYU5Jf8zP7C6yEQho |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Responses+of+Aquatic+Nontarget+Organisms+in+Experiments+Simulating+a+Scenario+of+Contamination+by+Imidacloprid+in+a+Freshwater+Environment&rft.jtitle=Archives+of+environmental+contamination+and+toxicology&rft.au=Queiroz%2C+Lucas+Gon%C3%A7alves&rft.au=do+Prado%2C+Caio+C%C3%A9sar+Achiles&rft.au=de+Almeida%2C+%C3%89ryka+Costa&rft.au=D%C3%B6rr%2C+Felipe+Augusto&rft.date=2021-02-01&rft.issn=1432-0703&rft.eissn=1432-0703&rft.volume=80&rft.issue=2&rft.spage=437&rft_id=info:doi/10.1007%2Fs00244-020-00782-3&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0090-4341&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0090-4341&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0090-4341&client=summon |