Identification of Autism Based on SVM-RFE and Stacked Sparse Auto-Encoder
In order to improve the classification accuracy of patients with autism based on the full Autism Brain Imaging Data Exchange dataset, a total of 501 subjects with autism and 553 subjects with typical control across 17 sites were involved in the study. Firstly, we applied the resting-state functional...
Saved in:
Published in | IEEE access Vol. 7; pp. 118030 - 118036 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Piscataway
IEEE
2019
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
ISSN | 2169-3536 2169-3536 |
DOI | 10.1109/ACCESS.2019.2936639 |
Cover
Loading…
Abstract | In order to improve the classification accuracy of patients with autism based on the full Autism Brain Imaging Data Exchange dataset, a total of 501 subjects with autism and 553 subjects with typical control across 17 sites were involved in the study. Firstly, we applied the resting-state functional magnetic resonance imaging data to calculate the functional connectivity (FC) based on the automated anatomical labeling atlas with 116 brain regions. Secondly, we adopted the support vector machine-recursive feature elimination algorithm to select top 1000 features from the primitive FC features. Thirdly, we trained a stacked sparse auto-encoder with two hidden layers to extract the high-level latent and complicated features from the 1000 features. Finally, the optimal features obtained were fed into the softmax classifier. Experimental results demonstrate that the proposed classification algorithm is able to identify the autism with a state-of-the-art accuracy of 93.59% (sensitivity 92.52%, specificity 94.56%). |
---|---|
AbstractList | In order to improve the classification accuracy of patients with autism based on the full Autism Brain Imaging Data Exchange dataset, a total of 501 subjects with autism and 553 subjects with typical control across 17 sites were involved in the study. Firstly, we applied the resting-state functional magnetic resonance imaging data to calculate the functional connectivity (FC) based on the automated anatomical labeling atlas with 116 brain regions. Secondly, we adopted the support vector machine-recursive feature elimination algorithm to select top 1000 features from the primitive FC features. Thirdly, we trained a stacked sparse auto-encoder with two hidden layers to extract the high-level latent and complicated features from the 1000 features. Finally, the optimal features obtained were fed into the softmax classifier. Experimental results demonstrate that the proposed classification algorithm is able to identify the autism with a state-of-the-art accuracy of 93.59% (sensitivity 92.52%, specificity 94.56%). |
Author | Wu, Jianhua Wang, Canhua Xiao, Zhiyong Wang, Baoyu |
Author_xml | – sequence: 1 givenname: Canhua orcidid: 0000-0003-0071-9392 surname: Wang fullname: Wang, Canhua organization: School of Mechatronics Engineering, Nanchang University, Nanchang, China – sequence: 2 givenname: Zhiyong surname: Xiao fullname: Xiao, Zhiyong organization: School of Software, Jiangxi Agricultural University, Nanchang, China – sequence: 3 givenname: Baoyu surname: Wang fullname: Wang, Baoyu organization: School of Information Engineering, Nanchang University, Nanchang, China – sequence: 4 givenname: Jianhua surname: Wu fullname: Wu, Jianhua email: jhwu@ncu.edu.cn organization: School of Information Engineering, Nanchang University, Nanchang, China |
BookMark | eNp9kc1qGzEUhUVIoGmSJ8hmoOtxpdFoJC1d4yQDDoVO0q3Qz50g1xm5krzo21f2pKV0EW10OZzvcLnnIzqfwgQI3RK8IATLz8vVaj0MiwYTuWgk7Toqz9BlQzpZU0a783_mD-gmpS0uTxSJ8UvU9w6m7EdvdfZhqsJYLQ_Zp9fqi07gqiIN3x_rb3frSk-uGrK2P4o87HVMcLSGej3Z4CBeo4tR7xLcvP1X6Plu_bR6qDdf7_vVclPbFotcM8rMOHa4pYIyB3xk3BGMaRk7wI4xYQkB1nHjnOBUO8kNA20AhHOWS3qF-jnXBb1V--hfdfylgvbqJIT4onTM3u5AcWtaC6ZchPDWYC1MoxvJpRidcbY9Zn2as_Yx_DxAymobDnEq66umZazDrBWiuOTssjGkFGFU1ufTuXLUfqcIVsci1FyEOhah3oooLP2P_bPx-9TtTHkA-EsIgYVsGvobHmGU3g |
CODEN | IAECCG |
CitedBy_id | crossref_primary_10_1109_ACCESS_2020_3038479 crossref_primary_10_3389_fninf_2021_635657 crossref_primary_10_2174_0126662558284886240130154414 crossref_primary_10_1371_journal_pone_0302236 crossref_primary_10_1038_s41598_022_09821_6 crossref_primary_10_3390_s20051381 crossref_primary_10_1016_j_neucom_2020_05_113 crossref_primary_10_1515_revneuro_2020_0043 crossref_primary_10_3390_app11136216 crossref_primary_10_3389_fnins_2023_1170951 crossref_primary_10_3390_math8091620 crossref_primary_10_1021_acs_est_3c10012 crossref_primary_10_1109_TIM_2022_3165808 crossref_primary_10_3389_fnmol_2022_999605 crossref_primary_10_1038_s41380_023_02060_9 crossref_primary_10_1016_j_engappai_2023_107185 crossref_primary_10_3390_s23249647 crossref_primary_10_3389_fnins_2023_1333725 crossref_primary_10_1007_s00521_023_08565_2 crossref_primary_10_1007_s10278_024_01002_3 crossref_primary_10_1016_j_compbiomed_2021_104949 crossref_primary_10_3389_fncom_2021_654315 crossref_primary_10_3389_fninf_2020_575999 crossref_primary_10_1109_TCSS_2023_3270569 crossref_primary_10_1109_TMI_2023_3337362 crossref_primary_10_1016_j_jneumeth_2021_109271 crossref_primary_10_1016_j_nicl_2021_102584 crossref_primary_10_3390_math12233778 crossref_primary_10_3934_mbe_2021376 crossref_primary_10_3390_app12189339 crossref_primary_10_1007_s12652_021_03146_4 crossref_primary_10_1109_JBHI_2020_2998603 crossref_primary_10_1016_j_media_2021_102063 crossref_primary_10_3390_biomedicines11071858 crossref_primary_10_1109_ACCESS_2020_3016734 |
Cites_doi | 10.1016/j.conb.2007.01.009 10.1016/j.nicl.2014.12.013 10.1023/A:1012487302797 10.1006/nimg.2001.0978 10.1093/brain/awr263 10.1016/j.ijdevneu.2018.08.010 10.1504/IJDMB.2011.038578 10.1016/j.rasd.2016.11.005 10.1002/aur.1711 10.1038/mp.2013.78 10.1523/JNEUROSCI.3340-04.2004 10.1098/rstb.2008.0331 10.3389/fgene.2018.00018 10.1093/cercor/bhq296 10.1016/j.cortex.2014.08.011 10.1002/hbm.22411 10.1007/s10278-018-0093-8 10.7551/mitpress/7503.003.0147 10.1002/hbm.22956 10.1093/brain/awh199 10.3389/fnsys.2010.00013 10.1016/j.neuroimage.2016.10.045 10.1016/j.nicl.2017.08.017 10.1371/journal.pone.0050064 10.1186/s12868-017-0373-0 10.1162/neco.2006.18.7.1527 10.1001/jamapsychiatry.2013.104 10.1007/s11682-015-9360-1 10.3390/molecules23010052 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019 |
DBID | 97E ESBDL RIA RIE AAYXX CITATION 7SC 7SP 7SR 8BQ 8FD JG9 JQ2 L7M L~C L~D DOA |
DOI | 10.1109/ACCESS.2019.2936639 |
DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE Xplore Open Access Journals IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts METADEX Technology Research Database Materials Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace METADEX Computer and Information Systems Abstracts Professional |
DatabaseTitleList | Materials Research Database |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 2169-3536 |
EndPage | 118036 |
ExternalDocumentID | oai_doaj_org_article_7cb4ceb663174b0a8b2a29798fdbdc49 10_1109_ACCESS_2019_2936639 8808922 |
Genre | orig-research |
GrantInformation_xml | – fundername: National Natural Science Foundation of China grantid: 61662047 funderid: 10.13039/501100001809 |
GroupedDBID | 0R~ 4.4 5VS 6IK 97E AAJGR ABAZT ABVLG ACGFS ADBBV AGSQL ALMA_UNASSIGNED_HOLDINGS BCNDV BEFXN BFFAM BGNUA BKEBE BPEOZ EBS EJD ESBDL GROUPED_DOAJ IPLJI JAVBF KQ8 M43 M~E O9- OCL OK1 RIA RIE RNS AAYXX CITATION RIG 7SC 7SP 7SR 8BQ 8FD JG9 JQ2 L7M L~C L~D |
ID | FETCH-LOGICAL-c408t-535bff6043835de7f57d1003de76e0d558c11e567bdd873ad97b5eabee8ddc793 |
IEDL.DBID | RIE |
ISSN | 2169-3536 |
IngestDate | Wed Aug 27 01:09:29 EDT 2025 Mon Jun 30 05:51:06 EDT 2025 Tue Jul 01 02:41:51 EDT 2025 Thu Apr 24 22:53:18 EDT 2025 Wed Aug 27 02:46:13 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Language | English |
License | https://creativecommons.org/licenses/by/4.0/legalcode |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c408t-535bff6043835de7f57d1003de76e0d558c11e567bdd873ad97b5eabee8ddc793 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0003-0071-9392 |
OpenAccessLink | https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/document/8808922 |
PQID | 2455605488 |
PQPubID | 4845423 |
PageCount | 7 |
ParticipantIDs | proquest_journals_2455605488 ieee_primary_8808922 crossref_primary_10_1109_ACCESS_2019_2936639 crossref_citationtrail_10_1109_ACCESS_2019_2936639 doaj_primary_oai_doaj_org_article_7cb4ceb663174b0a8b2a29798fdbdc49 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20190000 2019-00-00 20190101 2019-01-01 |
PublicationDateYYYYMMDD | 2019-01-01 |
PublicationDate_xml | – year: 2019 text: 20190000 |
PublicationDecade | 2010 |
PublicationPlace | Piscataway |
PublicationPlace_xml | – name: Piscataway |
PublicationTitle | IEEE access |
PublicationTitleAbbrev | Access |
PublicationYear | 2019 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref12 ref15 ref14 ref31 ref30 ref11 ref33 ref10 ref32 ref2 ref1 ref17 ref19 ref18 ref24 ref23 ref26 ref25 ref20 Craddock (ref22) ref28 ref29 ref8 ref7 ref9 Guyon (ref16) 2002; 46 ref4 ref3 ref6 ref5 (ref27) 2013 Goodfellow (ref21) |
References_xml | – ident: ref29 doi: 10.1016/j.conb.2007.01.009 – ident: ref6 doi: 10.1016/j.nicl.2014.12.013 – volume: 46 start-page: 389 issue: 1 year: 2002 ident: ref16 article-title: Gene selection for cancer classification using support vector machines publication-title: Mach. Learn. doi: 10.1023/A:1012487302797 – ident: ref25 doi: 10.1006/nimg.2001.0978 – ident: ref2 doi: 10.1093/brain/awr263 – ident: ref12 doi: 10.1016/j.ijdevneu.2018.08.010 – ident: ref18 doi: 10.1504/IJDMB.2011.038578 – ident: ref1 doi: 10.1016/j.rasd.2016.11.005 – ident: ref9 doi: 10.1002/aur.1711 – ident: ref32 doi: 10.1038/mp.2013.78 – start-page: 646 volume-title: Proc. Int. Conf. Neural Inf. Process. Syst. ident: ref21 article-title: Measuring invariances in deep networks – ident: ref33 doi: 10.1523/JNEUROSCI.3340-04.2004 – ident: ref22 article-title: The Neuro bureau preprocessing initiative: Open sharing of preprocessed neuroimaging data and derivatives publication-title: Frontiers Neuroinform. – ident: ref30 doi: 10.1098/rstb.2008.0331 – ident: ref5 doi: 10.3389/fgene.2018.00018 – ident: ref31 doi: 10.1093/cercor/bhq296 – ident: ref24 doi: 10.1016/j.cortex.2014.08.011 – ident: ref7 doi: 10.1002/hbm.22411 – ident: ref11 doi: 10.1007/s10278-018-0093-8 – ident: ref20 doi: 10.7551/mitpress/7503.003.0147 – ident: ref19 doi: 10.1002/hbm.22956 – ident: ref28 doi: 10.1093/brain/awh199 – ident: ref23 doi: 10.3389/fnsys.2010.00013 – ident: ref14 doi: 10.1016/j.neuroimage.2016.10.045 – ident: ref15 doi: 10.1016/j.nicl.2017.08.017 – ident: ref3 doi: 10.1371/journal.pone.0050064 – ident: ref10 doi: 10.1186/s12868-017-0373-0 – ident: ref26 doi: 10.1162/neco.2006.18.7.1527 – volume-title: UFLDL Tutorial year: 2013 ident: ref27 – ident: ref4 doi: 10.1001/jamapsychiatry.2013.104 – ident: ref8 doi: 10.1007/s11682-015-9360-1 – ident: ref17 doi: 10.3390/molecules23010052 |
SSID | ssj0000816957 |
Score | 2.3899584 |
Snippet | In order to improve the classification accuracy of patients with autism based on the full Autism Brain Imaging Data Exchange dataset, a total of 501 subjects... |
SourceID | doaj proquest crossref ieee |
SourceType | Open Website Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 118030 |
SubjectTerms | Algorithms Autism Brain Classification Classification algorithms Coders Data exchange deep learning Feature extraction fMRI Functional magnetic resonance imaging Magnetic resonance imaging Medical imaging Support vector machines SVM-RFE Training |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07T8MwELZQJxgQT1FeysBIIHHi2B5L1QqQYACK2CyfHxOkFZT_z9lxqyIkWJgSWY5jn-_83Vn2d4SclVpD4FHPa8QiDFBKnYOUPjfUeCNRYaSLp3zvm-tJffvCXlZSfYUzYR09cCe4S26gNg4QGNF3hkILoJpKLoW3YE0dr-4h5q0EU3ENFmUjGU80Q2UhLwfDIY4onOWSFwhx2J78BkWRsT-lWPmxLkewGW-RzeQlZoOud9tkzbU7ZGOFO3CX3HRXbH3ac8umPhugEn28ZVcITDbDosfnu_xhPMp0azN0KtFe8TnDSNaFqtN81IYL7e97ZDIePQ2v85QXITd1IeY5qxh430SWUWYd94zbEq0TXxtXWMaEKUvHGg7WCl5pKzkwp8E5Ya1Bg9wnvXbaugOSNTVQz11TWaprbjRUlfMSPANmEMegT-hCRMok0vCQu-JVxeChkKqTqwpyVUmufXK-_GjWcWb8Xv0qyH5ZNRBexwJUA5XUQP2lBn2yG2Zu2QhqmZCU9snxYiZVMs4PRWuGfh6GauLwP359RNbDcLp9mWPSm79_uhP0VOZwGpXyCyqc4oI priority: 102 providerName: Directory of Open Access Journals |
Title | Identification of Autism Based on SVM-RFE and Stacked Sparse Auto-Encoder |
URI | https://ieeexplore.ieee.org/document/8808922 https://www.proquest.com/docview/2455605488 https://doaj.org/article/7cb4ceb663174b0a8b2a29798fdbdc49 |
Volume | 7 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9swDBa6ntrD1vWBpU0DH3asU79kWcc0SNAN6A59oTdBlKhLN6dok0t__ShZMfoYip0sCJIgm6RIyuRHxr7nWoPHUU8r0kXkoOQ6BSldagrjjCSGkRiifH_V5zfVzzt-t8FO-lwYRAzBZzj2zfAv3y7Myl-VndLURhZ04H4ix63L1ervU3wBCclFBBbKM3k6mU7pHXz0lhyTUiPVKl8pn4DRH4uqvDuJg3qZf2EX6411USX349USxub5DWbj_-58h32OdmYy6RjjK9vAdpdtv0Af3GM_uiRdF2_tkoVLJsSGT3-SM1JtNqGuq9uL9HI-S3RrEzJLSeLp-UC-MPqhi3TW-pT4x312M59dT8_TWFkhNVXWLFNecnCuDjil3KJwXNic5JuaNWaW88bkOfJagLWNKLWVAjhqQGysNSTSB2yzXbT4jSV1BYUTWJe20JUwGsoSnQTHgRvShDBgxfqTKxNhx331i98quB-ZVB2dlKeTinQasJN-0kOHuvHx8DNPy36oh8wOHUQDFSVQCQOVQaDx5IRBphsodCGFbJwFaypaZM_TrV8kkmzAhmvOUFG8n1RRcbIUydlrDv8964ht-Q12dzVDtrl8XOExWS9LGAWvfxSY9y-CHuwh |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9swDBaK7rDusK3rhmXrWh96rFO_ZFnHNEiQPtJDH0NvgihRl25O0SaX_fpRsmKsazHsZEGgBNkkRZEmPzF2kGsNHkc9rcgWkYOS6xSkdKkpjDOSBEZiyPK9qGc31ektv91gh30tDCKG5DMc-mb4l28XZuVDZUc0tJEFbbivuC_G7aq1-oiKv0JCchGhhfJMHo3GY3oLn78lh2TWyLjKJ-YnoPTHa1We7cXBwEzfsfl6aV1eyd1wtYSh-fUXauP_rv09extPmsmoE41ttoHtB_bmD_zBHXbSlem6GLdLFi4ZkSA-_kyOybjZhLquvs_Ty-kk0a1N6GBKOk_Pe_KG0ZMu0knri-IfPrKb6eR6PEvj3QqpqbJmmfKSg3N1QCrlFoXjwuak4dSsMbOcNybPkdcCrG1Eqa0UwFEDYmOtIaX-xDbbRYufWVJXUDiBdWkLXQmjoSzRSXAcuCFbCANWrD-5MhF43N9_8UMFBySTquOT8nxSkU8DdtgPuu9wN_5Nfux52ZN60OzQQTxQUQeVMFAZBKInNwwy3UChCylk4yxYU9EkO55v_SSRZQO2u5YMFRX8URUkgOQJ0vb35eVR--z17Hp-rs5PLs6-si2_2C5ys8s2lw8r_EZnmSXsBRH-DWOf7nQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Identification+of+Autism+Based+on+SVM-RFE+and+Stacked+Sparse+Auto-Encoder&rft.jtitle=IEEE+access&rft.au=Wang%2C+Canhua&rft.au=Xiao%2C+Zhiyong&rft.au=Wang%2C+Baoyu&rft.au=Wu%2C+Jianhua&rft.date=2019&rft.issn=2169-3536&rft.eissn=2169-3536&rft.volume=7&rft.spage=118030&rft.epage=118036&rft_id=info:doi/10.1109%2FACCESS.2019.2936639&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_ACCESS_2019_2936639 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2169-3536&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2169-3536&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2169-3536&client=summon |