A Combined Projection for Remote Control of a Vehicle Based on Movement Imagination: A Single Trial Brain Computer Interface Study

Disabled patients using brain computer interface (BCI) applications have a more convenient life. The present study implements an electroencephalogram (EEG)-based signal processing algorithm for controlling a wireless mobile vehicle through imagination. The aim is to improve the filtered common spati...

Full description

Saved in:
Bibliographic Details
Published inIEEE access Vol. 10; pp. 6165 - 6174
Main Authors Hekmatmanesh, Amin, Wu, Huapeng, Li, Ming, Handroos, Heikki
Format Journal Article
LanguageEnglish
Published Piscataway IEEE 2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Disabled patients using brain computer interface (BCI) applications have a more convenient life. The present study implements an electroencephalogram (EEG)-based signal processing algorithm for controlling a wireless mobile vehicle through imagination. The aim is to improve the filtered common spatial pattern (CSP) algorithm for BCI applications. The proposed method is a combination of the CSP projection with a Modified Secondary Projection of the filtered Common Spatial Pattern (MSPCSP). With this algorithm, distinctive differential features are obtained from the combination of the MSPCSP and CSP projection eigenvalues to identify four classes: moving-forward-for-pause, stop-for-pause, moving-forward-continuously, and stopped-continuously. The second contribution is the design of a task to produce clear imaginary movement patterns. The task is a combination of brain stimulation by viewing red and yellow sketches of the right hand that indicate opening the hand and making a fist. Eighteen subjects participated in the experiment for wireless control of a mobile vehicle in offline and real-time modes. The results were then evaluated through an accuracy and paired t-test statistical analysis for offline and real-time signal processing. The results based on the MSPCSP projection showed significant improvements in accuracy in comparison with the CSP projection: 82.16± 9.04% with <inline-formula> <tex-math notation="LaTeX">p < 0.05 </tex-math></inline-formula> and 70.83± 8.27% for offline and real-time processing, respectively. In addition, the MSPCSP projection attained higher accuracies of 14.72% and 13.33% for offline and real-time processing, respectively. It was concluded that the MSPCSP projection generates more discriminant differential features than the filtered CSP projection. Further, the MSPCSP projection with the thresholds extend the limitation of CSP-based methods from two- to four-class identification.
AbstractList Disabled patients using brain computer interface (BCI) applications have a more convenient life. The present study implements an electroencephalogram (EEG)-based signal processing algorithm for controlling a wireless mobile vehicle through imagination. The aim is to improve the filtered common spatial pattern (CSP) algorithm for BCI applications. The proposed method is a combination of the CSP projection with a Modified Secondary Projection of the filtered Common Spatial Pattern (MSPCSP). With this algorithm, distinctive differential features are obtained from the combination of the MSPCSP and CSP projection eigenvalues to identify four classes: moving-forward-for-pause, stop-for-pause, moving-forward-continuously, and stopped-continuously. The second contribution is the design of a task to produce clear imaginary movement patterns. The task is a combination of brain stimulation by viewing red and yellow sketches of the right hand that indicate opening the hand and making a fist. Eighteen subjects participated in the experiment for wireless control of a mobile vehicle in offline and real-time modes. The results were then evaluated through an accuracy and paired t-test statistical analysis for offline and real-time signal processing. The results based on the MSPCSP projection showed significant improvements in accuracy in comparison with the CSP projection: 82.16± 9.04% with <inline-formula> <tex-math notation="LaTeX">p < 0.05 </tex-math></inline-formula> and 70.83± 8.27% for offline and real-time processing, respectively. In addition, the MSPCSP projection attained higher accuracies of 14.72% and 13.33% for offline and real-time processing, respectively. It was concluded that the MSPCSP projection generates more discriminant differential features than the filtered CSP projection. Further, the MSPCSP projection with the thresholds extend the limitation of CSP-based methods from two- to four-class identification.
Disabled patients using brain computer interface (BCI) applications have a more convenient life. The present study implements an electroencephalogram (EEG)-based signal processing algorithm for controlling a wireless mobile vehicle through imagination. The aim is to improve the filtered common spatial pattern (CSP) algorithm for BCI applications. The proposed method is a combination of the CSP projection with a Modified Secondary Projection of the filtered Common Spatial Pattern (MSPCSP). With this algorithm, distinctive differential features are obtained from the combination of the MSPCSP and CSP projection eigenvalues to identify four classes: moving-forward-for-pause, stop-for-pause, moving-forward-continuously, and stopped-continuously. The second contribution is the design of a task to produce clear imaginary movement patterns. The task is a combination of brain stimulation by viewing red and yellow sketches of the right hand that indicate opening the hand and making a fist. Eighteen subjects participated in the experiment for wireless control of a mobile vehicle in offline and real-time modes. The results were then evaluated through an accuracy and paired t-test statistical analysis for offline and real-time signal processing. The results based on the MSPCSP projection showed significant improvements in accuracy in comparison with the CSP projection: 82.16± 9.04% with <tex-math notation="LaTeX">$p < 0.05$ </tex-math> and 70.83± 8.27% for offline and real-time processing, respectively. In addition, the MSPCSP projection attained higher accuracies of 14.72% and 13.33% for offline and real-time processing, respectively. It was concluded that the MSPCSP projection generates more discriminant differential features than the filtered CSP projection. Further, the MSPCSP projection with the thresholds extend the limitation of CSP-based methods from two- to four-class identification.
Disabled patients using brain computer interface (BCI) applications have a more convenient life. The present study implements an electroencephalogram (EEG)-based signal processing algorithm for controlling a wireless mobile vehicle through imagination. The aim is to improve the filtered common spatial pattern (CSP) algorithm for BCI applications. The proposed method is a combination of the CSP projection with a Modified Secondary Projection of the filtered Common Spatial Pattern (MSPCSP). With this algorithm, distinctive differential features are obtained from the combination of the MSPCSP and CSP projection eigenvalues to identify four classes: moving-forward-for-pause, stop-for-pause, moving-forward-continuously, and stopped-continuously. The second contribution is the design of a task to produce clear imaginary movement patterns. The task is a combination of brain stimulation by viewing red and yellow sketches of the right hand that indicate opening the hand and making a fist. Eighteen subjects participated in the experiment for wireless control of a mobile vehicle in offline and real-time modes. The results were then evaluated through an accuracy and paired t-test statistical analysis for offline and real-time signal processing. The results based on the MSPCSP projection showed significant improvements in accuracy in comparison with the CSP projection: 82.16± 9.04% with [Formula Omitted] and 70.83± 8.27% for offline and real-time processing, respectively. In addition, the MSPCSP projection attained higher accuracies of 14.72% and 13.33% for offline and real-time processing, respectively. It was concluded that the MSPCSP projection generates more discriminant differential features than the filtered CSP projection. Further, the MSPCSP projection with the thresholds extend the limitation of CSP-based methods from two- to four-class identification.
Author Handroos, Heikki
Li, Ming
Wu, Huapeng
Hekmatmanesh, Amin
Author_xml – sequence: 1
  givenname: Amin
  orcidid: 0000-0002-6117-4683
  surname: Hekmatmanesh
  fullname: Hekmatmanesh, Amin
  email: amin.hekmatmanesh@lut.fi
  organization: Laboratory of Intelligent Machines, Lappeenranta University of Technology (LUT), Lappeenranta, Finland
– sequence: 2
  givenname: Huapeng
  surname: Wu
  fullname: Wu, Huapeng
  organization: Laboratory of Intelligent Machines, Lappeenranta University of Technology (LUT), Lappeenranta, Finland
– sequence: 3
  givenname: Ming
  orcidid: 0000-0002-7921-1307
  surname: Li
  fullname: Li, Ming
  organization: Laboratory of Intelligent Machines, Lappeenranta University of Technology (LUT), Lappeenranta, Finland
– sequence: 4
  givenname: Heikki
  orcidid: 0000-0002-9479-0968
  surname: Handroos
  fullname: Handroos, Heikki
  organization: Laboratory of Intelligent Machines, Lappeenranta University of Technology (LUT), Lappeenranta, Finland
BookMark eNqFUU1v3CAQRVUiNU3yC3JB6nm3fJmF3jZW0q6UqlU26RVhPN6ysmGL2Uq59pcXx1FU9VIOMAzvvRnmvUMnIQZA6IqSJaVEf1jX9c12u2SEsSWngnFK36AzRqVe8IrLk7_it-hyHPekLFVS1eoM_V7jOg6ND9DibynuwWUfA-5iwvcwxAzlOeQUexw7bPF3-OFdD_jajoVQgF_iLxggZLwZ7M4HO7E_4jXe-rAruIfkbY-vk_VhqnM4Zkh4E8reWQd4m4_t0wU67Ww_wuXLeY4eb28e6s-Lu6-fNvX6buEEUXlRMUYaKirguhWaaadbxRqhmCw3yxTlXIESBSyaghDSSeIAeNsw2jLF-DnazLpttHtzSH6w6clE681zIqadsSlP3zNUyI5SBQSYE1LTRhOp5Ep1wrUr2eii9X7WOqT48whjNvt4TKG0b5hklEhBV6Sg-IxyKY5jgu61KiVm8s7M3pnJO_PiXWHpf1jO5-fB5jLH_j_cq5nrAeC1mi6tc1bxP2yrpvI
CODEN IAECCG
CitedBy_id crossref_primary_10_3390_brainsci13071013
crossref_primary_10_1109_ACCESS_2023_3308810
crossref_primary_10_3390_s24030918
Cites_doi 10.1016/j.bspc.2020.101917
10.1038/s41598-018-31673-2
10.1109/TCYB.2020.2982901
10.1186/1743-0003-11-90
10.1109/ACCESS.2020.3021746
10.1186/s13638-019-1497-y
10.1007/978-3-030-00329-6_22
10.1016/S1388-2457(01)00697-6
10.1109/ACCESS.2019.2932180
10.1016/j.ins.2019.01.053
10.4103/2228-7477.161482
10.1109/ACCESS.2021.3062329
10.1007/s11042-020-08675-2
10.23919/MIPRO48935.2020.9245382
10.1109/COMST.2021.3090778
10.1109/IEMBS.2007.4352842
10.15598/aeee.v15i3.2174
10.1109/IranianCEE.2014.6999850
10.1109/TCYB.2018.2841847
10.1016/S0042-6989(00)00235-2
10.1109/ICBME.2014.7043905
10.1109/ACCESS.2018.2841051
10.1109/IJCNN.2011.6033248
10.1109/NER.2015.7146593
10.1109/ACCESS.2021.3092516
10.1016/j.sleep.2015.02.1540
10.1109/TNSRE.2019.2914916
10.1109/TBME.2008.921154
10.1063/1.5034255
10.1631/jzus.C0910530
10.1016/j.neunet.2019.07.008
10.1109/IJCNN.2008.4634130
10.1109/TNNLS.2020.3015505
10.1109/BCI51272.2021.9385356
10.1007/s11760-019-01623-0
10.1109/TBME.2006.883649
10.1109/IJCNN.2010.5596474
10.1016/j.bspc.2019.101749
10.1109/ACCESS.2021.3100700
10.1007/s11042-019-7695-0
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022
DBID 97E
ESBDL
RIA
RIE
AAYXX
CITATION
7SC
7SP
7SR
8BQ
8FD
JG9
JQ2
L7M
L~C
L~D
DOA
DOI 10.1109/ACCESS.2022.3142311
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE Xplore Open Access Journals
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
METADEX
Computer and Information Systems Abstracts Professional
DatabaseTitleList

Materials Research Database
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2169-3536
EndPage 6174
ExternalDocumentID oai_doaj_org_article_146f118e0e2c4691b9068678f4cd76b9
10_1109_ACCESS_2022_3142311
9678325
Genre orig-research
GroupedDBID 0R~
4.4
5VS
6IK
97E
AAJGR
ABAZT
ABVLG
ACGFS
ADBBV
AGSQL
ALMA_UNASSIGNED_HOLDINGS
BCNDV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
EJD
ESBDL
GROUPED_DOAJ
IPLJI
JAVBF
KQ8
M43
M~E
O9-
OCL
OK1
RIA
RIE
RNS
AAYXX
CITATION
RIG
7SC
7SP
7SR
8BQ
8FD
JG9
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c408t-5220b145e39d4929c9d82b4826492a281338e84c404b9d446c60cee3db21d2823
IEDL.DBID RIE
ISSN 2169-3536
IngestDate Wed Aug 27 01:31:45 EDT 2025
Mon Jun 30 05:21:13 EDT 2025
Tue Jul 01 04:20:55 EDT 2025
Thu Apr 24 23:08:37 EDT 2025
Wed Aug 27 03:02:36 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Language English
License https://creativecommons.org/licenses/by/4.0/legalcode
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c408t-5220b145e39d4929c9d82b4826492a281338e84c404b9d446c60cee3db21d2823
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-9479-0968
0000-0002-7921-1307
0000-0002-6117-4683
OpenAccessLink https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/document/9678325
PQID 2621064170
PQPubID 4845423
PageCount 10
ParticipantIDs crossref_primary_10_1109_ACCESS_2022_3142311
ieee_primary_9678325
doaj_primary_oai_doaj_org_article_146f118e0e2c4691b9068678f4cd76b9
proquest_journals_2621064170
crossref_citationtrail_10_1109_ACCESS_2022_3142311
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20220000
2022-00-00
20220101
2022-01-01
PublicationDateYYYYMMDD 2022-01-01
PublicationDate_xml – year: 2022
  text: 20220000
PublicationDecade 2020
PublicationPlace Piscataway
PublicationPlace_xml – name: Piscataway
PublicationTitle IEEE access
PublicationTitleAbbrev Access
PublicationYear 2022
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References hekmatmanesh (ref38) 2019
ref13
ref34
ref12
ref37
ref15
ref36
ref14
ref31
ref30
ref32
hekmatmanesh (ref35) 2014; 23
ref10
ref2
ref1
ref39
ref17
ref16
meisheri (ref22) 2018
ref19
ref18
ref46
ref24
ref45
ref23
ref48
ref26
ref47
ref25
ref20
ref42
ref44
dornhege (ref11) 2004
holm (ref28) 2019
ref21
ref27
moioli (ref41) 2020
ref29
ref8
ref7
seifpour (ref33) 2014; 23
ref9
ref4
ref3
ref6
hekmatmanesh (ref43) 2020
ref5
ref40
References_xml – ident: ref18
  doi: 10.1016/j.bspc.2020.101917
– ident: ref47
  doi: 10.1038/s41598-018-31673-2
– ident: ref17
  doi: 10.1109/TCYB.2020.2982901
– ident: ref1
  doi: 10.1186/1743-0003-11-90
– ident: ref40
  doi: 10.1109/ACCESS.2020.3021746
– ident: ref14
  doi: 10.1186/s13638-019-1497-y
– ident: ref7
  doi: 10.1007/978-3-030-00329-6_22
– ident: ref3
  doi: 10.1016/S1388-2457(01)00697-6
– year: 2018
  ident: ref22
  article-title: Multiclass common spatial pattern for EEG based brain computer interface with adaptive learning classifier
  publication-title: arXiv 1802 09046
– ident: ref39
  doi: 10.1109/ACCESS.2019.2932180
– ident: ref20
  doi: 10.1016/j.ins.2019.01.053
– start-page: 733
  year: 2004
  ident: ref11
  article-title: Increase information transfer rates in BCI by CSP extension to multi-class
  publication-title: Proc Adv Neural Inf Process Syst
– year: 2020
  ident: ref41
  article-title: Neurosciences and 6G: Lessons from and needs of communicative brains
  publication-title: arXiv 2004 01834
– ident: ref48
  doi: 10.4103/2228-7477.161482
– ident: ref32
  doi: 10.1109/ACCESS.2021.3062329
– ident: ref9
  doi: 10.1007/s11042-020-08675-2
– ident: ref42
  doi: 10.23919/MIPRO48935.2020.9245382
– ident: ref26
  doi: 10.1109/COMST.2021.3090778
– year: 2020
  ident: ref43
  article-title: Review of the state-of-the-art on bio-signal-based brain-controlled vehicles
  publication-title: arXiv 2006 02937
– volume: 23
  year: 2014
  ident: ref35
  article-title: Spindles affection by use of negative emotional stimulations: P351
  publication-title: J Sleep Res
– ident: ref4
  doi: 10.1109/IEMBS.2007.4352842
– ident: ref8
  doi: 10.15598/aeee.v15i3.2174
– ident: ref36
  doi: 10.1109/IranianCEE.2014.6999850
– ident: ref16
  doi: 10.1109/TCYB.2018.2841847
– ident: ref2
  doi: 10.1016/S0042-6989(00)00235-2
– ident: ref37
  doi: 10.1109/ICBME.2014.7043905
– ident: ref19
  doi: 10.1109/ACCESS.2018.2841051
– ident: ref15
  doi: 10.1109/IJCNN.2011.6033248
– ident: ref45
  doi: 10.1109/NER.2015.7146593
– year: 2019
  ident: ref38
  article-title: Investigation of eeg signal processing for rehabilitation robot control
– ident: ref27
  doi: 10.1109/ACCESS.2021.3092516
– ident: ref34
  doi: 10.1016/j.sleep.2015.02.1540
– ident: ref5
  doi: 10.1109/TNSRE.2019.2914916
– ident: ref21
  doi: 10.1109/TBME.2008.921154
– ident: ref13
  doi: 10.1063/1.5034255
– ident: ref46
  doi: 10.1631/jzus.C0910530
– ident: ref30
  doi: 10.1016/j.neunet.2019.07.008
– ident: ref6
  doi: 10.1109/IJCNN.2008.4634130
– start-page: 1
  year: 2019
  ident: ref28
  article-title: An improved five class mi based BCI scheme for drone control using filter bank CSP
  publication-title: Proc 7th Int Winter Conf Brain-Comput Interface (BCI)
– ident: ref29
  doi: 10.1109/TNNLS.2020.3015505
– ident: ref31
  doi: 10.1109/BCI51272.2021.9385356
– ident: ref24
  doi: 10.1007/s11760-019-01623-0
– volume: 23
  start-page: 185
  year: 2014
  ident: ref33
  article-title: Expose to emotional stimuli change the micro structural sleep electroencephalography: P604
  publication-title: J Sleep Res
– ident: ref10
  doi: 10.1109/TBME.2006.883649
– ident: ref12
  doi: 10.1109/IJCNN.2010.5596474
– ident: ref23
  doi: 10.1016/j.bspc.2019.101749
– ident: ref25
  doi: 10.1109/ACCESS.2021.3100700
– ident: ref44
  doi: 10.1007/s11042-019-7695-0
SSID ssj0000816957
Score 2.2568097
Snippet Disabled patients using brain computer interface (BCI) applications have a more convenient life. The present study implements an electroencephalogram...
SourceID doaj
proquest
crossref
ieee
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 6165
SubjectTerms Accuracy
Algorithms
Brain computer interface (BCI)
Brain-computer interfaces
common spatial pattern
Eigenvalues
Electroencephalography
Feature extraction
Forecasting
Human-computer interface
Real time
Real-time systems
Remote control
remote vehicle control
Signal processing
Sketches
Statistical analysis
Support vector machines
Task analysis
threshold classifier
Wireless communication
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Nb9QwELVQT-WAKAWxtEVz4EhU23Ecu7fdVauCVISgRb1Z8UfEAXYR3R567S_vs5NdbYUEF45JJk48M_a8Z9kzjL3rvI_aalElhNdKqagrD1xe8ZB0q5ske5MPOF980udX6uN1c71V6ivvCRvSAw-KO8ZI7gGCE08ygMoJb_Ohhtb0KsRW-3J0DzFvi0yVOdgIbZt2TDMkuD2ezufoEQihlOCpABFCPApFJWP_WGLlj3m5BJuz5-zZiBJpOvzdHnuSFi_Y063cgfvsfkoYy-C1KdLnYTkFKiZgUPqSoP9E82EXOi176uhb-p6bohmiViQIXixLpvAVffiZCxUVA53QlL6idchdZsekWS4gQevKD1SWD_suJMrbD-9esquz08v5eTUWVKiC4mYF0im5F6pJtY0KuCjYaKRXYBi46qTJfDUZBWHlIaF00LBZqqOXIoKb1a_YzmK5SK8Z8a4HEIy-bjtQNB6Nycykscb4aEMTJkyudevCmG08F7344Qrr4NYNBnHZIG40yIS937z0a0i28XfxWTbaRjRnyi434D9u9B_3L_-ZsP1s8k0jFs9q2UzY4doF3Diqb5zUIMhaiZa_-R-fPmC7uTvDgs4h21n9vk1HgDgr_7Z48wMmw_Ig
  priority: 102
  providerName: Directory of Open Access Journals
Title A Combined Projection for Remote Control of a Vehicle Based on Movement Imagination: A Single Trial Brain Computer Interface Study
URI https://ieeexplore.ieee.org/document/9678325
https://www.proquest.com/docview/2621064170
https://doaj.org/article/146f118e0e2c4691b9068678f4cd76b9
Volume 10
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Nb9QwELXanuAAhYJYKNUcODbbxHEcu7fdFVVBWoSgRb1FsT0RUmEXQfYAx_7yzjjeiC8hbkk0thy9ycy8iT0jxIvWuaCtLjIk95opFXTmKC7Pco-61hXKzvAB5-UbfX6pXl9VVzvieDwLg4hx8xlO-TL-yw9rv-FU2Ykly1rKalfsEnEbzmqN-RRuIGGrOhUWKnJ7Mlss6B2IAkpJzJTChqL4xfnEGv2pqcoflji6l7P7Yrld2LCr5Hq66d3U__itZuP_rnxf3EtxJswGxXggdnD1UNz9qfrggbiZAVkDYsYY4O2QkCGQgKJYeIeEIMJi2McO6w5a-IAfeSqYk98LQILLdaw13sOrz9zqKEJ8CjN4T7OT3AWrNsy5BQVse0dATEB2rUfgDYzfH4nLs5cXi_MstWTIvMpNT7RV5q5QFZY2KIqsvA1GOkUche5aaZjxolEkrBxJKO01oY5lcLIIxO7Kx2JvtV7hEwF521EoGVxZt0Ty8mAMc5vKGuOC9ZWfCLnFqvGpXjm3zfjURN6S22YAuGGAmwTwRByPg74M5Tr-LT5nJRhFudZ2fEDgNenTZXLUEQ3DHKVX2hbO8rGa2nTKh1o7OxEHDPg4ScJ6Ig63KtUku_CtkZootlZFnT_9-6hn4g4vcEjyHIq9_usGn1PY07ujmC44ilp_CzQz_Y4
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB6VcgAOvErFQgEfODbbxHEcm9vuimoL3QrBFvUWxfZESMBuVbIHOPLLmXGyES8hbkk0thx9E898E88MwPPauaCtzhIk85ooFXTiyC9PUo-61AXKxnCC8-JMz8_Vq4viYgcOh1wYRIyHz3DMl_Ffflj7DYfKjiztrLksrsF1svtF1mVrDREVbiFhi7IvLZSl9mgym9FbEAmUkrgpOQ5Z9ov5iVX6-7Yqf-zF0cAc34HFdmnduZKP403rxv7bb1Ub_3ftd-F272mKSaca92AHV_fh1k_1B_fg-0TQfkDcGIN404VkCCZBfqx4i4Qhill3kl2sG1GL9_iBpxJTsnxBkOBiHauNt-LkMzc7iiC_EBPxjmYnuSUrt5hyEwqx7R4hYgiyqT0KPsL49QGcH79czuZJ35Qh8So1LRFXmbpMFZjboMi38jYY6RSxFLqrpWHOi0aRsHIkobTXhDvmwcksEL_L92F3tV7hQxBp3ZAzGVxe1kTz0mAMs5vCGuOC9YUfgdxiVfm-Yjk3zvhUReaS2qoDuGKAqx7gERwOgy67gh3_Fp-yEgyiXG07PiDwqv7jZXrUEBHDFKVX2mbOcmJNaRrlQ6mdHcEeAz5M0mM9goOtSlX9zvClkppItlZZmT76-6hncGO-XJxWpydnrx_DTV5sF_I5gN32aoNPyAlq3dOo-z8Alun_4g
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Combined+Projection+for+Remote+Control+of+a+Vehicle+Based+on+Movement+Imagination%3A+A+Single+Trial+Brain+Computer+Interface+Study&rft.jtitle=IEEE+access&rft.au=Hekmatmanesh%2C+Amin&rft.au=Wu%2C+Huapeng&rft.au=Li%2C+Ming&rft.au=Handroos%2C+Heikki&rft.date=2022&rft.issn=2169-3536&rft.eissn=2169-3536&rft.volume=10&rft.spage=6165&rft.epage=6174&rft_id=info:doi/10.1109%2FACCESS.2022.3142311&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_ACCESS_2022_3142311
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2169-3536&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2169-3536&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2169-3536&client=summon