EEG Signals Denoising Using Optimal Wavelet Transform Hybridized With Efficient Metaheuristic Methods

Background. The most common and successful technique for signal denoising with nonstationary signals, such as electroencephalogram (EEG) and electrocardiogram (ECG) is the wavelet transform (WT). The success of WT depends on the optimal configuration of its control parameters which are often experim...

Full description

Saved in:
Bibliographic Details
Published inIEEE access Vol. 8; pp. 10584 - 10605
Main Authors Alyasseri, Zaid Abdi Alkareem, Khader, Ahamad Tajudin, Al-Betar, Mohammed Azmi, Abasi, Ammar Kamal, Makhadmeh, Sharif Naser
Format Journal Article
LanguageEnglish
Published Piscataway IEEE 2020
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Background. The most common and successful technique for signal denoising with nonstationary signals, such as electroencephalogram (EEG) and electrocardiogram (ECG) is the wavelet transform (WT). The success of WT depends on the optimal configuration of its control parameters which are often experimentally set. Fortunately, the optimality of the combination of these parameters can be measured in advance by using the mean squared error (MSE) function. Method. In this paper, five powerful metaheuristic algorithms are proposed to find the optimal WT parameters for EEG signal denoising which are harmony search (HS), β-hill climbing (β-hc), particle swarm optimization (PSO), genetic algorithm (GA), and flower pollination algorithm (FPA). It is worth mentioning that this is the initial investigation of using optimization methods for WT parameter configuration. This paper then examines which efficient algorithm has obtained the minimum MSE and the best WT parameter configurations. Result. The performance of the proposed algorithms is tested using two standard EEG datasets, namely, Kiern's EEG dataset and EEG Motor Movement/Imagery dataset. The results of the proposed algorithms are evaluated using five common criteria: signal-to-noise-ratio (SNR), SNR improvement, mean square error (MSE), root mean square error (RMSE), and percentage root mean square difference (PRD). Interestingly, for almost all evaluating criteria, FPA achieves the best parameters configuration for WT and empowers this technique to efficiently denoise the EEG signals for almost all used datasets. To further validate the FPA results, a comparative study between the FPA results and the results of two previous studies is conducted, and the findings favor to FPA. Conclusion. In conclusion, the results show that the proposed methods for EEG signal denoising can produce better results than manual configurations based on ad hoc strategy. Therefore, using metaheuristic approaches to optimize the parameters for EEG signals positively affects the denoising process performance of the WT method.
AbstractList Background. The most common and successful technique for signal denoising with nonstationary signals, such as electroencephalogram (EEG) and electrocardiogram (ECG) is the wavelet transform (WT). The success of WT depends on the optimal configuration of its control parameters which are often experimentally set. Fortunately, the optimality of the combination of these parameters can be measured in advance by using the mean squared error (MSE) function. Method. In this paper, five powerful metaheuristic algorithms are proposed to find the optimal WT parameters for EEG signal denoising which are harmony search (HS), β-hill climbing (β-hc), particle swarm optimization (PSO), genetic algorithm (GA), and flower pollination algorithm (FPA). It is worth mentioning that this is the initial investigation of using optimization methods for WT parameter configuration. This paper then examines which efficient algorithm has obtained the minimum MSE and the best WT parameter configurations. Result. The performance of the proposed algorithms is tested using two standard EEG datasets, namely, Kiern's EEG dataset and EEG Motor Movement/Imagery dataset. The results of the proposed algorithms are evaluated using five common criteria: signal-to-noise-ratio (SNR), SNR improvement, mean square error (MSE), root mean square error (RMSE), and percentage root mean square difference (PRD). Interestingly, for almost all evaluating criteria, FPA achieves the best parameters configuration for WT and empowers this technique to efficiently denoise the EEG signals for almost all used datasets. To further validate the FPA results, a comparative study between the FPA results and the results of two previous studies is conducted, and the findings favor to FPA. Conclusion. In conclusion, the results show that the proposed methods for EEG signal denoising can produce better results than manual configurations based on ad hoc strategy. Therefore, using metaheuristic approaches to optimize the parameters for EEG signals positively affects the denoising process performance of the WT method.
Author Al-Betar, Mohammed Azmi
Khader, Ahamad Tajudin
Makhadmeh, Sharif Naser
Abasi, Ammar Kamal
Alyasseri, Zaid Abdi Alkareem
Author_xml – sequence: 1
  givenname: Zaid Abdi Alkareem
  orcidid: 0000-0003-4228-9298
  surname: Alyasseri
  fullname: Alyasseri, Zaid Abdi Alkareem
  email: zaid.alyasseri@uokufa.edu.iq
  organization: School of Computer Sciences, Universiti Sains Malaysia, Pulau Pinang, Malaysia
– sequence: 2
  givenname: Ahamad Tajudin
  orcidid: 0000-0002-7046-5327
  surname: Khader
  fullname: Khader, Ahamad Tajudin
  email: tajudin@usm.my
  organization: School of Computer Sciences, Universiti Sains Malaysia, Pulau Pinang, Malaysia
– sequence: 3
  givenname: Mohammed Azmi
  orcidid: 0000-0003-1980-1791
  surname: Al-Betar
  fullname: Al-Betar, Mohammed Azmi
  organization: Department of Information Technology, Al-Huson University College, Al-Balqa Applied University, Irbid, Jordan
– sequence: 4
  givenname: Ammar Kamal
  orcidid: 0000-0003-0725-6167
  surname: Abasi
  fullname: Abasi, Ammar Kamal
  organization: School of Computer Sciences, Universiti Sains Malaysia, Pulau Pinang, Malaysia
– sequence: 5
  givenname: Sharif Naser
  orcidid: 0000-0002-2894-7998
  surname: Makhadmeh
  fullname: Makhadmeh, Sharif Naser
  organization: School of Computer Sciences, Universiti Sains Malaysia, Pulau Pinang, Malaysia
BookMark eNp9kUtvGyEUhUdVKjVN8wuyQeraLgyPgWXkTpNIqbJwoiwRAxcbazK4gCslv744k1ZVF2XB4-p-5x5xPjYnU5ygaS4IXhKC1ZfL1apfr5ctJmrZKtEKLt81py0RakE5FSd_3T805znvcF2ylnh32kDfX6F12ExmzOgrTDHkMG3Qw-t-ty_hyYzo0fyEEQq6T2bKPqYndP08pODCCzj0GMoW9d4HG2Aq6DsUs4VDCrkEe3xto8ufmve-DoDzt_OsefjW36-uF7d3Vzery9uFZViWBWcd5rxtrWEcDwwAAwPiMBZy6IDabmBODdjLznDaCee8J0D44Cy1avCGnjU3s66LZqf3qbpPzzqaoF8LMW20SdXXCHoAZT0dAGMnmZBEtkwpQRmnda5ybdX6PGvtU_xxgFz0Lh7S8Z90y6pT1TEqa5eau2yKOSfw2oZiSohTSSaMmmB9DEnPIeljSPotpMrSf9jfjv9PXcxUAIA_hFSMYaHoL6yfoBs
CODEN IAECCG
CitedBy_id crossref_primary_10_3390_s24165285
crossref_primary_10_3390_app121910057
crossref_primary_10_1007_s41870_023_01615_x
crossref_primary_10_3390_s23146434
crossref_primary_10_1007_s00500_022_07211_8
crossref_primary_10_1364_OL_446158
crossref_primary_10_1016_j_bspc_2023_104952
crossref_primary_10_1016_j_sigpro_2021_108225
crossref_primary_10_1016_j_bspc_2021_103023
crossref_primary_10_1016_j_compchemeng_2023_108380
crossref_primary_10_1109_ACCESS_2020_3004202
crossref_primary_10_3390_electronics10040447
crossref_primary_10_1007_s00521_020_04945_0
crossref_primary_10_1109_ACCESS_2020_3048376
crossref_primary_10_1016_j_bspc_2020_102172
crossref_primary_10_1016_j_jneumeth_2025_110431
crossref_primary_10_1088_1741_2552_ac84a9
crossref_primary_10_1109_ACCESS_2020_3021051
crossref_primary_10_1016_j_jneumeth_2023_109841
crossref_primary_10_1016_j_bspc_2022_103659
crossref_primary_10_3390_app122312011
crossref_primary_10_1016_j_heliyon_2024_e26171
crossref_primary_10_1007_s12559_022_09997_z
crossref_primary_10_1109_TIM_2022_3150848
crossref_primary_10_1007_s00521_021_06757_2
crossref_primary_10_1109_ACCESS_2020_3034441
crossref_primary_10_1109_ACCESS_2020_3009665
crossref_primary_10_1109_TIM_2021_3071217
crossref_primary_10_3390_s23177460
crossref_primary_10_1002_cpe_7252
crossref_primary_10_1109_ACCESS_2020_3009944
crossref_primary_10_24237_djes_2024_17405
crossref_primary_10_1016_j_aej_2021_10_034
crossref_primary_10_1109_ACCESS_2021_3135805
crossref_primary_10_3390_app11188634
crossref_primary_10_1177_00202940221092102
crossref_primary_10_1016_j_measurement_2021_110485
crossref_primary_10_3390_chemosensors11020146
crossref_primary_10_3390_electronics14061122
crossref_primary_10_1016_j_neuroimage_2022_119586
crossref_primary_10_21605_cukurovaumfd_1041515
crossref_primary_10_1088_1361_6501_ac7849
crossref_primary_10_1109_ACCESS_2020_3004504
crossref_primary_10_1049_cit2_12054
crossref_primary_10_1016_j_bspc_2020_102230
crossref_primary_10_1088_1361_6501_acd5f3
crossref_primary_10_1016_j_dsm_2024_12_004
crossref_primary_10_1109_ACCESS_2020_3016481
crossref_primary_10_1109_ACCESS_2023_3314589
crossref_primary_10_1080_10255842_2022_2162339
crossref_primary_10_5121_ijma_2022_14501
crossref_primary_10_3390_math10030315
crossref_primary_10_1007_s11042_020_09504_2
crossref_primary_10_1109_ACCESS_2020_3030950
crossref_primary_10_1109_ACCESS_2020_3031003
crossref_primary_10_1109_TIM_2022_3146623
crossref_primary_10_1016_j_eswa_2023_120484
crossref_primary_10_1016_j_susoc_2024_04_001
crossref_primary_10_2478_amns_2024_2724
crossref_primary_10_1016_j_jappgeo_2023_105236
crossref_primary_10_1007_s11192_023_04674_w
crossref_primary_10_1109_TBME_2021_3093037
crossref_primary_10_1016_j_bspc_2020_101987
crossref_primary_10_1016_j_bspc_2022_104389
crossref_primary_10_1016_j_aei_2024_102669
crossref_primary_10_1109_ACCESS_2020_3021720
crossref_primary_10_1007_s11571_023_09957_9
crossref_primary_10_1007_s11831_023_09984_z
crossref_primary_10_3233_JCM_226529
crossref_primary_10_1109_ACCESS_2020_3028039
crossref_primary_10_1109_ACCESS_2021_3072640
crossref_primary_10_1109_TMC_2024_3453412
crossref_primary_10_3389_fnins_2025_1461654
crossref_primary_10_3390_s22051750
crossref_primary_10_1007_s12652_020_02439_4
Cites_doi 10.1016/j.dsp.2007.09.006
10.1016/j.bbe.2016.04.001
10.1007/s00521-016-2328-2
10.1007/s12559-017-9478-0
10.1016/0305-0548(86)90048-1
10.3844/ajassp.2008.276.281
10.7551/mitpress/1090.001.0001
10.1016/j.ins.2017.11.026
10.1080/18756891.2016.1237191
10.1016/j.eswa.2016.06.006
10.1016/j.eswa.2014.05.006
10.1016/j.bspc.2014.10.012
10.1016/j.bspc.2011.11.003
10.3390/s151129015
10.1016/j.asoc.2016.08.041
10.1109/10.64464
10.1016/S1665-6423(13)71524-4
10.1016/S0377-2217(00)00100-4
10.1016/j.protcy.2012.05.136
10.1109/18.382009
10.2307/2337118
10.1109/CNSC.2014.6906684
10.1177/003754970107600201
10.1016/j.robot.2014.11.015
10.1109/ACCESS.2018.2881470
10.1109/TBME.2003.808805
10.1109/ICBAPS.2018.8527404
10.1007/s11517-017-1734-7
10.1007/s11235-010-9286-2
10.1016/j.dsp.2005.12.003
10.1007/BF01797193
10.1126/science.220.4598.671
10.1016/j.inffus.2009.06.004
10.1016/j.inffus.2011.09.004
10.1016/j.neucom.2011.04.029
10.1109/IECBES.2014.7047488
10.1161/01.CIR.101.23.e215
10.1007/978-3-642-32894-7_27
10.1007/s13721-012-0015-5
10.1016/j.ijleo.2015.09.020
10.1016/j.eswa.2011.01.137
10.1016/j.neucom.2016.10.024
10.1016/j.eij.2015.06.002
10.1016/j.dsp.2004.12.005
10.3390/s140713046
10.1007/s11721-007-0002-0
10.1016/j.dsp.2012.08.001
10.1007/BF01096763
10.1007/s00521-015-1885-0
10.1007/978-3-319-67669-2_5
10.1007/s12559-017-9487-z
10.1017/CBO9781139032803
10.1109/TBME.2006.886855
10.1016/j.bspc.2015.06.009
10.5120/18924-0276
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020
DBID 97E
ESBDL
RIA
RIE
AAYXX
CITATION
7SC
7SP
7SR
8BQ
8FD
JG9
JQ2
L7M
L~C
L~D
DOA
DOI 10.1109/ACCESS.2019.2962658
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE Xplore Open Access Journals
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
METADEX
Computer and Information Systems Abstracts Professional
DatabaseTitleList

Materials Research Database
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2169-3536
EndPage 10605
ExternalDocumentID oai_doaj_org_article_be9cf3be00d8468182499634534ee9d2
10_1109_ACCESS_2019_2962658
8944069
Genre orig-research
GrantInformation_xml – fundername: Universiti Sains Malaysia
  grantid: 1001/PKOMP/8014016
  funderid: 10.13039/501100004595
– fundername: The World Academic Science (TWAS) and USM through the TWAS-USM Postgraduate Fellowship 2015
  grantid: 3240287134
GroupedDBID 0R~
4.4
5VS
6IK
97E
AAJGR
ABAZT
ABVLG
ACGFS
ADBBV
AGSQL
ALMA_UNASSIGNED_HOLDINGS
BCNDV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
EJD
ESBDL
GROUPED_DOAJ
IPLJI
JAVBF
KQ8
M43
M~E
O9-
OCL
OK1
RIA
RIE
RNS
AAYXX
CITATION
RIG
7SC
7SP
7SR
8BQ
8FD
JG9
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c408t-54705522ca450b4ee0e4e1d0068b7e3c7b4d9b0f87a5376ddff1e15bdc3c9bfa3
IEDL.DBID DOA
ISSN 2169-3536
IngestDate Wed Aug 27 01:32:25 EDT 2025
Mon Jun 30 05:03:26 EDT 2025
Tue Jul 01 01:22:00 EDT 2025
Thu Apr 24 22:57:38 EDT 2025
Wed Aug 27 06:29:34 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Language English
License https://creativecommons.org/licenses/by/4.0/legalcode
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c408t-54705522ca450b4ee0e4e1d0068b7e3c7b4d9b0f87a5376ddff1e15bdc3c9bfa3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-2894-7998
0000-0003-1980-1791
0000-0003-0725-6167
0000-0002-7046-5327
0000-0003-4228-9298
OpenAccessLink https://doaj.org/article/be9cf3be00d8468182499634534ee9d2
PQID 2454797438
PQPubID 4845423
PageCount 22
ParticipantIDs crossref_primary_10_1109_ACCESS_2019_2962658
crossref_citationtrail_10_1109_ACCESS_2019_2962658
ieee_primary_8944069
doaj_primary_oai_doaj_org_article_be9cf3be00d8468182499634534ee9d2
proquest_journals_2454797438
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20200000
2020-00-00
20200101
2020-01-01
PublicationDateYYYYMMDD 2020-01-01
PublicationDate_xml – year: 2020
  text: 20200000
PublicationDecade 2020
PublicationPlace Piscataway
PublicationPlace_xml – name: Piscataway
PublicationTitle IEEE access
PublicationTitleAbbrev Access
PublicationYear 2020
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref57
ref13
ref56
padmaja (ref38) 2016; 7
ref59
ref15
ref58
alyasseri (ref10) 2017
ref14
ref53
ref52
ref55
ref54
ref17
ref16
karaboga (ref20) 2005
ref51
ref50
ref46
koza (ref18) 1992; 1
ref45
ref48
ref47
kumar (ref41) 2014; 17
ref42
ref44
ref43
ref49
ref8
ref7
ref9
ref4
ref3
ref6
ref5
ref40
ref35
ref34
ref37
ref31
ref30
ref33
ref32
ref2
ref1
ref39
reddy (ref36) 2017; 4
kennedy (ref19) 2011
alyasseri (ref11) 2017
ref24
ref23
ref25
ref64
ref63
ref66
ref22
ref65
ref21
glover (ref26) 2002
ref28
ref29
alyasseri (ref27) 2012
alyasseri (ref12) 2017
ref60
ref62
ref61
References_xml – ident: ref60
  doi: 10.1016/j.dsp.2007.09.006
– volume: 1
  year: 1992
  ident: ref18
  publication-title: Genetic Programming on the Programming by Means of Natural Selection
– ident: ref32
  doi: 10.1016/j.bbe.2016.04.001
– ident: ref14
  doi: 10.1007/s00521-016-2328-2
– ident: ref7
  doi: 10.1007/s12559-017-9478-0
– volume: 4
  start-page: 1947
  year: 2017
  ident: ref36
  article-title: Analysis of EEG signal for the detection of brain abnormalities
  publication-title: Int J Res
– ident: ref23
  doi: 10.1016/0305-0548(86)90048-1
– ident: ref55
  doi: 10.3844/ajassp.2008.276.281
– ident: ref16
  doi: 10.7551/mitpress/1090.001.0001
– ident: ref13
  doi: 10.1016/j.ins.2017.11.026
– ident: ref28
  doi: 10.1080/18756891.2016.1237191
– ident: ref29
  doi: 10.1016/j.eswa.2016.06.006
– ident: ref57
  doi: 10.1016/j.eswa.2014.05.006
– ident: ref31
  doi: 10.1016/j.bspc.2014.10.012
– ident: ref66
  doi: 10.1016/j.bspc.2011.11.003
– ident: ref33
  doi: 10.3390/s151129015
– ident: ref63
  doi: 10.1016/j.asoc.2016.08.041
– ident: ref30
  doi: 10.1109/10.64464
– ident: ref42
  doi: 10.1016/S1665-6423(13)71524-4
– year: 2002
  ident: ref26
  article-title: Iterated local search
  publication-title: Handbook of Metaheuristics
– ident: ref25
  doi: 10.1016/S0377-2217(00)00100-4
– ident: ref54
  doi: 10.1016/j.protcy.2012.05.136
– start-page: 47
  year: 2012
  ident: ref27
  article-title: Edge preserving image enhancement via harmony search algorithm
  publication-title: Proc 4th Conf Data Mining Optim (DMO)
– ident: ref62
  doi: 10.1109/18.382009
– ident: ref47
  doi: 10.2307/2337118
– ident: ref46
  doi: 10.1109/CNSC.2014.6906684
– ident: ref17
  doi: 10.1177/003754970107600201
– start-page: 100
  year: 2017
  ident: ref12
  article-title: Electroencephalogram signals denoising using various mother wavelet functions: A comparative analysis
  publication-title: Proc Int Conf Signal Process Commun
– ident: ref1
  doi: 10.1016/j.robot.2014.11.015
– ident: ref50
  doi: 10.1109/ACCESS.2018.2881470
– ident: ref51
  doi: 10.1109/TBME.2003.808805
– ident: ref45
  doi: 10.1109/ICBAPS.2018.8527404
– ident: ref35
  doi: 10.1007/s11517-017-1734-7
– start-page: 1
  year: 2017
  ident: ref10
  article-title: ECG signal denoising using $\beta$ -hill climbing algorithm and wavelet transform
  publication-title: Proc 8th Int Conf Inf Technol (ICIT)
– start-page: 106
  year: 2017
  ident: ref11
  article-title: Optimal electroencephalogram signals denoising using hybrid $\beta$ -hill climbing algorithm and wavelet transform
  publication-title: Proc Int Conf Signal Process Commun
– volume: 17
  start-page: 9
  year: 2014
  ident: ref41
  article-title: Wavelet transform for bearing condition monitoring and fault diagnosis: A review
  publication-title: Int J COMADEM
– ident: ref9
  doi: 10.1007/s11235-010-9286-2
– ident: ref48
  doi: 10.1016/j.dsp.2005.12.003
– ident: ref5
  doi: 10.1007/BF01797193
– ident: ref22
  doi: 10.1126/science.220.4598.671
– ident: ref53
  doi: 10.1016/j.inffus.2009.06.004
– ident: ref52
  doi: 10.1016/j.inffus.2011.09.004
– ident: ref61
  doi: 10.1016/j.neucom.2011.04.029
– ident: ref34
  doi: 10.1109/IECBES.2014.7047488
– ident: ref15
  doi: 10.1161/01.CIR.101.23.e215
– ident: ref21
  doi: 10.1007/978-3-642-32894-7_27
– ident: ref56
  doi: 10.1007/s13721-012-0015-5
– ident: ref2
  doi: 10.1016/j.ijleo.2015.09.020
– ident: ref44
  doi: 10.1016/j.eswa.2011.01.137
– ident: ref3
  doi: 10.1016/j.neucom.2016.10.024
– ident: ref6
  doi: 10.1016/j.eij.2015.06.002
– ident: ref40
  doi: 10.1016/j.dsp.2004.12.005
– volume: 7
  start-page: 25
  year: 2016
  ident: ref38
  article-title: A GUI based EEG signal denoising using hilbert huang transform
  publication-title: J Electron Eng
– ident: ref43
  doi: 10.3390/s140713046
– ident: ref64
  doi: 10.1007/s11721-007-0002-0
– ident: ref59
  doi: 10.1016/j.dsp.2012.08.001
– ident: ref24
  doi: 10.1007/BF01096763
– ident: ref37
  doi: 10.1007/s00521-015-1885-0
– start-page: 760
  year: 2011
  ident: ref19
  article-title: Particle swarm optimization
  publication-title: Encyclopedia of the Sciences of Learning
– ident: ref65
  doi: 10.1007/978-3-319-67669-2_5
– ident: ref39
  doi: 10.1007/s12559-017-9487-z
– ident: ref4
  doi: 10.1017/CBO9781139032803
– year: 2005
  ident: ref20
  article-title: An idea based on honey bee swarm for numerical optimization
– ident: ref8
  doi: 10.1109/TBME.2006.886855
– ident: ref49
  doi: 10.1016/j.bspc.2015.06.009
– ident: ref58
  doi: 10.5120/18924-0276
SSID ssj0000816957
Score 2.452348
Snippet Background. The most common and successful technique for signal denoising with nonstationary signals, such as electroencephalogram (EEG) and electrocardiogram...
SourceID doaj
proquest
crossref
ieee
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 10584
SubjectTerms Algorithms
Comparative studies
Configuration management
Datasets
EEG
Electrocardiography
Electroencephalography
flower pollination algorithm
Genetic algorithms
Heuristic methods
Imagery
Mean square errors
Mean square values
metaheuristic algorithms
Noise reduction
optimization
Parameters
Particle swarm optimization
Root-mean-square errors
signal denoising
Signal processing
Signal to noise ratio
wavelet transform
Wavelet transforms
SummonAdditionalLinks – databaseName: IEEE Electronic Library (IEL)
  dbid: RIE
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Nb9QwEB21PcGBAgWxpSAfODZbx3E28bEsW1ZIhQOt2lvkjwm7Kuwimj3QX8-M440qQIhbEtmOrWdPZiYzbwDelKhtkSOZJZNWZ3ribWasxIyOlTPOOp-3ke3z42R-qT9cl9c7cDzkwiBiDD7DMV_Gf_lh7TfsKjupjeZEzV3YJcOtz9Ua_ClcQMKUVSIWyqU5OZ1OaQ0cvWXGypDizmXd7318Ikd_KqryhySOn5ezfTjfTqyPKrkZbzo39ne_cTb-78wfw6OkZ4rTfmM8gR1cPYWH99gHDwBns_fi8_ILMyiLd7haL9lvIGIQgfhEouQbDXBluTJFJy62Cq6Y_-Qkr-UdBnG17BZiFkko6PXiHDu7wE3P_cx3i3W4fQaXZ7OL6TxLVRcyr2XdZaVmgh2lvNWldBpRosY8cC6Jq7DwldPBONnWlWUqmBDaNse8dMEX3rjWFs9hb7Ve4QsQ2hQOa19L31YkK9BVwZOEUVaVysuJHIHawtH4REnOlTG-NtE0kabpMWwYwyZhOILjodP3npHj383fMs5DU6bTjg8Inyadzsah8S3NVcpA-hjpMGSUkmTSZUHrN0GN4IAxHQZJcI7gaLtrmnT0bxvFFGlkpRX14d97vYQHio326Mc5gr3uxwZfkWbTuddxS_8CpMH2EA
  priority: 102
  providerName: IEEE
Title EEG Signals Denoising Using Optimal Wavelet Transform Hybridized With Efficient Metaheuristic Methods
URI https://ieeexplore.ieee.org/document/8944069
https://www.proquest.com/docview/2454797438
https://doaj.org/article/be9cf3be00d8468182499634534ee9d2
Volume 8
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LT-MwELYQJziseK22vOQDR7I4jvPwEUqhQgIOgOBm-TGhldh2BeEAv54ZJ60qIcGFY6LEST6PZ-aLPN8wdpCDslkKSEuKWiWq8DbRVkCCy8ppZ51P66j2eVUM79TFQ_6w0OqL9oS18sAtcEcOtK8zB0IEDJUYXpAvoNGoPFMAOkTvizFvgUxFH1ylhc7LTmYoFfrouN_HL6K9XPqv1JjGU5P3hVAUFfu7Fiuf_HIMNmdr7FeXJfLj9u3W2RJMNtjqgnbgJoPB4JzfjB9J_5ifwmQ6JtbP4xYAfo2O4B8OcG-pr0TDb2fpKR--UYnW-B0Cvx83Iz6IEhIYefglNHYEr61yMx2NpuFli92dDW77w6TrmZB4JaomyRXJ40jprcqFQ4gEKEgDVYK4EjJfOhW0E3VVWhJyCaGuU0hzF3zmtatt9pstT6YT-MO40gh75Svh6xJXOrgyePQP0spcelGIHpMz-IzvBMWpr8WTicRCaNNibghz02HeY4fzm_63ehpfX35C8zK_lMSw4wk0EdOZiPnORHpsk2Z1PkilFdX79tjubJZNt3BfjCSBM-RYWbX9E4_eYSuSCHr8Z7PLlpvnV9jDLKZx-9Fg92PB4Qdb0ez2
linkProvider Directory of Open Access Journals
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lc9MwENaUcgAOvApDoIAOHOtUluXYOpaQEqApB9Jpbxo91iQDJAx1DvTXsysrng4wDDfbI9nSfNJqd737LWOvSlC2yAHNklGjMjXyNtNWQIbbymlnnc-byPZ5OpqeqfcX5cUOO-hzYQAgBp_BkC7jv_yw9htylR3WWlGi5g12E8_9UnbZWr1HhUpI6LJK1EK50IdH4zHOguK39FBqVN2psPu14yey9KeyKn_I4njAHN9js-3QuriSL8NN64b-6jfWxv8d-312N2ma_KhbGg_YDqwesjvX-Af3GEwmb_mn5WfiUOZvYLVekueAxzAC_hGFyTd8wbml2hQtn29VXD79SWleyysI_HzZLvgk0lDg5_kMWruATcf-THeLdbh8xM6OJ_PxNEt1FzKvRN1mpSKKHSm9VaVwCkCAgjxQNomroPCVU0E70dSVJTKYEJomh7x0wRdeu8YWj9nuar2CJ4wrXTiofS18U6G0AFcFjzJGWllKL0ZiwOQWDuMTKTnVxvhqonEitOkwNIShSRgO2EHf6XvHyfHv5q8J574pEWrHB4iPSfvTONC-wbEKEVAjQy0GzVKUTaoscP46yAHbI0z7lyQ4B2x_u2pM2vyXRhJJGtppRf30771eslvT-ezEnLw7_fCM3ZZkwkevzj7bbX9s4DnqOa17EZf3L5_b-Vo
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=EEG+Signals+Denoising+Using+Optimal+Wavelet+Transform+Hybridized+With+Efficient+Metaheuristic+Methods&rft.jtitle=IEEE+access&rft.au=Alyasseri%2C+Zaid+Abdi+Alkareem&rft.au=Khader%2C+Ahamad+Tajudin&rft.au=Al-Betar%2C+Mohammed+Azmi&rft.au=Abasi%2C+Ammar+Kamal&rft.date=2020&rft.issn=2169-3536&rft.eissn=2169-3536&rft.volume=8&rft.spage=10584&rft.epage=10605&rft_id=info:doi/10.1109%2FACCESS.2019.2962658&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_ACCESS_2019_2962658
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2169-3536&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2169-3536&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2169-3536&client=summon