Synergistic enhancement of glycogen production in Arthrospira platensis by optimization of light intensity and nitrate supply
Arthrospira (Spirulina) platensis, a fast-growing halophilic cyanobacterium able to accumulate glycogen, was investigated for its feasibility to serve as feedstock for fermentative production of biofuels and chemicals. The culture conditions most appropriate for glycogen production were identified....
Saved in:
Published in | Bioresource technology Vol. 108; pp. 211 - 215 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
England
01.03.2012
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Arthrospira (Spirulina) platensis, a fast-growing halophilic cyanobacterium able to accumulate glycogen, was investigated for its feasibility to serve as feedstock for fermentative production of biofuels and chemicals. The culture conditions most appropriate for glycogen production were identified. Glycogen production was maximized by the depleting nitrate source under a high light intensity of 700 μmol photons m(-2) s(-1). With optimal control of both light intensity and nitrate supply, glycogen production of A. platensis reached nearly 1.03 g L(-1) (a glycogen productivity of 0.29 g L(-1) d(-1)), which is, to the best of our knowledge, the highest α-polyglucan (glycogen or starch) production performance ever reported in microalgae. The outcome of this work supports A. platensis as a promising carbohydrate source for biorefinery. |
---|---|
AbstractList | Arthrospira (Spirulina) platensis, a fast-growing halophilic cyanobacterium able to accumulate glycogen, was investigated for its feasibility to serve as feedstock for fermentative production of biofuels and chemicals. The culture conditions most appropriate for glycogen production were identified. Glycogen production was maximized by the depleting nitrate source under a high light intensity of 700 mu mol photons m-2 s-1. With optimal control of both light intensity and nitrate supply, glycogen production of A. platensis reached nearly 1.03 g L-1 (a glycogen productivity of 0.29 g L-1 d-1), which is, to the best of our knowledge, the highest alpha -polyglucan (glycogen or starch) production performance ever reported in microalgae. The outcome of this work supports A. platensis as a promising carbohydrate source for biorefinery. Arthrospira (Spirulina) platensis, a fast-growing halophilic cyanobacterium able to accumulate glycogen, was investigated for its feasibility to serve as feedstock for fermentative production of biofuels and chemicals. The culture conditions most appropriate for glycogen production were identified. Glycogen production was maximized by the depleting nitrate source under a high light intensity of 700 μmol photons m(-2) s(-1). With optimal control of both light intensity and nitrate supply, glycogen production of A. platensis reached nearly 1.03 g L(-1) (a glycogen productivity of 0.29 g L(-1) d(-1)), which is, to the best of our knowledge, the highest α-polyglucan (glycogen or starch) production performance ever reported in microalgae. The outcome of this work supports A. platensis as a promising carbohydrate source for biorefinery. Arthrospira (Spirulina) platensis, a fast-growing halophilic cyanobacterium able to accumulate glycogen, was investigated for its feasibility to serve as feedstock for fermentative production of biofuels and chemicals. The culture conditions most appropriate for glycogen production were identified. Glycogen production was maximized by the depleting nitrate source under a high light intensity of 700 μmol photons m(-2) s(-1). With optimal control of both light intensity and nitrate supply, glycogen production of A. platensis reached nearly 1.03 g L(-1) (a glycogen productivity of 0.29 g L(-1) d(-1)), which is, to the best of our knowledge, the highest α-polyglucan (glycogen or starch) production performance ever reported in microalgae. The outcome of this work supports A. platensis as a promising carbohydrate source for biorefinery.Arthrospira (Spirulina) platensis, a fast-growing halophilic cyanobacterium able to accumulate glycogen, was investigated for its feasibility to serve as feedstock for fermentative production of biofuels and chemicals. The culture conditions most appropriate for glycogen production were identified. Glycogen production was maximized by the depleting nitrate source under a high light intensity of 700 μmol photons m(-2) s(-1). With optimal control of both light intensity and nitrate supply, glycogen production of A. platensis reached nearly 1.03 g L(-1) (a glycogen productivity of 0.29 g L(-1) d(-1)), which is, to the best of our knowledge, the highest α-polyglucan (glycogen or starch) production performance ever reported in microalgae. The outcome of this work supports A. platensis as a promising carbohydrate source for biorefinery. |
Author | Chang, Jo-Shu Kondo, Akihiko Matsuda, Fumio Aikawa, Shimpei Izumi, Yoshihiro Hasunuma, Tomohisa |
Author_xml | – sequence: 1 givenname: Shimpei surname: Aikawa fullname: Aikawa, Shimpei – sequence: 2 givenname: Yoshihiro surname: Izumi fullname: Izumi, Yoshihiro – sequence: 3 givenname: Fumio surname: Matsuda fullname: Matsuda, Fumio – sequence: 4 givenname: Tomohisa surname: Hasunuma fullname: Hasunuma, Tomohisa – sequence: 5 givenname: Jo-Shu surname: Chang fullname: Chang, Jo-Shu – sequence: 6 givenname: Akihiko surname: Kondo fullname: Kondo, Akihiko |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/22277210$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkU1r3DAQhkVJaTZp_0LQrSc7o7EtaaGXEPoRCPTQ3IVWlne12JIryQcX-t-jbJIeeslpYHiegXnfC3Lmg7eEXDGoGTB-fax3LsRszaFGYFgDqwHad2TDpGgq3Ap-Rjaw5VDJDttzcpHSEQAaJvADOUdEIZDBhvz9tXob9y5lZ6j1B-2NnazPNAx0P64m7K2ncwz9YrILnjpPb2I-xJBmFzWdR52tTy7R3UrDnN3k_ugTWPzR7Q-5GCcir1T7nnqXY1FoWuZ5XD-S94Mek_30Mi_Jw7evD7c_qvuf3-9ub-4r04LMVdf0LerecMMGaVtEsMh7gXLHG9kzXRYoBRgOQy-sKQ9vkbWSDzB0YGVzST4_ny2P_F5sympyydhx1N6GJaktl4zLphFvk9h0okXeFfLqhVx2k-3VHN2k46peoy0AfwZMCStFO_xDGKinDtVRvXaonjpUwFTpsIhf_hONy6dQS3RufEt_BOhuqLc |
CitedBy_id | crossref_primary_10_1016_j_biortech_2014_10_065 crossref_primary_10_1016_j_bcab_2018_12_007 crossref_primary_10_1016_j_bej_2024_109482 crossref_primary_10_1002_elsc_201300170 crossref_primary_10_1002_biot_201200235 crossref_primary_10_1002_advs_201902447 crossref_primary_10_1016_j_algal_2019_101426 crossref_primary_10_1016_j_biortech_2014_08_090 crossref_primary_10_1021_acs_iecr_0c00398 crossref_primary_10_1016_j_jbiotec_2023_08_007 crossref_primary_10_1016_j_algal_2018_04_027 crossref_primary_10_1016_j_copbio_2013_03_015 crossref_primary_10_1186_s12934_015_0396_0 crossref_primary_10_1007_s11120_013_9830_5 crossref_primary_10_1093_pcp_pcv163 crossref_primary_10_1111_ppl_13430 crossref_primary_10_1099_mic_0_074641_0 crossref_primary_10_1002_jctb_5293 crossref_primary_10_1016_j_biortech_2014_12_084 crossref_primary_10_1021_acssuschemeng_1c02196 crossref_primary_10_1007_s13213_019_01520_4 crossref_primary_10_1016_j_rser_2021_111464 crossref_primary_10_3390_app11156756 crossref_primary_10_1016_j_jchromb_2013_04_037 crossref_primary_10_1186_s13068_018_1050_y crossref_primary_10_1016_j_jcou_2019_12_023 crossref_primary_10_1039_c3ee40305j crossref_primary_10_1016_j_ymben_2015_12_008 crossref_primary_10_3390_app11178121 crossref_primary_10_1186_s13068_019_1523_7 crossref_primary_10_1186_s12934_014_0173_5 crossref_primary_10_1016_j_bcab_2022_102562 crossref_primary_10_1016_j_biortech_2019_121894 crossref_primary_10_1016_j_bej_2017_05_017 crossref_primary_10_1007_s11103_024_01484_3 crossref_primary_10_1016_j_nbt_2018_01_001 crossref_primary_10_1186_s40643_015_0045_9 crossref_primary_10_1177_0003702816667514 crossref_primary_10_1007_s10811_014_0484_2 crossref_primary_10_1016_j_jfca_2021_104173 crossref_primary_10_1016_j_biortech_2013_07_134 crossref_primary_10_1371_journal_pone_0132461 crossref_primary_10_4103_epj_epj_73_23 crossref_primary_10_1016_j_biortech_2019_121420 crossref_primary_10_1016_j_chemosphere_2018_11_146 crossref_primary_10_1016_j_biombioe_2015_02_036 crossref_primary_10_1016_j_chemosphere_2021_133175 crossref_primary_10_1039_c2ra21066e crossref_primary_10_1371_journal_pone_0144430 crossref_primary_10_1016_j_algal_2019_101637 crossref_primary_10_1371_journal_pone_0315801 crossref_primary_10_1016_j_chemosphere_2019_01_080 crossref_primary_10_1080_09593330_2017_1340352 crossref_primary_10_1099_mic_0_000261 crossref_primary_10_1021_acs_jafc_7b01788 crossref_primary_10_3390_ijms23052623 crossref_primary_10_1002_btpr_2358 crossref_primary_10_1007_s11356_024_34247_0 crossref_primary_10_1016_j_algal_2023_103142 crossref_primary_10_1016_j_biortech_2022_127038 crossref_primary_10_1007_s11356_021_14357_9 crossref_primary_10_1016_j_biteb_2019_100270 crossref_primary_10_1016_j_algal_2020_102042 crossref_primary_10_1016_j_biortech_2016_05_110 crossref_primary_10_1007_s10811_021_02494_0 crossref_primary_10_2216_15_98_1 crossref_primary_10_1007_s12223_019_00732_0 crossref_primary_10_1371_journal_pone_0077046 crossref_primary_10_1007_s00253_012_4398_0 crossref_primary_10_1007_s11802_021_4783_3 crossref_primary_10_1093_pcp_pcac136 crossref_primary_10_1007_s10811_015_0765_4 crossref_primary_10_1186_s13068_017_0753_9 crossref_primary_10_1016_j_cplett_2013_10_031 crossref_primary_10_1111_jam_12409 crossref_primary_10_1016_j_scitotenv_2021_148636 crossref_primary_10_1039_C4GC02519A crossref_primary_10_1099_mic_0_000603 crossref_primary_10_1016_j_biortech_2012_10_099 crossref_primary_10_1007_s11274_022_03476_1 crossref_primary_10_3390_molecules25184331 crossref_primary_10_1016_j_jbiosc_2015_02_012 crossref_primary_10_1186_s13068_019_1470_3 crossref_primary_10_1016_j_algal_2022_102907 crossref_primary_10_3389_fmicb_2024_1368523 crossref_primary_10_1007_s00449_017_1778_y crossref_primary_10_1007_s10811_017_1348_3 crossref_primary_10_1016_j_mimet_2019_105686 crossref_primary_10_1093_jxb_ert134 crossref_primary_10_1186_1754_6834_7_88 crossref_primary_10_1002_biot_201400344 crossref_primary_10_1016_j_biombioe_2021_106108 crossref_primary_10_1016_j_biortech_2017_01_006 crossref_primary_10_1016_j_jphotobiol_2020_111822 crossref_primary_10_1021_acssuschemeng_8b02597 crossref_primary_10_1007_s00253_013_4983_x crossref_primary_10_1016_j_biortech_2016_03_166 crossref_primary_10_1016_j_nbt_2019_09_001 crossref_primary_10_1186_s40643_020_00337_3 crossref_primary_10_1016_j_jbiosc_2014_06_001 crossref_primary_10_1016_j_aquaculture_2020_735562 crossref_primary_10_3390_bioengineering4020026 crossref_primary_10_3389_fpls_2021_646498 crossref_primary_10_1016_j_biortech_2024_131052 crossref_primary_10_1093_pcp_pcy121 crossref_primary_10_3390_biology13020127 |
Cites_doi | 10.1016/j.copbio.2008.05.007 10.1016/j.biotechadv.2010.07.001 10.1016/j.ijhydene.2005.06.009 10.1099/00221287-138-8-1623 10.1016/j.tibtech.2010.12.003 10.1007/BF00016689 10.1002/bit.23016 10.1007/s12010-009-8741-6 10.1007/BF02849084 10.1007/BF00446554 10.1016/j.biortech.2010.06.159 10.1007/BF00470870 10.1016/j.biortech.2010.06.139 10.1111/j.1751-1097.2010.00823.x 10.1016/j.copbio.2008.07.008 10.1021/jf010733i 10.1080/09670269810001736663 10.1093/oxfordjournals.pcp.a029507 10.1007/BF00423130 10.1016/j.copbio.2005.02.002 10.1007/BF00454913 10.1016/S0922-338X(97)87320-5 10.1016/0960-8524(91)90139-B |
ContentType | Journal Article |
Copyright | Copyright © 2012 Elsevier Ltd. All rights reserved. |
Copyright_xml | – notice: Copyright © 2012 Elsevier Ltd. All rights reserved. |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 7QO 7ST 8FD C1K FR3 P64 SOI |
DOI | 10.1016/j.biortech.2012.01.004 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic Biotechnology Research Abstracts Environment Abstracts Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database Biotechnology and BioEngineering Abstracts Environment Abstracts |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic Engineering Research Database Biotechnology Research Abstracts Technology Research Database Environment Abstracts Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management |
DatabaseTitleList | Engineering Research Database MEDLINE MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Chemistry Agriculture |
EISSN | 1873-2976 |
EndPage | 215 |
ExternalDocumentID | 22277210 10_1016_j_biortech_2012_01_004 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | --- --K --M .~1 0R~ 1B1 1RT 1~. 1~5 23N 4.4 457 4G. 53G 5GY 5VS 7-5 71M 8P~ 9JM 9JN AAAJQ AABNK AAEDT AAEDW AAHBH AAHCO AAIKJ AAKOC AALCJ AALRI AAOAW AAQFI AAQXK AARJD AARKO AATLK AATTM AAXKI AAXUO AAYWO AAYXX ABFNM ABFYP ABGRD ABGSF ABJNI ABLST ABMAC ABNUV ABUDA ABWVN ABXDB ACDAQ ACGFS ACIUM ACRLP ACRPL ACVFH ADBBV ADCNI ADEWK ADEZE ADMUD ADNMO ADQTV ADUVX AEBSH AEGFY AEHWI AEIPS AEKER AENEX AEQOU AEUPX AFJKZ AFPUW AFTJW AFXIZ AGCQF AGEKW AGHFR AGQPQ AGRDE AGRNS AGUBO AGYEJ AHEUO AHHHB AHIDL AHPOS AI. AIEXJ AIGII AIIUN AIKHN AITUG AKBMS AKIFW AKRWK AKURH AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU APXCP ASPBG AVWKF AXJTR AZFZN BELTK BKOJK BLECG BLXMC BNPGV CITATION CJTIS CS3 DU5 EBS EFJIC EJD ENUVR EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HLV HMC HVGLF HZ~ IHE J1W JARJE KCYFY KOM LUGTX LW9 LY6 LY9 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 PC. Q38 R2- RIG ROL RPZ SAB SAC SDF SDG SDP SEN SES SEW SPC SPCBC SSA SSG SSH SSI SSJ SSR SSU SSZ T5K VH1 WUQ Y6R ~02 ~G- ~KM CGR CUY CVF ECM EFKBS EIF NPM 7X8 7QO 7ST 8FD C1K FR3 P64 SOI |
ID | FETCH-LOGICAL-c408t-53d42adc6c1f8e4220e26d728b638d1a2202870c60fd7ec524921486f0f50e83 |
ISSN | 0960-8524 1873-2976 |
IngestDate | Tue Aug 05 11:19:35 EDT 2025 Fri Jul 11 04:11:34 EDT 2025 Mon Jul 21 05:59:33 EDT 2025 Thu Apr 24 22:56:40 EDT 2025 Tue Jul 01 02:42:56 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Language | English |
License | https://www.elsevier.com/tdm/userlicense/1.0 Copyright © 2012 Elsevier Ltd. All rights reserved. |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c408t-53d42adc6c1f8e4220e26d728b638d1a2202870c60fd7ec524921486f0f50e83 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PMID | 22277210 |
PQID | 923574265 |
PQPubID | 23479 |
PageCount | 5 |
ParticipantIDs | proquest_miscellaneous_968168337 proquest_miscellaneous_923574265 pubmed_primary_22277210 crossref_primary_10_1016_j_biortech_2012_01_004 crossref_citationtrail_10_1016_j_biortech_2012_01_004 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2012-03-00 2012-Mar 20120301 |
PublicationDateYYYYMMDD | 2012-03-01 |
PublicationDate_xml | – month: 03 year: 2012 text: 2012-03-00 |
PublicationDecade | 2010 |
PublicationPlace | England |
PublicationPlace_xml | – name: England |
PublicationTitle | Bioresource technology |
PublicationTitleAlternate | Bioresour Technol |
PublicationYear | 2012 |
References | Brányiková (10.1016/j.biortech.2012.01.004_b0010) 2011; 108 Rodríguez (10.1016/j.biortech.2012.01.004_b0125) 1991; 20 Ducat (10.1016/j.biortech.2012.01.004_b0025) 2011; 29 Huesemann (10.1016/j.biortech.2012.01.004_b0050) 2010; 162 Chen (10.1016/j.biortech.2012.01.004_b0015) 2011; 102 Morsy (10.1016/j.biortech.2012.01.004_b0080) 2011; 87 Watanabe (10.1016/j.biortech.2012.01.004_b0140) 2001; 49 Post (10.1016/j.biortech.2012.01.004_b0110) 1986; 145 Dismukes (10.1016/j.biortech.2012.01.004_b0020) 2008; 19 John (10.1016/j.biortech.2012.01.004_b0055) 2010; 102 Mussatto (10.1016/j.biortech.2012.01.004_b0085) 2010; 28 Aoyama (10.1016/j.biortech.2012.01.004_b0005) 1997; 83 Lopez (10.1016/j.biortech.2012.01.004_b0075) 2005; 16 Nomsawai (10.1016/j.biortech.2012.01.004_b0090) 1999; 40 Vonshak (10.1016/j.biortech.2012.01.004_b0135) 1997 Kim (10.1016/j.biortech.2012.01.004_b0065) 2006; 31 Philippis (10.1016/j.biortech.2012.01.004_b0100) 1992; 138 Ernst (10.1016/j.biortech.2012.01.004_b0035) 1985; 131 Philipps (10.1016/j.biortech.2012.01.004_b0105) 2011 Post (10.1016/j.biortech.2012.01.004_b0115) 1987; 149 Kebede (10.1016/j.biortech.2012.01.004_b0060) 1996; 332 Ernst (10.1016/j.biortech.2012.01.004_b0030) 1984; 140 Friedman (10.1016/j.biortech.2012.01.004_b0040) 1991; 38 Lehmann (10.1016/j.biortech.2012.01.004_b0070) 1976; 111 Ogawa (10.1016/j.biortech.2012.01.004_b0095) 1971; 50 Rosenberg (10.1016/j.biortech.2012.01.004_b0130) 2008; 19 Hon-nami (10.1016/j.biortech.2012.01.004_b0045) 1998; 16 Qiang (10.1016/j.biortech.2012.01.004_b0120) 1998; 33 |
References_xml | – volume: 19 start-page: 235 year: 2008 ident: 10.1016/j.biortech.2012.01.004_b0020 article-title: Aquatic phototrophs: efficient alternatives to land-based crops for biofuels publication-title: Curr. Opin. Biotechnol. doi: 10.1016/j.copbio.2008.05.007 – year: 1997 ident: 10.1016/j.biortech.2012.01.004_b0135 – volume: 131 start-page: 3147 year: 1985 ident: 10.1016/j.biortech.2012.01.004_b0035 article-title: Glycogen accumulation and the induction of nitrogenase activity in the heterocyst-forming cyanobacterium Anabaena variabilis publication-title: J. Gen. Microbiol. – volume: 28 start-page: 817 year: 2010 ident: 10.1016/j.biortech.2012.01.004_b0085 article-title: Technological trends, global market, and challenges of bio-ethanol production publication-title: Biotechnol. Adv. doi: 10.1016/j.biotechadv.2010.07.001 – volume: 31 start-page: 812 year: 2006 ident: 10.1016/j.biortech.2012.01.004_b0065 article-title: Hydrogen production from Chlamydomonas reinhardtii biomass using a two-step conversion process: anaerobic conversion and photosynthetic fermentation publication-title: Int. J. Hydrogen Energ. doi: 10.1016/j.ijhydene.2005.06.009 – volume: 138 start-page: 1623 year: 1992 ident: 10.1016/j.biortech.2012.01.004_b0100 article-title: Glycogen and poly-β-hydroxybutyrate synthesis in Spirulina maxima publication-title: J. General Microbiol. doi: 10.1099/00221287-138-8-1623 – volume: 29 start-page: 95 year: 2011 ident: 10.1016/j.biortech.2012.01.004_b0025 article-title: Engineering cyanobacteria to generate high-value products publication-title: Trends Biotechnol. doi: 10.1016/j.tibtech.2010.12.003 – volume: 332 start-page: 99 year: 1996 ident: 10.1016/j.biortech.2012.01.004_b0060 article-title: Optimum growth conditions and light utilization efficiency of Spirulina platensis (= Arthrospira fusiformis) (Cyanophyta) from Lake Chitu, Ethiopia publication-title: Hydrobiologia doi: 10.1007/BF00016689 – volume: 108 start-page: 766 year: 2011 ident: 10.1016/j.biortech.2012.01.004_b0010 article-title: Microalgae-novel highly efficient starch producers publication-title: Biotechnol. Bioeng. doi: 10.1002/bit.23016 – volume: 162 start-page: 208 year: 2010 ident: 10.1016/j.biortech.2012.01.004_b0050 article-title: Hydrogen generation through indirect biophotolysis in batch cultures of the nonhetrocystous nitrogen-fixing cyanobacterium Plectonema boryanum publication-title: Appl. Biochem. Biotechnol. doi: 10.1007/s12010-009-8741-6 – volume: 16 start-page: 75 year: 1998 ident: 10.1016/j.biortech.2012.01.004_b0045 article-title: Microalgae cultivation in a tubular bioreactor and utilization of their cells publication-title: Chin. J. Oceanol. Limnol. doi: 10.1007/BF02849084 – volume: 111 start-page: 93 year: 1976 ident: 10.1016/j.biortech.2012.01.004_b0070 article-title: Accumulation, mobilization and turn-over of glycogen in the blue-green bacterium Anacystis nidulans publication-title: Arch. Microbiol. doi: 10.1007/BF00446554 – volume: 20 start-page: 263 year: 1991 ident: 10.1016/j.biortech.2012.01.004_b0125 publication-title: Enhancement of phycobiliprotein production in nitrogen-fixing cyanobacteria. – volume: 102 start-page: 71 year: 2011 ident: 10.1016/j.biortech.2012.01.004_b0015 article-title: Cultivation, photobioreactor design and harvesting of microalgae for biodiesel production: a critical review publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2010.06.159 – volume: 145 start-page: 353 year: 1986 ident: 10.1016/j.biortech.2012.01.004_b0110 article-title: Transient state characteristics of adaptation to changes in light conditions for the cyanobacterium Oscillatoria agardhii publication-title: Arch. Microbiol. doi: 10.1007/BF00470870 – volume: 102 start-page: 186 year: 2010 ident: 10.1016/j.biortech.2012.01.004_b0055 article-title: Micro and macroalgal biomass: a renewable source for bioethanol publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2010.06.139 – year: 2011 ident: 10.1016/j.biortech.2012.01.004_b0105 article-title: Nitrogen deprivation results in photosynthetic hydrogen production in Chlamydomonas reinhardtii publication-title: Planta – volume: 87 start-page: 137 year: 2011 ident: 10.1016/j.biortech.2012.01.004_b0080 article-title: Acetate versus sulfur deprivation role in creating anaerobiosis in light for hydrogen production by Chlamydomonas reinhardtii and Spirulina platensis: Two different organisms and two different mechanisms publication-title: Photochem. Photobiol. doi: 10.1111/j.1751-1097.2010.00823.x – volume: 50 start-page: 143 year: 1971 ident: 10.1016/j.biortech.2012.01.004_b0095 article-title: Studies on the growth of Spirulina platensis. II. Growth kinetics of an autotrophic culture publication-title: J. Ferment. Technol. – volume: 19 start-page: 430 year: 2008 ident: 10.1016/j.biortech.2012.01.004_b0130 article-title: A green light for engineered algae: redirecting metabolism to fuel a biotechnology revolution publication-title: Curr. Opin. Biotechnol. doi: 10.1016/j.copbio.2008.07.008 – volume: 49 start-page: 5685 year: 2001 ident: 10.1016/j.biortech.2012.01.004_b0140 article-title: Inactive corrinoid-compound significantly decreases in Spirulina platensis grown in a cobalt-deficient medium publication-title: J. Agric. Food Chem. doi: 10.1021/jf010733i – volume: 33 start-page: 165 year: 1998 ident: 10.1016/j.biortech.2012.01.004_b0120 article-title: Combined effects of light intensity, light-path and culture density on output rate of Spirulina platensis (Cyanobacteria) publication-title: Eur. J. Phycol. doi: 10.1080/09670269810001736663 – volume: 40 start-page: 1194 year: 1999 ident: 10.1016/j.biortech.2012.01.004_b0090 article-title: Light regulation of phycobilisome structure and gene expression in Spirulina platensis C1 (Arthrospira sp. PCC 9438) publication-title: Plant Cell Physiol. doi: 10.1093/oxfordjournals.pcp.a029507 – volume: 149 start-page: 19 year: 1987 ident: 10.1016/j.biortech.2012.01.004_b0115 article-title: Transient state characteristics of changes in light conditions for the cyanobacterium Oscillatoria agardhii publication-title: Arch. Microbiol. doi: 10.1007/BF00423130 – volume: 16 start-page: 180 year: 2005 ident: 10.1016/j.biortech.2012.01.004_b0075 article-title: Prospects in diatom research publication-title: Curr. Opin. Biotechnol. doi: 10.1016/j.copbio.2005.02.002 – volume: 140 start-page: 120 year: 1984 ident: 10.1016/j.biortech.2012.01.004_b0030 article-title: Glycogen content and nitrogenase activity in Anabaena variabilis publication-title: Arch. Microbiol. doi: 10.1007/BF00454913 – volume: 83 start-page: 17 year: 1997 ident: 10.1016/j.biortech.2012.01.004_b0005 article-title: Fermentative metabolism to produce hydrogen gas and organic compounds in a cyanobacterium, Spirulina platensis publication-title: J. Ferment. Bioeng. doi: 10.1016/S0922-338X(97)87320-5 – volume: 38 start-page: 105 year: 1991 ident: 10.1016/j.biortech.2012.01.004_b0040 article-title: Effect of light intensity on growth and polysaccharide production in red and blue-green rhodophyta unicells publication-title: Bioresour. Technol. doi: 10.1016/0960-8524(91)90139-B |
SSID | ssj0003172 |
Score | 2.4022217 |
Snippet | Arthrospira (Spirulina) platensis, a fast-growing halophilic cyanobacterium able to accumulate glycogen, was investigated for its feasibility to serve as... |
SourceID | proquest pubmed crossref |
SourceType | Aggregation Database Index Database Enrichment Source |
StartPage | 211 |
SubjectTerms | Arthrospira Arthrospira platensis Biofuels - microbiology Chromatography, High Pressure Liquid Cyanobacteria Glycogen - biosynthesis Industrial Microbiology - methods Light Nephelometry and Turbidimetry Nitrates - metabolism Spirulina - metabolism Spirulina platensis |
Title | Synergistic enhancement of glycogen production in Arthrospira platensis by optimization of light intensity and nitrate supply |
URI | https://www.ncbi.nlm.nih.gov/pubmed/22277210 https://www.proquest.com/docview/923574265 https://www.proquest.com/docview/968168337 |
Volume | 108 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9NAEF6FcgAOCMorvLQHbpHD2l4_coyqRhUq5VBXCifLXq8bt4kXxbZQKuC3M7N-xBGBAhcrWnvsKPN5MjuPbwh5xz079dIkMeDfzTW45wjDj83U4ImdOtLlUSSwOfnjmXtywT_Mnflg8K3fXVLGY3Gzt6_kf7QKa6BX7JL9B812N4UF-Az6hSNoGI5_pePzDXbuaarlkcwXqMA2t3-53Ah1WRdgJTVDrA5trHEugs6u4wBpXb5eoAuqwHSsmp5MlF_ipl2TSeS6agPj6_D2I7HEqMBJoLvp4EytmzzAqPwlWD_NrqOv2kk9X2TgpmcdHm-qla4m-KyKRbbI1mobIC-LKtEyM7hGbQ1lUeXVSp8I1EotsiLqBy6wAqSt3Gpsre_hGDmvYcLes9YaaObvmFhzr-mvoxBX4zjDKmWdaMI4rzlm9XzjXa7ts0_h7OL0NAyO58EdcteCTQZayfGPbYEQeFY6V95-pV5_-f6n7Lo2v9mvaL8leEQeNhsOOq3R85gMZH5IHkwv1w3pijwk947aqX9wpkdQ-YR87yGM9hBGVUpbhNEtwmiW0x7CaIcwGm9oH2EorxFGO4RRQBhtEEZrhD0lwew4ODoxmoEdhuDMLw3HTrgVJcIVZupLbllMWm7iWX4MVj4xI1jAvLpwWZp4UjjIVgnbcTdlqcOkbz8jB7nK5QtCUznhVsxt5kccHHYxAXHuxLGIYgbGhQ2J0_7UoWjI7HGmyjJsqxavwlZFIaooZGYIKhqS953cl5rO5VYJ2moyBFVgOi3KpaqKcIJMUeDgOn-4xMWxNrbtDcnzGgTdU7EH3bNM9vL2-78i97fvz2tyUK4r-QZc4TJ-qxH7Ewbyvp4 |
linkProvider | Elsevier |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Synergistic+enhancement+of+glycogen+production+in+Arthrospira+platensis+by+optimization+of+light+intensity+and+nitrate+supply&rft.jtitle=Bioresource+technology&rft.au=Aikawa%2C+Shimpei&rft.au=Izumi%2C+Yoshihiro&rft.au=Matsuda%2C+Fumio&rft.au=Hasunuma%2C+Tomohisa&rft.date=2012-03-01&rft.issn=1873-2976&rft.eissn=1873-2976&rft.volume=108&rft.spage=211&rft_id=info:doi/10.1016%2Fj.biortech.2012.01.004&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0960-8524&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0960-8524&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0960-8524&client=summon |