The cGAS–cGAMP–STING pathway connects DNA damage to inflammation, senescence, and cancer
Detection of microbial DNA is an evolutionarily conserved mechanism that alerts the host immune system to mount a defense response to microbial infections. However, this detection mechanism also poses a challenge to the host as to how to distinguish foreign DNA from abundant self-DNA. Cyclic guanosi...
Saved in:
Published in | The Journal of experimental medicine Vol. 215; no. 5; pp. 1287 - 1299 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
United States
Rockefeller University Press
07.05.2018
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Detection of microbial DNA is an evolutionarily conserved mechanism that alerts the host immune system to mount a defense response to microbial infections. However, this detection mechanism also poses a challenge to the host as to how to distinguish foreign DNA from abundant self-DNA. Cyclic guanosine monophosphate (GMP)–adenosine monophosphate (AMP) synthase (cGAS) is a DNA sensor that triggers innate immune responses through production of the second messenger cyclic GMP-AMP (cGAMP), which binds and activates the adaptor protein STING. However, cGAS can be activated by double-stranded DNA irrespective of the sequence, including self-DNA. Although how cGAS is normally kept inactive in cells is still not well understood, recent research has provided strong evidence that genomic DNA damage leads to cGAS activation to stimulate inflammatory responses. This review summarizes recent findings on how genomic instability and DNA damage trigger cGAS activation and how cGAS serves as a link from DNA damage to inflammation, cellular senescence, and cancer. |
---|---|
AbstractList | Detection of microbial DNA is an evolutionarily conserved mechanism that alerts the host immune system to mount a defense response to microbial infections. However, this detection mechanism also poses a challenge to the host as to how to distinguish foreign DNA from abundant self-DNA. Cyclic guanosine monophosphate (GMP)-adenosine monophosphate (AMP) synthase (cGAS) is a DNA sensor that triggers innate immune responses through production of the second messenger cyclic GMP-AMP (cGAMP), which binds and activates the adaptor protein STING. However, cGAS can be activated by double-stranded DNA irrespective of the sequence, including self-DNA. Although how cGAS is normally kept inactive in cells is still not well understood, recent research has provided strong evidence that genomic DNA damage leads to cGAS activation to stimulate inflammatory responses. This review summarizes recent findings on how genomic instability and DNA damage trigger cGAS activation and how cGAS serves as a link from DNA damage to inflammation, cellular senescence, and cancer.Detection of microbial DNA is an evolutionarily conserved mechanism that alerts the host immune system to mount a defense response to microbial infections. However, this detection mechanism also poses a challenge to the host as to how to distinguish foreign DNA from abundant self-DNA. Cyclic guanosine monophosphate (GMP)-adenosine monophosphate (AMP) synthase (cGAS) is a DNA sensor that triggers innate immune responses through production of the second messenger cyclic GMP-AMP (cGAMP), which binds and activates the adaptor protein STING. However, cGAS can be activated by double-stranded DNA irrespective of the sequence, including self-DNA. Although how cGAS is normally kept inactive in cells is still not well understood, recent research has provided strong evidence that genomic DNA damage leads to cGAS activation to stimulate inflammatory responses. This review summarizes recent findings on how genomic instability and DNA damage trigger cGAS activation and how cGAS serves as a link from DNA damage to inflammation, cellular senescence, and cancer. Detection of microbial DNA is an evolutionarily conserved mechanism that alerts the host immune system to mount a defense response to microbial infections. However, this detection mechanism also poses a challenge to the host as to how to distinguish foreign DNA from abundant self-DNA. Cyclic guanosine monophosphate (GMP)-adenosine monophosphate (AMP) synthase (cGAS) is a DNA sensor that triggers innate immune responses through production of the second messenger cyclic GMP-AMP (cGAMP), which binds and activates the adaptor protein STING. However, cGAS can be activated by double-stranded DNA irrespective of the sequence, including self-DNA. Although how cGAS is normally kept inactive in cells is still not well understood, recent research has provided strong evidence that genomic DNA damage leads to cGAS activation to stimulate inflammatory responses. This review summarizes recent findings on how genomic instability and DNA damage trigger cGAS activation and how cGAS serves as a link from DNA damage to inflammation, cellular senescence, and cancer. The cGAS–cGAMP–STING pathway mediates immune and inflammatory responses to cytosolic DNA. This review summarizes recent findings on how genomic instability leads to cGAS activation and how this pathway critically connects DNA damage to autoinflammatory diseases, cellular senescence, and cancer. Detection of microbial DNA is an evolutionarily conserved mechanism that alerts the host immune system to mount a defense response to microbial infections. However, this detection mechanism also poses a challenge to the host as to how to distinguish foreign DNA from abundant self-DNA. Cyclic guanosine monophosphate (GMP)–adenosine monophosphate (AMP) synthase (cGAS) is a DNA sensor that triggers innate immune responses through production of the second messenger cyclic GMP-AMP (cGAMP), which binds and activates the adaptor protein STING. However, cGAS can be activated by double-stranded DNA irrespective of the sequence, including self-DNA. Although how cGAS is normally kept inactive in cells is still not well understood, recent research has provided strong evidence that genomic DNA damage leads to cGAS activation to stimulate inflammatory responses. This review summarizes recent findings on how genomic instability and DNA damage trigger cGAS activation and how cGAS serves as a link from DNA damage to inflammation, cellular senescence, and cancer. The cGAS–cGAMP–STING pathway mediates immune and inflammatory responses to cytosolic DNA. This review summarizes recent findings on how genomic instability leads to cGAS activation and how this pathway critically connects DNA damage to autoinflammatory diseases, cellular senescence, and cancer.Detection of microbial DNA is an evolutionarily conserved mechanism that alerts the host immune system to mount a defense response to microbial infections. However, this detection mechanism also poses a challenge to the host as to how to distinguish foreign DNA from abundant self-DNA. Cyclic guanosine monophosphate (GMP)–adenosine monophosphate (AMP) synthase (cGAS) is a DNA sensor that triggers innate immune responses through production of the second messenger cyclic GMP-AMP (cGAMP), which binds and activates the adaptor protein STING. However, cGAS can be activated by double-stranded DNA irrespective of the sequence, including self-DNA. Although how cGAS is normally kept inactive in cells is still not well understood, recent research has provided strong evidence that genomic DNA damage leads to cGAS activation to stimulate inflammatory responses. This review summarizes recent findings on how genomic instability and DNA damage trigger cGAS activation and how cGAS serves as a link from DNA damage to inflammation, cellular senescence, and cancer. |
Author | Chen, Zhijian J. Li, Tuo |
AuthorAffiliation | 1 Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 2 Center for Inflammation Research, University of Texas Southwestern Medical Center, Dallas, TX 3 Howard Hughes Medical Institute, Chevy Chase, MD |
AuthorAffiliation_xml | – name: 3 Howard Hughes Medical Institute, Chevy Chase, MD – name: 1 Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX – name: 2 Center for Inflammation Research, University of Texas Southwestern Medical Center, Dallas, TX |
Author_xml | – sequence: 1 givenname: Tuo surname: Li fullname: Li, Tuo – sequence: 2 givenname: Zhijian J. orcidid: 0000-0002-8475-8251 surname: Chen fullname: Chen, Zhijian J. |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/29622565$$D View this record in MEDLINE/PubMed |
BookMark | eNptkc1uEzEUhS3UiqaFHWtkiQ2LTPHfxJ4NUlQgrVQKUsMOyfJ4rpuJZux0PAF1xzvwhjwJtz9BULG6lvzdo3POPSR7MUUg5AVnx5wZ9WYN_bFg3DAuqydkwkvFiqqUZo9MGBOi4IzpA3KY85oxrlQ5e0oORDUTopyVE_J1uQLqF_PLXz9-4vj4Gefl8uxiQTduXH13N9SnGMGPmb67mNPG9e4K6JhoG0Pn-t6NbYpTmiFC9hA9TKmLDfUOn8Mzsh9cl-H5wzwiXz68X56cFuefFmcn8_PCK2bGQoEOwUkVGmeaWgYGugZRGm-McCo4cAZTcW1mhmshKx-CNhpMJepSc1HLI_L2XnezrXto0Mc4uM5uhrZ3w41NrrX__sR2Za_SN1tWignNUOD1g8CQrreQR9u3GKfrXIS0zVZgkRV2pitEXz1C12k7RIyHlCyFxFolUi__dvTHyq54BMQ94IeU8wDB-na8KxMNtp3lzN5e1-J17e66uDR9tLTT_S_-GzBUppE |
CitedBy_id | crossref_primary_10_1016_j_bioactmat_2022_02_029 crossref_primary_10_1096_fj_202101988R crossref_primary_10_3389_fonc_2023_1180642 crossref_primary_10_1002_path_6015 crossref_primary_10_1016_j_biopha_2020_110972 crossref_primary_10_1016_j_fsi_2019_04_061 crossref_primary_10_1016_j_molcel_2022_12_023 crossref_primary_10_3390_ijms241210148 crossref_primary_10_4049_jimmunol_2200158 crossref_primary_10_1016_j_celrep_2024_114284 crossref_primary_10_1093_gerona_glac097 crossref_primary_10_1136_jitc_2019_000516 crossref_primary_10_1073_pnas_2317402121 crossref_primary_10_1021_acs_bioconjchem_0c00520 crossref_primary_10_1002_advs_202410910 crossref_primary_10_1038_s41417_021_00302_y crossref_primary_10_1038_s41388_022_02397_5 crossref_primary_10_1016_j_mad_2018_07_007 crossref_primary_10_1093_jmcb_mjab066 crossref_primary_10_1073_pnas_1907660116 crossref_primary_10_1021_acsbiomaterials_4c00560 crossref_primary_10_1002_1878_0261_13657 crossref_primary_10_1073_pnas_2208934119 crossref_primary_10_1038_s41467_022_33742_7 crossref_primary_10_1016_j_pharmthera_2019_107446 crossref_primary_10_1098_rsob_180081 crossref_primary_10_1016_j_jhep_2022_03_011 crossref_primary_10_1039_C8MD00555A crossref_primary_10_1016_j_metabol_2019_153999 crossref_primary_10_1016_j_phrs_2019_01_021 crossref_primary_10_1016_j_ajpath_2024_07_015 crossref_primary_10_3390_cells11213483 crossref_primary_10_1111_cas_14266 crossref_primary_10_1186_s12974_022_02511_0 crossref_primary_10_1021_acs_jpcb_3c02377 crossref_primary_10_1158_2159_8290_CD_21_0506 crossref_primary_10_1128_spectrum_02012_23 crossref_primary_10_1016_j_metop_2025_100347 crossref_primary_10_3389_fimmu_2021_737311 crossref_primary_10_3389_fimmu_2021_797880 crossref_primary_10_1016_j_molcel_2022_12_031 crossref_primary_10_1021_acsabm_3c01305 crossref_primary_10_3390_cancers13215452 crossref_primary_10_1038_s41419_023_06111_5 crossref_primary_10_1016_j_mrgentox_2024_503766 crossref_primary_10_1093_aob_mcaa061 crossref_primary_10_1016_j_semcancer_2021_04_012 crossref_primary_10_1038_s41568_018_0084_6 crossref_primary_10_1126_sciadv_abb8941 crossref_primary_10_1038_s41586_019_0998_5 crossref_primary_10_3389_fimmu_2023_1275408 crossref_primary_10_1007_s00204_024_03862_8 crossref_primary_10_1016_j_ymthe_2022_01_044 crossref_primary_10_7554_eLife_39984 crossref_primary_10_1016_j_ejphar_2020_173692 crossref_primary_10_1186_s12967_021_03073_0 crossref_primary_10_26508_lsa_201900636 crossref_primary_10_1038_s41388_019_1108_8 crossref_primary_10_1111_acel_13234 crossref_primary_10_1126_science_adg3224 crossref_primary_10_3389_fcell_2022_826461 crossref_primary_10_3390_vaccines7040197 crossref_primary_10_1002_advs_201902599 crossref_primary_10_3390_genes14061141 crossref_primary_10_3390_cancers13163924 crossref_primary_10_3390_jcm9103323 crossref_primary_10_15252_embj_2020106065 crossref_primary_10_1042_BST20220838 crossref_primary_10_3389_fcvm_2021_715903 crossref_primary_10_1016_j_semradonc_2019_12_009 crossref_primary_10_1038_s41420_023_01467_1 crossref_primary_10_1038_s41577_019_0269_6 crossref_primary_10_3390_pharmaceutics14122710 crossref_primary_10_3389_fimmu_2023_1273248 crossref_primary_10_1038_s41422_020_00395_4 crossref_primary_10_1007_s00432_021_03879_x crossref_primary_10_1016_j_ctarc_2021_100399 crossref_primary_10_1007_s11060_023_04556_4 crossref_primary_10_3390_brainsci13040645 crossref_primary_10_1038_s41582_019_0244_7 crossref_primary_10_1016_j_immuni_2022_03_016 crossref_primary_10_1111_acel_14303 crossref_primary_10_1002_hep_32335 crossref_primary_10_1038_s41421_022_00481_4 crossref_primary_10_3389_fcell_2021_702584 crossref_primary_10_1038_s41418_022_01041_9 crossref_primary_10_3389_fimmu_2024_1358462 crossref_primary_10_1038_s41418_020_0588_y crossref_primary_10_1038_s41598_020_64865_w crossref_primary_10_3389_fimmu_2021_629922 crossref_primary_10_2174_1570161121666230501201756 crossref_primary_10_1016_j_heliyon_2024_e25538 crossref_primary_10_1021_acs_accounts_2c00608 crossref_primary_10_1016_j_neuroscience_2023_01_015 crossref_primary_10_1016_j_intimp_2021_107763 crossref_primary_10_1177_1753425919852695 crossref_primary_10_1007_s12035_020_01904_7 crossref_primary_10_1016_j_bcp_2022_114935 crossref_primary_10_1093_jrr_rraa086 crossref_primary_10_15252_emmm_201810234 crossref_primary_10_3390_biom10111557 crossref_primary_10_1073_pnas_2105747118 crossref_primary_10_3390_pathogens12020243 crossref_primary_10_1016_j_ebiom_2019_02_055 crossref_primary_10_1038_s41586_019_1000_2 crossref_primary_10_3390_ijms24033000 crossref_primary_10_1371_journal_pgen_1010045 crossref_primary_10_3389_fnmol_2022_947542 crossref_primary_10_1186_s13018_024_04919_1 crossref_primary_10_1016_j_esmoop_2021_100075 crossref_primary_10_1016_j_addr_2021_114020 crossref_primary_10_1128_JB_00365_20 crossref_primary_10_1158_1078_0432_CCR_19_1321 crossref_primary_10_1371_journal_ppat_1007680 crossref_primary_10_1007_s00296_021_04906_3 crossref_primary_10_1038_s41467_023_44239_2 crossref_primary_10_1002_jcp_31187 crossref_primary_10_1021_acs_chemrev_1c00750 crossref_primary_10_15252_embj_2019104106 crossref_primary_10_1016_j_trecan_2020_02_022 crossref_primary_10_1038_s41573_021_00155_y crossref_primary_10_3390_ijms241411534 crossref_primary_10_1038_s41594_023_00933_9 crossref_primary_10_1111_nmo_14603 crossref_primary_10_4049_jimmunol_2000546 crossref_primary_10_1055_s_0040_1722262 crossref_primary_10_1111_cas_15961 crossref_primary_10_1016_j_ijbiomac_2020_01_015 crossref_primary_10_7554_eLife_81943 crossref_primary_10_3390_genes12040552 crossref_primary_10_3390_biom13040686 crossref_primary_10_1016_j_molcel_2024_09_026 crossref_primary_10_3389_fimmu_2021_697162 crossref_primary_10_1111_liv_15610 crossref_primary_10_1016_j_mad_2020_111308 crossref_primary_10_1111_imr_13409 crossref_primary_10_1111_acel_13415 crossref_primary_10_1016_j_bbamcr_2022_119385 crossref_primary_10_1126_scisignal_aau4604 crossref_primary_10_1093_pcmedi_pbaa030 crossref_primary_10_1016_j_exer_2020_108366 crossref_primary_10_3389_fimmu_2020_01669 crossref_primary_10_1093_nar_gkab689 crossref_primary_10_1016_j_critrevonc_2024_104546 crossref_primary_10_1038_s41467_021_26240_9 crossref_primary_10_3389_fimmu_2023_1121603 crossref_primary_10_1021_acsptsci_4c00473 crossref_primary_10_1172_jci_insight_177523 crossref_primary_10_3390_ijms232315182 crossref_primary_10_1001_jamadermatol_2018_5077 crossref_primary_10_1016_j_ijpharm_2022_122559 crossref_primary_10_1016_j_bbamcr_2024_119722 crossref_primary_10_1016_j_neuropharm_2025_110426 crossref_primary_10_1186_s40779_024_00553_4 crossref_primary_10_1016_j_intimp_2022_109644 crossref_primary_10_1021_acs_chemrestox_3c00343 crossref_primary_10_1002_pmic_201800406 crossref_primary_10_1158_1078_0432_CCR_20_2210 crossref_primary_10_1158_0008_5472_CAN_18_3631 crossref_primary_10_1016_j_molcel_2019_02_032 crossref_primary_10_1002_adbi_201900237 crossref_primary_10_3389_fimmu_2024_1513595 crossref_primary_10_1038_s41568_019_0183_z crossref_primary_10_1126_sciadv_ade6624 crossref_primary_10_1111_cas_14680 crossref_primary_10_1038_s41420_021_00409_z crossref_primary_10_1016_j_cell_2019_10_005 crossref_primary_10_1016_j_tim_2018_09_009 crossref_primary_10_3390_ijms21197289 crossref_primary_10_1172_JCI135026 crossref_primary_10_15252_embr_202255536 crossref_primary_10_1038_s41392_023_01502_8 crossref_primary_10_1016_j_jjcc_2022_08_010 crossref_primary_10_1096_fj_202001607R crossref_primary_10_1177_03946320251324821 crossref_primary_10_3389_fimmu_2021_682736 crossref_primary_10_1016_j_mucimm_2023_10_004 crossref_primary_10_1128_iai_00670_21 crossref_primary_10_3389_fphys_2020_565023 crossref_primary_10_1155_2020_9423593 crossref_primary_10_1101_gad_319475_118 crossref_primary_10_3390_cancers13153733 crossref_primary_10_1016_j_mad_2020_111347 crossref_primary_10_1158_1541_7786_MCR_21_0725 crossref_primary_10_2337_dbi18_0052 crossref_primary_10_1016_j_actbio_2024_01_008 crossref_primary_10_1186_s12974_025_03333_6 crossref_primary_10_1038_s44319_024_00358_5 crossref_primary_10_11569_wcjd_v28_i21_1084 crossref_primary_10_1093_genetics_iyad169 crossref_primary_10_1158_1535_7163_MCT_21_0780 crossref_primary_10_1016_j_ccell_2020_08_005 crossref_primary_10_3389_fmicb_2022_1065945 crossref_primary_10_1016_j_scitotenv_2023_164490 crossref_primary_10_1002_advs_202206344 crossref_primary_10_1016_j_canlet_2020_02_011 crossref_primary_10_1088_1748_0221_19_02_P02035 crossref_primary_10_1080_15384101_2019_1638192 crossref_primary_10_1093_infdis_jiz116 crossref_primary_10_5483_BMBRep_2019_52_5_072 crossref_primary_10_1002_1878_0261_12905 crossref_primary_10_1111_ddg_14357 crossref_primary_10_3389_fphar_2024_1509482 crossref_primary_10_1021_acsnano_3c06194 crossref_primary_10_1038_s43587_022_00337_2 crossref_primary_10_1111_acel_13865 crossref_primary_10_1016_j_canlet_2020_07_004 crossref_primary_10_2147_DDDT_S251623 crossref_primary_10_1667_RADE_20_00013 crossref_primary_10_3390_cancers14194847 crossref_primary_10_1016_j_immuni_2022_08_006 crossref_primary_10_1126_science_abc5386 crossref_primary_10_3390_genes11070730 crossref_primary_10_1016_j_celrep_2021_109537 crossref_primary_10_1146_annurev_nutr_062322_022751 crossref_primary_10_1016_j_molcel_2023_09_009 crossref_primary_10_3390_ijms22147474 crossref_primary_10_1016_j_isci_2020_101257 crossref_primary_10_1016_j_molcel_2023_09_003 crossref_primary_10_1016_j_jhepr_2021_100324 crossref_primary_10_1016_j_aquaculture_2025_742274 crossref_primary_10_7554_eLife_94849 crossref_primary_10_1016_j_critrevonc_2024_104609 crossref_primary_10_1172_jci_insight_129760 crossref_primary_10_1016_j_mrgentox_2023_503608 crossref_primary_10_1128_microbiolspec_GPP3_0065_2019 crossref_primary_10_1007_s00216_021_03628_6 crossref_primary_10_1038_s41419_021_04032_9 crossref_primary_10_1016_j_molcel_2021_05_002 crossref_primary_10_3390_cancers14194623 crossref_primary_10_1007_s10067_024_07167_0 crossref_primary_10_1111_1754_9485_13413 crossref_primary_10_1016_j_immuni_2020_05_013 crossref_primary_10_1080_2162402X_2019_1605822 crossref_primary_10_1158_2159_8290_CD_24_0296 crossref_primary_10_1165_rcmb_2020_0311OC crossref_primary_10_1016_j_intimp_2024_112185 crossref_primary_10_1186_s13014_023_02335_z crossref_primary_10_1158_2326_6066_CIR_23_0902 crossref_primary_10_1126_sciimmunol_abl7209 crossref_primary_10_1002_jcb_30522 crossref_primary_10_1016_j_molcel_2024_04_003 crossref_primary_10_1155_2020_7418342 crossref_primary_10_1016_j_immuni_2023_10_001 crossref_primary_10_1016_j_freeradbiomed_2021_11_040 crossref_primary_10_1182_blood_2023019782 crossref_primary_10_1038_s41401_023_01220_5 crossref_primary_10_1016_j_ejmech_2022_114791 crossref_primary_10_3389_fmed_2024_1436091 crossref_primary_10_3389_fimmu_2023_1258637 crossref_primary_10_1002_cac2_12412 crossref_primary_10_1186_s13046_019_1353_2 crossref_primary_10_3389_fphar_2022_1072670 crossref_primary_10_1002_pmic_201900408 crossref_primary_10_1007_s12272_023_01452_3 crossref_primary_10_1016_j_ijpharm_2022_122034 crossref_primary_10_1016_j_devcel_2022_06_003 crossref_primary_10_3390_genes11111276 crossref_primary_10_3389_fimmu_2022_880413 crossref_primary_10_1186_s13148_021_01026_4 crossref_primary_10_1016_j_lfs_2021_120263 crossref_primary_10_1371_journal_pbio_3000807 crossref_primary_10_1021_acs_jafc_4c07268 crossref_primary_10_3390_biomedicines11072072 crossref_primary_10_1002_adhm_201801243 crossref_primary_10_1155_2019_4325105 crossref_primary_10_1002_adtp_202100066 crossref_primary_10_3389_fmolb_2024_1322687 crossref_primary_10_1016_j_mam_2021_101007 crossref_primary_10_1016_j_intimp_2024_113091 crossref_primary_10_1091_mbc_E22_06_0233 crossref_primary_10_1158_0008_5472_CAN_22_3015 crossref_primary_10_3390_genes15040414 crossref_primary_10_1016_j_molcel_2021_07_040 crossref_primary_10_3390_ijms222111483 crossref_primary_10_3389_fragi_2022_897907 crossref_primary_10_1177_20587384211038098 crossref_primary_10_7554_eLife_77073 crossref_primary_10_1016_j_tibs_2020_12_010 crossref_primary_10_1016_j_envint_2021_106448 crossref_primary_10_1038_s41419_023_06140_0 crossref_primary_10_1038_s42003_021_02123_z crossref_primary_10_1016_j_smim_2019_101328 crossref_primary_10_1038_s41467_022_29946_6 crossref_primary_10_1038_s41467_024_48066_x crossref_primary_10_1186_s12967_020_02219_w crossref_primary_10_1038_s41419_023_05710_6 crossref_primary_10_1111_tra_12918 crossref_primary_10_1093_narcan_zcad031 crossref_primary_10_1016_j_ceb_2019_02_006 crossref_primary_10_1007_s12553_024_00895_y crossref_primary_10_3390_cells11182812 crossref_primary_10_1002_eji_202048901 crossref_primary_10_1016_j_reth_2025_01_005 crossref_primary_10_1152_ajprenal_00614_2020 crossref_primary_10_1101_gad_320937_118 crossref_primary_10_1038_s42003_021_02278_9 crossref_primary_10_1016_j_pharmthera_2023_108476 crossref_primary_10_4049_jimmunol_1800991 crossref_primary_10_1038_s41392_025_02174_2 crossref_primary_10_1126_scisignal_aba2611 crossref_primary_10_3390_toxins12020063 crossref_primary_10_1038_s41422_020_0346_1 crossref_primary_10_1038_s41467_025_56301_2 crossref_primary_10_3389_fnmol_2024_1400808 crossref_primary_10_1002_ijc_33038 crossref_primary_10_1038_s41418_018_0214_4 crossref_primary_10_1158_1078_0432_CCR_18_2581 crossref_primary_10_3390_vaccines8030369 crossref_primary_10_1074_jbc_RA119_010734 crossref_primary_10_1172_JCI155468 crossref_primary_10_1016_j_cytogfr_2024_08_005 crossref_primary_10_3389_fonc_2021_667920 crossref_primary_10_1002_aac2_12047 crossref_primary_10_1016_j_celrep_2023_112278 crossref_primary_10_1038_s41586_019_1553_0 crossref_primary_10_1371_journal_pone_0254806 crossref_primary_10_1186_s43556_020_00006_z crossref_primary_10_1038_s41585_021_00481_1 crossref_primary_10_1038_s41598_023_43848_7 crossref_primary_10_1007_s11064_023_03945_5 crossref_primary_10_1039_D0CB00022A crossref_primary_10_1016_j_gene_2021_145469 crossref_primary_10_1016_j_vetmic_2021_109098 crossref_primary_10_3389_ftox_2022_887228 crossref_primary_10_3390_cancers14112580 crossref_primary_10_1038_s41467_023_37840_y crossref_primary_10_15252_embr_202154217 crossref_primary_10_3389_fimmu_2021_795048 crossref_primary_10_1016_j_jcmgh_2022_10_009 crossref_primary_10_3390_cancers14092087 crossref_primary_10_1016_j_canrad_2025_104590 crossref_primary_10_1016_j_celrep_2023_113180 crossref_primary_10_3390_ijms22126360 crossref_primary_10_1158_0008_5472_CAN_22_3860 crossref_primary_10_1038_s43587_021_00121_8 crossref_primary_10_3389_fcimb_2022_1026293 crossref_primary_10_2967_jnumed_122_264121 crossref_primary_10_3390_ijms25137411 crossref_primary_10_3389_fimmu_2024_1438030 crossref_primary_10_1111_bjh_18878 crossref_primary_10_1155_2022_3191474 crossref_primary_10_1016_j_drudis_2019_11_007 crossref_primary_10_1038_s41574_024_00990_0 crossref_primary_10_3748_wjg_v25_i34_5069 crossref_primary_10_1038_s41584_020_0480_7 crossref_primary_10_1016_j_ebiom_2022_104047 crossref_primary_10_1093_jimmun_vkae017 crossref_primary_10_1073_pnas_2012469118 crossref_primary_10_1016_j_celrep_2018_11_054 crossref_primary_10_1021_acsami_2c21005 crossref_primary_10_12688_f1000research_20201_1 crossref_primary_10_1016_j_colsurfb_2024_114343 crossref_primary_10_1590_1678_9199_jvatitd_2020_0183 crossref_primary_10_1016_j_celrep_2021_110138 crossref_primary_10_1073_pnas_2216953120 crossref_primary_10_1016_j_celrep_2019_09_065 crossref_primary_10_1158_1078_0432_CCR_21_1621 crossref_primary_10_3390_cells10092288 crossref_primary_10_1042_BCJ20190596 crossref_primary_10_3390_antiox13060679 crossref_primary_10_1126_sciadv_abg6908 crossref_primary_10_1002_bies_202400066 crossref_primary_10_15252_embr_202255099 crossref_primary_10_1016_j_toxlet_2022_11_015 crossref_primary_10_1002_mc_23384 crossref_primary_10_1016_j_advnut_2023_08_004 crossref_primary_10_1371_journal_ppat_1009028 crossref_primary_10_1074_jbc_RA120_012962 crossref_primary_10_1172_JCI163452 crossref_primary_10_1212_WNL_0000000000011944 crossref_primary_10_14336_AD_2023_0117 crossref_primary_10_3389_fphar_2022_967633 crossref_primary_10_3390_ijms24087347 crossref_primary_10_1038_s41419_022_05063_6 crossref_primary_10_3389_fimmu_2023_1130172 crossref_primary_10_1093_noajnl_vdz045 crossref_primary_10_3389_fendo_2023_1145392 crossref_primary_10_1038_s41392_020_0150_x crossref_primary_10_1016_j_radmp_2020_04_001 crossref_primary_10_3390_ijms232113356 crossref_primary_10_1016_j_jconrel_2021_01_036 crossref_primary_10_1111_acel_13064 crossref_primary_10_1016_j_expneurol_2023_114474 crossref_primary_10_1016_j_aquaculture_2024_740871 crossref_primary_10_1136_jitc_2024_010157 crossref_primary_10_1038_s41422_023_00788_1 crossref_primary_10_1038_s41467_023_37096_6 crossref_primary_10_3389_fimmu_2022_882407 crossref_primary_10_3390_ijms22115421 crossref_primary_10_1016_j_gene_2022_146681 crossref_primary_10_1007_s00430_022_00742_9 crossref_primary_10_1371_journal_ppat_1010233 crossref_primary_10_1007_s12609_021_00418_y crossref_primary_10_1111_imr_12901 crossref_primary_10_1073_pnas_2313652121 crossref_primary_10_1016_j_immuni_2020_02_012 crossref_primary_10_1007_s00262_024_03692_8 crossref_primary_10_2147_JIR_S468609 crossref_primary_10_1073_pnas_2011226118 crossref_primary_10_7554_eLife_84238 crossref_primary_10_3724_abbs_2022071 crossref_primary_10_1083_jcb_202301090 crossref_primary_10_1016_j_medj_2024_06_002 crossref_primary_10_1016_j_heliyon_2024_e24751 crossref_primary_10_3390_molecules29153704 crossref_primary_10_3390_genes11040409 crossref_primary_10_1016_j_fct_2023_114427 crossref_primary_10_1007_s00109_021_02131_w crossref_primary_10_2174_1568009618666181016164920 crossref_primary_10_1038_s41375_023_02055_z crossref_primary_10_1038_s41392_022_01149_x crossref_primary_10_1088_1361_6463_ab5dd8 crossref_primary_10_1016_j_semcdb_2021_03_007 crossref_primary_10_3389_fimmu_2024_1485546 crossref_primary_10_3390_ijms23126634 crossref_primary_10_1007_s10522_022_10006_x crossref_primary_10_26508_lsa_202101256 crossref_primary_10_1038_s41467_020_18734_9 crossref_primary_10_1111_acel_14258 crossref_primary_10_1093_jmcb_mjac031 crossref_primary_10_1016_j_tcb_2024_02_006 crossref_primary_10_1016_j_apsb_2021_03_043 crossref_primary_10_1016_j_ccr_2024_216138 crossref_primary_10_1016_j_molmet_2023_101755 crossref_primary_10_1038_s44161_023_00314_x crossref_primary_10_3390_cells12010052 crossref_primary_10_1038_s41556_023_01096_x crossref_primary_10_1186_s12974_024_03217_1 crossref_primary_10_12688_f1000research_125163_1 crossref_primary_10_1007_s10753_023_01946_8 crossref_primary_10_1080_14796694_2024_2357534 crossref_primary_10_1021_acs_molpharmaceut_9b00242 crossref_primary_10_1016_j_immuni_2024_01_001 crossref_primary_10_1038_s41392_021_00646_9 crossref_primary_10_1016_j_cmet_2021_07_009 crossref_primary_10_3390_cancers15143689 crossref_primary_10_1016_j_molcel_2021_02_038 crossref_primary_10_1152_ajpcell_00062_2020 crossref_primary_10_1016_j_isci_2024_111513 crossref_primary_10_3389_fonc_2021_795547 crossref_primary_10_1002_ijc_33918 crossref_primary_10_1042_EBC20200002 crossref_primary_10_1016_j_cmet_2019_02_014 crossref_primary_10_1016_j_ccell_2020_05_020 crossref_primary_10_1016_j_celrep_2020_107983 crossref_primary_10_1016_j_bbrc_2023_06_066 crossref_primary_10_1186_s13046_021_01850_9 crossref_primary_10_3389_fcell_2021_683459 crossref_primary_10_1002_adfm_202112273 crossref_primary_10_1038_s41467_022_30568_1 crossref_primary_10_3389_fmolb_2024_1409300 crossref_primary_10_3389_fendo_2023_1123124 crossref_primary_10_1002_eji_202048777 crossref_primary_10_1016_j_ccell_2022_08_015 crossref_primary_10_1016_j_ccell_2020_11_004 crossref_primary_10_7554_eLife_47491 crossref_primary_10_3724_zdxbyxb_2023_0482 crossref_primary_10_1002_iid3_452 crossref_primary_10_3390_ijms24010041 crossref_primary_10_3389_fimmu_2023_1104560 crossref_primary_10_1016_j_canlet_2022_215919 crossref_primary_10_1016_j_ecoenv_2024_117085 crossref_primary_10_1080_2162402X_2022_2117321 crossref_primary_10_7554_eLife_94849_3 crossref_primary_10_3389_fphar_2021_719644 crossref_primary_10_1016_j_celrep_2022_111774 crossref_primary_10_1172_JCI131180 crossref_primary_10_1371_journal_ppat_1009781 crossref_primary_10_1126_sciadv_abi5253 crossref_primary_10_1016_j_medj_2024_07_022 crossref_primary_10_1073_pnas_2002144117 crossref_primary_10_1158_1541_7786_MCR_19_0777 crossref_primary_10_1016_j_mattod_2022_11_008 crossref_primary_10_1038_s41598_020_64788_6 crossref_primary_10_3390_cancers12061546 crossref_primary_10_15252_embr_202050051 crossref_primary_10_1016_j_ejphar_2024_176326 crossref_primary_10_1016_j_isci_2022_104217 crossref_primary_10_1038_s41536_021_00118_2 crossref_primary_10_1016_j_ecoenv_2022_114266 crossref_primary_10_1016_j_neuron_2022_10_028 crossref_primary_10_1038_s41420_024_02208_8 crossref_primary_10_1186_s12964_020_00637_3 crossref_primary_10_1039_D2CS00848C crossref_primary_10_3389_fcimb_2020_00368 crossref_primary_10_1038_s41568_022_00462_5 crossref_primary_10_1021_acs_nanolett_3c03689 crossref_primary_10_3389_fimmu_2019_01827 crossref_primary_10_1007_s44178_024_00079_8 crossref_primary_10_1016_j_phrs_2023_106973 crossref_primary_10_1186_s12974_025_03391_w crossref_primary_10_1186_s40170_023_00305_3 crossref_primary_10_3390_ijms22137030 crossref_primary_10_1038_s41556_019_0352_z crossref_primary_10_1016_j_immuni_2020_09_014 crossref_primary_10_1016_j_jdermsci_2020_09_003 crossref_primary_10_3390_cells11193011 crossref_primary_10_1016_j_exphem_2023_05_005 crossref_primary_10_3390_cancers15235694 crossref_primary_10_1126_sciimmunol_aaz1974 crossref_primary_10_1158_0008_5472_CAN_23_0744 crossref_primary_10_3390_biology10100994 crossref_primary_10_1016_j_mrrev_2020_108335 crossref_primary_10_1080_2162402X_2019_1591875 crossref_primary_10_1042_CS20220525 crossref_primary_10_1016_j_coi_2024_102457 crossref_primary_10_1371_journal_ppat_1008429 crossref_primary_10_17650_1726_9776_2021_17_3_85_94 crossref_primary_10_1038_s41580_020_0257_5 crossref_primary_10_3390_cancers16233993 crossref_primary_10_4049_jimmunol_2000891 crossref_primary_10_1101_gad_349249_121 crossref_primary_10_1016_j_dib_2024_111041 crossref_primary_10_1126_sciadv_abf6290 crossref_primary_10_3389_fimmu_2020_00238 crossref_primary_10_1038_s41422_020_0341_6 crossref_primary_10_1111_febs_17060 crossref_primary_10_1038_s42003_020_0986_1 crossref_primary_10_1016_j_biopha_2024_116698 crossref_primary_10_3390_v11100921 crossref_primary_10_3389_fimmu_2019_00104 crossref_primary_10_1073_pnas_1922243117 crossref_primary_10_1177_03946320241229041 crossref_primary_10_1016_j_semarthrit_2020_02_010 crossref_primary_10_3389_fcell_2021_729136 crossref_primary_10_3390_ijms23073600 crossref_primary_10_2139_ssrn_4151505 crossref_primary_10_1155_2018_8214379 crossref_primary_10_1126_scitranslmed_aay9013 crossref_primary_10_1371_journal_ppat_1010725 crossref_primary_10_3390_ijms222111450 crossref_primary_10_3389_fcell_2020_564601 crossref_primary_10_1080_10799893_2024_2325353 crossref_primary_10_1016_j_expneurol_2019_113164 crossref_primary_10_1089_dna_2019_4842 crossref_primary_10_3389_fimmu_2020_611347 crossref_primary_10_1016_j_biopha_2020_111091 crossref_primary_10_1039_C8RA04603D crossref_primary_10_1038_s41388_021_02037_4 crossref_primary_10_1080_25785826_2019_1660038 crossref_primary_10_1016_j_jbc_2024_107554 crossref_primary_10_1016_j_jmb_2019_11_016 crossref_primary_10_1016_j_mrrev_2020_108344 crossref_primary_10_1016_j_ajpath_2023_07_008 crossref_primary_10_1016_j_rdc_2021_04_001 crossref_primary_10_1016_j_cell_2020_11_042 crossref_primary_10_1038_s41577_024_01027_3 crossref_primary_10_12688_f1000research_17959_1 crossref_primary_10_7554_eLife_60637 crossref_primary_10_3390_ijms21072477 crossref_primary_10_1126_sciimmunol_aba4219 crossref_primary_10_1172_jci_insight_168945 crossref_primary_10_1084_jem_20190459 crossref_primary_10_3389_fimmu_2023_1260705 crossref_primary_10_3390_cancers14092339 crossref_primary_10_1021_acs_jcim_0c00171 crossref_primary_10_1016_j_phymed_2024_156030 crossref_primary_10_1053_j_seminoncol_2023_08_001 crossref_primary_10_3892_etm_2019_8001 crossref_primary_10_1177_03946320241297342 crossref_primary_10_1016_j_bbrc_2018_10_080 crossref_primary_10_3389_fimmu_2024_1399926 crossref_primary_10_1016_j_molcel_2021_05_018 crossref_primary_10_1038_s41392_022_01252_z crossref_primary_10_1007_s00018_021_03902_x crossref_primary_10_1007_s40265_023_01934_0 crossref_primary_10_1016_j_canlet_2024_217410 crossref_primary_10_1038_s41467_020_19941_0 crossref_primary_10_1016_j_chemosphere_2022_137658 crossref_primary_10_1038_s41580_020_0244_x crossref_primary_10_1097_BS9_0000000000000063 crossref_primary_10_1016_j_bioorg_2019_103556 crossref_primary_10_3389_fmolb_2022_1048726 crossref_primary_10_1158_2767_9764_CRC_23_0432 crossref_primary_10_1038_s41388_018_0606_4 crossref_primary_10_1002_ijc_33787 crossref_primary_10_1038_s41556_025_01627_8 crossref_primary_10_1080_15376516_2021_1974133 crossref_primary_10_3389_fphar_2023_1199152 crossref_primary_10_1016_j_abb_2018_12_022 crossref_primary_10_1080_2162402X_2022_2130583 crossref_primary_10_1126_sciadv_adl1584 crossref_primary_10_1016_j_semcancer_2024_08_007 crossref_primary_10_1016_j_neuron_2021_09_040 crossref_primary_10_1038_s41577_019_0215_7 crossref_primary_10_1038_s42255_024_01184_8 crossref_primary_10_3390_ijms23073871 crossref_primary_10_1038_s41419_022_05047_6 crossref_primary_10_1097_PPO_0000000000000559 crossref_primary_10_1016_j_neuroscience_2021_11_031 crossref_primary_10_3390_ijms25010086 crossref_primary_10_1126_scitranslmed_adg7740 crossref_primary_10_1016_j_celrep_2021_108931 crossref_primary_10_1007_s11357_019_00082_2 crossref_primary_10_1038_s12276_024_01295_y crossref_primary_10_1016_j_intimp_2022_108637 crossref_primary_10_1016_j_jep_2023_116327 crossref_primary_10_3389_fimmu_2024_1402817 crossref_primary_10_1016_j_nantod_2024_102365 crossref_primary_10_1038_s41467_023_41801_w crossref_primary_10_3390_ijms24098151 crossref_primary_10_1042_CS20191160 crossref_primary_10_3389_fimmu_2020_554725 crossref_primary_10_3389_fimmu_2021_660184 crossref_primary_10_1016_j_mcpro_2022_100247 crossref_primary_10_1073_pnas_2320591121 crossref_primary_10_1002_smll_202405231 crossref_primary_10_1002_mco2_349 crossref_primary_10_3389_fnagi_2020_00148 crossref_primary_10_1016_j_celrep_2022_110920 crossref_primary_10_34172_brb_2023_29 crossref_primary_10_3390_cancers15061836 crossref_primary_10_4049_jimmunol_2300306 crossref_primary_10_1249_JES_0000000000000302 crossref_primary_10_1007_s11481_021_10031_6 crossref_primary_10_1093_intimm_dxz034 crossref_primary_10_1111_febs_15836 crossref_primary_10_1016_j_gendis_2022_10_004 crossref_primary_10_3389_pore_2022_1610401 crossref_primary_10_1128_mbio_03228_21 crossref_primary_10_1155_2020_8653783 crossref_primary_10_1038_s41584_020_0377_5 crossref_primary_10_1016_j_bcp_2023_115865 crossref_primary_10_1038_s41467_020_17030_w crossref_primary_10_3390_pharmaceutics14081707 crossref_primary_10_1007_s00109_024_02444_6 crossref_primary_10_1111_imm_13592 crossref_primary_10_1002_cti2_1109 crossref_primary_10_1016_j_tranon_2020_100783 crossref_primary_10_2139_ssrn_3581358 crossref_primary_10_1186_s13058_020_01368_6 crossref_primary_10_3389_fimmu_2019_03006 crossref_primary_10_1038_s41594_019_0195_0 crossref_primary_10_3390_v13020279 crossref_primary_10_1158_1535_7163_MCT_21_0066 crossref_primary_10_1007_s15010_024_02429_0 crossref_primary_10_1038_s41590_020_0699_0 crossref_primary_10_1002_jev2_12350 crossref_primary_10_3390_biomedicines8070214 crossref_primary_10_1038_s43018_023_00571_6 crossref_primary_10_1089_jir_2019_0015 crossref_primary_10_1146_annurev_nutr_082018_124643 crossref_primary_10_1158_0008_5472_CAN_23_1082 crossref_primary_10_1371_journal_ppat_1012170 crossref_primary_10_1177_10998004221132250 crossref_primary_10_1038_s41588_020_00746_2 crossref_primary_10_1186_s12967_023_03872_7 crossref_primary_10_1016_j_bbrc_2022_07_005 crossref_primary_10_3390_pharmaceutics12070663 crossref_primary_10_1038_s41584_018_0071_z crossref_primary_10_1093_nar_gkaa084 crossref_primary_10_3390_cancers14246150 crossref_primary_10_1016_j_lfs_2024_122687 crossref_primary_10_3390_biom12121862 crossref_primary_10_1016_j_virol_2019_03_013 crossref_primary_10_3390_cancers14225633 crossref_primary_10_1186_s40364_024_00606_9 crossref_primary_10_1126_sciimmunol_adj3945 crossref_primary_10_1038_s41375_024_02383_8 crossref_primary_10_1073_pnas_2214278119 crossref_primary_10_1186_s43556_021_00044_1 crossref_primary_10_2174_0109298673273303231208071403 crossref_primary_10_3389_fmed_2024_1512916 crossref_primary_10_1016_j_cytogfr_2020_06_004 crossref_primary_10_1038_s41420_021_00634_6 crossref_primary_10_1111_febs_15640 crossref_primary_10_1158_2326_6066_CIR_23_1093 crossref_primary_10_3390_cells12060915 crossref_primary_10_3389_fped_2021_631329 crossref_primary_10_1186_s13148_020_00876_8 crossref_primary_10_3389_fendo_2023_1196460 crossref_primary_10_1093_narcan_zcaa002 crossref_primary_10_3389_fimmu_2020_02064 crossref_primary_10_1016_j_ijrobp_2021_12_162 crossref_primary_10_1016_j_celrep_2023_112179 crossref_primary_10_1158_0008_5472_CAN_22_3382 crossref_primary_10_1155_2022_5095176 crossref_primary_10_3389_fimmu_2023_1092824 crossref_primary_10_3390_cancers14225656 crossref_primary_10_1186_s40364_020_00202_7 crossref_primary_10_1186_s12885_024_12173_1 crossref_primary_10_3389_fphar_2024_1409683 crossref_primary_10_1038_d41586_018_07553_0 crossref_primary_10_3389_fphar_2022_837784 crossref_primary_10_1002_advs_202002738 crossref_primary_10_1038_s41392_021_00554_y crossref_primary_10_3390_pathogens9040292 crossref_primary_10_14336_AD_2022_0316 crossref_primary_10_1158_1541_7786_MCR_22_0772 crossref_primary_10_1016_j_hoc_2022_08_018 crossref_primary_10_1016_j_lfs_2024_122897 crossref_primary_10_3390_cancers14143545 crossref_primary_10_1007_s00011_022_01598_8 crossref_primary_10_1038_s41467_020_19627_7 crossref_primary_10_1038_s41586_018_0705_y crossref_primary_10_1172_jci_insight_151515 crossref_primary_10_3390_ijms25052750 crossref_primary_10_15252_embj_2022113258 crossref_primary_10_1016_j_molmed_2019_06_004 crossref_primary_10_1080_15384101_2022_2109899 crossref_primary_10_1002_jez_b_23227 crossref_primary_10_1084_jem_20181329 crossref_primary_10_1073_pnas_2117754119 crossref_primary_10_1016_j_chom_2020_02_004 crossref_primary_10_1080_17460441_2023_2244409 crossref_primary_10_3389_fimmu_2023_1132653 crossref_primary_10_3389_fimmu_2021_622738 crossref_primary_10_52601_bpr_2023_230032 crossref_primary_10_1111_apha_13194 crossref_primary_10_1158_0008_5472_CAN_19_0212 crossref_primary_10_3389_fphar_2021_641098 crossref_primary_10_1007_s43440_024_00609_1 crossref_primary_10_1038_s41392_021_00800_3 crossref_primary_10_1111_acel_12901 crossref_primary_10_1002_adhm_202000064 crossref_primary_10_1186_s12943_025_02243_8 crossref_primary_10_1038_s41467_022_34078_y crossref_primary_10_3390_cells10040930 crossref_primary_10_32604_or_2022_03529 crossref_primary_10_1111_imm_13771 crossref_primary_10_3390_genes12020163 crossref_primary_10_1038_s41467_019_10619_w crossref_primary_10_3389_fimmu_2021_734229 crossref_primary_10_1016_j_mtbio_2023_100839 crossref_primary_10_1080_09553002_2020_1712492 crossref_primary_10_1038_s41418_024_01291_9 crossref_primary_10_1016_j_nantod_2024_102535 crossref_primary_10_1016_j_adcanc_2022_100032 crossref_primary_10_1016_j_it_2019_06_001 crossref_primary_10_1016_j_apmt_2021_101149 crossref_primary_10_3389_fimmu_2020_613079 crossref_primary_10_3390_onco4040022 crossref_primary_10_3390_pathogens11020175 crossref_primary_10_1111_ddg_14357_g crossref_primary_10_3389_fimmu_2018_03077 crossref_primary_10_1074_mcp_RA120_001981 crossref_primary_10_3389_fmed_2023_1083242 crossref_primary_10_3389_fimmu_2023_1324516 crossref_primary_10_1155_2021_8852233 crossref_primary_10_1016_j_tox_2021_153058 crossref_primary_10_1158_2159_8290_CD_20_0868 crossref_primary_10_1002_ctm2_70011 crossref_primary_10_1080_02713683_2024_2430223 crossref_primary_10_4167_jbv_2024_54_1_050 crossref_primary_10_1007_s00262_022_03200_w crossref_primary_10_1146_annurev_immunol_101721_033341 crossref_primary_10_1038_s41423_021_00670_3 crossref_primary_10_1080_08830185_2020_1844195 crossref_primary_10_1073_pnas_2101848119 crossref_primary_10_1038_s41556_022_00950_8 crossref_primary_10_1007_s40242_024_4120_7 crossref_primary_10_3389_fonc_2023_1295579 crossref_primary_10_1016_j_canlet_2024_217268 crossref_primary_10_3390_ijms21218151 crossref_primary_10_1523_ENEURO_0504_24_2025 crossref_primary_10_1158_2159_8290_CD_19_0780 crossref_primary_10_1007_s42764_022_00072_3 crossref_primary_10_1084_jem_20210518 crossref_primary_10_1097_CAD_0000000000001680 crossref_primary_10_3390_ijms232314890 crossref_primary_10_3389_fonc_2019_00122 crossref_primary_10_3390_cancers15030979 crossref_primary_10_3390_proteomes8040030 crossref_primary_10_1038_s41467_023_38784_z crossref_primary_10_3389_fimmu_2022_1095577 crossref_primary_10_1158_2159_8290_CD_18_1020 crossref_primary_10_1002_advs_202002117 crossref_primary_10_3390_antiox11050975 crossref_primary_10_1007_s12035_024_04574_x crossref_primary_10_1016_j_jprot_2023_104869 crossref_primary_10_3390_ijms25074120 crossref_primary_10_1038_s41571_021_00518_9 crossref_primary_10_1136_jitc_2024_010252 crossref_primary_10_1016_j_tranon_2024_102074 crossref_primary_10_3390_ijms21207441 crossref_primary_10_1038_s41577_022_00751_y crossref_primary_10_1007_s00430_019_00593_x crossref_primary_10_1371_journal_pone_0319216 crossref_primary_10_15430_JCP_2023_28_4_143 crossref_primary_10_1007_s11926_019_0800_6 crossref_primary_10_1128_iai_00153_23 crossref_primary_10_1016_j_ijbiomac_2025_139534 crossref_primary_10_31857_S0044459624040026 crossref_primary_10_3390_gidisord6030039 crossref_primary_10_3389_fimmu_2024_1380517 crossref_primary_10_3390_molecules28073127 crossref_primary_10_1016_j_molcel_2020_07_026 crossref_primary_10_3389_fimmu_2022_826880 crossref_primary_10_1016_j_arr_2019_100940 crossref_primary_10_1515_biol_2022_0992 crossref_primary_10_1016_j_molcel_2024_11_026 crossref_primary_10_3389_fcell_2021_645593 crossref_primary_10_1007_s12539_021_00446_3 crossref_primary_10_1016_j_ejmech_2019_111855 crossref_primary_10_1084_jem_20201833 crossref_primary_10_1007_s00281_024_01016_7 crossref_primary_10_1002_jmv_28955 crossref_primary_10_1002_path_5389 crossref_primary_10_1016_j_cpcardiol_2023_102189 crossref_primary_10_1016_j_canlet_2025_217599 crossref_primary_10_1016_j_virol_2024_110238 crossref_primary_10_1038_s41576_019_0151_1 crossref_primary_10_1016_j_cmet_2023_07_009 crossref_primary_10_3390_ijms24076313 crossref_primary_10_1016_j_it_2023_04_006 crossref_primary_10_1016_j_compbiomed_2024_108776 crossref_primary_10_1080_17435390_2022_2147460 crossref_primary_10_1039_D0CB00187B crossref_primary_10_1016_j_mad_2024_111978 crossref_primary_10_15252_embr_201846935 crossref_primary_10_1016_j_cej_2024_158754 crossref_primary_10_1002_mco2_511 crossref_primary_10_1016_j_jhepr_2023_100695 |
Cites_doi | 10.1038/ng.373 10.1158/2326-6066.CIR-13-0123 10.1158/0008-5472.CAN-13-1703 10.1084/jem.20120876 10.1038/nature07317 10.1016/j.celrep.2015.12.029 10.1016/j.molcel.2014.03.040 10.1016/0092-8674(92)90390-X 10.1038/nnano.2017.52 10.1084/jem.20101158 10.1093/mutage/geq052 10.4049/jimmunol.1402793 10.1073/pnas.0911267106 10.1158/0008-5472.CAN-16-1404 10.1093/carcin/21.3.485 10.1038/ncomms11752 10.1038/nature18268 10.1126/science.aab3628 10.1016/j.molcel.2013.05.022 10.1073/pnas.1516465112 10.1038/onc.2014.457 10.1016/j.cell.2008.03.038 10.1128/MCB.00640-08 10.1016/0277-5379(90)90044-T 10.1038/s41467-017-01932-3 10.4049/jimmunol.1402051 10.1371/journal.pone.0184843 10.1126/science.aad7611 10.1016/j.celrep.2016.07.002 10.1016/j.nano.2017.10.013 10.1038/nsmb.3498 10.1038/nprot.2007.77 10.1084/jem.20151464 10.1038/nm.4428 10.1074/jbc.M603307200 10.1016/j.molcel.2013.07.004 10.1016/j.immuni.2017.07.016 10.1016/j.cell.2008.06.049 10.4049/jimmunol.188.Supp.162.33 10.1126/science.aaa2630 10.1242/jcs.111.3.395 10.1038/sj.cdd.4401843 10.4049/jimmunol.1500969 10.1016/j.celrep.2014.08.074 10.4161/nucl.18954 10.1016/j.cell.2014.11.036 10.1038/329630a0 10.1016/j.jaci.2016.10.031 10.1172/JCI79915 10.1073/pnas.211053698 10.1038/nature05456 10.1038/ncb3586 10.1126/science.aab3632 10.1038/ng1842 10.1016/j.molcel.2006.06.005 10.1016/0092-8674(95)90028-4 10.1016/0027-5107(86)90010-2 10.1073/pnas.1222694110 10.1038/nature05327 10.1038/nrc2560 10.1038/nrc2628 10.1016/j.immuni.2016.04.010 10.1038/nature14156 10.1038/nrc2440 10.1146/annurev-biochem-061516-044813 10.1126/science.1232458 10.1038/nature23470 10.1038/ni.3267 10.1038/ni881 10.1084/jem.177.5.1391 10.1073/pnas.0900850106 10.1038/nature16932 10.1101/gad.289769.116 10.1038/nchembio.1661 10.1016/j.cell.2013.07.023 10.1038/ncb1024 10.1038/nrm.2016.177 10.1038/nature05529 10.1016/0165-1161(85)90015-9 10.1038/nm.4450 10.1038/nature10429 10.1038/ni1282 10.1126/science.1229963 10.1016/j.immuni.2014.10.019 10.1038/nature23449 10.1016/j.immuni.2011.11.018 10.1016/j.cell.2013.06.007 10.1128/JVI.07119-11 10.1016/j.cell.2012.04.011 10.1158/0008-5472.CAN-10-2820 10.1158/0008-5472.CAN-06-3452 10.1093/hmg/ddx283 10.1016/j.cell.2013.12.011 10.1016/j.molcel.2017.06.020 10.4049/jimmunol.1100040 10.1056/NEJMoa1312625 10.4049/jimmunol.1601999 10.1146/annurev-pathol-121808-102144 10.1038/nature24050 10.1016/j.cell.2017.09.039 10.1038/ncb1909 10.1016/j.cell.2008.03.039 10.1126/science.aad7297 10.1016/j.celrep.2013.05.009 10.1128/mBio.00368-17 10.1073/pnas.1312033110 10.1016/j.cell.2013.04.046 10.15252/embj.201593339 10.1084/jem.20171749 10.1038/nature12306 10.1073/pnas.1621363114 10.1038/ni1146 10.1038/10552 10.1016/j.celrep.2015.03.041 10.1038/nature03884 10.1016/j.immuni.2008.09.003 10.1038/ncomms6166 10.1161/CIRCULATIONAHA.117.031046 10.1016/j.immuni.2014.10.017 10.1016/j.cell.2014.11.037 10.1038/s41467-017-00833-9 10.1038/ncb1867 10.1126/science.285.5428.727 10.1126/science.1244040 10.1038/nm.3708 10.1073/pnas.1705499114 10.1016/j.immuni.2015.01.012 10.1038/ni.3558 10.1084/jem.20101159 10.1016/j.cell.2007.10.017 10.1038/s41467-017-00573-w 10.4049/jimmunol.1401337 10.1158/0008-5472.CAN-15-1885 10.1073/pnas.1512832112 10.1111/j.1349-7006.2008.00791.x 10.1016/j.cell.2009.03.037 10.1016/j.celrep.2015.03.069 10.1126/science.aab3291 10.1093/hmg/ddp293 10.1371/journal.pbio.0060301 10.1136/annrheumdis-2013-204845 10.1126/science.1094557 10.1158/1541-7786.MCR-10-0358 10.1126/scisignal.2002521 10.1172/JCI45785 10.1073/pnas.1215006109 10.1038/ng1845 10.1146/annurev-immunol-032713-120156 10.1038/nature01850 10.1016/j.cell.2008.06.032 10.1002/iub.1566 10.1091/mbc.E05-09-0858 10.1016/j.celrep.2015.04.031 10.1016/j.cmet.2013.08.011 10.1016/j.celrep.2016.03.006 10.4049/jimmunol.1300097 10.4049/jimmunol.198.Supp.130.28 10.1016/j.chom.2016.01.010 10.1038/srep19049 |
ContentType | Journal Article |
Copyright | 2018 Li and Chen. Copyright Rockefeller University Press May 7, 2018 2018 Li and Chen 2018 |
Copyright_xml | – notice: 2018 Li and Chen. – notice: Copyright Rockefeller University Press May 7, 2018 – notice: 2018 Li and Chen 2018 |
DBID | AAYXX CITATION NPM 7QL 7QP 7T5 7TK 7U9 8FD C1K FR3 H94 M7N P64 RC3 7X8 5PM |
DOI | 10.1084/jem.20180139 |
DatabaseName | CrossRef PubMed Bacteriology Abstracts (Microbiology B) Calcium & Calcified Tissue Abstracts Immunology Abstracts Neurosciences Abstracts Virology and AIDS Abstracts Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database AIDS and Cancer Research Abstracts Algology Mycology and Protozoology Abstracts (Microbiology C) Biotechnology and BioEngineering Abstracts Genetics Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef PubMed Genetics Abstracts Virology and AIDS Abstracts Technology Research Database Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) AIDS and Cancer Research Abstracts Immunology Abstracts Engineering Research Database Calcium & Calcified Tissue Abstracts Neurosciences Abstracts Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic PubMed CrossRef Genetics Abstracts |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine |
DocumentTitleAlternate | cGAS links DNA damage to sterile inflammation |
EISSN | 1540-9538 |
EndPage | 1299 |
ExternalDocumentID | PMC5940270 29622565 10_1084_jem_20180139 |
Genre | Research Support, Non-U.S. Gov't Journal Article Review |
GrantInformation_xml | – fundername: Howard Hughes Medical Institute – fundername: ; – fundername: Welch Foundation grantid: I-1389 – fundername: ; grantid: RP120718; RP150498 – fundername: ; grantid: LRI-2014 |
GroupedDBID | --- -~X 18M 29K 2WC 36B 4.4 53G 5GY 5RE 5VS AAYXX ABOCM ABZEH ACGFO ACNCT ACPRK ADBBV AENEX AFOSN AFRAH ALMA_UNASSIGNED_HOLDINGS AOIJS BAWUL BTFSW C45 CITATION CS3 D-I DIK DU5 E3Z EBS EJD EMB F5P F9R GX1 H13 HYE IH2 K-O KQ8 L7B N9A O5R O5S OK1 P2P P6G R.V RHI SJN TR2 TRP UHB W8F WOQ FRP NPM RHF RPM 7QL 7QP 7T5 7TK 7U9 8FD C1K FR3 H94 M7N P64 RC3 7X8 5PM |
ID | FETCH-LOGICAL-c408t-4e7ffa34fda8db3f0e7be258c882a4faea81541786817239cff787e892b5712b3 |
ISSN | 0022-1007 1540-9538 |
IngestDate | Thu Aug 21 14:04:35 EDT 2025 Fri Jul 11 03:51:34 EDT 2025 Mon Jun 30 16:50:30 EDT 2025 Wed Feb 19 02:34:27 EST 2025 Tue Jul 01 00:41:11 EDT 2025 Thu Apr 24 23:13:13 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 5 |
Language | English |
License | 2018 Li and Chen. This article is distributed under the terms of an Attribution–Noncommercial–Share Alike–No Mirror Sites license for the first six months after the publication date (see http://www.rupress.org/terms/). After six months it is available under a Creative Commons License (Attribution–Noncommercial–Share Alike 4.0 International license, as described at https://creativecommons.org/licenses/by-nc-sa/4.0/). |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c408t-4e7ffa34fda8db3f0e7be258c882a4faea81541786817239cff787e892b5712b3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Review-3 content type line 23 |
ORCID | 0000-0002-8475-8251 |
OpenAccessLink | https://pubmed.ncbi.nlm.nih.gov/PMC5940270 |
PMID | 29622565 |
PQID | 2035235653 |
PQPubID | 2046203 |
PageCount | 13 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_5940270 proquest_miscellaneous_2022996279 proquest_journals_2035235653 pubmed_primary_29622565 crossref_citationtrail_10_1084_jem_20180139 crossref_primary_10_1084_jem_20180139 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20180507 |
PublicationDateYYYYMMDD | 2018-05-07 |
PublicationDate_xml | – month: 5 year: 2018 text: 20180507 day: 7 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: New York |
PublicationTitle | The Journal of experimental medicine |
PublicationTitleAlternate | J Exp Med |
PublicationYear | 2018 |
Publisher | Rockefeller University Press |
Publisher_xml | – name: Rockefeller University Press |
References | Sun (2023072609295753900_bib131) 2009; 106 Coppé (2023072609295753900_bib25) 2008; 6 Dehé (2023072609295753900_bib32) 2017; 18 Fenech (2023072609295753900_bib45) 2011; 26 Xia (2023072609295753900_bib150) 2016; 76 Zhang (2023072609295753900_bib159) 2008; 99 An (2023072609295753900_bib7) 2015; 194 Chen (2023072609295753900_bib21) 2017; 24 Dou (2023072609295753900_bib40) 2017; 550 Morchikh (2023072609295753900_bib112) 2017; 67 Saitoh (2023072609295753900_bib123) 2009; 106 Demaria (2023072609295753900_bib33) 2015; 112 Lan (2023072609295753900_bib87) 2014; 9 Gray (2023072609295753900_bib56) 2015; 195 Sun (2023072609295753900_bib130) 2013; 339 Janssens (2023072609295753900_bib71) 2006; 13 Zhu (2023072609295753900_bib162) 2014; 193 Gul (2023072609295753900_bib57) 2017 Kuilman (2023072609295753900_bib84) 2008; 133 Laguette (2023072609295753900_bib85) 2014; 156 Ho (2023072609295753900_bib67) 2016; 44 Inomata (2023072609295753900_bib68) 2009; 137 Niedernhofer (2023072609295753900_bib113) 2006; 444 Zwi (2023072609295753900_bib163) 1994; 6 Acosta (2023072609295753900_bib2) 2008; 133 Wu (2023072609295753900_bib147) 2014; 32 Xiao (2023072609295753900_bib151) 2013; 51 Zhang (2023072609295753900_bib160) 2013; 51 Gao (2023072609295753900_bib51) 2013; 153 Moiseeva (2023072609295753900_bib110) 2006; 17 Parrinello (2023072609295753900_bib115) 2003; 5 Vargas (2023072609295753900_bib139) 2012; 3 Ahn (2023072609295753900_bib5) 2014; 5 Gaidt (2023072609295753900_bib48) 2017; 171 Leibovich (2023072609295753900_bib90) 1987; 329 Cai (2023072609295753900_bib16) 2014; 54 Xue (2023072609295753900_bib153) 2007; 445 Chen (2023072609295753900_bib19) 2016; 533 Rongvaux (2023072609295753900_bib122) 2014; 159 Gasser (2023072609295753900_bib53) 2005; 436 Mackenzie (2023072609295753900_bib103) 2017; 548 Härtlova (2023072609295753900_bib62) 2015; 42 Rodero (2023072609295753900_bib120) 2017; 8 Tilstra (2023072609295753900_bib137) 2012; 122 Lau (2023072609295753900_bib89) 2015; 350 Brzostek-Racine (2023072609295753900_bib13) 2011; 187 Herzner (2023072609295753900_bib65) 2015; 16 Jin (2023072609295753900_bib72) 2008; 28 Tanaka (2023072609295753900_bib134) 2012; 5 Li (2023072609295753900_bib92) 2016; 6 Lim (2023072609295753900_bib94) 2012; 188 Zeng (2023072609295753900_bib158) 2009; 11 Zhong (2023072609295753900_bib161) 2008; 29 Lowe (2023072609295753900_bib98) 2000; 21 Gao (2023072609295753900_bib52) 2013; 154 Mackenzie (2023072609295753900_bib102) 2016; 35 Yoshida (2023072609295753900_bib156) 2005; 6 Fenech (2023072609295753900_bib44) 1986; 161 Gao (2023072609295753900_bib50) 2015; 112 Takaoka (2023072609295753900_bib133) 2003; 424 Rodier (2023072609295753900_bib121) 2009; 11 Yang (2023072609295753900_bib155) 2007; 131 Kawane (2023072609295753900_bib76) 2003; 4 Yang (2023072609295753900_bib154) 2017; 114 White (2023072609295753900_bib143) 2014; 159 Di Micco (2023072609295753900_bib38) 2006; 444 Swanson (2023072609295753900_bib132) 2017; 214 Harding (2023072609295753900_bib61) 2017; 548 Vincent (2023072609295753900_bib140) 2017; 8 Maelfait (2023072609295753900_bib104) 2016; 16 Reijns (2023072609295753900_bib118) 2012; 149 d’Adda di Fagagna (2023072609295753900_bib31) 2008; 8 Conlon (2023072609295753900_bib23) 2013; 190 Woo (2023072609295753900_bib146) 2014; 41 Crow (2023072609295753900_bib28) 2009; 18 Melki (2023072609295753900_bib108) 2017; 140 Krtolica (2023072609295753900_bib82) 2001; 98 Kerur (2023072609295753900_bib77) 2017; 24 Liu (2023072609295753900_bib96) 2015; 347 Diamond (2023072609295753900_bib37) 2011; 208 Wu (2023072609295753900_bib148) 2013; 339 Gentili (2023072609295753900_bib54) 2015; 349 Hiller (2023072609295753900_bib66) 2012; 209 Bauer (2023072609295753900_bib11) 1999; 285 Katlinskaya (2023072609295753900_bib74) 2016; 15 Krizhanovsky (2023072609295753900_bib81) 2008; 134 Stetson (2023072609295753900_bib128) 2008; 134 Coppé (2023072609295753900_bib24) 2006; 281 de Queiroz (2023072609295753900_bib36) 2017; 198 Sugihara (2023072609295753900_bib129) 2011; 9 Malik (2023072609295753900_bib105) 1990; 26 Liu (2023072609295753900_bib97) 2014; 371 Rice (2023072609295753900_bib119) 2009; 41 Gall (2023072609295753900_bib49) 2012; 36 Burdette (2023072609295753900_bib14) 2011; 478 Yu (2023072609295753900_bib157) 2015; 11 Hatch (2023072609295753900_bib63) 2013; 154 Hall (2023072609295753900_bib59) 2017; 12 Orosz (2023072609295753900_bib114) 1993; 177 Cao (2023072609295753900_bib17) 2018 Siddoo-Atwal (2023072609295753900_bib126) 1996; 56 Sistigu (2023072609295753900_bib127) 2014; 20 Shen (2023072609295753900_bib125) 2015; 11 Wilson (2023072609295753900_bib144) 2018; 14 Bartsch (2023072609295753900_bib10) 2017; 26 Ahn (2023072609295753900_bib6) 2015; 34 Ma (2023072609295753900_bib101) 2016; 19 Glück (2023072609295753900_bib55) 2017; 19 Ishii (2023072609295753900_bib69) 2006; 7 Xia (2023072609295753900_bib149) 2016; 14 Wolf (2023072609295753900_bib145) 2016; 7 Liu (2023072609295753900_bib95) 2007; 67 Baker (2023072609295753900_bib8) 2016; 530 Coppé (2023072609295753900_bib26) 2010; 5 Crow (2023072609295753900_bib29) 2006; 38 Larkin (2023072609295753900_bib88) 2017; 199 McPherson (2023072609295753900_bib107) 2004; 304 Kuilman (2023072609295753900_bib83) 2009; 9 Fenech (2023072609295753900_bib42) 2007; 2 Burnette (2023072609295753900_bib15) 2011; 71 Luthra (2023072609295753900_bib100) 2017; 8 Xu (2023072609295753900_bib152) 2017; 47 Ahn (2023072609295753900_bib3) 2012; 109 Kretschmer (2023072609295753900_bib80) 2015; 74 Schlegel (2023072609295753900_bib124) 1986; 46 Pokatayev (2023072609295753900_bib116) 2016; 213 Franzolin (2023072609295753900_bib46) 2013; 110 Li (2023072609295753900_bib91) 2014; 10 Chandra (2023072609295753900_bib18) 2014; 2 Wang (2023072609295753900_bib141) 2017; 114 West (2023072609295753900_bib142) 2015; 520 Karakasilioti (2023072609295753900_bib73) 2013; 18 Mboko (2023072609295753900_bib106) 2012; 86 Ablasser (2023072609295753900_bib1) 2013; 498 Crow (2023072609295753900_bib30) 2006; 38 Henning (2023072609295753900_bib64) 1995; 82 Ishikawa (2023072609295753900_bib70) 2008; 455 Bridgeman (2023072609295753900_bib12) 2015; 349 Hanson (2023072609295753900_bib60) 2015; 125 Melton (2023072609295753900_bib109) 1998; 111 Deng (2023072609295753900_bib35) 2014; 41 Troelstra (2023072609295753900_bib138) 1992; 71 King (2023072609295753900_bib78) 2017; 23 Erdal (2023072609295753900_bib41) 2017; 31 Fuertes (2023072609295753900_bib47) 2011; 208 Denais (2023072609295753900_bib34) 2016; 352 Kato (2023072609295753900_bib75) 2017; 86 Tao (2023072609295753900_bib136) 2016; 68 Lam (2023072609295753900_bib86) 2014; 74 Balkwill (2023072609295753900_bib9) 2009; 9 Tang (2023072609295753900_bib135) 2016; 76 Ahn (2023072609295753900_bib4) 2014; 193 Chowdhury (2023072609295753900_bib22) 2006; 23 Fenech (2023072609295753900_bib43) 1985; 147 Li (2023072609295753900_bib93) 2013; 341 Raab (2023072609295753900_bib117) 2016; 352 Corrales (2023072609295753900_bib27) 2015; 11 Luo (2023072609295753900_bib99) 2017; 12 Chen (2023072609295753900_bib20) 2016; 17 Moore (2023072609295753900_bib111) 1999; 5 Kondo (2023072609295753900_bib79) 2013; 110 Gulen (2023072609295753900_bib58) 2017; 8 Diner (2023072609295753900_bib39) 2013; 3 |
References_xml | – volume: 41 start-page: 829 year: 2009 ident: 2023072609295753900_bib119 article-title: Mutations involved in Aicardi-Goutières syndrome implicate SAMHD1 as regulator of the innate immune response publication-title: Nat. Genet. doi: 10.1038/ng.373 – volume: 2 start-page: 901 year: 2014 ident: 2023072609295753900_bib18 article-title: STING ligand c-di-GMP improves cancer vaccination against metastatic breast cancer publication-title: Cancer Immunol. Res. doi: 10.1158/2326-6066.CIR-13-0123 – volume: 74 start-page: 2193 year: 2014 ident: 2023072609295753900_bib86 article-title: RAE1 ligands for the NKG2D receptor are regulated by STING-dependent DNA sensor pathways in lymphoma publication-title: Cancer Res. doi: 10.1158/0008-5472.CAN-13-1703 – volume: 209 start-page: 1419 year: 2012 ident: 2023072609295753900_bib66 article-title: Mammalian RNase H2 removes ribonucleotides from DNA to maintain genome integrity publication-title: J. Exp. Med. doi: 10.1084/jem.20120876 – volume: 455 start-page: 674 year: 2008 ident: 2023072609295753900_bib70 article-title: STING is an endoplasmic reticulum adaptor that facilitates innate immune signalling publication-title: Nature. doi: 10.1038/nature07317 – volume: 14 start-page: 282 year: 2016 ident: 2023072609295753900_bib149 article-title: Deregulation of STING Signaling in Colorectal Carcinoma Constrains DNA Damage Responses and Correlates With Tumorigenesis publication-title: Cell Reports. doi: 10.1016/j.celrep.2015.12.029 – volume: 54 start-page: 289 year: 2014 ident: 2023072609295753900_bib16 article-title: The cGAS-cGAMP-STING pathway of cytosolic DNA sensing and signaling publication-title: Mol. Cell. doi: 10.1016/j.molcel.2014.03.040 – volume: 71 start-page: 939 year: 1992 ident: 2023072609295753900_bib138 article-title: ERCC6, a member of a subfamily of putative helicases, is involved in Cockayne’s syndrome and preferential repair of active genes publication-title: Cell. doi: 10.1016/0092-8674(92)90390-X – volume: 12 start-page: 648 year: 2017 ident: 2023072609295753900_bib99 article-title: A STING-activating nanovaccine for cancer immunotherapy publication-title: Nat. Nanotechnol. doi: 10.1038/nnano.2017.52 – volume: 208 start-page: 1989 year: 2011 ident: 2023072609295753900_bib37 article-title: Type I interferon is selectively required by dendritic cells for immune rejection of tumors publication-title: J. Exp. Med. doi: 10.1084/jem.20101158 – volume: 26 start-page: 125 year: 2011 ident: 2023072609295753900_bib45 article-title: Molecular mechanisms of micronucleus, nucleoplasmic bridge and nuclear bud formation in mammalian and human cells publication-title: Mutagenesis. doi: 10.1093/mutage/geq052 – volume: 194 start-page: 4089 year: 2015 ident: 2023072609295753900_bib7 article-title: Cutting edge: Antimalarial drugs inhibit IFN-β production through blockade of cyclic GMP-AMP synthase-DNA interaction publication-title: J. Immunol. doi: 10.4049/jimmunol.1402793 – volume: 106 start-page: 20842 year: 2009 ident: 2023072609295753900_bib123 article-title: Atg9a controls dsDNA-driven dynamic translocation of STING and the innate immune response publication-title: Proc. Natl. Acad. Sci. USA. doi: 10.1073/pnas.0911267106 – volume: 76 start-page: 6747 year: 2016 ident: 2023072609295753900_bib150 article-title: Recurrent Loss of STING Signaling in Melanoma Correlates with Susceptibility to Viral Oncolysis publication-title: Cancer Res. doi: 10.1158/0008-5472.CAN-16-1404 – volume: 21 start-page: 485 year: 2000 ident: 2023072609295753900_bib98 article-title: Apoptosis in cancer publication-title: Carcinogenesis. doi: 10.1093/carcin/21.3.485 – volume: 7 start-page: 11752 year: 2016 ident: 2023072609295753900_bib145 article-title: RPA and Rad51 constitute a cell intrinsic mechanism to protect the cytosol from self DNA publication-title: Nat. Commun. doi: 10.1038/ncomms11752 – volume: 533 start-page: 493 year: 2016 ident: 2023072609295753900_bib19 article-title: Carcinoma-astrocyte gap junctions promote brain metastasis by cGAMP transfer publication-title: Nature. doi: 10.1038/nature18268 – volume: 349 start-page: 1232 year: 2015 ident: 2023072609295753900_bib54 article-title: Transmission of innate immune signaling by packaging of cGAMP in viral particles publication-title: Science. doi: 10.1126/science.aab3628 – volume: 51 start-page: 226 year: 2013 ident: 2023072609295753900_bib160 article-title: Cyclic GMP-AMP containing mixed phosphodiester linkages is an endogenous high-affinity ligand for STING publication-title: Mol. Cell. doi: 10.1016/j.molcel.2013.05.022 – volume: 112 start-page: E5699 year: 2015 ident: 2023072609295753900_bib50 article-title: Activation of cyclic GMP-AMP synthase by self-DNA causes autoimmune diseases publication-title: Proc. Natl. Acad. Sci. USA. doi: 10.1073/pnas.1516465112 – volume: 34 start-page: 5302 year: 2015 ident: 2023072609295753900_bib6 article-title: Diverse roles of STING-dependent signaling on the development of cancer publication-title: Oncogene. doi: 10.1038/onc.2014.457 – volume: 133 start-page: 1006 year: 2008 ident: 2023072609295753900_bib2 article-title: Chemokine signaling via the CXCR2 receptor reinforces senescence publication-title: Cell. doi: 10.1016/j.cell.2008.03.038 – volume: 28 start-page: 5014 year: 2008 ident: 2023072609295753900_bib72 article-title: MPYS, a novel membrane tetraspanner, is associated with major histocompatibility complex class II and mediates transduction of apoptotic signals publication-title: Mol. Cell. Biol. doi: 10.1128/MCB.00640-08 – volume: 26 start-page: 1031 year: 1990 ident: 2023072609295753900_bib105 article-title: Cells secreting tumour necrosis factor show enhanced metastasis in nude mice publication-title: Eur. J. Cancer. doi: 10.1016/0277-5379(90)90044-T – volume: 8 start-page: 2176 year: 2017 ident: 2023072609295753900_bib120 article-title: Type I interferon-mediated autoinflammation due to DNase II deficiency publication-title: Nat. Commun. doi: 10.1038/s41467-017-01932-3 – volume: 193 start-page: 4779 year: 2014 ident: 2023072609295753900_bib162 article-title: Cutting edge: STING mediates protection against colorectal tumorigenesis by governing the magnitude of intestinal inflammation publication-title: J. Immunol. doi: 10.4049/jimmunol.1402051 – volume: 12 start-page: e0184843 year: 2017 ident: 2023072609295753900_bib59 article-title: Discovery of PF-06928215 as a high affinity inhibitor of cGAS enabled by a novel fluorescence polarization assay publication-title: PLoS One. doi: 10.1371/journal.pone.0184843 – volume: 352 start-page: 359 year: 2016 ident: 2023072609295753900_bib117 article-title: ESCRT III repairs nuclear envelope ruptures during cell migration to limit DNA damage and cell death publication-title: Science. doi: 10.1126/science.aad7611 – volume: 16 start-page: 1492 year: 2016 ident: 2023072609295753900_bib104 article-title: Restriction by SAMHD1 Limits cGAS/STING-Dependent Innate and Adaptive Immune Responses to HIV-1 publication-title: Cell Reports. doi: 10.1016/j.celrep.2016.07.002 – volume: 14 start-page: 237 year: 2018 ident: 2023072609295753900_bib144 article-title: Biodegradable STING agonist nanoparticles for enhanced cancer immunotherapy publication-title: Nanomedicine (Lond.). doi: 10.1016/j.nano.2017.10.013 – volume: 24 start-page: 1124 year: 2017 ident: 2023072609295753900_bib21 article-title: Extrachromosomal telomere repeat DNA is linked to ALT development via cGAS-STING DNA sensing pathway publication-title: Nat. Struct. Mol. Biol. doi: 10.1038/nsmb.3498 – volume: 2 start-page: 1084 year: 2007 ident: 2023072609295753900_bib42 article-title: Cytokinesis-block micronucleus cytome assay publication-title: Nat. Protoc. doi: 10.1038/nprot.2007.77 – volume: 213 start-page: 329 year: 2016 ident: 2023072609295753900_bib116 article-title: RNase H2 catalytic core Aicardi-Goutières syndrome-related mutant invokes cGAS-STING innate immune-sensing pathway in mice publication-title: J. Exp. Med. doi: 10.1084/jem.20151464 – volume: 23 start-page: 1481 year: 2017 ident: 2023072609295753900_bib78 article-title: IRF3 and type I interferons fuel a fatal response to myocardial infarction publication-title: Nat. Med. doi: 10.1038/nm.4428 – volume: 281 start-page: 29568 year: 2006 ident: 2023072609295753900_bib24 article-title: Secretion of vascular endothelial growth factor by primary human fibroblasts at senescence publication-title: J. Biol. Chem. doi: 10.1074/jbc.M603307200 – volume: 51 start-page: 135 year: 2013 ident: 2023072609295753900_bib151 article-title: The cGAS-STING pathway for DNA sensing publication-title: Mol. Cell. doi: 10.1016/j.molcel.2013.07.004 – volume: 47 start-page: 363 year: 2017 ident: 2023072609295753900_bib152 article-title: Dendritic Cells but Not Macrophages Sense Tumor Mitochondrial DNA for Cross-priming through Signal Regulatory Protein α Signaling publication-title: Immunity. doi: 10.1016/j.immuni.2017.07.016 – volume: 134 start-page: 657 year: 2008 ident: 2023072609295753900_bib81 article-title: Senescence of activated stellate cells limits liver fibrosis publication-title: Cell. doi: 10.1016/j.cell.2008.06.049 – volume: 188 start-page: 162.33 year: 2012 ident: 2023072609295753900_bib94 article-title: The importance of type I interferons in radiation-mediated antitumor responses publication-title: J. Immunol. doi: 10.4049/jimmunol.188.Supp.162.33 – volume: 347 start-page: aaa2630 year: 2015 ident: 2023072609295753900_bib96 article-title: Phosphorylation of innate immune adaptor proteins MAVS, STING, and TRIF induces IRF3 activation publication-title: Science. doi: 10.1126/science.aaa2630 – volume: 111 start-page: 395 year: 1998 ident: 2023072609295753900_bib109 article-title: Cells from ERCC1-deficient mice show increased genome instability and a reduced frequency of S-phase-dependent illegitimate chromosome exchange but a normal frequency of homologous recombination publication-title: J. Cell Sci. doi: 10.1242/jcs.111.3.395 – volume: 13 start-page: 773 year: 2006 ident: 2023072609295753900_bib71 article-title: Signals from within: the DNA-damage-induced NF-kappaB response publication-title: Cell Death Differ. doi: 10.1038/sj.cdd.4401843 – volume: 195 start-page: 1939 year: 2015 ident: 2023072609295753900_bib56 article-title: Cutting Edge: cGAS Is Required for Lethal Autoimmune Disease in the Trex1-Deficient Mouse Model of Aicardi-Goutières Syndrome publication-title: J. Immunol. doi: 10.4049/jimmunol.1500969 – volume: 9 start-page: 180 year: 2014 ident: 2023072609295753900_bib87 article-title: Dnase2a deficiency uncovers lysosomal clearance of damaged nuclear DNA via autophagy publication-title: Cell Reports. doi: 10.1016/j.celrep.2014.08.074 – volume: 3 start-page: 88 year: 2012 ident: 2023072609295753900_bib139 article-title: Transient nuclear envelope rupturing during interphase in human cancer cells publication-title: Nucleus. doi: 10.4161/nucl.18954 – volume: 159 start-page: 1549 year: 2014 ident: 2023072609295753900_bib143 article-title: Apoptotic caspases suppress mtDNA-induced STING-mediated type I IFN production publication-title: Cell. doi: 10.1016/j.cell.2014.11.036 – volume: 329 start-page: 630 year: 1987 ident: 2023072609295753900_bib90 article-title: Macrophage-induced angiogenesis is mediated by tumour necrosis factor-α publication-title: Nature. doi: 10.1038/329630a0 – volume: 140 start-page: 543 year: 2017 ident: 2023072609295753900_bib108 article-title: Disease-associated mutations identify a novel region in human STING necessary for the control of type I interferon signaling publication-title: J. Allergy Clin. Immunol. doi: 10.1016/j.jaci.2016.10.031 – volume: 6 start-page: 79 year: 1994 ident: 2023072609295753900_bib163 article-title: Correlation between immune and vascular activities of xanthenone acetic acid antitumor agents publication-title: Oncol. Res. – volume: 125 start-page: 2532 year: 2015 ident: 2023072609295753900_bib60 article-title: Nanoparticulate STING agonists are potent lymph node-targeted vaccine adjuvants publication-title: J. Clin. Invest. doi: 10.1172/JCI79915 – volume: 98 start-page: 12072 year: 2001 ident: 2023072609295753900_bib82 article-title: Senescent fibroblasts promote epithelial cell growth and tumorigenesis: a link between cancer and aging publication-title: Proc. Natl. Acad. Sci. USA. doi: 10.1073/pnas.211053698 – volume: 444 start-page: 1038 year: 2006 ident: 2023072609295753900_bib113 article-title: A new progeroid syndrome reveals that genotoxic stress suppresses the somatotroph axis publication-title: Nature. doi: 10.1038/nature05456 – volume: 19 start-page: 1061 year: 2017 ident: 2023072609295753900_bib55 article-title: Innate immune sensing of cytosolic chromatin fragments through cGAS promotes senescence publication-title: Nat. Cell Biol. doi: 10.1038/ncb3586 – volume: 349 start-page: 1228 year: 2015 ident: 2023072609295753900_bib12 article-title: Viruses transfer the antiviral second messenger cGAMP between cells publication-title: Science. doi: 10.1126/science.aab3632 – volume: 38 start-page: 910 year: 2006 ident: 2023072609295753900_bib30 article-title: Mutations in genes encoding ribonuclease H2 subunits cause Aicardi-Goutières syndrome and mimic congenital viral brain infection publication-title: Nat. Genet. doi: 10.1038/ng1842 – volume: 23 start-page: 133 year: 2006 ident: 2023072609295753900_bib22 article-title: The exonuclease TREX1 is in the SET complex and acts in concert with NM23-H1 to degrade DNA during granzyme A-mediated cell death publication-title: Mol. Cell. doi: 10.1016/j.molcel.2006.06.005 – volume: 82 start-page: 555 year: 1995 ident: 2023072609295753900_bib64 article-title: The Cockayne syndrome group A gene encodes a WD repeat protein that interacts with CSB protein and a subunit of RNA polymerase II TFIIH publication-title: Cell. doi: 10.1016/0092-8674(95)90028-4 – volume: 161 start-page: 193 year: 1986 ident: 2023072609295753900_bib44 article-title: Cytokinesis-block micronucleus method in human lymphocytes: effect of in vivo ageing and low dose X-irradiation publication-title: Mutat. Res. doi: 10.1016/0027-5107(86)90010-2 – volume: 110 start-page: 2969 year: 2013 ident: 2023072609295753900_bib79 article-title: DNA damage sensor MRE11 recognizes cytosolic double-stranded DNA and induces type I interferon by regulating STING trafficking publication-title: Proc. Natl. Acad. Sci. USA. doi: 10.1073/pnas.1222694110 – volume: 444 start-page: 638 year: 2006 ident: 2023072609295753900_bib38 article-title: Oncogene-induced senescence is a DNA damage response triggered by DNA hyper-replication publication-title: Nature. doi: 10.1038/nature05327 – volume: 9 start-page: 81 year: 2009 ident: 2023072609295753900_bib83 article-title: Senescence-messaging secretome: SMS-ing cellular stress publication-title: Nat. Rev. Cancer. doi: 10.1038/nrc2560 – volume: 9 start-page: 361 year: 2009 ident: 2023072609295753900_bib9 article-title: Tumour necrosis factor and cancer publication-title: Nat. Rev. Cancer. doi: 10.1038/nrc2628 – volume: 44 start-page: 1177 year: 2016 ident: 2023072609295753900_bib67 article-title: The DNA Structure-Specific Endonuclease MUS81 Mediates DNA Sensor STING-Dependent Host Rejection of Prostate Cancer Cells publication-title: Immunity. doi: 10.1016/j.immuni.2016.04.010 – volume: 520 start-page: 553 year: 2015 ident: 2023072609295753900_bib142 article-title: Mitochondrial DNA stress primes the antiviral innate immune response publication-title: Nature. doi: 10.1038/nature14156 – volume: 8 start-page: 512 year: 2008 ident: 2023072609295753900_bib31 article-title: Living on a break: cellular senescence as a DNA-damage response publication-title: Nat. Rev. Cancer. doi: 10.1038/nrc2440 – volume: 86 start-page: 541 year: 2017 ident: 2023072609295753900_bib75 article-title: Cyclic GMP-AMP as an Endogenous Second Messenger in Innate Immune Signaling by Cytosolic DNA publication-title: Annu. Rev. Biochem. doi: 10.1146/annurev-biochem-061516-044813 – volume: 339 start-page: 786 year: 2013 ident: 2023072609295753900_bib130 article-title: Cyclic GMP-AMP synthase is a cytosolic DNA sensor that activates the type I interferon pathway publication-title: Science. doi: 10.1126/science.1232458 – volume: 548 start-page: 466 year: 2017 ident: 2023072609295753900_bib61 article-title: Mitotic progression following DNA damage enables pattern recognition within micronuclei publication-title: Nature. doi: 10.1038/nature23470 – volume: 16 start-page: 1025 year: 2015 ident: 2023072609295753900_bib65 article-title: Sequence-specific activation of the DNA sensor cGAS by Y-form DNA structures as found in primary HIV-1 cDNA publication-title: Nat. Immunol. doi: 10.1038/ni.3267 – volume: 4 start-page: 138 year: 2003 ident: 2023072609295753900_bib76 article-title: Impaired thymic development in mouse embryos deficient in apoptotic DNA degradation publication-title: Nat. Immunol. doi: 10.1038/ni881 – volume: 177 start-page: 1391 year: 1993 ident: 2023072609295753900_bib114 article-title: Enhancement of experimental metastasis by tumor necrosis factor publication-title: J. Exp. Med. doi: 10.1084/jem.177.5.1391 – start-page: S0091-6749(17)31762-1 year: 2017 ident: 2023072609295753900_bib57 article-title: Type I IFN-related NETosis in ataxia telangiectasia and Artemis deficiency publication-title: J. Allergy Clin. Immunol. – volume: 106 start-page: 8653 year: 2009 ident: 2023072609295753900_bib131 article-title: ERIS, an endoplasmic reticulum IFN stimulator, activates innate immune signaling through dimerization publication-title: Proc. Natl. Acad. Sci. USA. doi: 10.1073/pnas.0900850106 – volume: 530 start-page: 184 year: 2016 ident: 2023072609295753900_bib8 article-title: Naturally occurring p16(Ink4a)-positive cells shorten healthy lifespan publication-title: Nature. doi: 10.1038/nature16932 – volume: 31 start-page: 353 year: 2017 ident: 2023072609295753900_bib41 article-title: A prosurvival DNA damage-induced cytoplasmic interferon response is mediated by end resection factors and is limited by Trex1 publication-title: Genes Dev. doi: 10.1101/gad.289769.116 – volume: 10 start-page: 1043 year: 2014 ident: 2023072609295753900_bib91 article-title: Hydrolysis of 2‘3’-cGAMP by ENPP1 and design of nonhydrolyzable analogs publication-title: Nat. Chem. Biol. doi: 10.1038/nchembio.1661 – volume: 154 start-page: 748 year: 2013 ident: 2023072609295753900_bib52 article-title: Structure-function analysis of STING activation by c[G(2′,5′)pA(3′,5′)p] and targeting by antiviral DMXAA publication-title: Cell. doi: 10.1016/j.cell.2013.07.023 – volume: 5 start-page: 741 year: 2003 ident: 2023072609295753900_bib115 article-title: Oxygen sensitivity severely limits the replicative lifespan of murine fibroblasts publication-title: Nat. Cell Biol. doi: 10.1038/ncb1024 – volume: 18 start-page: 315 year: 2017 ident: 2023072609295753900_bib32 article-title: Control of structure-specific endonucleases to maintain genome stability publication-title: Nat. Rev. Mol. Cell Biol. doi: 10.1038/nrm.2016.177 – volume: 445 start-page: 656 year: 2007 ident: 2023072609295753900_bib153 article-title: Senescence and tumour clearance is triggered by p53 restoration in murine liver carcinomas publication-title: Nature. doi: 10.1038/nature05529 – volume: 147 start-page: 29 year: 1985 ident: 2023072609295753900_bib43 article-title: Measurement of micronuclei in lymphocytes publication-title: Mutat. Res. doi: 10.1016/0165-1161(85)90015-9 – volume: 24 start-page: 50 year: 2017 ident: 2023072609295753900_bib77 article-title: cGAS drives noncanonical-inflammasome activation in age-related macular degeneration publication-title: Nat. Med. doi: 10.1038/nm.4450 – volume: 478 start-page: 515 year: 2011 ident: 2023072609295753900_bib14 article-title: STING is a direct innate immune sensor of cyclic di-GMP publication-title: Nature. doi: 10.1038/nature10429 – volume: 7 start-page: 40 year: 2006 ident: 2023072609295753900_bib69 article-title: A Toll-like receptor-independent antiviral response induced by double-stranded B-form DNA publication-title: Nat. Immunol. doi: 10.1038/ni1282 – volume: 339 start-page: 826 year: 2013 ident: 2023072609295753900_bib148 article-title: Cyclic GMP-AMP is an endogenous second messenger in innate immune signaling by cytosolic DNA publication-title: Science. doi: 10.1126/science.1229963 – volume: 41 start-page: 843 year: 2014 ident: 2023072609295753900_bib35 article-title: STING-Dependent Cytosolic DNA Sensing Promotes Radiation-Induced Type I Interferon-Dependent Antitumor Immunity in Immunogenic Tumors publication-title: Immunity. doi: 10.1016/j.immuni.2014.10.019 – volume: 548 start-page: 461 year: 2017 ident: 2023072609295753900_bib103 article-title: cGAS surveillance of micronuclei links genome instability to innate immunity publication-title: Nature. doi: 10.1038/nature23449 – volume: 36 start-page: 120 year: 2012 ident: 2023072609295753900_bib49 article-title: Autoimmunity initiates in nonhematopoietic cells and progresses via lymphocytes in an interferon-dependent autoimmune disease publication-title: Immunity. doi: 10.1016/j.immuni.2011.11.018 – volume: 154 start-page: 47 year: 2013 ident: 2023072609295753900_bib63 article-title: Catastrophic nuclear envelope collapse in cancer cell micronuclei publication-title: Cell. doi: 10.1016/j.cell.2013.06.007 – volume: 86 start-page: 6899 year: 2012 ident: 2023072609295753900_bib106 article-title: Coordinate regulation of DNA damage and type I interferon responses imposes an antiviral state that attenuates mouse gammaherpesvirus type 68 replication in primary macrophages publication-title: J. Virol. doi: 10.1128/JVI.07119-11 – volume: 149 start-page: 1008 year: 2012 ident: 2023072609295753900_bib118 article-title: Enzymatic removal of ribonucleotides from DNA is essential for mammalian genome integrity and development publication-title: Cell. doi: 10.1016/j.cell.2012.04.011 – volume: 71 start-page: 2488 year: 2011 ident: 2023072609295753900_bib15 article-title: The efficacy of radiotherapy relies upon induction of type i interferon-dependent innate and adaptive immunity publication-title: Cancer Res. doi: 10.1158/0008-5472.CAN-10-2820 – volume: 67 start-page: 3117 year: 2007 ident: 2023072609295753900_bib95 article-title: Senescent human fibroblasts increase the early growth of xenograft tumors via matrix metalloproteinase secretion publication-title: Cancer Res. doi: 10.1158/0008-5472.CAN-06-3452 – volume: 26 start-page: 3960 year: 2017 ident: 2023072609295753900_bib10 article-title: Absence of RNase H2 triggers generation of immunogenic micronuclei removed by autophagy publication-title: Hum. Mol. Genet. doi: 10.1093/hmg/ddx283 – volume: 156 start-page: 134 year: 2014 ident: 2023072609295753900_bib85 article-title: Premature activation of the SLX4 complex by Vpr promotes G2/M arrest and escape from innate immune sensing publication-title: Cell. doi: 10.1016/j.cell.2013.12.011 – volume: 46 start-page: 3717 year: 1986 ident: 2023072609295753900_bib124 article-title: Assessment of cytogenetic damage by quantitation of micronuclei in human peripheral blood erythrocytes publication-title: Cancer Res. – volume: 67 start-page: 387 year: 2017 ident: 2023072609295753900_bib112 article-title: HEXIM1 and NEAT1 Long Non-coding RNA Form a Multi-subunit Complex that Regulates DNA-Mediated Innate Immune Response publication-title: Mol. Cell. doi: 10.1016/j.molcel.2017.06.020 – volume: 187 start-page: 5336 year: 2011 ident: 2023072609295753900_bib13 article-title: The DNA damage response induces IFN publication-title: J. Immunol. doi: 10.4049/jimmunol.1100040 – volume: 371 start-page: 507 year: 2014 ident: 2023072609295753900_bib97 article-title: Activated STING in a vascular and pulmonary syndrome publication-title: N. Engl. J. Med. doi: 10.1056/NEJMoa1312625 – volume: 199 start-page: 397 year: 2017 ident: 2023072609295753900_bib88 article-title: Cutting Edge: Activation of STING in T Cells Induces Type I IFN Responses and Cell Death publication-title: J. Immunol. doi: 10.4049/jimmunol.1601999 – volume: 5 start-page: 99 year: 2010 ident: 2023072609295753900_bib26 article-title: The senescence-associated secretory phenotype: the dark side of tumor suppression publication-title: Annu. Rev. Pathol. doi: 10.1146/annurev-pathol-121808-102144 – volume: 550 start-page: 402 year: 2017 ident: 2023072609295753900_bib40 article-title: Cytoplasmic chromatin triggers inflammation in senescence and cancer publication-title: Nature. doi: 10.1038/nature24050 – volume: 171 start-page: 1110 year: 2017 ident: 2023072609295753900_bib48 article-title: The DNA Inflammasome in Human Myeloid Cells Is Initiated by a STING-Cell Death Program Upstream of NLRP3 publication-title: Cell. doi: 10.1016/j.cell.2017.09.039 – volume: 11 start-page: 973 year: 2009 ident: 2023072609295753900_bib121 article-title: Persistent DNA damage signalling triggers senescence-associated inflammatory cytokine secretion publication-title: Nat. Cell Biol. doi: 10.1038/ncb1909 – volume: 133 start-page: 1019 year: 2008 ident: 2023072609295753900_bib84 article-title: Oncogene-induced senescence relayed by an interleukin-dependent inflammatory network publication-title: Cell. doi: 10.1016/j.cell.2008.03.039 – volume: 352 start-page: 353 year: 2016 ident: 2023072609295753900_bib34 article-title: Nuclear envelope rupture and repair during cancer cell migration publication-title: Science. doi: 10.1126/science.aad7297 – volume: 3 start-page: 1355 year: 2013 ident: 2023072609295753900_bib39 article-title: The innate immune DNA sensor cGAS produces a noncanonical cyclic dinucleotide that activates human STING publication-title: Cell Reports. doi: 10.1016/j.celrep.2013.05.009 – volume: 8 start-page: e01611 year: 2017 ident: 2023072609295753900_bib100 article-title: Topoisomerase II Inhibitors Induce DNA Damage-Dependent Interferon Responses Circumventing Ebola Virus Immune Evasion publication-title: MBio. doi: 10.1128/mBio.00368-17 – volume: 110 start-page: 14272 year: 2013 ident: 2023072609295753900_bib46 article-title: The deoxynucleotide triphosphohydrolase SAMHD1 is a major regulator of DNA precursor pools in mammalian cells publication-title: Proc. Natl. Acad. Sci. USA. doi: 10.1073/pnas.1312033110 – volume: 153 start-page: 1094 year: 2013 ident: 2023072609295753900_bib51 article-title: Cyclic [G(2′,5′)pA(3′,5′)p] is the metazoan second messenger produced by DNA-activated cyclic GMP-AMP synthase publication-title: Cell. doi: 10.1016/j.cell.2013.04.046 – volume: 35 start-page: 831 year: 2016 ident: 2023072609295753900_bib102 article-title: Ribonuclease H2 mutations induce a cGAS/STING-dependent innate immune response publication-title: EMBO J. doi: 10.15252/embj.201593339 – volume: 214 start-page: 3611 year: 2017 ident: 2023072609295753900_bib132 article-title: A noncanonical function of cGAMP in inflammasome priming and activation publication-title: J. Exp. Med. doi: 10.1084/jem.20171749 – volume: 498 start-page: 380 year: 2013 ident: 2023072609295753900_bib1 article-title: cGAS produces a 2′-5′-linked cyclic dinucleotide second messenger that activates STING publication-title: Nature. doi: 10.1038/nature12306 – volume: 114 start-page: 1637 year: 2017 ident: 2023072609295753900_bib141 article-title: cGAS is essential for the antitumor effect of immune checkpoint blockade publication-title: Proc. Natl. Acad. Sci. USA. doi: 10.1073/pnas.1621363114 – volume: 6 start-page: 49 year: 2005 ident: 2023072609295753900_bib156 article-title: Lethal anemia caused by interferon-beta produced in mouse embryos carrying undigested DNA publication-title: Nat. Immunol. doi: 10.1038/ni1146 – volume: 5 start-page: 828 year: 1999 ident: 2023072609295753900_bib111 article-title: Mice deficient in tumor necrosis factor-α are resistant to skin carcinogenesis publication-title: Nat. Med. doi: 10.1038/10552 – volume: 11 start-page: 460 year: 2015 ident: 2023072609295753900_bib125 article-title: Genome-derived cytosolic DNA mediates type I interferon-dependent rejection of B cell lymphoma cells publication-title: Cell Reports. doi: 10.1016/j.celrep.2015.03.041 – volume: 56 start-page: 443 year: 1996 ident: 2023072609295753900_bib126 article-title: Elevation of interferon beta-inducible proteins in ataxia telangiectasia cells publication-title: Cancer Res. – volume: 436 start-page: 1186 year: 2005 ident: 2023072609295753900_bib53 article-title: The DNA damage pathway regulates innate immune system ligands of the NKG2D receptor publication-title: Nature. doi: 10.1038/nature03884 – volume: 29 start-page: 538 year: 2008 ident: 2023072609295753900_bib161 article-title: The adaptor protein MITA links virus-sensing receptors to IRF3 transcription factor activation publication-title: Immunity. doi: 10.1016/j.immuni.2008.09.003 – volume: 5 start-page: 5166 year: 2014 ident: 2023072609295753900_bib5 article-title: Inflammation-driven carcinogenesis is mediated through STING publication-title: Nat. Commun. doi: 10.1038/ncomms6166 – start-page: CIRCULATIONAHA.117.031046 year: 2018 ident: 2023072609295753900_bib17 article-title: Cytosolic DNA Sensing Promotes Macrophage Transformation and Governs Myocardial Ischemic Injury publication-title: Circulation. doi: 10.1161/CIRCULATIONAHA.117.031046 – volume: 41 start-page: 830 year: 2014 ident: 2023072609295753900_bib146 article-title: STING-dependent cytosolic DNA sensing mediates innate immune recognition of immunogenic tumors publication-title: Immunity. doi: 10.1016/j.immuni.2014.10.017 – volume: 159 start-page: 1563 year: 2014 ident: 2023072609295753900_bib122 article-title: Apoptotic caspases prevent the induction of type I interferons by mitochondrial DNA publication-title: Cell. doi: 10.1016/j.cell.2014.11.037 – volume: 8 start-page: 750 year: 2017 ident: 2023072609295753900_bib140 article-title: Small molecule inhibition of cGAS reduces interferon expression in primary macrophages from autoimmune mice publication-title: Nat. Commun. doi: 10.1038/s41467-017-00833-9 – volume: 11 start-page: 616 year: 2009 ident: 2023072609295753900_bib158 article-title: Telomere recombination requires the MUS81 endonuclease publication-title: Nat. Cell Biol. doi: 10.1038/ncb1867 – volume: 285 start-page: 727 year: 1999 ident: 2023072609295753900_bib11 article-title: Activation of NK cells and T cells by NKG2D, a receptor for stress-inducible MICA publication-title: Science. doi: 10.1126/science.285.5428.727 – volume: 341 start-page: 1390 year: 2013 ident: 2023072609295753900_bib93 article-title: Pivotal roles of cGAS-cGAMP signaling in antiviral defense and immune adjuvant effects publication-title: Science. doi: 10.1126/science.1244040 – volume: 20 start-page: 1301 year: 2014 ident: 2023072609295753900_bib127 article-title: Cancer cell-autonomous contribution of type I interferon signaling to the efficacy of chemotherapy publication-title: Nat. Med. doi: 10.1038/nm.3708 – volume: 114 start-page: E4612 year: 2017 ident: 2023072609295753900_bib154 article-title: cGAS is essential for cellular senescence publication-title: Proc. Natl. Acad. Sci. USA. doi: 10.1073/pnas.1705499114 – volume: 42 start-page: 332 year: 2015 ident: 2023072609295753900_bib62 article-title: DNA damage primes the type I interferon system via the cytosolic DNA sensor STING to promote anti-microbial innate immunity publication-title: Immunity. doi: 10.1016/j.immuni.2015.01.012 – volume: 17 start-page: 1142 year: 2016 ident: 2023072609295753900_bib20 article-title: Regulation and function of the cGAS-STING pathway of cytosolic DNA sensing publication-title: Nat. Immunol. doi: 10.1038/ni.3558 – volume: 208 start-page: 2005 year: 2011 ident: 2023072609295753900_bib47 article-title: Host type I IFN signals are required for antitumor CD8+ T cell responses through CD8alpha+ dendritic cells publication-title: J. Exp. Med. doi: 10.1084/jem.20101159 – volume: 131 start-page: 873 year: 2007 ident: 2023072609295753900_bib155 article-title: Trex1 exonuclease degrades ssDNA to prevent chronic checkpoint activation and autoimmune disease publication-title: Cell. doi: 10.1016/j.cell.2007.10.017 – volume: 8 start-page: 427 year: 2017 ident: 2023072609295753900_bib58 article-title: Signalling strength determines proapoptotic functions of STING publication-title: Nat. Commun. doi: 10.1038/s41467-017-00573-w – volume: 193 start-page: 4634 year: 2014 ident: 2023072609295753900_bib4 article-title: Intrinsic self-DNA triggers inflammatory disease dependent on STING publication-title: J. Immunol. doi: 10.4049/jimmunol.1401337 – volume: 76 start-page: 2137 year: 2016 ident: 2023072609295753900_bib135 article-title: Agonist-Mediated Activation of STING Induces Apoptosis in Malignant B Cells publication-title: Cancer Res. doi: 10.1158/0008-5472.CAN-15-1885 – volume: 112 start-page: 15408 year: 2015 ident: 2023072609295753900_bib33 article-title: STING activation of tumor endothelial cells initiates spontaneous and therapeutic antitumor immunity publication-title: Proc. Natl. Acad. Sci. USA. doi: 10.1073/pnas.1512832112 – volume: 99 start-page: 1279 year: 2008 ident: 2023072609295753900_bib159 article-title: Opposing effects of interferon-alpha and interferon-gamma on the expression of major histocompatibility complex class I chain-related A in tumors publication-title: Cancer Sci. doi: 10.1111/j.1349-7006.2008.00791.x – volume: 137 start-page: 1088 year: 2009 ident: 2023072609295753900_bib68 article-title: Genotoxic stress abrogates renewal of melanocyte stem cells by triggering their differentiation publication-title: Cell. doi: 10.1016/j.cell.2009.03.037 – volume: 11 start-page: 785 year: 2015 ident: 2023072609295753900_bib157 article-title: DNA-damage-induced type I interferon promotes senescence and inhibits stem cell function publication-title: Cell Reports. doi: 10.1016/j.celrep.2015.03.069 – volume: 350 start-page: 568 year: 2015 ident: 2023072609295753900_bib89 article-title: DNA tumor virus oncogenes antagonize the cGAS-STING DNA-sensing pathway publication-title: Science. doi: 10.1126/science.aab3291 – volume: 18 start-page: R130 year: 2009 ident: 2023072609295753900_bib28 article-title: Aicardi-Goutieres syndrome and related phenotypes: linking nucleic acid metabolism with autoimmunity publication-title: Hum. Mol. Genet. doi: 10.1093/hmg/ddp293 – volume: 6 start-page: 2853 year: 2008 ident: 2023072609295753900_bib25 article-title: Senescence-associated secretory phenotypes reveal cell-nonautonomous functions of oncogenic RAS and the p53 tumor suppressor publication-title: PLoS Biol. doi: 10.1371/journal.pbio.0060301 – volume: 74 start-page: e17 year: 2015 ident: 2023072609295753900_bib80 article-title: SAMHD1 prevents autoimmunity by maintaining genome stability publication-title: Ann. Rheum. Dis. doi: 10.1136/annrheumdis-2013-204845 – volume: 304 start-page: 1822 year: 2004 ident: 2023072609295753900_bib107 article-title: Involvement of mammalian Mus81 in genome integrity and tumor suppression publication-title: Science. doi: 10.1126/science.1094557 – volume: 9 start-page: 476 year: 2011 ident: 2023072609295753900_bib129 article-title: Activation of interferon-stimulated genes by gamma-ray irradiation independently of the ataxia telangiectasia mutated-p53 pathway publication-title: Mol. Cancer Res. doi: 10.1158/1541-7786.MCR-10-0358 – volume: 5 start-page: ra20 year: 2012 ident: 2023072609295753900_bib134 article-title: STING specifies IRF3 phosphorylation by TBK1 in the cytosolic DNA signaling pathway publication-title: Sci. Signal. doi: 10.1126/scisignal.2002521 – volume: 122 start-page: 2601 year: 2012 ident: 2023072609295753900_bib137 article-title: NF-κB inhibition delays DNA damage-induced senescence and aging in mice publication-title: J. Clin. Invest. doi: 10.1172/JCI45785 – volume: 109 start-page: 19386 year: 2012 ident: 2023072609295753900_bib3 article-title: STING manifests self DNA-dependent inflammatory disease publication-title: Proc. Natl. Acad. Sci. USA. doi: 10.1073/pnas.1215006109 – volume: 38 start-page: 917 year: 2006 ident: 2023072609295753900_bib29 article-title: Mutations in the gene encoding the 3′-5′ DNA exonuclease TREX1 cause Aicardi-Goutières syndrome at the AGS1 locus publication-title: Nat. Genet. doi: 10.1038/ng1845 – volume: 32 start-page: 461 year: 2014 ident: 2023072609295753900_bib147 article-title: Innate immune sensing and signaling of cytosolic nucleic acids publication-title: Annu. Rev. Immunol. doi: 10.1146/annurev-immunol-032713-120156 – volume: 424 start-page: 516 year: 2003 ident: 2023072609295753900_bib133 article-title: Integration of interferon-alpha/beta signalling to p53 responses in tumour suppression and antiviral defence publication-title: Nature. doi: 10.1038/nature01850 – volume: 134 start-page: 587 year: 2008 ident: 2023072609295753900_bib128 article-title: Trex1 prevents cell-intrinsic initiation of autoimmunity publication-title: Cell. doi: 10.1016/j.cell.2008.06.032 – volume: 68 start-page: 858 year: 2016 ident: 2023072609295753900_bib136 article-title: cGAS-cGAMP-STING: The three musketeers of cytosolic DNA sensing and signaling publication-title: IUBMB Life. doi: 10.1002/iub.1566 – volume: 17 start-page: 1583 year: 2006 ident: 2023072609295753900_bib110 article-title: DNA damage signaling and p53-dependent senescence after prolonged beta-interferon stimulation publication-title: Mol. Biol. Cell. doi: 10.1091/mbc.E05-09-0858 – volume: 11 start-page: 1018 year: 2015 ident: 2023072609295753900_bib27 article-title: Direct activation of STING in the tumor microenvironment leads to potent and systemic tumor regression and immunity publication-title: Cell Reports. doi: 10.1016/j.celrep.2015.04.031 – volume: 18 start-page: 403 year: 2013 ident: 2023072609295753900_bib73 article-title: DNA damage triggers a chronic autoinflammatory response, leading to fat depletion in NER progeria publication-title: Cell Metab. doi: 10.1016/j.cmet.2013.08.011 – volume: 15 start-page: 171 year: 2016 ident: 2023072609295753900_bib74 article-title: Suppression of Type I Interferon Signaling Overcomes Oncogene-Induced Senescence and Mediates Melanoma Development and Progression publication-title: Cell Reports. doi: 10.1016/j.celrep.2016.03.006 – volume: 190 start-page: 5216 year: 2013 ident: 2023072609295753900_bib23 article-title: Mouse, but not human STING, binds and signals in response to the vascular disrupting agent 5,6-dimethylxanthenone-4-acetic acid publication-title: J. Immunol. doi: 10.4049/jimmunol.1300097 – volume: 198 start-page: 130.28 year: 2017 ident: 2023072609295753900_bib36 article-title: Defective STING signaling in ovarian cancer cells favor oncolytic virus action publication-title: J. Immunol. doi: 10.4049/jimmunol.198.Supp.130.28 – volume: 19 start-page: 150 year: 2016 ident: 2023072609295753900_bib101 article-title: The cGAS-STING Defense Pathway and Its Counteraction by Viruses publication-title: Cell Host Microbe. doi: 10.1016/j.chom.2016.01.010 – volume: 6 start-page: 19049 year: 2016 ident: 2023072609295753900_bib92 article-title: Antitumor Activity of cGAMP via Stimulation of cGAS-cGAMP-STING-IRF3 Mediated Innate Immune Response publication-title: Sci. Rep. doi: 10.1038/srep19049 |
SSID | ssj0014456 |
Score | 2.6968768 |
SecondaryResourceType | review_article |
Snippet | Detection of microbial DNA is an evolutionarily conserved mechanism that alerts the host immune system to mount a defense response to microbial infections.... The cGAS–cGAMP–STING pathway mediates immune and inflammatory responses to cytosolic DNA. This review summarizes recent findings on how genomic instability... |
SourceID | pubmedcentral proquest pubmed crossref |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | 1287 |
SubjectTerms | Activation Adenosine monophosphate AMP Cancer Cyclic GMP Damage detection Deoxyribonucleic acid DNA DNA damage Genomic instability Guanosine Immune response Immune system Inflammation Innate immunity Microorganisms Nucleotide sequence Reviews Senescence Stability |
Title | The cGAS–cGAMP–STING pathway connects DNA damage to inflammation, senescence, and cancer |
URI | https://www.ncbi.nlm.nih.gov/pubmed/29622565 https://www.proquest.com/docview/2035235653 https://www.proquest.com/docview/2022996279 https://pubmed.ncbi.nlm.nih.gov/PMC5940270 |
Volume | 215 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLZgSIgXxJ3CQEaCpy0jF6e2Hytu00QnpHVShZAqx3G0IUjR1grBE_-Bf8gv4TvOtaVIg5ekSZxL830-Pif-js3YUwcbJ1woAqmcDoSVaWCKYRwUkUAcJ-0ws5TvPD4c7h-Lg2k67aRDPrtkke3Z7xvzSv4HVewDrpQl-w_IthfFDvwGvlgCYSwvjLF9MzpqFAsJNsbv2q2jCX2KojmHv5pvpC8vvXTj5eFoJzefSawDxxPPAVJUCYz0vs_J-Fmq742w0xIxzvpebJdP5j3ZlVkC1jvr33q5wGQ574QElaV7f3L6kazLwV7_y0OkvM5P9q0pAllSWVRtSW1ARUhdwqpvYeMqY7OmUtqzl2gdZa_thfOhN9r1UAmy647GDogUua1d-9X02a81a63Y0HezKzHD2bPm7MvsSoy4wmeHT1tNEIJLP91v-8fqTAmc_bx_71Uf5o_AZF1f23NYJjfY9RofPqpoc5NdcuUtdnVcw3ObfQCKnNjz68dPzxusPWN4zRjeMIaDMbxiDF_MeZ8xu7zjyy4HW3jFljvs-PWryYv9oJ5rI7AiVItAOFkUJhFFblSeJUXoZObiVFlEYEYUxhkFaCOphgoub6JtUcDUO6XjLJVRnCV32VY5L919xiOt8sRpmr-uEEIbbeB2Coc75CrUiR6wnebtzWw9ED3Nh_JptgmpAXvWlv5SDcDyl3LbDRCzuoqe4yDiiwQxSzJgT9rDMKDUK2ZKN19SmRisG8YSl7hX4dbeKMZ-xATpgMkVRNsCNDj76pHy9MQP0p5qEcYyfHDBx3_IrnVVbJttLc6W7hHc3UX22FP0N1cwpi0 |
linkProvider | Geneva Foundation for Medical Education and Research |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+cGAS%E2%80%93cGAMP%E2%80%93STING+pathway+connects+DNA+damage+to+inflammation%2C+senescence%2C+and+cancer&rft.jtitle=The+Journal+of+experimental+medicine&rft.au=Li%2C+Tuo&rft.au=Chen%2C+Zhijian+J.&rft.date=2018-05-07&rft.issn=0022-1007&rft.eissn=1540-9538&rft.volume=215&rft.issue=5&rft.spage=1287&rft.epage=1299&rft_id=info:doi/10.1084%2Fjem.20180139&rft.externalDBID=n%2Fa&rft.externalDocID=10_1084_jem_20180139 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0022-1007&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0022-1007&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0022-1007&client=summon |