Shear wavelength estimation based on inverse filtering and multiple-point shear wave generation

Elastography provides important diagnostic information because tissue elasticity is related to pathological conditions. For example, in a mammary gland, higher grade malignancies yield harder tumors. Estimating shear wave speed enables the quantification of tissue elasticity imaging using time-of-fl...

Full description

Saved in:
Bibliographic Details
Published inJapanese Journal of Applied Physics Vol. 55; no. 7S1; pp. 7 - 07KF10
Main Authors Kitazaki, Tomoaki, Kondo, Kengo, Yamakawa, Makoto, Shiina, Tsuyoshi
Format Journal Article
LanguageEnglish
Published The Japan Society of Applied Physics 01.07.2016
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Elastography provides important diagnostic information because tissue elasticity is related to pathological conditions. For example, in a mammary gland, higher grade malignancies yield harder tumors. Estimating shear wave speed enables the quantification of tissue elasticity imaging using time-of-flight. However, time-of-flight measurement is based on an assumption about the propagation direction of a shear wave which is highly affected by reflection and refraction, and thus might cause an artifact. An alternative elasticity estimation approach based on shear wavelength was proposed and applied to passive configurations. To determine the elasticity of tissue more quickly and more accurately, we proposed a new method for shear wave elasticity imaging that combines the shear wavelength approach and inverse filtering with multiple shear wave sources induced by acoustic radiation force (ARF). The feasibility of the proposed method was verified using an elasticity phantom with a hard inclusion.
AbstractList Elastography provides important diagnostic information because tissue elasticity is related to pathological conditions. For example, in a mammary gland, higher grade malignancies yield harder tumors. Estimating shear wave speed enables the quantification of tissue elasticity imaging using time-of-flight. However, time-of-flight measurement is based on an assumption about the propagation direction of a shear wave which is highly affected by reflection and refraction, and thus might cause an artifact. An alternative elasticity estimation approach based on shear wavelength was proposed and applied to passive configurations. To determine the elasticity of tissue more quickly and more accurately, we proposed a new method for shear wave elasticity imaging that combines the shear wavelength approach and inverse filtering with multiple shear wave sources induced by acoustic radiation force (ARF). The feasibility of the proposed method was verified using an elasticity phantom with a hard inclusion.
Author Kitazaki, Tomoaki
Yamakawa, Makoto
Kondo, Kengo
Shiina, Tsuyoshi
Author_xml – sequence: 1
  givenname: Tomoaki
  surname: Kitazaki
  fullname: Kitazaki, Tomoaki
  organization: Kyoto University Department of Human Health Sciences, Graduate School of Medicine, Kyoto 606-8507, Japan
– sequence: 2
  givenname: Kengo
  surname: Kondo
  fullname: Kondo, Kengo
  organization: Kyoto University Department of Human Health Sciences, Graduate School of Medicine, Kyoto 606-8507, Japan
– sequence: 3
  givenname: Makoto
  surname: Yamakawa
  fullname: Yamakawa, Makoto
  organization: Kyoto University Department of Human Health Sciences, Graduate School of Medicine, Kyoto 606-8507, Japan
– sequence: 4
  givenname: Tsuyoshi
  surname: Shiina
  fullname: Shiina, Tsuyoshi
  email: shiina.tsuyoshi.6w@kyoto-u.ac.jp
  organization: Kyoto University Department of Human Health Sciences, Graduate School of Medicine, Kyoto 606-8507, Japan
BookMark eNqVkEFLwzAYhoNMcJtePecoQmfSJs16HMOpc6AwPYc0_bpldGlNson_3m4dHgQPnvIFnveF9xmgnq0tIHRNyUjwVNzN55PXEecjIp5nlJyhPk2YiBhJeQ_1CYlpxLI4vkAD7zftN-WM9pFcrkE5_Kn2UIFdhTUGH8xWBVNbnCsPBW4PY_fgPODSVAGcsSusbIG3uyqYpoKoqY0N2P804RVYcMeOS3ReqsrD1ekdovfZ_dv0MVq8PDxNJ4tIMzIOEStFkQgQepznimiaaEpyMuYqUwzKArKCC0b0uBA58EyUkFCm40RRSDlkCUuG6KbrbVz9sWs3yK3xGqpKWah3XtKMsJiJlNIWHXWodrX3DkrZuHax-5KUyINJeTApOZedyTbAfgW0Ccd1wSlT_R277WKmbuSm3jnbCvgfvNmo5gCJJT2BsinK5BssjZcs
CODEN JJAPB6
CitedBy_id crossref_primary_10_35848_1347_4065_ab8bcb
crossref_primary_10_7567_JJAP_56_07JF17
crossref_primary_10_1016_j_eml_2020_100669
crossref_primary_10_35848_1347_4065_accde8
crossref_primary_10_3179_jjmu_JJMU_R_209
crossref_primary_10_1007_s10396_021_01127_w
crossref_primary_10_35848_1347_4065_adb6b4
crossref_primary_10_1007_s10396_022_01235_1
crossref_primary_10_7567_JJAP_57_07LF19
crossref_primary_10_35848_1347_4065_abf59a
crossref_primary_10_7567_JJAP_57_07LF07
crossref_primary_10_7567_JJAP_56_07JF16
crossref_primary_10_7567_JJAP_56_07JF02
crossref_primary_10_1109_ACCESS_2019_2921303
crossref_primary_10_7567_1347_4065_ab0df9
crossref_primary_10_7567_1347_4065_ab17cd
Cites_doi 10.1007/s10396-013-0490-z
10.1109/ULTSYM.2003.1293551
10.1109/TUFFC.2009.1328
10.1007/BF01937276
10.1177/016173460202400301
10.1016/j.ultrasmedbio.2008.02.002
10.1109/TUFFC.2011.1920
10.1109/TUFFC.2004.1295425
10.1016/j.ultrasmedbio.2008.08.018
10.1121/1.1377051
10.1063/1.2737358
10.1121/1.4795771
10.1002/mrm.22046
10.1055/s-0033-1335205
10.1121/1.2998769
10.1119/1.13625
10.1007/s10396-005-0034-2
10.1109/TUFFC.2011.2052
10.7567/JJAP.52.07HF22
10.1109/58.996561
10.1121/1.429459
10.1007/11866565_48
10.1063/1.4812515
10.7567/JJAP.53.07KF30
10.1109/ULTSYM.2014.0275
10.1109/TUFFC.2014.006965
10.1088/0031-9155/52/6/002
10.1103/PhysRevLett.100.064301
10.1121/1.3665397
10.1177/016173469802000403
10.1016/j.ultrasmedbio.2015.03.009
10.1016/S0301-5629(02)00488-X
ContentType Journal Article
Copyright 2016 The Japan Society of Applied Physics
Copyright_xml – notice: 2016 The Japan Society of Applied Physics
DBID AAYXX
CITATION
7U5
8FD
H8D
L7M
DOI 10.7567/JJAP.55.07KF10
DatabaseName CrossRef
Solid State and Superconductivity Abstracts
Technology Research Database
Aerospace Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Aerospace Database
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
DatabaseTitleList
CrossRef
Aerospace Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Physics
EISSN 1347-4065
EndPage 07KF10
ExternalDocumentID 10_7567_JJAP_55_07KF10
UE15104
GroupedDBID AALHV
ACGFS
ACNCT
ALMA_UNASSIGNED_HOLDINGS
ATQHT
CEBXE
F5P
IOP
IZVLO
KOT
MC8
N5L
QTG
RNS
SJN
AAYXX
ADEQX
CITATION
7U5
8FD
H8D
L7M
ID FETCH-LOGICAL-c408t-4f7d37e7c8bba0c13c10b085a9a4efde9d5740c8d7be597fe314c23a1e65e9343
IEDL.DBID IOP
ISSN 0021-4922
IngestDate Fri Jul 11 02:36:39 EDT 2025
Tue Jul 01 03:27:01 EDT 2025
Thu Apr 24 23:04:20 EDT 2025
Wed Aug 21 03:33:27 EDT 2024
Thu Jan 07 13:53:12 EST 2021
IsPeerReviewed true
IsScholarly true
Issue 7S1
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c408t-4f7d37e7c8bba0c13c10b085a9a4efde9d5740c8d7be597fe314c23a1e65e9343
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PQID 1904247611
PQPubID 23500
PageCount 6
ParticipantIDs crossref_citationtrail_10_7567_JJAP_55_07KF10
iop_journals_10_7567_JJAP_55_07KF10
crossref_primary_10_7567_JJAP_55_07KF10
proquest_miscellaneous_1904247611
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2016-07-01
PublicationDateYYYYMMDD 2016-07-01
PublicationDate_xml – month: 07
  year: 2016
  text: 2016-07-01
  day: 01
PublicationDecade 2010
PublicationTitle Japanese Journal of Applied Physics
PublicationTitleAlternate Jpn. J. Appl. Phys
PublicationYear 2016
Publisher The Japan Society of Applied Physics
Publisher_xml – name: The Japan Society of Applied Physics
References Parajuli (r09) 2014; 53
Gallichan (r16) 2009; 62
Brum (r23) 2008; 124
Gallot (r20) 2011; 58
Hansen (r32) 1987; 27
Samani (r04) 2007; 52
Parajuli (r08) 2013; 52
Kitazaki (r27)
Tanter (r13) 2008; 34
Deffieux (r33) 2011; 58
Tanter (r30) 2001; 110
Wellman (r06) 1999
Konofagou (r17) 2002; 28
Nightingale (r11) 2002; 24
Bamber (r03) 2013; 34
Sabra (r19) 2007; 90
Muller (r14) 2009; 35
Benech (r24) 2009; 56
Tanter (r31) 2000; 108
Bercoff (r34)
Shiina (r02) 2013; 40
Sandrin (r07) 2002; 49
Shiina (r01) 2015; 41
Catheline (r22) 2008; 100
Kitazaki (r28)
Benech (r25) 2013; 133
Gallot (r29) 2012; 131
Bercoff (r10) 2004; 51
Salcudean (r15) 2006
Krouskop (r05) 1998; 20
Brum (r26) 2015; 62
Torr (r12) 1984; 52
Sunagawa (r18) 2005; 32
Catheline (r21) 2013; 103
References_xml – volume: 40
  start-page: 309
  year: 2013
  ident: r02
  publication-title: J. Med. Ultrason.
  doi: 10.1007/s10396-013-0490-z
– start-page: 925
  ident: r34
  doi: 10.1109/ULTSYM.2003.1293551
– volume: 56
  start-page: 2400
  year: 2009
  ident: r24
  publication-title: IEEE Trans. Ultrason. Ferroelectr. Freq. Control
  doi: 10.1109/TUFFC.2009.1328
– volume: 27
  start-page: 534
  year: 1987
  ident: r32
  publication-title: BIT Numer. Math.
  doi: 10.1007/BF01937276
– volume: 24
  start-page: 129
  year: 2002
  ident: r11
  publication-title: Ultrason. Imaging
  doi: 10.1177/016173460202400301
– volume: 34
  start-page: 1373
  year: 2008
  ident: r13
  publication-title: Ultrasound Med. Biol.
  doi: 10.1016/j.ultrasmedbio.2008.02.002
– volume: 58
  start-page: 1122
  year: 2011
  ident: r20
  publication-title: IEEE Trans. Ultrason. Ferroelectr. Freq. Control
  doi: 10.1109/TUFFC.2011.1920
– volume: 51
  start-page: 396
  year: 2004
  ident: r10
  publication-title: IEEE Trans. Ultrason. Ferroelectr. Freq. Control
  doi: 10.1109/TUFFC.2004.1295425
– start-page: 40
  ident: r28
– volume: 35
  start-page: 219
  year: 2009
  ident: r14
  publication-title: Ultrasound Med. Biol.
  doi: 10.1016/j.ultrasmedbio.2008.08.018
– volume: 110
  start-page: 37
  year: 2001
  ident: r30
  publication-title: J. Acoust. Soc. Am.
  doi: 10.1121/1.1377051
– volume: 90
  year: 2007
  ident: r19
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.2737358
– volume: 133
  start-page: 2755
  year: 2013
  ident: r25
  publication-title: J. Acoust. Soc. Am.
  doi: 10.1121/1.4795771
– volume: 62
  start-page: 815
  year: 2009
  ident: r16
  publication-title: Magn. Resonance Med.
  doi: 10.1002/mrm.22046
– volume: 34
  start-page: 169
  year: 2013
  ident: r03
  publication-title: Ultraschall Med.
  doi: 10.1055/s-0033-1335205
– volume: 124
  start-page: 3377
  year: 2008
  ident: r23
  publication-title: J. Acoust. Soc. Am.
  doi: 10.1121/1.2998769
– volume: 52
  start-page: 402
  year: 1984
  ident: r12
  publication-title: Am. J. Phys.
  doi: 10.1119/1.13625
– volume: 32
  start-page: 39
  year: 2005
  ident: r18
  publication-title: J. Med. Ultrason.
  doi: 10.1007/s10396-005-0034-2
– volume: 58
  start-page: 2032
  year: 2011
  ident: r33
  publication-title: IEEE Trans. Ultrason. Ferroelectr. Freq. Control
  doi: 10.1109/TUFFC.2011.2052
– volume: 52
  year: 2013
  ident: r08
  publication-title: Jpn. J. Appl. Phys.
  doi: 10.7567/JJAP.52.07HF22
– volume: 49
  start-page: 436
  year: 2002
  ident: r07
  publication-title: IEEE Trans. Ultrason. Ferroelectr. Freq. Control
  doi: 10.1109/58.996561
– volume: 108
  start-page: 223
  year: 2000
  ident: r31
  publication-title: J. Acoust. Soc. Am.
  doi: 10.1121/1.429459
– start-page: 389
  year: 2006
  ident: r15
  doi: 10.1007/11866565_48
– volume: 103
  year: 2013
  ident: r21
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.4812515
– volume: 53
  year: 2014
  ident: r09
  publication-title: Jpn. J. Appl. Phys.
  doi: 10.7567/JJAP.53.07KF30
– start-page: 1121
  ident: r27
  doi: 10.1109/ULTSYM.2014.0275
– volume: 62
  start-page: 673
  year: 2015
  ident: r26
  publication-title: IEEE Trans. Ultrason. Ferroelectr. Freq. Control
  doi: 10.1109/TUFFC.2014.006965
– volume: 52
  start-page: 1565
  year: 2007
  ident: r04
  publication-title: Phys. Med. Biol.
  doi: 10.1088/0031-9155/52/6/002
– volume: 100
  year: 2008
  ident: r22
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.100.064301
– year: 1999
  ident: r06
– volume: 131
  start-page: EL21
  year: 2012
  ident: r29
  publication-title: J. Acoust. Soc. Am.
  doi: 10.1121/1.3665397
– volume: 20
  start-page: 260
  year: 1998
  ident: r05
  publication-title: Ultrason. Imaging
  doi: 10.1177/016173469802000403
– volume: 41
  start-page: 1126
  year: 2015
  ident: r01
  publication-title: Ultrasound Med. Biol.
  doi: 10.1016/j.ultrasmedbio.2015.03.009
– volume: 28
  start-page: 475
  year: 2002
  ident: r17
  publication-title: Ultrasound Med. Biol.
  doi: 10.1016/S0301-5629(02)00488-X
SSID ssj0026541
ssj0026590
ssj0026540
ssj0064762
Score 2.1812186
Snippet Elastography provides important diagnostic information because tissue elasticity is related to pathological conditions. For example, in a mammary gland, higher...
SourceID proquest
crossref
iop
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 7
SubjectTerms Elasticity
Filtering
Filtration
Imaging
Inverse
Shear
Sound waves
Wavelengths
Title Shear wavelength estimation based on inverse filtering and multiple-point shear wave generation
URI https://iopscience.iop.org/article/10.7567/JJAP.55.07KF10
https://www.proquest.com/docview/1904247611
Volume 55
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3daxQxEA9aEfSh1ap49YOIgk9ZN5uvzWORHuVELWih-BLyte1V2Vu8PQT_ejObvfP8guJbQobJZrKTmSGT3yD0wsnKU2014XXwhHPLSK0lJYra0jpXhzrAa-S37-TxKZ-dibOtUl_zRTce_UVqZqDgLELQbyWkejWbHZ4UQhSlejOFx1U3WJ3MJrzde3-yibWkAAyTnx261dGbEcmVHPHEUySlqyrDOv5lml_M1vX0aX-c3YNBmu6hT-ul5DyUz8Wqd4X__hvK43-t9Q7aHd1UfJgJ76Jrsd1Ht7fAC_fRzSF51C_vITOUxcbfLBSxaM_7CwzQHflNJAYzGXBqzFvIAIm4mcMFfWKBbRvwOqGRdIt52-PlhhM-HwCxgcd9dDo9-vj6mIyFG4jnZd0T3qjAVFS-ds6WnjJPS5d8O6stj02IOgjFS18H5WIKaJrIKPcVszRKETXj7AHaaRdtfIiwYE5XjRRNCn045cmf4YpbAW5pTNR8gsh6X4wfUc2huMYXk6IbEKEBERohTBbhBL3c0HcZz-OflM_TrphRpZdXpLq8tB2Mqg90pDBdaCbo2fpnMUl94U7GtnGxSlw13D0rSenBleZ7hG4ll03mhOHHaKf_uopPklvUu6eDAvwAUhMBaA
linkProvider IOP Publishing
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwELbaIhAceBRQl6cRIE5J48SP-MChoqzaXSgrQaXeXL9StkXZiM2qgv_EX-E3MU6yobykXnrgZsujSewZe2bkmc8IPTM8tURqGdHc2YhSnUW55CQSRCfamNzlLlQjv93jO_t0dMAOVtC3vhZmVnVHfwzNFii4XcKwvwXjYnM02prEjMWJGEPQuVm5osupHPsvpxCxzV_uboN4n6fp8PWHVztR96hAZGmS1xEthMuEFzY3RieWZJYkBvwOLTX1hfPSMUETmzthPDjbhc8ItWmmiefMy4xmwHcVXWIZWOpQL_hu0sd3nAXclJ8dcqYj-xFOBe8wzCF6k2naQkn-ZWq_mMpVWI4_7EVjBIc30Pfl8rW5Lyfxojax_fobsuR_s7430fXOHcdb7c_dQiu-XEfXzoA0rqPLTZKsnd9Gqnn-G5_q8FhHeVR_xAGipK39xMEdcBga0zJkunhcTEMiArDAunR4mbgZVbNpWeN5zwkfNcDfgccdtH8hc72L1spZ6TcQZpmRacFZASEeJRT8NiqoZsH99kBNByha6oKyHXp7eETkk4IoLohNBbEpxlQrtgF60dNXLW7JPymfgiao7uian5Pq-FhXYVS8Jx2FAkUZoCdLBVVwTIW7J1362QK4ynDHLjgh9871vcfoymR7qN7s7o3vo6vgpfI2R_oBWqs_L_xD8ARr86jZfxgdXrRC_gB1KGJp
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Shear+wavelength+estimation+based+on+inverse+filtering+and+multiple-point+shear+wave+generation&rft.jtitle=Japanese+Journal+of+Applied+Physics&rft.au=Kitazaki%2C+Tomoaki&rft.au=Kondo%2C+Kengo&rft.au=Yamakawa%2C+Makoto&rft.au=Shiina%2C+Tsuyoshi&rft.date=2016-07-01&rft.pub=The+Japan+Society+of+Applied+Physics&rft.issn=0021-4922&rft.eissn=1347-4065&rft.volume=55&rft.issue=7S1&rft_id=info:doi/10.7567%2FJJAP.55.07KF10&rft.externalDocID=UE15104
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0021-4922&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0021-4922&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0021-4922&client=summon