Synergistic enhancement of glycogen production in Arthrospira platensis by optimization of light intensity and nitrate supply

Arthrospira (Spirulina) platensis, a fast-growing halophilic cyanobacterium able to accumulate glycogen, was investigated for its feasibility to serve as feedstock for fermentative production of biofuels and chemicals. The culture conditions most appropriate for glycogen production were identified....

Full description

Saved in:
Bibliographic Details
Published inBioresource technology Vol. 108; pp. 211 - 215
Main Authors Aikawa, Shimpei, Izumi, Yoshihiro, Matsuda, Fumio, Hasunuma, Tomohisa, Chang, Jo-Shu, Kondo, Akihiko
Format Journal Article
LanguageEnglish
Published England 01.03.2012
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Arthrospira (Spirulina) platensis, a fast-growing halophilic cyanobacterium able to accumulate glycogen, was investigated for its feasibility to serve as feedstock for fermentative production of biofuels and chemicals. The culture conditions most appropriate for glycogen production were identified. Glycogen production was maximized by the depleting nitrate source under a high light intensity of 700 μmol photons m(-2) s(-1). With optimal control of both light intensity and nitrate supply, glycogen production of A. platensis reached nearly 1.03 g L(-1) (a glycogen productivity of 0.29 g L(-1) d(-1)), which is, to the best of our knowledge, the highest α-polyglucan (glycogen or starch) production performance ever reported in microalgae. The outcome of this work supports A. platensis as a promising carbohydrate source for biorefinery.
AbstractList Arthrospira (Spirulina) platensis, a fast-growing halophilic cyanobacterium able to accumulate glycogen, was investigated for its feasibility to serve as feedstock for fermentative production of biofuels and chemicals. The culture conditions most appropriate for glycogen production were identified. Glycogen production was maximized by the depleting nitrate source under a high light intensity of 700 mu mol photons m-2 s-1. With optimal control of both light intensity and nitrate supply, glycogen production of A. platensis reached nearly 1.03 g L-1 (a glycogen productivity of 0.29 g L-1 d-1), which is, to the best of our knowledge, the highest alpha -polyglucan (glycogen or starch) production performance ever reported in microalgae. The outcome of this work supports A. platensis as a promising carbohydrate source for biorefinery.
Arthrospira (Spirulina) platensis, a fast-growing halophilic cyanobacterium able to accumulate glycogen, was investigated for its feasibility to serve as feedstock for fermentative production of biofuels and chemicals. The culture conditions most appropriate for glycogen production were identified. Glycogen production was maximized by the depleting nitrate source under a high light intensity of 700 μmol photons m(-2) s(-1). With optimal control of both light intensity and nitrate supply, glycogen production of A. platensis reached nearly 1.03 g L(-1) (a glycogen productivity of 0.29 g L(-1) d(-1)), which is, to the best of our knowledge, the highest α-polyglucan (glycogen or starch) production performance ever reported in microalgae. The outcome of this work supports A. platensis as a promising carbohydrate source for biorefinery.
Arthrospira (Spirulina) platensis, a fast-growing halophilic cyanobacterium able to accumulate glycogen, was investigated for its feasibility to serve as feedstock for fermentative production of biofuels and chemicals. The culture conditions most appropriate for glycogen production were identified. Glycogen production was maximized by the depleting nitrate source under a high light intensity of 700 μmol photons m(-2) s(-1). With optimal control of both light intensity and nitrate supply, glycogen production of A. platensis reached nearly 1.03 g L(-1) (a glycogen productivity of 0.29 g L(-1) d(-1)), which is, to the best of our knowledge, the highest α-polyglucan (glycogen or starch) production performance ever reported in microalgae. The outcome of this work supports A. platensis as a promising carbohydrate source for biorefinery.Arthrospira (Spirulina) platensis, a fast-growing halophilic cyanobacterium able to accumulate glycogen, was investigated for its feasibility to serve as feedstock for fermentative production of biofuels and chemicals. The culture conditions most appropriate for glycogen production were identified. Glycogen production was maximized by the depleting nitrate source under a high light intensity of 700 μmol photons m(-2) s(-1). With optimal control of both light intensity and nitrate supply, glycogen production of A. platensis reached nearly 1.03 g L(-1) (a glycogen productivity of 0.29 g L(-1) d(-1)), which is, to the best of our knowledge, the highest α-polyglucan (glycogen or starch) production performance ever reported in microalgae. The outcome of this work supports A. platensis as a promising carbohydrate source for biorefinery.
Author Chang, Jo-Shu
Kondo, Akihiko
Matsuda, Fumio
Aikawa, Shimpei
Izumi, Yoshihiro
Hasunuma, Tomohisa
Author_xml – sequence: 1
  givenname: Shimpei
  surname: Aikawa
  fullname: Aikawa, Shimpei
– sequence: 2
  givenname: Yoshihiro
  surname: Izumi
  fullname: Izumi, Yoshihiro
– sequence: 3
  givenname: Fumio
  surname: Matsuda
  fullname: Matsuda, Fumio
– sequence: 4
  givenname: Tomohisa
  surname: Hasunuma
  fullname: Hasunuma, Tomohisa
– sequence: 5
  givenname: Jo-Shu
  surname: Chang
  fullname: Chang, Jo-Shu
– sequence: 6
  givenname: Akihiko
  surname: Kondo
  fullname: Kondo, Akihiko
BackLink https://www.ncbi.nlm.nih.gov/pubmed/22277210$$D View this record in MEDLINE/PubMed
BookMark eNqFkU1r3DAQhkVJaTZp_0LQrSc7o7EtaaGXEPoRCPTQ3IVWlne12JIryQcX-t-jbJIeeslpYHiegXnfC3Lmg7eEXDGoGTB-fax3LsRszaFGYFgDqwHad2TDpGgq3Ap-Rjaw5VDJDttzcpHSEQAaJvADOUdEIZDBhvz9tXob9y5lZ6j1B-2NnazPNAx0P64m7K2ncwz9YrILnjpPb2I-xJBmFzWdR52tTy7R3UrDnN3k_ugTWPzR7Q-5GCcir1T7nnqXY1FoWuZ5XD-S94Mek_30Mi_Jw7evD7c_qvuf3-9ub-4r04LMVdf0LerecMMGaVtEsMh7gXLHG9kzXRYoBRgOQy-sKQ9vkbWSDzB0YGVzST4_ny2P_F5sympyydhx1N6GJaktl4zLphFvk9h0okXeFfLqhVx2k-3VHN2k46peoy0AfwZMCStFO_xDGKinDtVRvXaonjpUwFTpsIhf_hONy6dQS3RufEt_BOhuqLc
CitedBy_id crossref_primary_10_1016_j_biortech_2014_10_065
crossref_primary_10_1016_j_bcab_2018_12_007
crossref_primary_10_1016_j_bej_2024_109482
crossref_primary_10_1002_elsc_201300170
crossref_primary_10_1002_biot_201200235
crossref_primary_10_1002_advs_201902447
crossref_primary_10_1016_j_algal_2019_101426
crossref_primary_10_1016_j_biortech_2014_08_090
crossref_primary_10_1021_acs_iecr_0c00398
crossref_primary_10_1016_j_jbiotec_2023_08_007
crossref_primary_10_1016_j_algal_2018_04_027
crossref_primary_10_1016_j_copbio_2013_03_015
crossref_primary_10_1186_s12934_015_0396_0
crossref_primary_10_1007_s11120_013_9830_5
crossref_primary_10_1093_pcp_pcv163
crossref_primary_10_1111_ppl_13430
crossref_primary_10_1099_mic_0_074641_0
crossref_primary_10_1002_jctb_5293
crossref_primary_10_1016_j_biortech_2014_12_084
crossref_primary_10_1021_acssuschemeng_1c02196
crossref_primary_10_1007_s13213_019_01520_4
crossref_primary_10_1016_j_rser_2021_111464
crossref_primary_10_3390_app11156756
crossref_primary_10_1016_j_jchromb_2013_04_037
crossref_primary_10_1186_s13068_018_1050_y
crossref_primary_10_1016_j_jcou_2019_12_023
crossref_primary_10_1039_c3ee40305j
crossref_primary_10_1016_j_ymben_2015_12_008
crossref_primary_10_3390_app11178121
crossref_primary_10_1186_s13068_019_1523_7
crossref_primary_10_1186_s12934_014_0173_5
crossref_primary_10_1016_j_bcab_2022_102562
crossref_primary_10_1016_j_biortech_2019_121894
crossref_primary_10_1016_j_bej_2017_05_017
crossref_primary_10_1007_s11103_024_01484_3
crossref_primary_10_1016_j_nbt_2018_01_001
crossref_primary_10_1186_s40643_015_0045_9
crossref_primary_10_1177_0003702816667514
crossref_primary_10_1007_s10811_014_0484_2
crossref_primary_10_1016_j_jfca_2021_104173
crossref_primary_10_1016_j_biortech_2013_07_134
crossref_primary_10_1371_journal_pone_0132461
crossref_primary_10_4103_epj_epj_73_23
crossref_primary_10_1016_j_biortech_2019_121420
crossref_primary_10_1016_j_chemosphere_2018_11_146
crossref_primary_10_1016_j_biombioe_2015_02_036
crossref_primary_10_1016_j_chemosphere_2021_133175
crossref_primary_10_1039_c2ra21066e
crossref_primary_10_1371_journal_pone_0144430
crossref_primary_10_1016_j_algal_2019_101637
crossref_primary_10_1371_journal_pone_0315801
crossref_primary_10_1016_j_chemosphere_2019_01_080
crossref_primary_10_1080_09593330_2017_1340352
crossref_primary_10_1099_mic_0_000261
crossref_primary_10_1021_acs_jafc_7b01788
crossref_primary_10_3390_ijms23052623
crossref_primary_10_1002_btpr_2358
crossref_primary_10_1007_s11356_024_34247_0
crossref_primary_10_1016_j_algal_2023_103142
crossref_primary_10_1016_j_biortech_2022_127038
crossref_primary_10_1007_s11356_021_14357_9
crossref_primary_10_1016_j_biteb_2019_100270
crossref_primary_10_1016_j_algal_2020_102042
crossref_primary_10_1016_j_biortech_2016_05_110
crossref_primary_10_1007_s10811_021_02494_0
crossref_primary_10_2216_15_98_1
crossref_primary_10_1007_s12223_019_00732_0
crossref_primary_10_1371_journal_pone_0077046
crossref_primary_10_1007_s00253_012_4398_0
crossref_primary_10_1007_s11802_021_4783_3
crossref_primary_10_1093_pcp_pcac136
crossref_primary_10_1007_s10811_015_0765_4
crossref_primary_10_1186_s13068_017_0753_9
crossref_primary_10_1016_j_cplett_2013_10_031
crossref_primary_10_1111_jam_12409
crossref_primary_10_1016_j_scitotenv_2021_148636
crossref_primary_10_1039_C4GC02519A
crossref_primary_10_1099_mic_0_000603
crossref_primary_10_1016_j_biortech_2012_10_099
crossref_primary_10_1007_s11274_022_03476_1
crossref_primary_10_3390_molecules25184331
crossref_primary_10_1016_j_jbiosc_2015_02_012
crossref_primary_10_1186_s13068_019_1470_3
crossref_primary_10_1016_j_algal_2022_102907
crossref_primary_10_3389_fmicb_2024_1368523
crossref_primary_10_1007_s00449_017_1778_y
crossref_primary_10_1007_s10811_017_1348_3
crossref_primary_10_1016_j_mimet_2019_105686
crossref_primary_10_1093_jxb_ert134
crossref_primary_10_1186_1754_6834_7_88
crossref_primary_10_1002_biot_201400344
crossref_primary_10_1016_j_biombioe_2021_106108
crossref_primary_10_1016_j_biortech_2017_01_006
crossref_primary_10_1016_j_jphotobiol_2020_111822
crossref_primary_10_1021_acssuschemeng_8b02597
crossref_primary_10_1007_s00253_013_4983_x
crossref_primary_10_1016_j_biortech_2016_03_166
crossref_primary_10_1016_j_nbt_2019_09_001
crossref_primary_10_1186_s40643_020_00337_3
crossref_primary_10_1016_j_jbiosc_2014_06_001
crossref_primary_10_1016_j_aquaculture_2020_735562
crossref_primary_10_3390_bioengineering4020026
crossref_primary_10_3389_fpls_2021_646498
crossref_primary_10_1016_j_biortech_2024_131052
crossref_primary_10_1093_pcp_pcy121
crossref_primary_10_3390_biology13020127
Cites_doi 10.1016/j.copbio.2008.05.007
10.1016/j.biotechadv.2010.07.001
10.1016/j.ijhydene.2005.06.009
10.1099/00221287-138-8-1623
10.1016/j.tibtech.2010.12.003
10.1007/BF00016689
10.1002/bit.23016
10.1007/s12010-009-8741-6
10.1007/BF02849084
10.1007/BF00446554
10.1016/j.biortech.2010.06.159
10.1007/BF00470870
10.1016/j.biortech.2010.06.139
10.1111/j.1751-1097.2010.00823.x
10.1016/j.copbio.2008.07.008
10.1021/jf010733i
10.1080/09670269810001736663
10.1093/oxfordjournals.pcp.a029507
10.1007/BF00423130
10.1016/j.copbio.2005.02.002
10.1007/BF00454913
10.1016/S0922-338X(97)87320-5
10.1016/0960-8524(91)90139-B
ContentType Journal Article
Copyright Copyright © 2012 Elsevier Ltd. All rights reserved.
Copyright_xml – notice: Copyright © 2012 Elsevier Ltd. All rights reserved.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7QO
7ST
8FD
C1K
FR3
P64
SOI
DOI 10.1016/j.biortech.2012.01.004
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
Biotechnology Research Abstracts
Environment Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
Biotechnology and BioEngineering Abstracts
Environment Abstracts
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
Engineering Research Database
Biotechnology Research Abstracts
Technology Research Database
Environment Abstracts
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
DatabaseTitleList Engineering Research Database
MEDLINE
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Chemistry
Agriculture
EISSN 1873-2976
EndPage 215
ExternalDocumentID 22277210
10_1016_j_biortech_2012_01_004
Genre Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
--K
--M
.~1
0R~
1B1
1RT
1~.
1~5
23N
4.4
457
4G.
53G
5GY
5VS
7-5
71M
8P~
9JM
9JN
AAAJQ
AABNK
AAEDT
AAEDW
AAHBH
AAHCO
AAIKJ
AAKOC
AALCJ
AALRI
AAOAW
AAQFI
AAQXK
AARJD
AARKO
AATLK
AATTM
AAXKI
AAXUO
AAYWO
AAYXX
ABFNM
ABFYP
ABGRD
ABGSF
ABJNI
ABLST
ABMAC
ABNUV
ABUDA
ABWVN
ABXDB
ACDAQ
ACGFS
ACIUM
ACRLP
ACRPL
ACVFH
ADBBV
ADCNI
ADEWK
ADEZE
ADMUD
ADNMO
ADQTV
ADUVX
AEBSH
AEGFY
AEHWI
AEIPS
AEKER
AENEX
AEQOU
AEUPX
AFJKZ
AFPUW
AFTJW
AFXIZ
AGCQF
AGEKW
AGHFR
AGQPQ
AGRDE
AGRNS
AGUBO
AGYEJ
AHEUO
AHHHB
AHIDL
AHPOS
AI.
AIEXJ
AIGII
AIIUN
AIKHN
AITUG
AKBMS
AKIFW
AKRWK
AKURH
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
APXCP
ASPBG
AVWKF
AXJTR
AZFZN
BELTK
BKOJK
BLECG
BLXMC
BNPGV
CITATION
CJTIS
CS3
DU5
EBS
EFJIC
EJD
ENUVR
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HLV
HMC
HVGLF
HZ~
IHE
J1W
JARJE
KCYFY
KOM
LUGTX
LW9
LY6
LY9
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
PC.
Q38
R2-
RIG
ROL
RPZ
SAB
SAC
SDF
SDG
SDP
SEN
SES
SEW
SPC
SPCBC
SSA
SSG
SSH
SSI
SSJ
SSR
SSU
SSZ
T5K
VH1
WUQ
Y6R
~02
~G-
~KM
CGR
CUY
CVF
ECM
EFKBS
EIF
NPM
7X8
7QO
7ST
8FD
C1K
FR3
P64
SOI
ID FETCH-LOGICAL-c408t-53d42adc6c1f8e4220e26d728b638d1a2202870c60fd7ec524921486f0f50e83
ISSN 0960-8524
1873-2976
IngestDate Tue Aug 05 11:19:35 EDT 2025
Fri Jul 11 04:11:34 EDT 2025
Mon Jul 21 05:59:33 EDT 2025
Thu Apr 24 22:56:40 EDT 2025
Tue Jul 01 02:42:56 EDT 2025
IsPeerReviewed true
IsScholarly true
Language English
License https://www.elsevier.com/tdm/userlicense/1.0
Copyright © 2012 Elsevier Ltd. All rights reserved.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c408t-53d42adc6c1f8e4220e26d728b638d1a2202870c60fd7ec524921486f0f50e83
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PMID 22277210
PQID 923574265
PQPubID 23479
PageCount 5
ParticipantIDs proquest_miscellaneous_968168337
proquest_miscellaneous_923574265
pubmed_primary_22277210
crossref_primary_10_1016_j_biortech_2012_01_004
crossref_citationtrail_10_1016_j_biortech_2012_01_004
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2012-03-00
2012-Mar
20120301
PublicationDateYYYYMMDD 2012-03-01
PublicationDate_xml – month: 03
  year: 2012
  text: 2012-03-00
PublicationDecade 2010
PublicationPlace England
PublicationPlace_xml – name: England
PublicationTitle Bioresource technology
PublicationTitleAlternate Bioresour Technol
PublicationYear 2012
References Brányiková (10.1016/j.biortech.2012.01.004_b0010) 2011; 108
Rodríguez (10.1016/j.biortech.2012.01.004_b0125) 1991; 20
Ducat (10.1016/j.biortech.2012.01.004_b0025) 2011; 29
Huesemann (10.1016/j.biortech.2012.01.004_b0050) 2010; 162
Chen (10.1016/j.biortech.2012.01.004_b0015) 2011; 102
Morsy (10.1016/j.biortech.2012.01.004_b0080) 2011; 87
Watanabe (10.1016/j.biortech.2012.01.004_b0140) 2001; 49
Post (10.1016/j.biortech.2012.01.004_b0110) 1986; 145
Dismukes (10.1016/j.biortech.2012.01.004_b0020) 2008; 19
John (10.1016/j.biortech.2012.01.004_b0055) 2010; 102
Mussatto (10.1016/j.biortech.2012.01.004_b0085) 2010; 28
Aoyama (10.1016/j.biortech.2012.01.004_b0005) 1997; 83
Lopez (10.1016/j.biortech.2012.01.004_b0075) 2005; 16
Nomsawai (10.1016/j.biortech.2012.01.004_b0090) 1999; 40
Vonshak (10.1016/j.biortech.2012.01.004_b0135) 1997
Kim (10.1016/j.biortech.2012.01.004_b0065) 2006; 31
Philippis (10.1016/j.biortech.2012.01.004_b0100) 1992; 138
Ernst (10.1016/j.biortech.2012.01.004_b0035) 1985; 131
Philipps (10.1016/j.biortech.2012.01.004_b0105) 2011
Post (10.1016/j.biortech.2012.01.004_b0115) 1987; 149
Kebede (10.1016/j.biortech.2012.01.004_b0060) 1996; 332
Ernst (10.1016/j.biortech.2012.01.004_b0030) 1984; 140
Friedman (10.1016/j.biortech.2012.01.004_b0040) 1991; 38
Lehmann (10.1016/j.biortech.2012.01.004_b0070) 1976; 111
Ogawa (10.1016/j.biortech.2012.01.004_b0095) 1971; 50
Rosenberg (10.1016/j.biortech.2012.01.004_b0130) 2008; 19
Hon-nami (10.1016/j.biortech.2012.01.004_b0045) 1998; 16
Qiang (10.1016/j.biortech.2012.01.004_b0120) 1998; 33
References_xml – volume: 19
  start-page: 235
  year: 2008
  ident: 10.1016/j.biortech.2012.01.004_b0020
  article-title: Aquatic phototrophs: efficient alternatives to land-based crops for biofuels
  publication-title: Curr. Opin. Biotechnol.
  doi: 10.1016/j.copbio.2008.05.007
– year: 1997
  ident: 10.1016/j.biortech.2012.01.004_b0135
– volume: 131
  start-page: 3147
  year: 1985
  ident: 10.1016/j.biortech.2012.01.004_b0035
  article-title: Glycogen accumulation and the induction of nitrogenase activity in the heterocyst-forming cyanobacterium Anabaena variabilis
  publication-title: J. Gen. Microbiol.
– volume: 28
  start-page: 817
  year: 2010
  ident: 10.1016/j.biortech.2012.01.004_b0085
  article-title: Technological trends, global market, and challenges of bio-ethanol production
  publication-title: Biotechnol. Adv.
  doi: 10.1016/j.biotechadv.2010.07.001
– volume: 31
  start-page: 812
  year: 2006
  ident: 10.1016/j.biortech.2012.01.004_b0065
  article-title: Hydrogen production from Chlamydomonas reinhardtii biomass using a two-step conversion process: anaerobic conversion and photosynthetic fermentation
  publication-title: Int. J. Hydrogen Energ.
  doi: 10.1016/j.ijhydene.2005.06.009
– volume: 138
  start-page: 1623
  year: 1992
  ident: 10.1016/j.biortech.2012.01.004_b0100
  article-title: Glycogen and poly-β-hydroxybutyrate synthesis in Spirulina maxima
  publication-title: J. General Microbiol.
  doi: 10.1099/00221287-138-8-1623
– volume: 29
  start-page: 95
  year: 2011
  ident: 10.1016/j.biortech.2012.01.004_b0025
  article-title: Engineering cyanobacteria to generate high-value products
  publication-title: Trends Biotechnol.
  doi: 10.1016/j.tibtech.2010.12.003
– volume: 332
  start-page: 99
  year: 1996
  ident: 10.1016/j.biortech.2012.01.004_b0060
  article-title: Optimum growth conditions and light utilization efficiency of Spirulina platensis (= Arthrospira fusiformis) (Cyanophyta) from Lake Chitu, Ethiopia
  publication-title: Hydrobiologia
  doi: 10.1007/BF00016689
– volume: 108
  start-page: 766
  year: 2011
  ident: 10.1016/j.biortech.2012.01.004_b0010
  article-title: Microalgae-novel highly efficient starch producers
  publication-title: Biotechnol. Bioeng.
  doi: 10.1002/bit.23016
– volume: 162
  start-page: 208
  year: 2010
  ident: 10.1016/j.biortech.2012.01.004_b0050
  article-title: Hydrogen generation through indirect biophotolysis in batch cultures of the nonhetrocystous nitrogen-fixing cyanobacterium Plectonema boryanum
  publication-title: Appl. Biochem. Biotechnol.
  doi: 10.1007/s12010-009-8741-6
– volume: 16
  start-page: 75
  year: 1998
  ident: 10.1016/j.biortech.2012.01.004_b0045
  article-title: Microalgae cultivation in a tubular bioreactor and utilization of their cells
  publication-title: Chin. J. Oceanol. Limnol.
  doi: 10.1007/BF02849084
– volume: 111
  start-page: 93
  year: 1976
  ident: 10.1016/j.biortech.2012.01.004_b0070
  article-title: Accumulation, mobilization and turn-over of glycogen in the blue-green bacterium Anacystis nidulans
  publication-title: Arch. Microbiol.
  doi: 10.1007/BF00446554
– volume: 20
  start-page: 263
  year: 1991
  ident: 10.1016/j.biortech.2012.01.004_b0125
  publication-title: Enhancement of phycobiliprotein production in nitrogen-fixing cyanobacteria.
– volume: 102
  start-page: 71
  year: 2011
  ident: 10.1016/j.biortech.2012.01.004_b0015
  article-title: Cultivation, photobioreactor design and harvesting of microalgae for biodiesel production: a critical review
  publication-title: Bioresour. Technol.
  doi: 10.1016/j.biortech.2010.06.159
– volume: 145
  start-page: 353
  year: 1986
  ident: 10.1016/j.biortech.2012.01.004_b0110
  article-title: Transient state characteristics of adaptation to changes in light conditions for the cyanobacterium Oscillatoria agardhii
  publication-title: Arch. Microbiol.
  doi: 10.1007/BF00470870
– volume: 102
  start-page: 186
  year: 2010
  ident: 10.1016/j.biortech.2012.01.004_b0055
  article-title: Micro and macroalgal biomass: a renewable source for bioethanol
  publication-title: Bioresour. Technol.
  doi: 10.1016/j.biortech.2010.06.139
– year: 2011
  ident: 10.1016/j.biortech.2012.01.004_b0105
  article-title: Nitrogen deprivation results in photosynthetic hydrogen production in Chlamydomonas reinhardtii
  publication-title: Planta
– volume: 87
  start-page: 137
  year: 2011
  ident: 10.1016/j.biortech.2012.01.004_b0080
  article-title: Acetate versus sulfur deprivation role in creating anaerobiosis in light for hydrogen production by Chlamydomonas reinhardtii and Spirulina platensis: Two different organisms and two different mechanisms
  publication-title: Photochem. Photobiol.
  doi: 10.1111/j.1751-1097.2010.00823.x
– volume: 50
  start-page: 143
  year: 1971
  ident: 10.1016/j.biortech.2012.01.004_b0095
  article-title: Studies on the growth of Spirulina platensis. II. Growth kinetics of an autotrophic culture
  publication-title: J. Ferment. Technol.
– volume: 19
  start-page: 430
  year: 2008
  ident: 10.1016/j.biortech.2012.01.004_b0130
  article-title: A green light for engineered algae: redirecting metabolism to fuel a biotechnology revolution
  publication-title: Curr. Opin. Biotechnol.
  doi: 10.1016/j.copbio.2008.07.008
– volume: 49
  start-page: 5685
  year: 2001
  ident: 10.1016/j.biortech.2012.01.004_b0140
  article-title: Inactive corrinoid-compound significantly decreases in Spirulina platensis grown in a cobalt-deficient medium
  publication-title: J. Agric. Food Chem.
  doi: 10.1021/jf010733i
– volume: 33
  start-page: 165
  year: 1998
  ident: 10.1016/j.biortech.2012.01.004_b0120
  article-title: Combined effects of light intensity, light-path and culture density on output rate of Spirulina platensis (Cyanobacteria)
  publication-title: Eur. J. Phycol.
  doi: 10.1080/09670269810001736663
– volume: 40
  start-page: 1194
  year: 1999
  ident: 10.1016/j.biortech.2012.01.004_b0090
  article-title: Light regulation of phycobilisome structure and gene expression in Spirulina platensis C1 (Arthrospira sp. PCC 9438)
  publication-title: Plant Cell Physiol.
  doi: 10.1093/oxfordjournals.pcp.a029507
– volume: 149
  start-page: 19
  year: 1987
  ident: 10.1016/j.biortech.2012.01.004_b0115
  article-title: Transient state characteristics of changes in light conditions for the cyanobacterium Oscillatoria agardhii
  publication-title: Arch. Microbiol.
  doi: 10.1007/BF00423130
– volume: 16
  start-page: 180
  year: 2005
  ident: 10.1016/j.biortech.2012.01.004_b0075
  article-title: Prospects in diatom research
  publication-title: Curr. Opin. Biotechnol.
  doi: 10.1016/j.copbio.2005.02.002
– volume: 140
  start-page: 120
  year: 1984
  ident: 10.1016/j.biortech.2012.01.004_b0030
  article-title: Glycogen content and nitrogenase activity in Anabaena variabilis
  publication-title: Arch. Microbiol.
  doi: 10.1007/BF00454913
– volume: 83
  start-page: 17
  year: 1997
  ident: 10.1016/j.biortech.2012.01.004_b0005
  article-title: Fermentative metabolism to produce hydrogen gas and organic compounds in a cyanobacterium, Spirulina platensis
  publication-title: J. Ferment. Bioeng.
  doi: 10.1016/S0922-338X(97)87320-5
– volume: 38
  start-page: 105
  year: 1991
  ident: 10.1016/j.biortech.2012.01.004_b0040
  article-title: Effect of light intensity on growth and polysaccharide production in red and blue-green rhodophyta unicells
  publication-title: Bioresour. Technol.
  doi: 10.1016/0960-8524(91)90139-B
SSID ssj0003172
Score 2.4022217
Snippet Arthrospira (Spirulina) platensis, a fast-growing halophilic cyanobacterium able to accumulate glycogen, was investigated for its feasibility to serve as...
SourceID proquest
pubmed
crossref
SourceType Aggregation Database
Index Database
Enrichment Source
StartPage 211
SubjectTerms Arthrospira
Arthrospira platensis
Biofuels - microbiology
Chromatography, High Pressure Liquid
Cyanobacteria
Glycogen - biosynthesis
Industrial Microbiology - methods
Light
Nephelometry and Turbidimetry
Nitrates - metabolism
Spirulina - metabolism
Spirulina platensis
Title Synergistic enhancement of glycogen production in Arthrospira platensis by optimization of light intensity and nitrate supply
URI https://www.ncbi.nlm.nih.gov/pubmed/22277210
https://www.proquest.com/docview/923574265
https://www.proquest.com/docview/968168337
Volume 108
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9NAEF6FcgAOCMorvLQHbpHD2l4_coyqRhUq5VBXCifLXq8bt4kXxbZQKuC3M7N-xBGBAhcrWnvsKPN5MjuPbwh5xz079dIkMeDfzTW45wjDj83U4ImdOtLlUSSwOfnjmXtywT_Mnflg8K3fXVLGY3Gzt6_kf7QKa6BX7JL9B812N4UF-Az6hSNoGI5_pePzDXbuaarlkcwXqMA2t3-53Ah1WRdgJTVDrA5trHEugs6u4wBpXb5eoAuqwHSsmp5MlF_ipl2TSeS6agPj6_D2I7HEqMBJoLvp4EytmzzAqPwlWD_NrqOv2kk9X2TgpmcdHm-qla4m-KyKRbbI1mobIC-LKtEyM7hGbQ1lUeXVSp8I1EotsiLqBy6wAqSt3Gpsre_hGDmvYcLes9YaaObvmFhzr-mvoxBX4zjDKmWdaMI4rzlm9XzjXa7ts0_h7OL0NAyO58EdcteCTQZayfGPbYEQeFY6V95-pV5_-f6n7Lo2v9mvaL8leEQeNhsOOq3R85gMZH5IHkwv1w3pijwk947aqX9wpkdQ-YR87yGM9hBGVUpbhNEtwmiW0x7CaIcwGm9oH2EorxFGO4RRQBhtEEZrhD0lwew4ODoxmoEdhuDMLw3HTrgVJcIVZupLbllMWm7iWX4MVj4xI1jAvLpwWZp4UjjIVgnbcTdlqcOkbz8jB7nK5QtCUznhVsxt5kccHHYxAXHuxLGIYgbGhQ2J0_7UoWjI7HGmyjJsqxavwlZFIaooZGYIKhqS953cl5rO5VYJ2moyBFVgOi3KpaqKcIJMUeDgOn-4xMWxNrbtDcnzGgTdU7EH3bNM9vL2-78i97fvz2tyUK4r-QZc4TJ-qxH7Ewbyvp4
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Synergistic+enhancement+of+glycogen+production+in+Arthrospira+platensis+by+optimization+of+light+intensity+and+nitrate+supply&rft.jtitle=Bioresource+technology&rft.au=Aikawa%2C+Shimpei&rft.au=Izumi%2C+Yoshihiro&rft.au=Matsuda%2C+Fumio&rft.au=Hasunuma%2C+Tomohisa&rft.date=2012-03-01&rft.issn=1873-2976&rft.eissn=1873-2976&rft.volume=108&rft.spage=211&rft_id=info:doi/10.1016%2Fj.biortech.2012.01.004&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0960-8524&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0960-8524&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0960-8524&client=summon