EEG Signals Denoising Using Optimal Wavelet Transform Hybridized With Efficient Metaheuristic Methods
Background. The most common and successful technique for signal denoising with nonstationary signals, such as electroencephalogram (EEG) and electrocardiogram (ECG) is the wavelet transform (WT). The success of WT depends on the optimal configuration of its control parameters which are often experim...
Saved in:
Published in | IEEE access Vol. 8; pp. 10584 - 10605 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Piscataway
IEEE
2020
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Background. The most common and successful technique for signal denoising with nonstationary signals, such as electroencephalogram (EEG) and electrocardiogram (ECG) is the wavelet transform (WT). The success of WT depends on the optimal configuration of its control parameters which are often experimentally set. Fortunately, the optimality of the combination of these parameters can be measured in advance by using the mean squared error (MSE) function. Method. In this paper, five powerful metaheuristic algorithms are proposed to find the optimal WT parameters for EEG signal denoising which are harmony search (HS), β-hill climbing (β-hc), particle swarm optimization (PSO), genetic algorithm (GA), and flower pollination algorithm (FPA). It is worth mentioning that this is the initial investigation of using optimization methods for WT parameter configuration. This paper then examines which efficient algorithm has obtained the minimum MSE and the best WT parameter configurations. Result. The performance of the proposed algorithms is tested using two standard EEG datasets, namely, Kiern's EEG dataset and EEG Motor Movement/Imagery dataset. The results of the proposed algorithms are evaluated using five common criteria: signal-to-noise-ratio (SNR), SNR improvement, mean square error (MSE), root mean square error (RMSE), and percentage root mean square difference (PRD). Interestingly, for almost all evaluating criteria, FPA achieves the best parameters configuration for WT and empowers this technique to efficiently denoise the EEG signals for almost all used datasets. To further validate the FPA results, a comparative study between the FPA results and the results of two previous studies is conducted, and the findings favor to FPA. Conclusion. In conclusion, the results show that the proposed methods for EEG signal denoising can produce better results than manual configurations based on ad hoc strategy. Therefore, using metaheuristic approaches to optimize the parameters for EEG signals positively affects the denoising process performance of the WT method. |
---|---|
AbstractList | Background. The most common and successful technique for signal denoising with nonstationary signals, such as electroencephalogram (EEG) and electrocardiogram (ECG) is the wavelet transform (WT). The success of WT depends on the optimal configuration of its control parameters which are often experimentally set. Fortunately, the optimality of the combination of these parameters can be measured in advance by using the mean squared error (MSE) function. Method. In this paper, five powerful metaheuristic algorithms are proposed to find the optimal WT parameters for EEG signal denoising which are harmony search (HS), β-hill climbing (β-hc), particle swarm optimization (PSO), genetic algorithm (GA), and flower pollination algorithm (FPA). It is worth mentioning that this is the initial investigation of using optimization methods for WT parameter configuration. This paper then examines which efficient algorithm has obtained the minimum MSE and the best WT parameter configurations. Result. The performance of the proposed algorithms is tested using two standard EEG datasets, namely, Kiern's EEG dataset and EEG Motor Movement/Imagery dataset. The results of the proposed algorithms are evaluated using five common criteria: signal-to-noise-ratio (SNR), SNR improvement, mean square error (MSE), root mean square error (RMSE), and percentage root mean square difference (PRD). Interestingly, for almost all evaluating criteria, FPA achieves the best parameters configuration for WT and empowers this technique to efficiently denoise the EEG signals for almost all used datasets. To further validate the FPA results, a comparative study between the FPA results and the results of two previous studies is conducted, and the findings favor to FPA. Conclusion. In conclusion, the results show that the proposed methods for EEG signal denoising can produce better results than manual configurations based on ad hoc strategy. Therefore, using metaheuristic approaches to optimize the parameters for EEG signals positively affects the denoising process performance of the WT method. |
Author | Al-Betar, Mohammed Azmi Khader, Ahamad Tajudin Makhadmeh, Sharif Naser Abasi, Ammar Kamal Alyasseri, Zaid Abdi Alkareem |
Author_xml | – sequence: 1 givenname: Zaid Abdi Alkareem orcidid: 0000-0003-4228-9298 surname: Alyasseri fullname: Alyasseri, Zaid Abdi Alkareem email: zaid.alyasseri@uokufa.edu.iq organization: School of Computer Sciences, Universiti Sains Malaysia, Pulau Pinang, Malaysia – sequence: 2 givenname: Ahamad Tajudin orcidid: 0000-0002-7046-5327 surname: Khader fullname: Khader, Ahamad Tajudin email: tajudin@usm.my organization: School of Computer Sciences, Universiti Sains Malaysia, Pulau Pinang, Malaysia – sequence: 3 givenname: Mohammed Azmi orcidid: 0000-0003-1980-1791 surname: Al-Betar fullname: Al-Betar, Mohammed Azmi organization: Department of Information Technology, Al-Huson University College, Al-Balqa Applied University, Irbid, Jordan – sequence: 4 givenname: Ammar Kamal orcidid: 0000-0003-0725-6167 surname: Abasi fullname: Abasi, Ammar Kamal organization: School of Computer Sciences, Universiti Sains Malaysia, Pulau Pinang, Malaysia – sequence: 5 givenname: Sharif Naser orcidid: 0000-0002-2894-7998 surname: Makhadmeh fullname: Makhadmeh, Sharif Naser organization: School of Computer Sciences, Universiti Sains Malaysia, Pulau Pinang, Malaysia |
BookMark | eNp9kUtvGyEUhUdVKjVN8wuyQeraLgyPgWXkTpNIqbJwoiwRAxcbazK4gCslv744k1ZVF2XB4-p-5x5xPjYnU5ygaS4IXhKC1ZfL1apfr5ctJmrZKtEKLt81py0RakE5FSd_3T805znvcF2ylnh32kDfX6F12ExmzOgrTDHkMG3Qw-t-ty_hyYzo0fyEEQq6T2bKPqYndP08pODCCzj0GMoW9d4HG2Aq6DsUs4VDCrkEe3xto8ufmve-DoDzt_OsefjW36-uF7d3Vzery9uFZViWBWcd5rxtrWEcDwwAAwPiMBZy6IDabmBODdjLznDaCee8J0D44Cy1avCGnjU3s66LZqf3qbpPzzqaoF8LMW20SdXXCHoAZT0dAGMnmZBEtkwpQRmnda5ybdX6PGvtU_xxgFz0Lh7S8Z90y6pT1TEqa5eau2yKOSfw2oZiSohTSSaMmmB9DEnPIeljSPotpMrSf9jfjv9PXcxUAIA_hFSMYaHoL6yfoBs |
CODEN | IAECCG |
CitedBy_id | crossref_primary_10_3390_s24165285 crossref_primary_10_3390_app121910057 crossref_primary_10_1007_s41870_023_01615_x crossref_primary_10_3390_s23146434 crossref_primary_10_1007_s00500_022_07211_8 crossref_primary_10_1364_OL_446158 crossref_primary_10_1016_j_bspc_2023_104952 crossref_primary_10_1016_j_sigpro_2021_108225 crossref_primary_10_1016_j_bspc_2021_103023 crossref_primary_10_1016_j_compchemeng_2023_108380 crossref_primary_10_1109_ACCESS_2020_3004202 crossref_primary_10_3390_electronics10040447 crossref_primary_10_1007_s00521_020_04945_0 crossref_primary_10_1109_ACCESS_2020_3048376 crossref_primary_10_1016_j_bspc_2020_102172 crossref_primary_10_1016_j_jneumeth_2025_110431 crossref_primary_10_1088_1741_2552_ac84a9 crossref_primary_10_1109_ACCESS_2020_3021051 crossref_primary_10_1016_j_jneumeth_2023_109841 crossref_primary_10_1016_j_bspc_2022_103659 crossref_primary_10_3390_app122312011 crossref_primary_10_1016_j_heliyon_2024_e26171 crossref_primary_10_1007_s12559_022_09997_z crossref_primary_10_1109_TIM_2022_3150848 crossref_primary_10_1007_s00521_021_06757_2 crossref_primary_10_1109_ACCESS_2020_3034441 crossref_primary_10_1109_ACCESS_2020_3009665 crossref_primary_10_1109_TIM_2021_3071217 crossref_primary_10_3390_s23177460 crossref_primary_10_1002_cpe_7252 crossref_primary_10_1109_ACCESS_2020_3009944 crossref_primary_10_24237_djes_2024_17405 crossref_primary_10_1016_j_aej_2021_10_034 crossref_primary_10_1109_ACCESS_2021_3135805 crossref_primary_10_3390_app11188634 crossref_primary_10_1177_00202940221092102 crossref_primary_10_1016_j_measurement_2021_110485 crossref_primary_10_3390_chemosensors11020146 crossref_primary_10_3390_electronics14061122 crossref_primary_10_1016_j_neuroimage_2022_119586 crossref_primary_10_21605_cukurovaumfd_1041515 crossref_primary_10_1088_1361_6501_ac7849 crossref_primary_10_1109_ACCESS_2020_3004504 crossref_primary_10_1049_cit2_12054 crossref_primary_10_1016_j_bspc_2020_102230 crossref_primary_10_1088_1361_6501_acd5f3 crossref_primary_10_1016_j_dsm_2024_12_004 crossref_primary_10_1109_ACCESS_2020_3016481 crossref_primary_10_1109_ACCESS_2023_3314589 crossref_primary_10_1080_10255842_2022_2162339 crossref_primary_10_5121_ijma_2022_14501 crossref_primary_10_3390_math10030315 crossref_primary_10_1007_s11042_020_09504_2 crossref_primary_10_1109_ACCESS_2020_3030950 crossref_primary_10_1109_ACCESS_2020_3031003 crossref_primary_10_1109_TIM_2022_3146623 crossref_primary_10_1016_j_eswa_2023_120484 crossref_primary_10_1016_j_susoc_2024_04_001 crossref_primary_10_2478_amns_2024_2724 crossref_primary_10_1016_j_jappgeo_2023_105236 crossref_primary_10_1007_s11192_023_04674_w crossref_primary_10_1109_TBME_2021_3093037 crossref_primary_10_1016_j_bspc_2020_101987 crossref_primary_10_1016_j_bspc_2022_104389 crossref_primary_10_1016_j_aei_2024_102669 crossref_primary_10_1109_ACCESS_2020_3021720 crossref_primary_10_1007_s11571_023_09957_9 crossref_primary_10_1007_s11831_023_09984_z crossref_primary_10_3233_JCM_226529 crossref_primary_10_1109_ACCESS_2020_3028039 crossref_primary_10_1109_ACCESS_2021_3072640 crossref_primary_10_1109_TMC_2024_3453412 crossref_primary_10_3389_fnins_2025_1461654 crossref_primary_10_3390_s22051750 crossref_primary_10_1007_s12652_020_02439_4 |
Cites_doi | 10.1016/j.dsp.2007.09.006 10.1016/j.bbe.2016.04.001 10.1007/s00521-016-2328-2 10.1007/s12559-017-9478-0 10.1016/0305-0548(86)90048-1 10.3844/ajassp.2008.276.281 10.7551/mitpress/1090.001.0001 10.1016/j.ins.2017.11.026 10.1080/18756891.2016.1237191 10.1016/j.eswa.2016.06.006 10.1016/j.eswa.2014.05.006 10.1016/j.bspc.2014.10.012 10.1016/j.bspc.2011.11.003 10.3390/s151129015 10.1016/j.asoc.2016.08.041 10.1109/10.64464 10.1016/S1665-6423(13)71524-4 10.1016/S0377-2217(00)00100-4 10.1016/j.protcy.2012.05.136 10.1109/18.382009 10.2307/2337118 10.1109/CNSC.2014.6906684 10.1177/003754970107600201 10.1016/j.robot.2014.11.015 10.1109/ACCESS.2018.2881470 10.1109/TBME.2003.808805 10.1109/ICBAPS.2018.8527404 10.1007/s11517-017-1734-7 10.1007/s11235-010-9286-2 10.1016/j.dsp.2005.12.003 10.1007/BF01797193 10.1126/science.220.4598.671 10.1016/j.inffus.2009.06.004 10.1016/j.inffus.2011.09.004 10.1016/j.neucom.2011.04.029 10.1109/IECBES.2014.7047488 10.1161/01.CIR.101.23.e215 10.1007/978-3-642-32894-7_27 10.1007/s13721-012-0015-5 10.1016/j.ijleo.2015.09.020 10.1016/j.eswa.2011.01.137 10.1016/j.neucom.2016.10.024 10.1016/j.eij.2015.06.002 10.1016/j.dsp.2004.12.005 10.3390/s140713046 10.1007/s11721-007-0002-0 10.1016/j.dsp.2012.08.001 10.1007/BF01096763 10.1007/s00521-015-1885-0 10.1007/978-3-319-67669-2_5 10.1007/s12559-017-9487-z 10.1017/CBO9781139032803 10.1109/TBME.2006.886855 10.1016/j.bspc.2015.06.009 10.5120/18924-0276 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020 |
DBID | 97E ESBDL RIA RIE AAYXX CITATION 7SC 7SP 7SR 8BQ 8FD JG9 JQ2 L7M L~C L~D DOA |
DOI | 10.1109/ACCESS.2019.2962658 |
DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE Xplore Open Access Journals IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts METADEX Technology Research Database Materials Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace METADEX Computer and Information Systems Abstracts Professional |
DatabaseTitleList | Materials Research Database |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 2169-3536 |
EndPage | 10605 |
ExternalDocumentID | oai_doaj_org_article_be9cf3be00d8468182499634534ee9d2 10_1109_ACCESS_2019_2962658 8944069 |
Genre | orig-research |
GrantInformation_xml | – fundername: Universiti Sains Malaysia grantid: 1001/PKOMP/8014016 funderid: 10.13039/501100004595 – fundername: The World Academic Science (TWAS) and USM through the TWAS-USM Postgraduate Fellowship 2015 grantid: 3240287134 |
GroupedDBID | 0R~ 4.4 5VS 6IK 97E AAJGR ABAZT ABVLG ACGFS ADBBV AGSQL ALMA_UNASSIGNED_HOLDINGS BCNDV BEFXN BFFAM BGNUA BKEBE BPEOZ EBS EJD ESBDL GROUPED_DOAJ IPLJI JAVBF KQ8 M43 M~E O9- OCL OK1 RIA RIE RNS AAYXX CITATION RIG 7SC 7SP 7SR 8BQ 8FD JG9 JQ2 L7M L~C L~D |
ID | FETCH-LOGICAL-c408t-54705522ca450b4ee0e4e1d0068b7e3c7b4d9b0f87a5376ddff1e15bdc3c9bfa3 |
IEDL.DBID | DOA |
ISSN | 2169-3536 |
IngestDate | Wed Aug 27 01:32:25 EDT 2025 Mon Jun 30 05:03:26 EDT 2025 Tue Jul 01 01:22:00 EDT 2025 Thu Apr 24 22:57:38 EDT 2025 Wed Aug 27 06:29:34 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Language | English |
License | https://creativecommons.org/licenses/by/4.0/legalcode |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c408t-54705522ca450b4ee0e4e1d0068b7e3c7b4d9b0f87a5376ddff1e15bdc3c9bfa3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-2894-7998 0000-0003-1980-1791 0000-0003-0725-6167 0000-0002-7046-5327 0000-0003-4228-9298 |
OpenAccessLink | https://doaj.org/article/be9cf3be00d8468182499634534ee9d2 |
PQID | 2454797438 |
PQPubID | 4845423 |
PageCount | 22 |
ParticipantIDs | crossref_primary_10_1109_ACCESS_2019_2962658 crossref_citationtrail_10_1109_ACCESS_2019_2962658 ieee_primary_8944069 doaj_primary_oai_doaj_org_article_be9cf3be00d8468182499634534ee9d2 proquest_journals_2454797438 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20200000 2020-00-00 20200101 2020-01-01 |
PublicationDateYYYYMMDD | 2020-01-01 |
PublicationDate_xml | – year: 2020 text: 20200000 |
PublicationDecade | 2020 |
PublicationPlace | Piscataway |
PublicationPlace_xml | – name: Piscataway |
PublicationTitle | IEEE access |
PublicationTitleAbbrev | Access |
PublicationYear | 2020 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref57 ref13 ref56 padmaja (ref38) 2016; 7 ref59 ref15 ref58 alyasseri (ref10) 2017 ref14 ref53 ref52 ref55 ref54 ref17 ref16 karaboga (ref20) 2005 ref51 ref50 ref46 koza (ref18) 1992; 1 ref45 ref48 ref47 kumar (ref41) 2014; 17 ref42 ref44 ref43 ref49 ref8 ref7 ref9 ref4 ref3 ref6 ref5 ref40 ref35 ref34 ref37 ref31 ref30 ref33 ref32 ref2 ref1 ref39 reddy (ref36) 2017; 4 kennedy (ref19) 2011 alyasseri (ref11) 2017 ref24 ref23 ref25 ref64 ref63 ref66 ref22 ref65 ref21 glover (ref26) 2002 ref28 ref29 alyasseri (ref27) 2012 alyasseri (ref12) 2017 ref60 ref62 ref61 |
References_xml | – ident: ref60 doi: 10.1016/j.dsp.2007.09.006 – volume: 1 year: 1992 ident: ref18 publication-title: Genetic Programming on the Programming by Means of Natural Selection – ident: ref32 doi: 10.1016/j.bbe.2016.04.001 – ident: ref14 doi: 10.1007/s00521-016-2328-2 – ident: ref7 doi: 10.1007/s12559-017-9478-0 – volume: 4 start-page: 1947 year: 2017 ident: ref36 article-title: Analysis of EEG signal for the detection of brain abnormalities publication-title: Int J Res – ident: ref23 doi: 10.1016/0305-0548(86)90048-1 – ident: ref55 doi: 10.3844/ajassp.2008.276.281 – ident: ref16 doi: 10.7551/mitpress/1090.001.0001 – ident: ref13 doi: 10.1016/j.ins.2017.11.026 – ident: ref28 doi: 10.1080/18756891.2016.1237191 – ident: ref29 doi: 10.1016/j.eswa.2016.06.006 – ident: ref57 doi: 10.1016/j.eswa.2014.05.006 – ident: ref31 doi: 10.1016/j.bspc.2014.10.012 – ident: ref66 doi: 10.1016/j.bspc.2011.11.003 – ident: ref33 doi: 10.3390/s151129015 – ident: ref63 doi: 10.1016/j.asoc.2016.08.041 – ident: ref30 doi: 10.1109/10.64464 – ident: ref42 doi: 10.1016/S1665-6423(13)71524-4 – year: 2002 ident: ref26 article-title: Iterated local search publication-title: Handbook of Metaheuristics – ident: ref25 doi: 10.1016/S0377-2217(00)00100-4 – ident: ref54 doi: 10.1016/j.protcy.2012.05.136 – start-page: 47 year: 2012 ident: ref27 article-title: Edge preserving image enhancement via harmony search algorithm publication-title: Proc 4th Conf Data Mining Optim (DMO) – ident: ref62 doi: 10.1109/18.382009 – ident: ref47 doi: 10.2307/2337118 – ident: ref46 doi: 10.1109/CNSC.2014.6906684 – ident: ref17 doi: 10.1177/003754970107600201 – start-page: 100 year: 2017 ident: ref12 article-title: Electroencephalogram signals denoising using various mother wavelet functions: A comparative analysis publication-title: Proc Int Conf Signal Process Commun – ident: ref1 doi: 10.1016/j.robot.2014.11.015 – ident: ref50 doi: 10.1109/ACCESS.2018.2881470 – ident: ref51 doi: 10.1109/TBME.2003.808805 – ident: ref45 doi: 10.1109/ICBAPS.2018.8527404 – ident: ref35 doi: 10.1007/s11517-017-1734-7 – start-page: 1 year: 2017 ident: ref10 article-title: ECG signal denoising using $\beta$ -hill climbing algorithm and wavelet transform publication-title: Proc 8th Int Conf Inf Technol (ICIT) – start-page: 106 year: 2017 ident: ref11 article-title: Optimal electroencephalogram signals denoising using hybrid $\beta$ -hill climbing algorithm and wavelet transform publication-title: Proc Int Conf Signal Process Commun – volume: 17 start-page: 9 year: 2014 ident: ref41 article-title: Wavelet transform for bearing condition monitoring and fault diagnosis: A review publication-title: Int J COMADEM – ident: ref9 doi: 10.1007/s11235-010-9286-2 – ident: ref48 doi: 10.1016/j.dsp.2005.12.003 – ident: ref5 doi: 10.1007/BF01797193 – ident: ref22 doi: 10.1126/science.220.4598.671 – ident: ref53 doi: 10.1016/j.inffus.2009.06.004 – ident: ref52 doi: 10.1016/j.inffus.2011.09.004 – ident: ref61 doi: 10.1016/j.neucom.2011.04.029 – ident: ref34 doi: 10.1109/IECBES.2014.7047488 – ident: ref15 doi: 10.1161/01.CIR.101.23.e215 – ident: ref21 doi: 10.1007/978-3-642-32894-7_27 – ident: ref56 doi: 10.1007/s13721-012-0015-5 – ident: ref2 doi: 10.1016/j.ijleo.2015.09.020 – ident: ref44 doi: 10.1016/j.eswa.2011.01.137 – ident: ref3 doi: 10.1016/j.neucom.2016.10.024 – ident: ref6 doi: 10.1016/j.eij.2015.06.002 – ident: ref40 doi: 10.1016/j.dsp.2004.12.005 – volume: 7 start-page: 25 year: 2016 ident: ref38 article-title: A GUI based EEG signal denoising using hilbert huang transform publication-title: J Electron Eng – ident: ref43 doi: 10.3390/s140713046 – ident: ref64 doi: 10.1007/s11721-007-0002-0 – ident: ref59 doi: 10.1016/j.dsp.2012.08.001 – ident: ref24 doi: 10.1007/BF01096763 – ident: ref37 doi: 10.1007/s00521-015-1885-0 – start-page: 760 year: 2011 ident: ref19 article-title: Particle swarm optimization publication-title: Encyclopedia of the Sciences of Learning – ident: ref65 doi: 10.1007/978-3-319-67669-2_5 – ident: ref39 doi: 10.1007/s12559-017-9487-z – ident: ref4 doi: 10.1017/CBO9781139032803 – year: 2005 ident: ref20 article-title: An idea based on honey bee swarm for numerical optimization – ident: ref8 doi: 10.1109/TBME.2006.886855 – ident: ref49 doi: 10.1016/j.bspc.2015.06.009 – ident: ref58 doi: 10.5120/18924-0276 |
SSID | ssj0000816957 |
Score | 2.452348 |
Snippet | Background. The most common and successful technique for signal denoising with nonstationary signals, such as electroencephalogram (EEG) and electrocardiogram... |
SourceID | doaj proquest crossref ieee |
SourceType | Open Website Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 10584 |
SubjectTerms | Algorithms Comparative studies Configuration management Datasets EEG Electrocardiography Electroencephalography flower pollination algorithm Genetic algorithms Heuristic methods Imagery Mean square errors Mean square values metaheuristic algorithms Noise reduction optimization Parameters Particle swarm optimization Root-mean-square errors signal denoising Signal processing Signal to noise ratio wavelet transform Wavelet transforms |
SummonAdditionalLinks | – databaseName: IEEE Electronic Library (IEL) dbid: RIE link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Nb9QwEB21PcGBAgWxpSAfODZbx3E28bEsW1ZIhQOt2lvkjwm7Kuwimj3QX8-M440qQIhbEtmOrWdPZiYzbwDelKhtkSOZJZNWZ3ribWasxIyOlTPOOp-3ke3z42R-qT9cl9c7cDzkwiBiDD7DMV_Gf_lh7TfsKjupjeZEzV3YJcOtz9Ua_ClcQMKUVSIWyqU5OZ1OaQ0cvWXGypDizmXd7318Ikd_KqryhySOn5ezfTjfTqyPKrkZbzo39ne_cTb-78wfw6OkZ4rTfmM8gR1cPYWH99gHDwBns_fi8_ILMyiLd7haL9lvIGIQgfhEouQbDXBluTJFJy62Cq6Y_-Qkr-UdBnG17BZiFkko6PXiHDu7wE3P_cx3i3W4fQaXZ7OL6TxLVRcyr2XdZaVmgh2lvNWldBpRosY8cC6Jq7DwldPBONnWlWUqmBDaNse8dMEX3rjWFs9hb7Ve4QsQ2hQOa19L31YkK9BVwZOEUVaVysuJHIHawtH4REnOlTG-NtE0kabpMWwYwyZhOILjodP3npHj383fMs5DU6bTjg8Inyadzsah8S3NVcpA-hjpMGSUkmTSZUHrN0GN4IAxHQZJcI7gaLtrmnT0bxvFFGlkpRX14d97vYQHio326Mc5gr3uxwZfkWbTuddxS_8CpMH2EA priority: 102 providerName: IEEE |
Title | EEG Signals Denoising Using Optimal Wavelet Transform Hybridized With Efficient Metaheuristic Methods |
URI | https://ieeexplore.ieee.org/document/8944069 https://www.proquest.com/docview/2454797438 https://doaj.org/article/be9cf3be00d8468182499634534ee9d2 |
Volume | 8 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LT-MwELYQJziseK22vOQDR7I4jvPwEUqhQgIOgOBm-TGhldh2BeEAv54ZJ60qIcGFY6LEST6PZ-aLPN8wdpCDslkKSEuKWiWq8DbRVkCCy8ppZ51P66j2eVUM79TFQ_6w0OqL9oS18sAtcEcOtK8zB0IEDJUYXpAvoNGoPFMAOkTvizFvgUxFH1ylhc7LTmYoFfrouN_HL6K9XPqv1JjGU5P3hVAUFfu7Fiuf_HIMNmdr7FeXJfLj9u3W2RJMNtjqgnbgJoPB4JzfjB9J_5ifwmQ6JtbP4xYAfo2O4B8OcG-pr0TDb2fpKR--UYnW-B0Cvx83Iz6IEhIYefglNHYEr61yMx2NpuFli92dDW77w6TrmZB4JaomyRXJ40jprcqFQ4gEKEgDVYK4EjJfOhW0E3VVWhJyCaGuU0hzF3zmtatt9pstT6YT-MO40gh75Svh6xJXOrgyePQP0spcelGIHpMz-IzvBMWpr8WTicRCaNNibghz02HeY4fzm_63ehpfX35C8zK_lMSw4wk0EdOZiPnORHpsk2Z1PkilFdX79tjubJZNt3BfjCSBM-RYWbX9E4_eYSuSCHr8Z7PLlpvnV9jDLKZx-9Fg92PB4Qdb0ez2 |
linkProvider | Directory of Open Access Journals |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lc9MwENaUcgAOvApDoIAOHOtUluXYOpaQEqApB9Jpbxo91iQDJAx1DvTXsysrng4wDDfbI9nSfNJqd737LWOvSlC2yAHNklGjMjXyNtNWQIbbymlnnc-byPZ5OpqeqfcX5cUOO-hzYQAgBp_BkC7jv_yw9htylR3WWlGi5g12E8_9UnbZWr1HhUpI6LJK1EK50IdH4zHOguK39FBqVN2psPu14yey9KeyKn_I4njAHN9js-3QuriSL8NN64b-6jfWxv8d-312N2ma_KhbGg_YDqwesjvX-Af3GEwmb_mn5WfiUOZvYLVekueAxzAC_hGFyTd8wbml2hQtn29VXD79SWleyysI_HzZLvgk0lDg5_kMWruATcf-THeLdbh8xM6OJ_PxNEt1FzKvRN1mpSKKHSm9VaVwCkCAgjxQNomroPCVU0E70dSVJTKYEJomh7x0wRdeu8YWj9nuar2CJ4wrXTiofS18U6G0AFcFjzJGWllKL0ZiwOQWDuMTKTnVxvhqonEitOkwNIShSRgO2EHf6XvHyfHv5q8J574pEWrHB4iPSfvTONC-wbEKEVAjQy0GzVKUTaoscP46yAHbI0z7lyQ4B2x_u2pM2vyXRhJJGtppRf30771eslvT-ezEnLw7_fCM3ZZkwkevzj7bbX9s4DnqOa17EZf3L5_b-Vo |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=EEG+Signals+Denoising+Using+Optimal+Wavelet+Transform+Hybridized+With+Efficient+Metaheuristic+Methods&rft.jtitle=IEEE+access&rft.au=Alyasseri%2C+Zaid+Abdi+Alkareem&rft.au=Khader%2C+Ahamad+Tajudin&rft.au=Al-Betar%2C+Mohammed+Azmi&rft.au=Abasi%2C+Ammar+Kamal&rft.date=2020&rft.issn=2169-3536&rft.eissn=2169-3536&rft.volume=8&rft.spage=10584&rft.epage=10605&rft_id=info:doi/10.1109%2FACCESS.2019.2962658&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_ACCESS_2019_2962658 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2169-3536&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2169-3536&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2169-3536&client=summon |