Identification of Autism Based on SVM-RFE and Stacked Sparse Auto-Encoder

In order to improve the classification accuracy of patients with autism based on the full Autism Brain Imaging Data Exchange dataset, a total of 501 subjects with autism and 553 subjects with typical control across 17 sites were involved in the study. Firstly, we applied the resting-state functional...

Full description

Saved in:
Bibliographic Details
Published inIEEE access Vol. 7; pp. 118030 - 118036
Main Authors Wang, Canhua, Xiao, Zhiyong, Wang, Baoyu, Wu, Jianhua
Format Journal Article
LanguageEnglish
Published Piscataway IEEE 2019
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN2169-3536
2169-3536
DOI10.1109/ACCESS.2019.2936639

Cover

Loading…
Abstract In order to improve the classification accuracy of patients with autism based on the full Autism Brain Imaging Data Exchange dataset, a total of 501 subjects with autism and 553 subjects with typical control across 17 sites were involved in the study. Firstly, we applied the resting-state functional magnetic resonance imaging data to calculate the functional connectivity (FC) based on the automated anatomical labeling atlas with 116 brain regions. Secondly, we adopted the support vector machine-recursive feature elimination algorithm to select top 1000 features from the primitive FC features. Thirdly, we trained a stacked sparse auto-encoder with two hidden layers to extract the high-level latent and complicated features from the 1000 features. Finally, the optimal features obtained were fed into the softmax classifier. Experimental results demonstrate that the proposed classification algorithm is able to identify the autism with a state-of-the-art accuracy of 93.59% (sensitivity 92.52%, specificity 94.56%).
AbstractList In order to improve the classification accuracy of patients with autism based on the full Autism Brain Imaging Data Exchange dataset, a total of 501 subjects with autism and 553 subjects with typical control across 17 sites were involved in the study. Firstly, we applied the resting-state functional magnetic resonance imaging data to calculate the functional connectivity (FC) based on the automated anatomical labeling atlas with 116 brain regions. Secondly, we adopted the support vector machine-recursive feature elimination algorithm to select top 1000 features from the primitive FC features. Thirdly, we trained a stacked sparse auto-encoder with two hidden layers to extract the high-level latent and complicated features from the 1000 features. Finally, the optimal features obtained were fed into the softmax classifier. Experimental results demonstrate that the proposed classification algorithm is able to identify the autism with a state-of-the-art accuracy of 93.59% (sensitivity 92.52%, specificity 94.56%).
Author Wu, Jianhua
Wang, Canhua
Xiao, Zhiyong
Wang, Baoyu
Author_xml – sequence: 1
  givenname: Canhua
  orcidid: 0000-0003-0071-9392
  surname: Wang
  fullname: Wang, Canhua
  organization: School of Mechatronics Engineering, Nanchang University, Nanchang, China
– sequence: 2
  givenname: Zhiyong
  surname: Xiao
  fullname: Xiao, Zhiyong
  organization: School of Software, Jiangxi Agricultural University, Nanchang, China
– sequence: 3
  givenname: Baoyu
  surname: Wang
  fullname: Wang, Baoyu
  organization: School of Information Engineering, Nanchang University, Nanchang, China
– sequence: 4
  givenname: Jianhua
  surname: Wu
  fullname: Wu, Jianhua
  email: jhwu@ncu.edu.cn
  organization: School of Information Engineering, Nanchang University, Nanchang, China
BookMark eNp9kc1qGzEUhUVIoGmSJ8hmoOtxpdFoJC1d4yQDDoVO0q3Qz50g1xm5krzo21f2pKV0EW10OZzvcLnnIzqfwgQI3RK8IATLz8vVaj0MiwYTuWgk7Toqz9BlQzpZU0a783_mD-gmpS0uTxSJ8UvU9w6m7EdvdfZhqsJYLQ_Zp9fqi07gqiIN3x_rb3frSk-uGrK2P4o87HVMcLSGej3Z4CBeo4tR7xLcvP1X6Plu_bR6qDdf7_vVclPbFotcM8rMOHa4pYIyB3xk3BGMaRk7wI4xYQkB1nHjnOBUO8kNA20AhHOWS3qF-jnXBb1V--hfdfylgvbqJIT4onTM3u5AcWtaC6ZchPDWYC1MoxvJpRidcbY9Zn2as_Yx_DxAymobDnEq66umZazDrBWiuOTssjGkFGFU1ufTuXLUfqcIVsci1FyEOhah3oooLP2P_bPx-9TtTHkA-EsIgYVsGvobHmGU3g
CODEN IAECCG
CitedBy_id crossref_primary_10_1109_ACCESS_2020_3038479
crossref_primary_10_3389_fninf_2021_635657
crossref_primary_10_2174_0126662558284886240130154414
crossref_primary_10_1371_journal_pone_0302236
crossref_primary_10_1038_s41598_022_09821_6
crossref_primary_10_3390_s20051381
crossref_primary_10_1016_j_neucom_2020_05_113
crossref_primary_10_1515_revneuro_2020_0043
crossref_primary_10_3390_app11136216
crossref_primary_10_3389_fnins_2023_1170951
crossref_primary_10_3390_math8091620
crossref_primary_10_1021_acs_est_3c10012
crossref_primary_10_1109_TIM_2022_3165808
crossref_primary_10_3389_fnmol_2022_999605
crossref_primary_10_1038_s41380_023_02060_9
crossref_primary_10_1016_j_engappai_2023_107185
crossref_primary_10_3390_s23249647
crossref_primary_10_3389_fnins_2023_1333725
crossref_primary_10_1007_s00521_023_08565_2
crossref_primary_10_1007_s10278_024_01002_3
crossref_primary_10_1016_j_compbiomed_2021_104949
crossref_primary_10_3389_fncom_2021_654315
crossref_primary_10_3389_fninf_2020_575999
crossref_primary_10_1109_TCSS_2023_3270569
crossref_primary_10_1109_TMI_2023_3337362
crossref_primary_10_1016_j_jneumeth_2021_109271
crossref_primary_10_1016_j_nicl_2021_102584
crossref_primary_10_3390_math12233778
crossref_primary_10_3934_mbe_2021376
crossref_primary_10_3390_app12189339
crossref_primary_10_1007_s12652_021_03146_4
crossref_primary_10_1109_JBHI_2020_2998603
crossref_primary_10_1016_j_media_2021_102063
crossref_primary_10_3390_biomedicines11071858
crossref_primary_10_1109_ACCESS_2020_3016734
Cites_doi 10.1016/j.conb.2007.01.009
10.1016/j.nicl.2014.12.013
10.1023/A:1012487302797
10.1006/nimg.2001.0978
10.1093/brain/awr263
10.1016/j.ijdevneu.2018.08.010
10.1504/IJDMB.2011.038578
10.1016/j.rasd.2016.11.005
10.1002/aur.1711
10.1038/mp.2013.78
10.1523/JNEUROSCI.3340-04.2004
10.1098/rstb.2008.0331
10.3389/fgene.2018.00018
10.1093/cercor/bhq296
10.1016/j.cortex.2014.08.011
10.1002/hbm.22411
10.1007/s10278-018-0093-8
10.7551/mitpress/7503.003.0147
10.1002/hbm.22956
10.1093/brain/awh199
10.3389/fnsys.2010.00013
10.1016/j.neuroimage.2016.10.045
10.1016/j.nicl.2017.08.017
10.1371/journal.pone.0050064
10.1186/s12868-017-0373-0
10.1162/neco.2006.18.7.1527
10.1001/jamapsychiatry.2013.104
10.1007/s11682-015-9360-1
10.3390/molecules23010052
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019
DBID 97E
ESBDL
RIA
RIE
AAYXX
CITATION
7SC
7SP
7SR
8BQ
8FD
JG9
JQ2
L7M
L~C
L~D
DOA
DOI 10.1109/ACCESS.2019.2936639
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE Xplore Open Access Journals
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
METADEX
Computer and Information Systems Abstracts Professional
DatabaseTitleList Materials Research Database


Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2169-3536
EndPage 118036
ExternalDocumentID oai_doaj_org_article_7cb4ceb663174b0a8b2a29798fdbdc49
10_1109_ACCESS_2019_2936639
8808922
Genre orig-research
GrantInformation_xml – fundername: National Natural Science Foundation of China
  grantid: 61662047
  funderid: 10.13039/501100001809
GroupedDBID 0R~
4.4
5VS
6IK
97E
AAJGR
ABAZT
ABVLG
ACGFS
ADBBV
AGSQL
ALMA_UNASSIGNED_HOLDINGS
BCNDV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
EJD
ESBDL
GROUPED_DOAJ
IPLJI
JAVBF
KQ8
M43
M~E
O9-
OCL
OK1
RIA
RIE
RNS
AAYXX
CITATION
RIG
7SC
7SP
7SR
8BQ
8FD
JG9
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c408t-535bff6043835de7f57d1003de76e0d558c11e567bdd873ad97b5eabee8ddc793
IEDL.DBID RIE
ISSN 2169-3536
IngestDate Wed Aug 27 01:09:29 EDT 2025
Mon Jun 30 05:51:06 EDT 2025
Tue Jul 01 02:41:51 EDT 2025
Thu Apr 24 22:53:18 EDT 2025
Wed Aug 27 02:46:13 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Language English
License https://creativecommons.org/licenses/by/4.0/legalcode
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c408t-535bff6043835de7f57d1003de76e0d558c11e567bdd873ad97b5eabee8ddc793
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-0071-9392
OpenAccessLink https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/document/8808922
PQID 2455605488
PQPubID 4845423
PageCount 7
ParticipantIDs proquest_journals_2455605488
ieee_primary_8808922
crossref_primary_10_1109_ACCESS_2019_2936639
crossref_citationtrail_10_1109_ACCESS_2019_2936639
doaj_primary_oai_doaj_org_article_7cb4ceb663174b0a8b2a29798fdbdc49
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20190000
2019-00-00
20190101
2019-01-01
PublicationDateYYYYMMDD 2019-01-01
PublicationDate_xml – year: 2019
  text: 20190000
PublicationDecade 2010
PublicationPlace Piscataway
PublicationPlace_xml – name: Piscataway
PublicationTitle IEEE access
PublicationTitleAbbrev Access
PublicationYear 2019
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref12
ref15
ref14
ref31
ref30
ref11
ref33
ref10
ref32
ref2
ref1
ref17
ref19
ref18
ref24
ref23
ref26
ref25
ref20
Craddock (ref22)
ref28
ref29
ref8
ref7
ref9
Guyon (ref16) 2002; 46
ref4
ref3
ref6
ref5
(ref27) 2013
Goodfellow (ref21)
References_xml – ident: ref29
  doi: 10.1016/j.conb.2007.01.009
– ident: ref6
  doi: 10.1016/j.nicl.2014.12.013
– volume: 46
  start-page: 389
  issue: 1
  year: 2002
  ident: ref16
  article-title: Gene selection for cancer classification using support vector machines
  publication-title: Mach. Learn.
  doi: 10.1023/A:1012487302797
– ident: ref25
  doi: 10.1006/nimg.2001.0978
– ident: ref2
  doi: 10.1093/brain/awr263
– ident: ref12
  doi: 10.1016/j.ijdevneu.2018.08.010
– ident: ref18
  doi: 10.1504/IJDMB.2011.038578
– ident: ref1
  doi: 10.1016/j.rasd.2016.11.005
– ident: ref9
  doi: 10.1002/aur.1711
– ident: ref32
  doi: 10.1038/mp.2013.78
– start-page: 646
  volume-title: Proc. Int. Conf. Neural Inf. Process. Syst.
  ident: ref21
  article-title: Measuring invariances in deep networks
– ident: ref33
  doi: 10.1523/JNEUROSCI.3340-04.2004
– ident: ref22
  article-title: The Neuro bureau preprocessing initiative: Open sharing of preprocessed neuroimaging data and derivatives
  publication-title: Frontiers Neuroinform.
– ident: ref30
  doi: 10.1098/rstb.2008.0331
– ident: ref5
  doi: 10.3389/fgene.2018.00018
– ident: ref31
  doi: 10.1093/cercor/bhq296
– ident: ref24
  doi: 10.1016/j.cortex.2014.08.011
– ident: ref7
  doi: 10.1002/hbm.22411
– ident: ref11
  doi: 10.1007/s10278-018-0093-8
– ident: ref20
  doi: 10.7551/mitpress/7503.003.0147
– ident: ref19
  doi: 10.1002/hbm.22956
– ident: ref28
  doi: 10.1093/brain/awh199
– ident: ref23
  doi: 10.3389/fnsys.2010.00013
– ident: ref14
  doi: 10.1016/j.neuroimage.2016.10.045
– ident: ref15
  doi: 10.1016/j.nicl.2017.08.017
– ident: ref3
  doi: 10.1371/journal.pone.0050064
– ident: ref10
  doi: 10.1186/s12868-017-0373-0
– ident: ref26
  doi: 10.1162/neco.2006.18.7.1527
– volume-title: UFLDL Tutorial
  year: 2013
  ident: ref27
– ident: ref4
  doi: 10.1001/jamapsychiatry.2013.104
– ident: ref8
  doi: 10.1007/s11682-015-9360-1
– ident: ref17
  doi: 10.3390/molecules23010052
SSID ssj0000816957
Score 2.3899584
Snippet In order to improve the classification accuracy of patients with autism based on the full Autism Brain Imaging Data Exchange dataset, a total of 501 subjects...
SourceID doaj
proquest
crossref
ieee
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 118030
SubjectTerms Algorithms
Autism
Brain
Classification
Classification algorithms
Coders
Data exchange
deep learning
Feature extraction
fMRI
Functional magnetic resonance imaging
Magnetic resonance imaging
Medical imaging
Support vector machines
SVM-RFE
Training
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07T8MwELZQJxgQT1FeysBIIHHi2B5L1QqQYACK2CyfHxOkFZT_z9lxqyIkWJgSWY5jn-_83Vn2d4SclVpD4FHPa8QiDFBKnYOUPjfUeCNRYaSLp3zvm-tJffvCXlZSfYUzYR09cCe4S26gNg4QGNF3hkILoJpKLoW3YE0dr-4h5q0EU3ENFmUjGU80Q2UhLwfDIY4onOWSFwhx2J78BkWRsT-lWPmxLkewGW-RzeQlZoOud9tkzbU7ZGOFO3CX3HRXbH3ac8umPhugEn28ZVcITDbDosfnu_xhPMp0azN0KtFe8TnDSNaFqtN81IYL7e97ZDIePQ2v85QXITd1IeY5qxh430SWUWYd94zbEq0TXxtXWMaEKUvHGg7WCl5pKzkwp8E5Ya1Bg9wnvXbaugOSNTVQz11TWaprbjRUlfMSPANmEMegT-hCRMok0vCQu-JVxeChkKqTqwpyVUmufXK-_GjWcWb8Xv0qyH5ZNRBexwJUA5XUQP2lBn2yG2Zu2QhqmZCU9snxYiZVMs4PRWuGfh6GauLwP359RNbDcLp9mWPSm79_uhP0VOZwGpXyCyqc4oI
  priority: 102
  providerName: Directory of Open Access Journals
Title Identification of Autism Based on SVM-RFE and Stacked Sparse Auto-Encoder
URI https://ieeexplore.ieee.org/document/8808922
https://www.proquest.com/docview/2455605488
https://doaj.org/article/7cb4ceb663174b0a8b2a29798fdbdc49
Volume 7
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9swDBa6ntrD1vWBpU0DH3asU79kWcc0SNAN6A59oTdBlKhLN6dok0t__ShZMfoYip0sCJIgm6RIyuRHxr7nWoPHUU8r0kXkoOQ6BSldagrjjCSGkRiifH_V5zfVzzt-t8FO-lwYRAzBZzj2zfAv3y7Myl-VndLURhZ04H4ix63L1ervU3wBCclFBBbKM3k6mU7pHXz0lhyTUiPVKl8pn4DRH4uqvDuJg3qZf2EX6411USX349USxub5DWbj_-58h32OdmYy6RjjK9vAdpdtv0Af3GM_uiRdF2_tkoVLJsSGT3-SM1JtNqGuq9uL9HI-S3RrEzJLSeLp-UC-MPqhi3TW-pT4x312M59dT8_TWFkhNVXWLFNecnCuDjil3KJwXNic5JuaNWaW88bkOfJagLWNKLWVAjhqQGysNSTSB2yzXbT4jSV1BYUTWJe20JUwGsoSnQTHgRvShDBgxfqTKxNhx331i98quB-ZVB2dlKeTinQasJN-0kOHuvHx8DNPy36oh8wOHUQDFSVQCQOVQaDx5IRBphsodCGFbJwFaypaZM_TrV8kkmzAhmvOUFG8n1RRcbIUydlrDv8964ht-Q12dzVDtrl8XOExWS9LGAWvfxSY9y-CHuwh
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9swDBaK7rDusK3rhmXrWh96rFO_ZFnHNEiQPtJDH0NvgihRl25O0SaX_fpRsmKsazHsZEGgBNkkRZEmPzF2kGsNHkc9rcgWkYOS6xSkdKkpjDOSBEZiyPK9qGc31ektv91gh30tDCKG5DMc-mb4l28XZuVDZUc0tJEFbbivuC_G7aq1-oiKv0JCchGhhfJMHo3GY3oLn78lh2TWyLjKJ-YnoPTHa1We7cXBwEzfsfl6aV1eyd1wtYSh-fUXauP_rv09extPmsmoE41ttoHtB_bmD_zBHXbSlem6GLdLFi4ZkSA-_kyOybjZhLquvs_Ty-kk0a1N6GBKOk_Pe_KG0ZMu0knri-IfPrKb6eR6PEvj3QqpqbJmmfKSg3N1QCrlFoXjwuak4dSsMbOcNybPkdcCrG1Eqa0UwFEDYmOtIaX-xDbbRYufWVJXUDiBdWkLXQmjoSzRSXAcuCFbCANWrD-5MhF43N9_8UMFBySTquOT8nxSkU8DdtgPuu9wN_5Nfux52ZN60OzQQTxQUQeVMFAZBKInNwwy3UChCylk4yxYU9EkO55v_SSRZQO2u5YMFRX8URUkgOQJ0vb35eVR--z17Hp-rs5PLs6-si2_2C5ys8s2lw8r_EZnmSXsBRH-DWOf7nQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Identification+of+Autism+Based+on+SVM-RFE+and+Stacked+Sparse+Auto-Encoder&rft.jtitle=IEEE+access&rft.au=Wang%2C+Canhua&rft.au=Xiao%2C+Zhiyong&rft.au=Wang%2C+Baoyu&rft.au=Wu%2C+Jianhua&rft.date=2019&rft.issn=2169-3536&rft.eissn=2169-3536&rft.volume=7&rft.spage=118030&rft.epage=118036&rft_id=info:doi/10.1109%2FACCESS.2019.2936639&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_ACCESS_2019_2936639
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2169-3536&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2169-3536&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2169-3536&client=summon