The cGAS–cGAMP–STING pathway connects DNA damage to inflammation, senescence, and cancer

Detection of microbial DNA is an evolutionarily conserved mechanism that alerts the host immune system to mount a defense response to microbial infections. However, this detection mechanism also poses a challenge to the host as to how to distinguish foreign DNA from abundant self-DNA. Cyclic guanosi...

Full description

Saved in:
Bibliographic Details
Published inThe Journal of experimental medicine Vol. 215; no. 5; pp. 1287 - 1299
Main Authors Li, Tuo, Chen, Zhijian J.
Format Journal Article
LanguageEnglish
Published United States Rockefeller University Press 07.05.2018
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Detection of microbial DNA is an evolutionarily conserved mechanism that alerts the host immune system to mount a defense response to microbial infections. However, this detection mechanism also poses a challenge to the host as to how to distinguish foreign DNA from abundant self-DNA. Cyclic guanosine monophosphate (GMP)–adenosine monophosphate (AMP) synthase (cGAS) is a DNA sensor that triggers innate immune responses through production of the second messenger cyclic GMP-AMP (cGAMP), which binds and activates the adaptor protein STING. However, cGAS can be activated by double-stranded DNA irrespective of the sequence, including self-DNA. Although how cGAS is normally kept inactive in cells is still not well understood, recent research has provided strong evidence that genomic DNA damage leads to cGAS activation to stimulate inflammatory responses. This review summarizes recent findings on how genomic instability and DNA damage trigger cGAS activation and how cGAS serves as a link from DNA damage to inflammation, cellular senescence, and cancer.
AbstractList Detection of microbial DNA is an evolutionarily conserved mechanism that alerts the host immune system to mount a defense response to microbial infections. However, this detection mechanism also poses a challenge to the host as to how to distinguish foreign DNA from abundant self-DNA. Cyclic guanosine monophosphate (GMP)-adenosine monophosphate (AMP) synthase (cGAS) is a DNA sensor that triggers innate immune responses through production of the second messenger cyclic GMP-AMP (cGAMP), which binds and activates the adaptor protein STING. However, cGAS can be activated by double-stranded DNA irrespective of the sequence, including self-DNA. Although how cGAS is normally kept inactive in cells is still not well understood, recent research has provided strong evidence that genomic DNA damage leads to cGAS activation to stimulate inflammatory responses. This review summarizes recent findings on how genomic instability and DNA damage trigger cGAS activation and how cGAS serves as a link from DNA damage to inflammation, cellular senescence, and cancer.Detection of microbial DNA is an evolutionarily conserved mechanism that alerts the host immune system to mount a defense response to microbial infections. However, this detection mechanism also poses a challenge to the host as to how to distinguish foreign DNA from abundant self-DNA. Cyclic guanosine monophosphate (GMP)-adenosine monophosphate (AMP) synthase (cGAS) is a DNA sensor that triggers innate immune responses through production of the second messenger cyclic GMP-AMP (cGAMP), which binds and activates the adaptor protein STING. However, cGAS can be activated by double-stranded DNA irrespective of the sequence, including self-DNA. Although how cGAS is normally kept inactive in cells is still not well understood, recent research has provided strong evidence that genomic DNA damage leads to cGAS activation to stimulate inflammatory responses. This review summarizes recent findings on how genomic instability and DNA damage trigger cGAS activation and how cGAS serves as a link from DNA damage to inflammation, cellular senescence, and cancer.
Detection of microbial DNA is an evolutionarily conserved mechanism that alerts the host immune system to mount a defense response to microbial infections. However, this detection mechanism also poses a challenge to the host as to how to distinguish foreign DNA from abundant self-DNA. Cyclic guanosine monophosphate (GMP)-adenosine monophosphate (AMP) synthase (cGAS) is a DNA sensor that triggers innate immune responses through production of the second messenger cyclic GMP-AMP (cGAMP), which binds and activates the adaptor protein STING. However, cGAS can be activated by double-stranded DNA irrespective of the sequence, including self-DNA. Although how cGAS is normally kept inactive in cells is still not well understood, recent research has provided strong evidence that genomic DNA damage leads to cGAS activation to stimulate inflammatory responses. This review summarizes recent findings on how genomic instability and DNA damage trigger cGAS activation and how cGAS serves as a link from DNA damage to inflammation, cellular senescence, and cancer.
The cGAS–cGAMP–STING pathway mediates immune and inflammatory responses to cytosolic DNA. This review summarizes recent findings on how genomic instability leads to cGAS activation and how this pathway critically connects DNA damage to autoinflammatory diseases, cellular senescence, and cancer. Detection of microbial DNA is an evolutionarily conserved mechanism that alerts the host immune system to mount a defense response to microbial infections. However, this detection mechanism also poses a challenge to the host as to how to distinguish foreign DNA from abundant self-DNA. Cyclic guanosine monophosphate (GMP)–adenosine monophosphate (AMP) synthase (cGAS) is a DNA sensor that triggers innate immune responses through production of the second messenger cyclic GMP-AMP (cGAMP), which binds and activates the adaptor protein STING. However, cGAS can be activated by double-stranded DNA irrespective of the sequence, including self-DNA. Although how cGAS is normally kept inactive in cells is still not well understood, recent research has provided strong evidence that genomic DNA damage leads to cGAS activation to stimulate inflammatory responses. This review summarizes recent findings on how genomic instability and DNA damage trigger cGAS activation and how cGAS serves as a link from DNA damage to inflammation, cellular senescence, and cancer.
The cGAS–cGAMP–STING pathway mediates immune and inflammatory responses to cytosolic DNA. This review summarizes recent findings on how genomic instability leads to cGAS activation and how this pathway critically connects DNA damage to autoinflammatory diseases, cellular senescence, and cancer.Detection of microbial DNA is an evolutionarily conserved mechanism that alerts the host immune system to mount a defense response to microbial infections. However, this detection mechanism also poses a challenge to the host as to how to distinguish foreign DNA from abundant self-DNA. Cyclic guanosine monophosphate (GMP)–adenosine monophosphate (AMP) synthase (cGAS) is a DNA sensor that triggers innate immune responses through production of the second messenger cyclic GMP-AMP (cGAMP), which binds and activates the adaptor protein STING. However, cGAS can be activated by double-stranded DNA irrespective of the sequence, including self-DNA. Although how cGAS is normally kept inactive in cells is still not well understood, recent research has provided strong evidence that genomic DNA damage leads to cGAS activation to stimulate inflammatory responses. This review summarizes recent findings on how genomic instability and DNA damage trigger cGAS activation and how cGAS serves as a link from DNA damage to inflammation, cellular senescence, and cancer.
Author Chen, Zhijian J.
Li, Tuo
AuthorAffiliation 1 Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX
2 Center for Inflammation Research, University of Texas Southwestern Medical Center, Dallas, TX
3 Howard Hughes Medical Institute, Chevy Chase, MD
AuthorAffiliation_xml – name: 3 Howard Hughes Medical Institute, Chevy Chase, MD
– name: 1 Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX
– name: 2 Center for Inflammation Research, University of Texas Southwestern Medical Center, Dallas, TX
Author_xml – sequence: 1
  givenname: Tuo
  surname: Li
  fullname: Li, Tuo
– sequence: 2
  givenname: Zhijian J.
  orcidid: 0000-0002-8475-8251
  surname: Chen
  fullname: Chen, Zhijian J.
BackLink https://www.ncbi.nlm.nih.gov/pubmed/29622565$$D View this record in MEDLINE/PubMed
BookMark eNptkc1uEzEUhS3UiqaFHWtkiQ2LTPHfxJ4NUlQgrVQKUsMOyfJ4rpuJZux0PAF1xzvwhjwJtz9BULG6lvzdo3POPSR7MUUg5AVnx5wZ9WYN_bFg3DAuqydkwkvFiqqUZo9MGBOi4IzpA3KY85oxrlQ5e0oORDUTopyVE_J1uQLqF_PLXz9-4vj4Gefl8uxiQTduXH13N9SnGMGPmb67mNPG9e4K6JhoG0Pn-t6NbYpTmiFC9hA9TKmLDfUOn8Mzsh9cl-H5wzwiXz68X56cFuefFmcn8_PCK2bGQoEOwUkVGmeaWgYGugZRGm-McCo4cAZTcW1mhmshKx-CNhpMJepSc1HLI_L2XnezrXto0Mc4uM5uhrZ3w41NrrX__sR2Za_SN1tWignNUOD1g8CQrreQR9u3GKfrXIS0zVZgkRV2pitEXz1C12k7RIyHlCyFxFolUi__dvTHyq54BMQ94IeU8wDB-na8KxMNtp3lzN5e1-J17e66uDR9tLTT_S_-GzBUppE
CitedBy_id crossref_primary_10_1016_j_bioactmat_2022_02_029
crossref_primary_10_1096_fj_202101988R
crossref_primary_10_3389_fonc_2023_1180642
crossref_primary_10_1002_path_6015
crossref_primary_10_1016_j_biopha_2020_110972
crossref_primary_10_1016_j_fsi_2019_04_061
crossref_primary_10_1016_j_molcel_2022_12_023
crossref_primary_10_3390_ijms241210148
crossref_primary_10_4049_jimmunol_2200158
crossref_primary_10_1016_j_celrep_2024_114284
crossref_primary_10_1093_gerona_glac097
crossref_primary_10_1136_jitc_2019_000516
crossref_primary_10_1073_pnas_2317402121
crossref_primary_10_1021_acs_bioconjchem_0c00520
crossref_primary_10_1002_advs_202410910
crossref_primary_10_1038_s41417_021_00302_y
crossref_primary_10_1038_s41388_022_02397_5
crossref_primary_10_1016_j_mad_2018_07_007
crossref_primary_10_1093_jmcb_mjab066
crossref_primary_10_1073_pnas_1907660116
crossref_primary_10_1021_acsbiomaterials_4c00560
crossref_primary_10_1002_1878_0261_13657
crossref_primary_10_1073_pnas_2208934119
crossref_primary_10_1038_s41467_022_33742_7
crossref_primary_10_1016_j_pharmthera_2019_107446
crossref_primary_10_1098_rsob_180081
crossref_primary_10_1016_j_jhep_2022_03_011
crossref_primary_10_1039_C8MD00555A
crossref_primary_10_1016_j_metabol_2019_153999
crossref_primary_10_1016_j_phrs_2019_01_021
crossref_primary_10_1016_j_ajpath_2024_07_015
crossref_primary_10_3390_cells11213483
crossref_primary_10_1111_cas_14266
crossref_primary_10_1186_s12974_022_02511_0
crossref_primary_10_1021_acs_jpcb_3c02377
crossref_primary_10_1158_2159_8290_CD_21_0506
crossref_primary_10_1128_spectrum_02012_23
crossref_primary_10_1016_j_metop_2025_100347
crossref_primary_10_3389_fimmu_2021_737311
crossref_primary_10_3389_fimmu_2021_797880
crossref_primary_10_1016_j_molcel_2022_12_031
crossref_primary_10_1021_acsabm_3c01305
crossref_primary_10_3390_cancers13215452
crossref_primary_10_1038_s41419_023_06111_5
crossref_primary_10_1016_j_mrgentox_2024_503766
crossref_primary_10_1093_aob_mcaa061
crossref_primary_10_1016_j_semcancer_2021_04_012
crossref_primary_10_1038_s41568_018_0084_6
crossref_primary_10_1126_sciadv_abb8941
crossref_primary_10_1038_s41586_019_0998_5
crossref_primary_10_3389_fimmu_2023_1275408
crossref_primary_10_1007_s00204_024_03862_8
crossref_primary_10_1016_j_ymthe_2022_01_044
crossref_primary_10_7554_eLife_39984
crossref_primary_10_1016_j_ejphar_2020_173692
crossref_primary_10_1186_s12967_021_03073_0
crossref_primary_10_26508_lsa_201900636
crossref_primary_10_1038_s41388_019_1108_8
crossref_primary_10_1111_acel_13234
crossref_primary_10_1126_science_adg3224
crossref_primary_10_3389_fcell_2022_826461
crossref_primary_10_3390_vaccines7040197
crossref_primary_10_1002_advs_201902599
crossref_primary_10_3390_genes14061141
crossref_primary_10_3390_cancers13163924
crossref_primary_10_3390_jcm9103323
crossref_primary_10_15252_embj_2020106065
crossref_primary_10_1042_BST20220838
crossref_primary_10_3389_fcvm_2021_715903
crossref_primary_10_1016_j_semradonc_2019_12_009
crossref_primary_10_1038_s41420_023_01467_1
crossref_primary_10_1038_s41577_019_0269_6
crossref_primary_10_3390_pharmaceutics14122710
crossref_primary_10_3389_fimmu_2023_1273248
crossref_primary_10_1038_s41422_020_00395_4
crossref_primary_10_1007_s00432_021_03879_x
crossref_primary_10_1016_j_ctarc_2021_100399
crossref_primary_10_1007_s11060_023_04556_4
crossref_primary_10_3390_brainsci13040645
crossref_primary_10_1038_s41582_019_0244_7
crossref_primary_10_1016_j_immuni_2022_03_016
crossref_primary_10_1111_acel_14303
crossref_primary_10_1002_hep_32335
crossref_primary_10_1038_s41421_022_00481_4
crossref_primary_10_3389_fcell_2021_702584
crossref_primary_10_1038_s41418_022_01041_9
crossref_primary_10_3389_fimmu_2024_1358462
crossref_primary_10_1038_s41418_020_0588_y
crossref_primary_10_1038_s41598_020_64865_w
crossref_primary_10_3389_fimmu_2021_629922
crossref_primary_10_2174_1570161121666230501201756
crossref_primary_10_1016_j_heliyon_2024_e25538
crossref_primary_10_1021_acs_accounts_2c00608
crossref_primary_10_1016_j_neuroscience_2023_01_015
crossref_primary_10_1016_j_intimp_2021_107763
crossref_primary_10_1177_1753425919852695
crossref_primary_10_1007_s12035_020_01904_7
crossref_primary_10_1016_j_bcp_2022_114935
crossref_primary_10_1093_jrr_rraa086
crossref_primary_10_15252_emmm_201810234
crossref_primary_10_3390_biom10111557
crossref_primary_10_1073_pnas_2105747118
crossref_primary_10_3390_pathogens12020243
crossref_primary_10_1016_j_ebiom_2019_02_055
crossref_primary_10_1038_s41586_019_1000_2
crossref_primary_10_3390_ijms24033000
crossref_primary_10_1371_journal_pgen_1010045
crossref_primary_10_3389_fnmol_2022_947542
crossref_primary_10_1186_s13018_024_04919_1
crossref_primary_10_1016_j_esmoop_2021_100075
crossref_primary_10_1016_j_addr_2021_114020
crossref_primary_10_1128_JB_00365_20
crossref_primary_10_1158_1078_0432_CCR_19_1321
crossref_primary_10_1371_journal_ppat_1007680
crossref_primary_10_1007_s00296_021_04906_3
crossref_primary_10_1038_s41467_023_44239_2
crossref_primary_10_1002_jcp_31187
crossref_primary_10_1021_acs_chemrev_1c00750
crossref_primary_10_15252_embj_2019104106
crossref_primary_10_1016_j_trecan_2020_02_022
crossref_primary_10_1038_s41573_021_00155_y
crossref_primary_10_3390_ijms241411534
crossref_primary_10_1038_s41594_023_00933_9
crossref_primary_10_1111_nmo_14603
crossref_primary_10_4049_jimmunol_2000546
crossref_primary_10_1055_s_0040_1722262
crossref_primary_10_1111_cas_15961
crossref_primary_10_1016_j_ijbiomac_2020_01_015
crossref_primary_10_7554_eLife_81943
crossref_primary_10_3390_genes12040552
crossref_primary_10_3390_biom13040686
crossref_primary_10_1016_j_molcel_2024_09_026
crossref_primary_10_3389_fimmu_2021_697162
crossref_primary_10_1111_liv_15610
crossref_primary_10_1016_j_mad_2020_111308
crossref_primary_10_1111_imr_13409
crossref_primary_10_1111_acel_13415
crossref_primary_10_1016_j_bbamcr_2022_119385
crossref_primary_10_1126_scisignal_aau4604
crossref_primary_10_1093_pcmedi_pbaa030
crossref_primary_10_1016_j_exer_2020_108366
crossref_primary_10_3389_fimmu_2020_01669
crossref_primary_10_1093_nar_gkab689
crossref_primary_10_1016_j_critrevonc_2024_104546
crossref_primary_10_1038_s41467_021_26240_9
crossref_primary_10_3389_fimmu_2023_1121603
crossref_primary_10_1021_acsptsci_4c00473
crossref_primary_10_1172_jci_insight_177523
crossref_primary_10_3390_ijms232315182
crossref_primary_10_1001_jamadermatol_2018_5077
crossref_primary_10_1016_j_ijpharm_2022_122559
crossref_primary_10_1016_j_bbamcr_2024_119722
crossref_primary_10_1016_j_neuropharm_2025_110426
crossref_primary_10_1186_s40779_024_00553_4
crossref_primary_10_1016_j_intimp_2022_109644
crossref_primary_10_1021_acs_chemrestox_3c00343
crossref_primary_10_1002_pmic_201800406
crossref_primary_10_1158_1078_0432_CCR_20_2210
crossref_primary_10_1158_0008_5472_CAN_18_3631
crossref_primary_10_1016_j_molcel_2019_02_032
crossref_primary_10_1002_adbi_201900237
crossref_primary_10_3389_fimmu_2024_1513595
crossref_primary_10_1038_s41568_019_0183_z
crossref_primary_10_1126_sciadv_ade6624
crossref_primary_10_1111_cas_14680
crossref_primary_10_1038_s41420_021_00409_z
crossref_primary_10_1016_j_cell_2019_10_005
crossref_primary_10_1016_j_tim_2018_09_009
crossref_primary_10_3390_ijms21197289
crossref_primary_10_1172_JCI135026
crossref_primary_10_15252_embr_202255536
crossref_primary_10_1038_s41392_023_01502_8
crossref_primary_10_1016_j_jjcc_2022_08_010
crossref_primary_10_1096_fj_202001607R
crossref_primary_10_1177_03946320251324821
crossref_primary_10_3389_fimmu_2021_682736
crossref_primary_10_1016_j_mucimm_2023_10_004
crossref_primary_10_1128_iai_00670_21
crossref_primary_10_3389_fphys_2020_565023
crossref_primary_10_1155_2020_9423593
crossref_primary_10_1101_gad_319475_118
crossref_primary_10_3390_cancers13153733
crossref_primary_10_1016_j_mad_2020_111347
crossref_primary_10_1158_1541_7786_MCR_21_0725
crossref_primary_10_2337_dbi18_0052
crossref_primary_10_1016_j_actbio_2024_01_008
crossref_primary_10_1186_s12974_025_03333_6
crossref_primary_10_1038_s44319_024_00358_5
crossref_primary_10_11569_wcjd_v28_i21_1084
crossref_primary_10_1093_genetics_iyad169
crossref_primary_10_1158_1535_7163_MCT_21_0780
crossref_primary_10_1016_j_ccell_2020_08_005
crossref_primary_10_3389_fmicb_2022_1065945
crossref_primary_10_1016_j_scitotenv_2023_164490
crossref_primary_10_1002_advs_202206344
crossref_primary_10_1016_j_canlet_2020_02_011
crossref_primary_10_1088_1748_0221_19_02_P02035
crossref_primary_10_1080_15384101_2019_1638192
crossref_primary_10_1093_infdis_jiz116
crossref_primary_10_5483_BMBRep_2019_52_5_072
crossref_primary_10_1002_1878_0261_12905
crossref_primary_10_1111_ddg_14357
crossref_primary_10_3389_fphar_2024_1509482
crossref_primary_10_1021_acsnano_3c06194
crossref_primary_10_1038_s43587_022_00337_2
crossref_primary_10_1111_acel_13865
crossref_primary_10_1016_j_canlet_2020_07_004
crossref_primary_10_2147_DDDT_S251623
crossref_primary_10_1667_RADE_20_00013
crossref_primary_10_3390_cancers14194847
crossref_primary_10_1016_j_immuni_2022_08_006
crossref_primary_10_1126_science_abc5386
crossref_primary_10_3390_genes11070730
crossref_primary_10_1016_j_celrep_2021_109537
crossref_primary_10_1146_annurev_nutr_062322_022751
crossref_primary_10_1016_j_molcel_2023_09_009
crossref_primary_10_3390_ijms22147474
crossref_primary_10_1016_j_isci_2020_101257
crossref_primary_10_1016_j_molcel_2023_09_003
crossref_primary_10_1016_j_jhepr_2021_100324
crossref_primary_10_1016_j_aquaculture_2025_742274
crossref_primary_10_7554_eLife_94849
crossref_primary_10_1016_j_critrevonc_2024_104609
crossref_primary_10_1172_jci_insight_129760
crossref_primary_10_1016_j_mrgentox_2023_503608
crossref_primary_10_1128_microbiolspec_GPP3_0065_2019
crossref_primary_10_1007_s00216_021_03628_6
crossref_primary_10_1038_s41419_021_04032_9
crossref_primary_10_1016_j_molcel_2021_05_002
crossref_primary_10_3390_cancers14194623
crossref_primary_10_1007_s10067_024_07167_0
crossref_primary_10_1111_1754_9485_13413
crossref_primary_10_1016_j_immuni_2020_05_013
crossref_primary_10_1080_2162402X_2019_1605822
crossref_primary_10_1158_2159_8290_CD_24_0296
crossref_primary_10_1165_rcmb_2020_0311OC
crossref_primary_10_1016_j_intimp_2024_112185
crossref_primary_10_1186_s13014_023_02335_z
crossref_primary_10_1158_2326_6066_CIR_23_0902
crossref_primary_10_1126_sciimmunol_abl7209
crossref_primary_10_1002_jcb_30522
crossref_primary_10_1016_j_molcel_2024_04_003
crossref_primary_10_1155_2020_7418342
crossref_primary_10_1016_j_immuni_2023_10_001
crossref_primary_10_1016_j_freeradbiomed_2021_11_040
crossref_primary_10_1182_blood_2023019782
crossref_primary_10_1038_s41401_023_01220_5
crossref_primary_10_1016_j_ejmech_2022_114791
crossref_primary_10_3389_fmed_2024_1436091
crossref_primary_10_3389_fimmu_2023_1258637
crossref_primary_10_1002_cac2_12412
crossref_primary_10_1186_s13046_019_1353_2
crossref_primary_10_3389_fphar_2022_1072670
crossref_primary_10_1002_pmic_201900408
crossref_primary_10_1007_s12272_023_01452_3
crossref_primary_10_1016_j_ijpharm_2022_122034
crossref_primary_10_1016_j_devcel_2022_06_003
crossref_primary_10_3390_genes11111276
crossref_primary_10_3389_fimmu_2022_880413
crossref_primary_10_1186_s13148_021_01026_4
crossref_primary_10_1016_j_lfs_2021_120263
crossref_primary_10_1371_journal_pbio_3000807
crossref_primary_10_1021_acs_jafc_4c07268
crossref_primary_10_3390_biomedicines11072072
crossref_primary_10_1002_adhm_201801243
crossref_primary_10_1155_2019_4325105
crossref_primary_10_1002_adtp_202100066
crossref_primary_10_3389_fmolb_2024_1322687
crossref_primary_10_1016_j_mam_2021_101007
crossref_primary_10_1016_j_intimp_2024_113091
crossref_primary_10_1091_mbc_E22_06_0233
crossref_primary_10_1158_0008_5472_CAN_22_3015
crossref_primary_10_3390_genes15040414
crossref_primary_10_1016_j_molcel_2021_07_040
crossref_primary_10_3390_ijms222111483
crossref_primary_10_3389_fragi_2022_897907
crossref_primary_10_1177_20587384211038098
crossref_primary_10_7554_eLife_77073
crossref_primary_10_1016_j_tibs_2020_12_010
crossref_primary_10_1016_j_envint_2021_106448
crossref_primary_10_1038_s41419_023_06140_0
crossref_primary_10_1038_s42003_021_02123_z
crossref_primary_10_1016_j_smim_2019_101328
crossref_primary_10_1038_s41467_022_29946_6
crossref_primary_10_1038_s41467_024_48066_x
crossref_primary_10_1186_s12967_020_02219_w
crossref_primary_10_1038_s41419_023_05710_6
crossref_primary_10_1111_tra_12918
crossref_primary_10_1093_narcan_zcad031
crossref_primary_10_1016_j_ceb_2019_02_006
crossref_primary_10_1007_s12553_024_00895_y
crossref_primary_10_3390_cells11182812
crossref_primary_10_1002_eji_202048901
crossref_primary_10_1016_j_reth_2025_01_005
crossref_primary_10_1152_ajprenal_00614_2020
crossref_primary_10_1101_gad_320937_118
crossref_primary_10_1038_s42003_021_02278_9
crossref_primary_10_1016_j_pharmthera_2023_108476
crossref_primary_10_4049_jimmunol_1800991
crossref_primary_10_1038_s41392_025_02174_2
crossref_primary_10_1126_scisignal_aba2611
crossref_primary_10_3390_toxins12020063
crossref_primary_10_1038_s41422_020_0346_1
crossref_primary_10_1038_s41467_025_56301_2
crossref_primary_10_3389_fnmol_2024_1400808
crossref_primary_10_1002_ijc_33038
crossref_primary_10_1038_s41418_018_0214_4
crossref_primary_10_1158_1078_0432_CCR_18_2581
crossref_primary_10_3390_vaccines8030369
crossref_primary_10_1074_jbc_RA119_010734
crossref_primary_10_1172_JCI155468
crossref_primary_10_1016_j_cytogfr_2024_08_005
crossref_primary_10_3389_fonc_2021_667920
crossref_primary_10_1002_aac2_12047
crossref_primary_10_1016_j_celrep_2023_112278
crossref_primary_10_1038_s41586_019_1553_0
crossref_primary_10_1371_journal_pone_0254806
crossref_primary_10_1186_s43556_020_00006_z
crossref_primary_10_1038_s41585_021_00481_1
crossref_primary_10_1038_s41598_023_43848_7
crossref_primary_10_1007_s11064_023_03945_5
crossref_primary_10_1039_D0CB00022A
crossref_primary_10_1016_j_gene_2021_145469
crossref_primary_10_1016_j_vetmic_2021_109098
crossref_primary_10_3389_ftox_2022_887228
crossref_primary_10_3390_cancers14112580
crossref_primary_10_1038_s41467_023_37840_y
crossref_primary_10_15252_embr_202154217
crossref_primary_10_3389_fimmu_2021_795048
crossref_primary_10_1016_j_jcmgh_2022_10_009
crossref_primary_10_3390_cancers14092087
crossref_primary_10_1016_j_canrad_2025_104590
crossref_primary_10_1016_j_celrep_2023_113180
crossref_primary_10_3390_ijms22126360
crossref_primary_10_1158_0008_5472_CAN_22_3860
crossref_primary_10_1038_s43587_021_00121_8
crossref_primary_10_3389_fcimb_2022_1026293
crossref_primary_10_2967_jnumed_122_264121
crossref_primary_10_3390_ijms25137411
crossref_primary_10_3389_fimmu_2024_1438030
crossref_primary_10_1111_bjh_18878
crossref_primary_10_1155_2022_3191474
crossref_primary_10_1016_j_drudis_2019_11_007
crossref_primary_10_1038_s41574_024_00990_0
crossref_primary_10_3748_wjg_v25_i34_5069
crossref_primary_10_1038_s41584_020_0480_7
crossref_primary_10_1016_j_ebiom_2022_104047
crossref_primary_10_1093_jimmun_vkae017
crossref_primary_10_1073_pnas_2012469118
crossref_primary_10_1016_j_celrep_2018_11_054
crossref_primary_10_1021_acsami_2c21005
crossref_primary_10_12688_f1000research_20201_1
crossref_primary_10_1016_j_colsurfb_2024_114343
crossref_primary_10_1590_1678_9199_jvatitd_2020_0183
crossref_primary_10_1016_j_celrep_2021_110138
crossref_primary_10_1073_pnas_2216953120
crossref_primary_10_1016_j_celrep_2019_09_065
crossref_primary_10_1158_1078_0432_CCR_21_1621
crossref_primary_10_3390_cells10092288
crossref_primary_10_1042_BCJ20190596
crossref_primary_10_3390_antiox13060679
crossref_primary_10_1126_sciadv_abg6908
crossref_primary_10_1002_bies_202400066
crossref_primary_10_15252_embr_202255099
crossref_primary_10_1016_j_toxlet_2022_11_015
crossref_primary_10_1002_mc_23384
crossref_primary_10_1016_j_advnut_2023_08_004
crossref_primary_10_1371_journal_ppat_1009028
crossref_primary_10_1074_jbc_RA120_012962
crossref_primary_10_1172_JCI163452
crossref_primary_10_1212_WNL_0000000000011944
crossref_primary_10_14336_AD_2023_0117
crossref_primary_10_3389_fphar_2022_967633
crossref_primary_10_3390_ijms24087347
crossref_primary_10_1038_s41419_022_05063_6
crossref_primary_10_3389_fimmu_2023_1130172
crossref_primary_10_1093_noajnl_vdz045
crossref_primary_10_3389_fendo_2023_1145392
crossref_primary_10_1038_s41392_020_0150_x
crossref_primary_10_1016_j_radmp_2020_04_001
crossref_primary_10_3390_ijms232113356
crossref_primary_10_1016_j_jconrel_2021_01_036
crossref_primary_10_1111_acel_13064
crossref_primary_10_1016_j_expneurol_2023_114474
crossref_primary_10_1016_j_aquaculture_2024_740871
crossref_primary_10_1136_jitc_2024_010157
crossref_primary_10_1038_s41422_023_00788_1
crossref_primary_10_1038_s41467_023_37096_6
crossref_primary_10_3389_fimmu_2022_882407
crossref_primary_10_3390_ijms22115421
crossref_primary_10_1016_j_gene_2022_146681
crossref_primary_10_1007_s00430_022_00742_9
crossref_primary_10_1371_journal_ppat_1010233
crossref_primary_10_1007_s12609_021_00418_y
crossref_primary_10_1111_imr_12901
crossref_primary_10_1073_pnas_2313652121
crossref_primary_10_1016_j_immuni_2020_02_012
crossref_primary_10_1007_s00262_024_03692_8
crossref_primary_10_2147_JIR_S468609
crossref_primary_10_1073_pnas_2011226118
crossref_primary_10_7554_eLife_84238
crossref_primary_10_3724_abbs_2022071
crossref_primary_10_1083_jcb_202301090
crossref_primary_10_1016_j_medj_2024_06_002
crossref_primary_10_1016_j_heliyon_2024_e24751
crossref_primary_10_3390_molecules29153704
crossref_primary_10_3390_genes11040409
crossref_primary_10_1016_j_fct_2023_114427
crossref_primary_10_1007_s00109_021_02131_w
crossref_primary_10_2174_1568009618666181016164920
crossref_primary_10_1038_s41375_023_02055_z
crossref_primary_10_1038_s41392_022_01149_x
crossref_primary_10_1088_1361_6463_ab5dd8
crossref_primary_10_1016_j_semcdb_2021_03_007
crossref_primary_10_3389_fimmu_2024_1485546
crossref_primary_10_3390_ijms23126634
crossref_primary_10_1007_s10522_022_10006_x
crossref_primary_10_26508_lsa_202101256
crossref_primary_10_1038_s41467_020_18734_9
crossref_primary_10_1111_acel_14258
crossref_primary_10_1093_jmcb_mjac031
crossref_primary_10_1016_j_tcb_2024_02_006
crossref_primary_10_1016_j_apsb_2021_03_043
crossref_primary_10_1016_j_ccr_2024_216138
crossref_primary_10_1016_j_molmet_2023_101755
crossref_primary_10_1038_s44161_023_00314_x
crossref_primary_10_3390_cells12010052
crossref_primary_10_1038_s41556_023_01096_x
crossref_primary_10_1186_s12974_024_03217_1
crossref_primary_10_12688_f1000research_125163_1
crossref_primary_10_1007_s10753_023_01946_8
crossref_primary_10_1080_14796694_2024_2357534
crossref_primary_10_1021_acs_molpharmaceut_9b00242
crossref_primary_10_1016_j_immuni_2024_01_001
crossref_primary_10_1038_s41392_021_00646_9
crossref_primary_10_1016_j_cmet_2021_07_009
crossref_primary_10_3390_cancers15143689
crossref_primary_10_1016_j_molcel_2021_02_038
crossref_primary_10_1152_ajpcell_00062_2020
crossref_primary_10_1016_j_isci_2024_111513
crossref_primary_10_3389_fonc_2021_795547
crossref_primary_10_1002_ijc_33918
crossref_primary_10_1042_EBC20200002
crossref_primary_10_1016_j_cmet_2019_02_014
crossref_primary_10_1016_j_ccell_2020_05_020
crossref_primary_10_1016_j_celrep_2020_107983
crossref_primary_10_1016_j_bbrc_2023_06_066
crossref_primary_10_1186_s13046_021_01850_9
crossref_primary_10_3389_fcell_2021_683459
crossref_primary_10_1002_adfm_202112273
crossref_primary_10_1038_s41467_022_30568_1
crossref_primary_10_3389_fmolb_2024_1409300
crossref_primary_10_3389_fendo_2023_1123124
crossref_primary_10_1002_eji_202048777
crossref_primary_10_1016_j_ccell_2022_08_015
crossref_primary_10_1016_j_ccell_2020_11_004
crossref_primary_10_7554_eLife_47491
crossref_primary_10_3724_zdxbyxb_2023_0482
crossref_primary_10_1002_iid3_452
crossref_primary_10_3390_ijms24010041
crossref_primary_10_3389_fimmu_2023_1104560
crossref_primary_10_1016_j_canlet_2022_215919
crossref_primary_10_1016_j_ecoenv_2024_117085
crossref_primary_10_1080_2162402X_2022_2117321
crossref_primary_10_7554_eLife_94849_3
crossref_primary_10_3389_fphar_2021_719644
crossref_primary_10_1016_j_celrep_2022_111774
crossref_primary_10_1172_JCI131180
crossref_primary_10_1371_journal_ppat_1009781
crossref_primary_10_1126_sciadv_abi5253
crossref_primary_10_1016_j_medj_2024_07_022
crossref_primary_10_1073_pnas_2002144117
crossref_primary_10_1158_1541_7786_MCR_19_0777
crossref_primary_10_1016_j_mattod_2022_11_008
crossref_primary_10_1038_s41598_020_64788_6
crossref_primary_10_3390_cancers12061546
crossref_primary_10_15252_embr_202050051
crossref_primary_10_1016_j_ejphar_2024_176326
crossref_primary_10_1016_j_isci_2022_104217
crossref_primary_10_1038_s41536_021_00118_2
crossref_primary_10_1016_j_ecoenv_2022_114266
crossref_primary_10_1016_j_neuron_2022_10_028
crossref_primary_10_1038_s41420_024_02208_8
crossref_primary_10_1186_s12964_020_00637_3
crossref_primary_10_1039_D2CS00848C
crossref_primary_10_3389_fcimb_2020_00368
crossref_primary_10_1038_s41568_022_00462_5
crossref_primary_10_1021_acs_nanolett_3c03689
crossref_primary_10_3389_fimmu_2019_01827
crossref_primary_10_1007_s44178_024_00079_8
crossref_primary_10_1016_j_phrs_2023_106973
crossref_primary_10_1186_s12974_025_03391_w
crossref_primary_10_1186_s40170_023_00305_3
crossref_primary_10_3390_ijms22137030
crossref_primary_10_1038_s41556_019_0352_z
crossref_primary_10_1016_j_immuni_2020_09_014
crossref_primary_10_1016_j_jdermsci_2020_09_003
crossref_primary_10_3390_cells11193011
crossref_primary_10_1016_j_exphem_2023_05_005
crossref_primary_10_3390_cancers15235694
crossref_primary_10_1126_sciimmunol_aaz1974
crossref_primary_10_1158_0008_5472_CAN_23_0744
crossref_primary_10_3390_biology10100994
crossref_primary_10_1016_j_mrrev_2020_108335
crossref_primary_10_1080_2162402X_2019_1591875
crossref_primary_10_1042_CS20220525
crossref_primary_10_1016_j_coi_2024_102457
crossref_primary_10_1371_journal_ppat_1008429
crossref_primary_10_17650_1726_9776_2021_17_3_85_94
crossref_primary_10_1038_s41580_020_0257_5
crossref_primary_10_3390_cancers16233993
crossref_primary_10_4049_jimmunol_2000891
crossref_primary_10_1101_gad_349249_121
crossref_primary_10_1016_j_dib_2024_111041
crossref_primary_10_1126_sciadv_abf6290
crossref_primary_10_3389_fimmu_2020_00238
crossref_primary_10_1038_s41422_020_0341_6
crossref_primary_10_1111_febs_17060
crossref_primary_10_1038_s42003_020_0986_1
crossref_primary_10_1016_j_biopha_2024_116698
crossref_primary_10_3390_v11100921
crossref_primary_10_3389_fimmu_2019_00104
crossref_primary_10_1073_pnas_1922243117
crossref_primary_10_1177_03946320241229041
crossref_primary_10_1016_j_semarthrit_2020_02_010
crossref_primary_10_3389_fcell_2021_729136
crossref_primary_10_3390_ijms23073600
crossref_primary_10_2139_ssrn_4151505
crossref_primary_10_1155_2018_8214379
crossref_primary_10_1126_scitranslmed_aay9013
crossref_primary_10_1371_journal_ppat_1010725
crossref_primary_10_3390_ijms222111450
crossref_primary_10_3389_fcell_2020_564601
crossref_primary_10_1080_10799893_2024_2325353
crossref_primary_10_1016_j_expneurol_2019_113164
crossref_primary_10_1089_dna_2019_4842
crossref_primary_10_3389_fimmu_2020_611347
crossref_primary_10_1016_j_biopha_2020_111091
crossref_primary_10_1039_C8RA04603D
crossref_primary_10_1038_s41388_021_02037_4
crossref_primary_10_1080_25785826_2019_1660038
crossref_primary_10_1016_j_jbc_2024_107554
crossref_primary_10_1016_j_jmb_2019_11_016
crossref_primary_10_1016_j_mrrev_2020_108344
crossref_primary_10_1016_j_ajpath_2023_07_008
crossref_primary_10_1016_j_rdc_2021_04_001
crossref_primary_10_1016_j_cell_2020_11_042
crossref_primary_10_1038_s41577_024_01027_3
crossref_primary_10_12688_f1000research_17959_1
crossref_primary_10_7554_eLife_60637
crossref_primary_10_3390_ijms21072477
crossref_primary_10_1126_sciimmunol_aba4219
crossref_primary_10_1172_jci_insight_168945
crossref_primary_10_1084_jem_20190459
crossref_primary_10_3389_fimmu_2023_1260705
crossref_primary_10_3390_cancers14092339
crossref_primary_10_1021_acs_jcim_0c00171
crossref_primary_10_1016_j_phymed_2024_156030
crossref_primary_10_1053_j_seminoncol_2023_08_001
crossref_primary_10_3892_etm_2019_8001
crossref_primary_10_1177_03946320241297342
crossref_primary_10_1016_j_bbrc_2018_10_080
crossref_primary_10_3389_fimmu_2024_1399926
crossref_primary_10_1016_j_molcel_2021_05_018
crossref_primary_10_1038_s41392_022_01252_z
crossref_primary_10_1007_s00018_021_03902_x
crossref_primary_10_1007_s40265_023_01934_0
crossref_primary_10_1016_j_canlet_2024_217410
crossref_primary_10_1038_s41467_020_19941_0
crossref_primary_10_1016_j_chemosphere_2022_137658
crossref_primary_10_1038_s41580_020_0244_x
crossref_primary_10_1097_BS9_0000000000000063
crossref_primary_10_1016_j_bioorg_2019_103556
crossref_primary_10_3389_fmolb_2022_1048726
crossref_primary_10_1158_2767_9764_CRC_23_0432
crossref_primary_10_1038_s41388_018_0606_4
crossref_primary_10_1002_ijc_33787
crossref_primary_10_1038_s41556_025_01627_8
crossref_primary_10_1080_15376516_2021_1974133
crossref_primary_10_3389_fphar_2023_1199152
crossref_primary_10_1016_j_abb_2018_12_022
crossref_primary_10_1080_2162402X_2022_2130583
crossref_primary_10_1126_sciadv_adl1584
crossref_primary_10_1016_j_semcancer_2024_08_007
crossref_primary_10_1016_j_neuron_2021_09_040
crossref_primary_10_1038_s41577_019_0215_7
crossref_primary_10_1038_s42255_024_01184_8
crossref_primary_10_3390_ijms23073871
crossref_primary_10_1038_s41419_022_05047_6
crossref_primary_10_1097_PPO_0000000000000559
crossref_primary_10_1016_j_neuroscience_2021_11_031
crossref_primary_10_3390_ijms25010086
crossref_primary_10_1126_scitranslmed_adg7740
crossref_primary_10_1016_j_celrep_2021_108931
crossref_primary_10_1007_s11357_019_00082_2
crossref_primary_10_1038_s12276_024_01295_y
crossref_primary_10_1016_j_intimp_2022_108637
crossref_primary_10_1016_j_jep_2023_116327
crossref_primary_10_3389_fimmu_2024_1402817
crossref_primary_10_1016_j_nantod_2024_102365
crossref_primary_10_1038_s41467_023_41801_w
crossref_primary_10_3390_ijms24098151
crossref_primary_10_1042_CS20191160
crossref_primary_10_3389_fimmu_2020_554725
crossref_primary_10_3389_fimmu_2021_660184
crossref_primary_10_1016_j_mcpro_2022_100247
crossref_primary_10_1073_pnas_2320591121
crossref_primary_10_1002_smll_202405231
crossref_primary_10_1002_mco2_349
crossref_primary_10_3389_fnagi_2020_00148
crossref_primary_10_1016_j_celrep_2022_110920
crossref_primary_10_34172_brb_2023_29
crossref_primary_10_3390_cancers15061836
crossref_primary_10_4049_jimmunol_2300306
crossref_primary_10_1249_JES_0000000000000302
crossref_primary_10_1007_s11481_021_10031_6
crossref_primary_10_1093_intimm_dxz034
crossref_primary_10_1111_febs_15836
crossref_primary_10_1016_j_gendis_2022_10_004
crossref_primary_10_3389_pore_2022_1610401
crossref_primary_10_1128_mbio_03228_21
crossref_primary_10_1155_2020_8653783
crossref_primary_10_1038_s41584_020_0377_5
crossref_primary_10_1016_j_bcp_2023_115865
crossref_primary_10_1038_s41467_020_17030_w
crossref_primary_10_3390_pharmaceutics14081707
crossref_primary_10_1007_s00109_024_02444_6
crossref_primary_10_1111_imm_13592
crossref_primary_10_1002_cti2_1109
crossref_primary_10_1016_j_tranon_2020_100783
crossref_primary_10_2139_ssrn_3581358
crossref_primary_10_1186_s13058_020_01368_6
crossref_primary_10_3389_fimmu_2019_03006
crossref_primary_10_1038_s41594_019_0195_0
crossref_primary_10_3390_v13020279
crossref_primary_10_1158_1535_7163_MCT_21_0066
crossref_primary_10_1007_s15010_024_02429_0
crossref_primary_10_1038_s41590_020_0699_0
crossref_primary_10_1002_jev2_12350
crossref_primary_10_3390_biomedicines8070214
crossref_primary_10_1038_s43018_023_00571_6
crossref_primary_10_1089_jir_2019_0015
crossref_primary_10_1146_annurev_nutr_082018_124643
crossref_primary_10_1158_0008_5472_CAN_23_1082
crossref_primary_10_1371_journal_ppat_1012170
crossref_primary_10_1177_10998004221132250
crossref_primary_10_1038_s41588_020_00746_2
crossref_primary_10_1186_s12967_023_03872_7
crossref_primary_10_1016_j_bbrc_2022_07_005
crossref_primary_10_3390_pharmaceutics12070663
crossref_primary_10_1038_s41584_018_0071_z
crossref_primary_10_1093_nar_gkaa084
crossref_primary_10_3390_cancers14246150
crossref_primary_10_1016_j_lfs_2024_122687
crossref_primary_10_3390_biom12121862
crossref_primary_10_1016_j_virol_2019_03_013
crossref_primary_10_3390_cancers14225633
crossref_primary_10_1186_s40364_024_00606_9
crossref_primary_10_1126_sciimmunol_adj3945
crossref_primary_10_1038_s41375_024_02383_8
crossref_primary_10_1073_pnas_2214278119
crossref_primary_10_1186_s43556_021_00044_1
crossref_primary_10_2174_0109298673273303231208071403
crossref_primary_10_3389_fmed_2024_1512916
crossref_primary_10_1016_j_cytogfr_2020_06_004
crossref_primary_10_1038_s41420_021_00634_6
crossref_primary_10_1111_febs_15640
crossref_primary_10_1158_2326_6066_CIR_23_1093
crossref_primary_10_3390_cells12060915
crossref_primary_10_3389_fped_2021_631329
crossref_primary_10_1186_s13148_020_00876_8
crossref_primary_10_3389_fendo_2023_1196460
crossref_primary_10_1093_narcan_zcaa002
crossref_primary_10_3389_fimmu_2020_02064
crossref_primary_10_1016_j_ijrobp_2021_12_162
crossref_primary_10_1016_j_celrep_2023_112179
crossref_primary_10_1158_0008_5472_CAN_22_3382
crossref_primary_10_1155_2022_5095176
crossref_primary_10_3389_fimmu_2023_1092824
crossref_primary_10_3390_cancers14225656
crossref_primary_10_1186_s40364_020_00202_7
crossref_primary_10_1186_s12885_024_12173_1
crossref_primary_10_3389_fphar_2024_1409683
crossref_primary_10_1038_d41586_018_07553_0
crossref_primary_10_3389_fphar_2022_837784
crossref_primary_10_1002_advs_202002738
crossref_primary_10_1038_s41392_021_00554_y
crossref_primary_10_3390_pathogens9040292
crossref_primary_10_14336_AD_2022_0316
crossref_primary_10_1158_1541_7786_MCR_22_0772
crossref_primary_10_1016_j_hoc_2022_08_018
crossref_primary_10_1016_j_lfs_2024_122897
crossref_primary_10_3390_cancers14143545
crossref_primary_10_1007_s00011_022_01598_8
crossref_primary_10_1038_s41467_020_19627_7
crossref_primary_10_1038_s41586_018_0705_y
crossref_primary_10_1172_jci_insight_151515
crossref_primary_10_3390_ijms25052750
crossref_primary_10_15252_embj_2022113258
crossref_primary_10_1016_j_molmed_2019_06_004
crossref_primary_10_1080_15384101_2022_2109899
crossref_primary_10_1002_jez_b_23227
crossref_primary_10_1084_jem_20181329
crossref_primary_10_1073_pnas_2117754119
crossref_primary_10_1016_j_chom_2020_02_004
crossref_primary_10_1080_17460441_2023_2244409
crossref_primary_10_3389_fimmu_2023_1132653
crossref_primary_10_3389_fimmu_2021_622738
crossref_primary_10_52601_bpr_2023_230032
crossref_primary_10_1111_apha_13194
crossref_primary_10_1158_0008_5472_CAN_19_0212
crossref_primary_10_3389_fphar_2021_641098
crossref_primary_10_1007_s43440_024_00609_1
crossref_primary_10_1038_s41392_021_00800_3
crossref_primary_10_1111_acel_12901
crossref_primary_10_1002_adhm_202000064
crossref_primary_10_1186_s12943_025_02243_8
crossref_primary_10_1038_s41467_022_34078_y
crossref_primary_10_3390_cells10040930
crossref_primary_10_32604_or_2022_03529
crossref_primary_10_1111_imm_13771
crossref_primary_10_3390_genes12020163
crossref_primary_10_1038_s41467_019_10619_w
crossref_primary_10_3389_fimmu_2021_734229
crossref_primary_10_1016_j_mtbio_2023_100839
crossref_primary_10_1080_09553002_2020_1712492
crossref_primary_10_1038_s41418_024_01291_9
crossref_primary_10_1016_j_nantod_2024_102535
crossref_primary_10_1016_j_adcanc_2022_100032
crossref_primary_10_1016_j_it_2019_06_001
crossref_primary_10_1016_j_apmt_2021_101149
crossref_primary_10_3389_fimmu_2020_613079
crossref_primary_10_3390_onco4040022
crossref_primary_10_3390_pathogens11020175
crossref_primary_10_1111_ddg_14357_g
crossref_primary_10_3389_fimmu_2018_03077
crossref_primary_10_1074_mcp_RA120_001981
crossref_primary_10_3389_fmed_2023_1083242
crossref_primary_10_3389_fimmu_2023_1324516
crossref_primary_10_1155_2021_8852233
crossref_primary_10_1016_j_tox_2021_153058
crossref_primary_10_1158_2159_8290_CD_20_0868
crossref_primary_10_1002_ctm2_70011
crossref_primary_10_1080_02713683_2024_2430223
crossref_primary_10_4167_jbv_2024_54_1_050
crossref_primary_10_1007_s00262_022_03200_w
crossref_primary_10_1146_annurev_immunol_101721_033341
crossref_primary_10_1038_s41423_021_00670_3
crossref_primary_10_1080_08830185_2020_1844195
crossref_primary_10_1073_pnas_2101848119
crossref_primary_10_1038_s41556_022_00950_8
crossref_primary_10_1007_s40242_024_4120_7
crossref_primary_10_3389_fonc_2023_1295579
crossref_primary_10_1016_j_canlet_2024_217268
crossref_primary_10_3390_ijms21218151
crossref_primary_10_1523_ENEURO_0504_24_2025
crossref_primary_10_1158_2159_8290_CD_19_0780
crossref_primary_10_1007_s42764_022_00072_3
crossref_primary_10_1084_jem_20210518
crossref_primary_10_1097_CAD_0000000000001680
crossref_primary_10_3390_ijms232314890
crossref_primary_10_3389_fonc_2019_00122
crossref_primary_10_3390_cancers15030979
crossref_primary_10_3390_proteomes8040030
crossref_primary_10_1038_s41467_023_38784_z
crossref_primary_10_3389_fimmu_2022_1095577
crossref_primary_10_1158_2159_8290_CD_18_1020
crossref_primary_10_1002_advs_202002117
crossref_primary_10_3390_antiox11050975
crossref_primary_10_1007_s12035_024_04574_x
crossref_primary_10_1016_j_jprot_2023_104869
crossref_primary_10_3390_ijms25074120
crossref_primary_10_1038_s41571_021_00518_9
crossref_primary_10_1136_jitc_2024_010252
crossref_primary_10_1016_j_tranon_2024_102074
crossref_primary_10_3390_ijms21207441
crossref_primary_10_1038_s41577_022_00751_y
crossref_primary_10_1007_s00430_019_00593_x
crossref_primary_10_1371_journal_pone_0319216
crossref_primary_10_15430_JCP_2023_28_4_143
crossref_primary_10_1007_s11926_019_0800_6
crossref_primary_10_1128_iai_00153_23
crossref_primary_10_1016_j_ijbiomac_2025_139534
crossref_primary_10_31857_S0044459624040026
crossref_primary_10_3390_gidisord6030039
crossref_primary_10_3389_fimmu_2024_1380517
crossref_primary_10_3390_molecules28073127
crossref_primary_10_1016_j_molcel_2020_07_026
crossref_primary_10_3389_fimmu_2022_826880
crossref_primary_10_1016_j_arr_2019_100940
crossref_primary_10_1515_biol_2022_0992
crossref_primary_10_1016_j_molcel_2024_11_026
crossref_primary_10_3389_fcell_2021_645593
crossref_primary_10_1007_s12539_021_00446_3
crossref_primary_10_1016_j_ejmech_2019_111855
crossref_primary_10_1084_jem_20201833
crossref_primary_10_1007_s00281_024_01016_7
crossref_primary_10_1002_jmv_28955
crossref_primary_10_1002_path_5389
crossref_primary_10_1016_j_cpcardiol_2023_102189
crossref_primary_10_1016_j_canlet_2025_217599
crossref_primary_10_1016_j_virol_2024_110238
crossref_primary_10_1038_s41576_019_0151_1
crossref_primary_10_1016_j_cmet_2023_07_009
crossref_primary_10_3390_ijms24076313
crossref_primary_10_1016_j_it_2023_04_006
crossref_primary_10_1016_j_compbiomed_2024_108776
crossref_primary_10_1080_17435390_2022_2147460
crossref_primary_10_1039_D0CB00187B
crossref_primary_10_1016_j_mad_2024_111978
crossref_primary_10_15252_embr_201846935
crossref_primary_10_1016_j_cej_2024_158754
crossref_primary_10_1002_mco2_511
crossref_primary_10_1016_j_jhepr_2023_100695
Cites_doi 10.1038/ng.373
10.1158/2326-6066.CIR-13-0123
10.1158/0008-5472.CAN-13-1703
10.1084/jem.20120876
10.1038/nature07317
10.1016/j.celrep.2015.12.029
10.1016/j.molcel.2014.03.040
10.1016/0092-8674(92)90390-X
10.1038/nnano.2017.52
10.1084/jem.20101158
10.1093/mutage/geq052
10.4049/jimmunol.1402793
10.1073/pnas.0911267106
10.1158/0008-5472.CAN-16-1404
10.1093/carcin/21.3.485
10.1038/ncomms11752
10.1038/nature18268
10.1126/science.aab3628
10.1016/j.molcel.2013.05.022
10.1073/pnas.1516465112
10.1038/onc.2014.457
10.1016/j.cell.2008.03.038
10.1128/MCB.00640-08
10.1016/0277-5379(90)90044-T
10.1038/s41467-017-01932-3
10.4049/jimmunol.1402051
10.1371/journal.pone.0184843
10.1126/science.aad7611
10.1016/j.celrep.2016.07.002
10.1016/j.nano.2017.10.013
10.1038/nsmb.3498
10.1038/nprot.2007.77
10.1084/jem.20151464
10.1038/nm.4428
10.1074/jbc.M603307200
10.1016/j.molcel.2013.07.004
10.1016/j.immuni.2017.07.016
10.1016/j.cell.2008.06.049
10.4049/jimmunol.188.Supp.162.33
10.1126/science.aaa2630
10.1242/jcs.111.3.395
10.1038/sj.cdd.4401843
10.4049/jimmunol.1500969
10.1016/j.celrep.2014.08.074
10.4161/nucl.18954
10.1016/j.cell.2014.11.036
10.1038/329630a0
10.1016/j.jaci.2016.10.031
10.1172/JCI79915
10.1073/pnas.211053698
10.1038/nature05456
10.1038/ncb3586
10.1126/science.aab3632
10.1038/ng1842
10.1016/j.molcel.2006.06.005
10.1016/0092-8674(95)90028-4
10.1016/0027-5107(86)90010-2
10.1073/pnas.1222694110
10.1038/nature05327
10.1038/nrc2560
10.1038/nrc2628
10.1016/j.immuni.2016.04.010
10.1038/nature14156
10.1038/nrc2440
10.1146/annurev-biochem-061516-044813
10.1126/science.1232458
10.1038/nature23470
10.1038/ni.3267
10.1038/ni881
10.1084/jem.177.5.1391
10.1073/pnas.0900850106
10.1038/nature16932
10.1101/gad.289769.116
10.1038/nchembio.1661
10.1016/j.cell.2013.07.023
10.1038/ncb1024
10.1038/nrm.2016.177
10.1038/nature05529
10.1016/0165-1161(85)90015-9
10.1038/nm.4450
10.1038/nature10429
10.1038/ni1282
10.1126/science.1229963
10.1016/j.immuni.2014.10.019
10.1038/nature23449
10.1016/j.immuni.2011.11.018
10.1016/j.cell.2013.06.007
10.1128/JVI.07119-11
10.1016/j.cell.2012.04.011
10.1158/0008-5472.CAN-10-2820
10.1158/0008-5472.CAN-06-3452
10.1093/hmg/ddx283
10.1016/j.cell.2013.12.011
10.1016/j.molcel.2017.06.020
10.4049/jimmunol.1100040
10.1056/NEJMoa1312625
10.4049/jimmunol.1601999
10.1146/annurev-pathol-121808-102144
10.1038/nature24050
10.1016/j.cell.2017.09.039
10.1038/ncb1909
10.1016/j.cell.2008.03.039
10.1126/science.aad7297
10.1016/j.celrep.2013.05.009
10.1128/mBio.00368-17
10.1073/pnas.1312033110
10.1016/j.cell.2013.04.046
10.15252/embj.201593339
10.1084/jem.20171749
10.1038/nature12306
10.1073/pnas.1621363114
10.1038/ni1146
10.1038/10552
10.1016/j.celrep.2015.03.041
10.1038/nature03884
10.1016/j.immuni.2008.09.003
10.1038/ncomms6166
10.1161/CIRCULATIONAHA.117.031046
10.1016/j.immuni.2014.10.017
10.1016/j.cell.2014.11.037
10.1038/s41467-017-00833-9
10.1038/ncb1867
10.1126/science.285.5428.727
10.1126/science.1244040
10.1038/nm.3708
10.1073/pnas.1705499114
10.1016/j.immuni.2015.01.012
10.1038/ni.3558
10.1084/jem.20101159
10.1016/j.cell.2007.10.017
10.1038/s41467-017-00573-w
10.4049/jimmunol.1401337
10.1158/0008-5472.CAN-15-1885
10.1073/pnas.1512832112
10.1111/j.1349-7006.2008.00791.x
10.1016/j.cell.2009.03.037
10.1016/j.celrep.2015.03.069
10.1126/science.aab3291
10.1093/hmg/ddp293
10.1371/journal.pbio.0060301
10.1136/annrheumdis-2013-204845
10.1126/science.1094557
10.1158/1541-7786.MCR-10-0358
10.1126/scisignal.2002521
10.1172/JCI45785
10.1073/pnas.1215006109
10.1038/ng1845
10.1146/annurev-immunol-032713-120156
10.1038/nature01850
10.1016/j.cell.2008.06.032
10.1002/iub.1566
10.1091/mbc.E05-09-0858
10.1016/j.celrep.2015.04.031
10.1016/j.cmet.2013.08.011
10.1016/j.celrep.2016.03.006
10.4049/jimmunol.1300097
10.4049/jimmunol.198.Supp.130.28
10.1016/j.chom.2016.01.010
10.1038/srep19049
ContentType Journal Article
Copyright 2018 Li and Chen.
Copyright Rockefeller University Press May 7, 2018
2018 Li and Chen 2018
Copyright_xml – notice: 2018 Li and Chen.
– notice: Copyright Rockefeller University Press May 7, 2018
– notice: 2018 Li and Chen 2018
DBID AAYXX
CITATION
NPM
7QL
7QP
7T5
7TK
7U9
8FD
C1K
FR3
H94
M7N
P64
RC3
7X8
5PM
DOI 10.1084/jem.20180139
DatabaseName CrossRef
PubMed
Bacteriology Abstracts (Microbiology B)
Calcium & Calcified Tissue Abstracts
Immunology Abstracts
Neurosciences Abstracts
Virology and AIDS Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
AIDS and Cancer Research Abstracts
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
PubMed
Genetics Abstracts
Virology and AIDS Abstracts
Technology Research Database
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
AIDS and Cancer Research Abstracts
Immunology Abstracts
Engineering Research Database
Calcium & Calcified Tissue Abstracts
Neurosciences Abstracts
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
PubMed

CrossRef
Genetics Abstracts
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
DocumentTitleAlternate cGAS links DNA damage to sterile inflammation
EISSN 1540-9538
EndPage 1299
ExternalDocumentID PMC5940270
29622565
10_1084_jem_20180139
Genre Research Support, Non-U.S. Gov't
Journal Article
Review
GrantInformation_xml – fundername: Howard Hughes Medical Institute
– fundername: ;
– fundername: Welch Foundation
  grantid: I-1389
– fundername: ;
  grantid: RP120718; RP150498
– fundername: ;
  grantid: LRI-2014
GroupedDBID ---
-~X
18M
29K
2WC
36B
4.4
53G
5GY
5RE
5VS
AAYXX
ABOCM
ABZEH
ACGFO
ACNCT
ACPRK
ADBBV
AENEX
AFOSN
AFRAH
ALMA_UNASSIGNED_HOLDINGS
AOIJS
BAWUL
BTFSW
C45
CITATION
CS3
D-I
DIK
DU5
E3Z
EBS
EJD
EMB
F5P
F9R
GX1
H13
HYE
IH2
K-O
KQ8
L7B
N9A
O5R
O5S
OK1
P2P
P6G
R.V
RHI
SJN
TR2
TRP
UHB
W8F
WOQ
FRP
NPM
RHF
RPM
7QL
7QP
7T5
7TK
7U9
8FD
C1K
FR3
H94
M7N
P64
RC3
7X8
5PM
ID FETCH-LOGICAL-c408t-4e7ffa34fda8db3f0e7be258c882a4faea81541786817239cff787e892b5712b3
ISSN 0022-1007
1540-9538
IngestDate Thu Aug 21 14:04:35 EDT 2025
Fri Jul 11 03:51:34 EDT 2025
Mon Jun 30 16:50:30 EDT 2025
Wed Feb 19 02:34:27 EST 2025
Tue Jul 01 00:41:11 EDT 2025
Thu Apr 24 23:13:13 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 5
Language English
License 2018 Li and Chen.
This article is distributed under the terms of an Attribution–Noncommercial–Share Alike–No Mirror Sites license for the first six months after the publication date (see http://www.rupress.org/terms/). After six months it is available under a Creative Commons License (Attribution–Noncommercial–Share Alike 4.0 International license, as described at https://creativecommons.org/licenses/by-nc-sa/4.0/).
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c408t-4e7ffa34fda8db3f0e7be258c882a4faea81541786817239cff787e892b5712b3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Review-3
content type line 23
ORCID 0000-0002-8475-8251
OpenAccessLink https://pubmed.ncbi.nlm.nih.gov/PMC5940270
PMID 29622565
PQID 2035235653
PQPubID 2046203
PageCount 13
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_5940270
proquest_miscellaneous_2022996279
proquest_journals_2035235653
pubmed_primary_29622565
crossref_citationtrail_10_1084_jem_20180139
crossref_primary_10_1084_jem_20180139
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20180507
PublicationDateYYYYMMDD 2018-05-07
PublicationDate_xml – month: 5
  year: 2018
  text: 20180507
  day: 7
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: New York
PublicationTitle The Journal of experimental medicine
PublicationTitleAlternate J Exp Med
PublicationYear 2018
Publisher Rockefeller University Press
Publisher_xml – name: Rockefeller University Press
References Sun (2023072609295753900_bib131) 2009; 106
Coppé (2023072609295753900_bib25) 2008; 6
Dehé (2023072609295753900_bib32) 2017; 18
Fenech (2023072609295753900_bib45) 2011; 26
Xia (2023072609295753900_bib150) 2016; 76
Zhang (2023072609295753900_bib159) 2008; 99
An (2023072609295753900_bib7) 2015; 194
Chen (2023072609295753900_bib21) 2017; 24
Dou (2023072609295753900_bib40) 2017; 550
Morchikh (2023072609295753900_bib112) 2017; 67
Saitoh (2023072609295753900_bib123) 2009; 106
Demaria (2023072609295753900_bib33) 2015; 112
Lan (2023072609295753900_bib87) 2014; 9
Gray (2023072609295753900_bib56) 2015; 195
Sun (2023072609295753900_bib130) 2013; 339
Janssens (2023072609295753900_bib71) 2006; 13
Zhu (2023072609295753900_bib162) 2014; 193
Gul (2023072609295753900_bib57) 2017
Kuilman (2023072609295753900_bib84) 2008; 133
Laguette (2023072609295753900_bib85) 2014; 156
Ho (2023072609295753900_bib67) 2016; 44
Inomata (2023072609295753900_bib68) 2009; 137
Niedernhofer (2023072609295753900_bib113) 2006; 444
Zwi (2023072609295753900_bib163) 1994; 6
Acosta (2023072609295753900_bib2) 2008; 133
Wu (2023072609295753900_bib147) 2014; 32
Xiao (2023072609295753900_bib151) 2013; 51
Zhang (2023072609295753900_bib160) 2013; 51
Gao (2023072609295753900_bib51) 2013; 153
Moiseeva (2023072609295753900_bib110) 2006; 17
Parrinello (2023072609295753900_bib115) 2003; 5
Vargas (2023072609295753900_bib139) 2012; 3
Ahn (2023072609295753900_bib5) 2014; 5
Gaidt (2023072609295753900_bib48) 2017; 171
Leibovich (2023072609295753900_bib90) 1987; 329
Cai (2023072609295753900_bib16) 2014; 54
Xue (2023072609295753900_bib153) 2007; 445
Chen (2023072609295753900_bib19) 2016; 533
Rongvaux (2023072609295753900_bib122) 2014; 159
Gasser (2023072609295753900_bib53) 2005; 436
Mackenzie (2023072609295753900_bib103) 2017; 548
Härtlova (2023072609295753900_bib62) 2015; 42
Rodero (2023072609295753900_bib120) 2017; 8
Tilstra (2023072609295753900_bib137) 2012; 122
Lau (2023072609295753900_bib89) 2015; 350
Brzostek-Racine (2023072609295753900_bib13) 2011; 187
Herzner (2023072609295753900_bib65) 2015; 16
Jin (2023072609295753900_bib72) 2008; 28
Tanaka (2023072609295753900_bib134) 2012; 5
Li (2023072609295753900_bib92) 2016; 6
Lim (2023072609295753900_bib94) 2012; 188
Zeng (2023072609295753900_bib158) 2009; 11
Zhong (2023072609295753900_bib161) 2008; 29
Lowe (2023072609295753900_bib98) 2000; 21
Gao (2023072609295753900_bib52) 2013; 154
Mackenzie (2023072609295753900_bib102) 2016; 35
Yoshida (2023072609295753900_bib156) 2005; 6
Fenech (2023072609295753900_bib44) 1986; 161
Gao (2023072609295753900_bib50) 2015; 112
Takaoka (2023072609295753900_bib133) 2003; 424
Rodier (2023072609295753900_bib121) 2009; 11
Yang (2023072609295753900_bib155) 2007; 131
Kawane (2023072609295753900_bib76) 2003; 4
Yang (2023072609295753900_bib154) 2017; 114
White (2023072609295753900_bib143) 2014; 159
Di Micco (2023072609295753900_bib38) 2006; 444
Swanson (2023072609295753900_bib132) 2017; 214
Harding (2023072609295753900_bib61) 2017; 548
Vincent (2023072609295753900_bib140) 2017; 8
Maelfait (2023072609295753900_bib104) 2016; 16
Reijns (2023072609295753900_bib118) 2012; 149
d’Adda di Fagagna (2023072609295753900_bib31) 2008; 8
Conlon (2023072609295753900_bib23) 2013; 190
Woo (2023072609295753900_bib146) 2014; 41
Crow (2023072609295753900_bib28) 2009; 18
Melki (2023072609295753900_bib108) 2017; 140
Krtolica (2023072609295753900_bib82) 2001; 98
Kerur (2023072609295753900_bib77) 2017; 24
Liu (2023072609295753900_bib96) 2015; 347
Diamond (2023072609295753900_bib37) 2011; 208
Wu (2023072609295753900_bib148) 2013; 339
Gentili (2023072609295753900_bib54) 2015; 349
Hiller (2023072609295753900_bib66) 2012; 209
Bauer (2023072609295753900_bib11) 1999; 285
Katlinskaya (2023072609295753900_bib74) 2016; 15
Krizhanovsky (2023072609295753900_bib81) 2008; 134
Stetson (2023072609295753900_bib128) 2008; 134
Coppé (2023072609295753900_bib24) 2006; 281
de Queiroz (2023072609295753900_bib36) 2017; 198
Sugihara (2023072609295753900_bib129) 2011; 9
Malik (2023072609295753900_bib105) 1990; 26
Liu (2023072609295753900_bib97) 2014; 371
Rice (2023072609295753900_bib119) 2009; 41
Gall (2023072609295753900_bib49) 2012; 36
Burdette (2023072609295753900_bib14) 2011; 478
Yu (2023072609295753900_bib157) 2015; 11
Hatch (2023072609295753900_bib63) 2013; 154
Hall (2023072609295753900_bib59) 2017; 12
Orosz (2023072609295753900_bib114) 1993; 177
Cao (2023072609295753900_bib17) 2018
Siddoo-Atwal (2023072609295753900_bib126) 1996; 56
Sistigu (2023072609295753900_bib127) 2014; 20
Shen (2023072609295753900_bib125) 2015; 11
Wilson (2023072609295753900_bib144) 2018; 14
Bartsch (2023072609295753900_bib10) 2017; 26
Ahn (2023072609295753900_bib6) 2015; 34
Ma (2023072609295753900_bib101) 2016; 19
Glück (2023072609295753900_bib55) 2017; 19
Ishii (2023072609295753900_bib69) 2006; 7
Xia (2023072609295753900_bib149) 2016; 14
Wolf (2023072609295753900_bib145) 2016; 7
Liu (2023072609295753900_bib95) 2007; 67
Baker (2023072609295753900_bib8) 2016; 530
Coppé (2023072609295753900_bib26) 2010; 5
Crow (2023072609295753900_bib29) 2006; 38
Larkin (2023072609295753900_bib88) 2017; 199
McPherson (2023072609295753900_bib107) 2004; 304
Kuilman (2023072609295753900_bib83) 2009; 9
Fenech (2023072609295753900_bib42) 2007; 2
Burnette (2023072609295753900_bib15) 2011; 71
Luthra (2023072609295753900_bib100) 2017; 8
Xu (2023072609295753900_bib152) 2017; 47
Ahn (2023072609295753900_bib3) 2012; 109
Kretschmer (2023072609295753900_bib80) 2015; 74
Schlegel (2023072609295753900_bib124) 1986; 46
Pokatayev (2023072609295753900_bib116) 2016; 213
Franzolin (2023072609295753900_bib46) 2013; 110
Li (2023072609295753900_bib91) 2014; 10
Chandra (2023072609295753900_bib18) 2014; 2
Wang (2023072609295753900_bib141) 2017; 114
West (2023072609295753900_bib142) 2015; 520
Karakasilioti (2023072609295753900_bib73) 2013; 18
Mboko (2023072609295753900_bib106) 2012; 86
Ablasser (2023072609295753900_bib1) 2013; 498
Crow (2023072609295753900_bib30) 2006; 38
Henning (2023072609295753900_bib64) 1995; 82
Ishikawa (2023072609295753900_bib70) 2008; 455
Bridgeman (2023072609295753900_bib12) 2015; 349
Hanson (2023072609295753900_bib60) 2015; 125
Melton (2023072609295753900_bib109) 1998; 111
Deng (2023072609295753900_bib35) 2014; 41
Troelstra (2023072609295753900_bib138) 1992; 71
King (2023072609295753900_bib78) 2017; 23
Erdal (2023072609295753900_bib41) 2017; 31
Fuertes (2023072609295753900_bib47) 2011; 208
Denais (2023072609295753900_bib34) 2016; 352
Kato (2023072609295753900_bib75) 2017; 86
Tao (2023072609295753900_bib136) 2016; 68
Lam (2023072609295753900_bib86) 2014; 74
Balkwill (2023072609295753900_bib9) 2009; 9
Tang (2023072609295753900_bib135) 2016; 76
Ahn (2023072609295753900_bib4) 2014; 193
Chowdhury (2023072609295753900_bib22) 2006; 23
Fenech (2023072609295753900_bib43) 1985; 147
Li (2023072609295753900_bib93) 2013; 341
Raab (2023072609295753900_bib117) 2016; 352
Corrales (2023072609295753900_bib27) 2015; 11
Luo (2023072609295753900_bib99) 2017; 12
Chen (2023072609295753900_bib20) 2016; 17
Moore (2023072609295753900_bib111) 1999; 5
Kondo (2023072609295753900_bib79) 2013; 110
Gulen (2023072609295753900_bib58) 2017; 8
Diner (2023072609295753900_bib39) 2013; 3
References_xml – volume: 41
  start-page: 829
  year: 2009
  ident: 2023072609295753900_bib119
  article-title: Mutations involved in Aicardi-Goutières syndrome implicate SAMHD1 as regulator of the innate immune response
  publication-title: Nat. Genet.
  doi: 10.1038/ng.373
– volume: 2
  start-page: 901
  year: 2014
  ident: 2023072609295753900_bib18
  article-title: STING ligand c-di-GMP improves cancer vaccination against metastatic breast cancer
  publication-title: Cancer Immunol. Res.
  doi: 10.1158/2326-6066.CIR-13-0123
– volume: 74
  start-page: 2193
  year: 2014
  ident: 2023072609295753900_bib86
  article-title: RAE1 ligands for the NKG2D receptor are regulated by STING-dependent DNA sensor pathways in lymphoma
  publication-title: Cancer Res.
  doi: 10.1158/0008-5472.CAN-13-1703
– volume: 209
  start-page: 1419
  year: 2012
  ident: 2023072609295753900_bib66
  article-title: Mammalian RNase H2 removes ribonucleotides from DNA to maintain genome integrity
  publication-title: J. Exp. Med.
  doi: 10.1084/jem.20120876
– volume: 455
  start-page: 674
  year: 2008
  ident: 2023072609295753900_bib70
  article-title: STING is an endoplasmic reticulum adaptor that facilitates innate immune signalling
  publication-title: Nature.
  doi: 10.1038/nature07317
– volume: 14
  start-page: 282
  year: 2016
  ident: 2023072609295753900_bib149
  article-title: Deregulation of STING Signaling in Colorectal Carcinoma Constrains DNA Damage Responses and Correlates With Tumorigenesis
  publication-title: Cell Reports.
  doi: 10.1016/j.celrep.2015.12.029
– volume: 54
  start-page: 289
  year: 2014
  ident: 2023072609295753900_bib16
  article-title: The cGAS-cGAMP-STING pathway of cytosolic DNA sensing and signaling
  publication-title: Mol. Cell.
  doi: 10.1016/j.molcel.2014.03.040
– volume: 71
  start-page: 939
  year: 1992
  ident: 2023072609295753900_bib138
  article-title: ERCC6, a member of a subfamily of putative helicases, is involved in Cockayne’s syndrome and preferential repair of active genes
  publication-title: Cell.
  doi: 10.1016/0092-8674(92)90390-X
– volume: 12
  start-page: 648
  year: 2017
  ident: 2023072609295753900_bib99
  article-title: A STING-activating nanovaccine for cancer immunotherapy
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/nnano.2017.52
– volume: 208
  start-page: 1989
  year: 2011
  ident: 2023072609295753900_bib37
  article-title: Type I interferon is selectively required by dendritic cells for immune rejection of tumors
  publication-title: J. Exp. Med.
  doi: 10.1084/jem.20101158
– volume: 26
  start-page: 125
  year: 2011
  ident: 2023072609295753900_bib45
  article-title: Molecular mechanisms of micronucleus, nucleoplasmic bridge and nuclear bud formation in mammalian and human cells
  publication-title: Mutagenesis.
  doi: 10.1093/mutage/geq052
– volume: 194
  start-page: 4089
  year: 2015
  ident: 2023072609295753900_bib7
  article-title: Cutting edge: Antimalarial drugs inhibit IFN-β production through blockade of cyclic GMP-AMP synthase-DNA interaction
  publication-title: J. Immunol.
  doi: 10.4049/jimmunol.1402793
– volume: 106
  start-page: 20842
  year: 2009
  ident: 2023072609295753900_bib123
  article-title: Atg9a controls dsDNA-driven dynamic translocation of STING and the innate immune response
  publication-title: Proc. Natl. Acad. Sci. USA.
  doi: 10.1073/pnas.0911267106
– volume: 76
  start-page: 6747
  year: 2016
  ident: 2023072609295753900_bib150
  article-title: Recurrent Loss of STING Signaling in Melanoma Correlates with Susceptibility to Viral Oncolysis
  publication-title: Cancer Res.
  doi: 10.1158/0008-5472.CAN-16-1404
– volume: 21
  start-page: 485
  year: 2000
  ident: 2023072609295753900_bib98
  article-title: Apoptosis in cancer
  publication-title: Carcinogenesis.
  doi: 10.1093/carcin/21.3.485
– volume: 7
  start-page: 11752
  year: 2016
  ident: 2023072609295753900_bib145
  article-title: RPA and Rad51 constitute a cell intrinsic mechanism to protect the cytosol from self DNA
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms11752
– volume: 533
  start-page: 493
  year: 2016
  ident: 2023072609295753900_bib19
  article-title: Carcinoma-astrocyte gap junctions promote brain metastasis by cGAMP transfer
  publication-title: Nature.
  doi: 10.1038/nature18268
– volume: 349
  start-page: 1232
  year: 2015
  ident: 2023072609295753900_bib54
  article-title: Transmission of innate immune signaling by packaging of cGAMP in viral particles
  publication-title: Science.
  doi: 10.1126/science.aab3628
– volume: 51
  start-page: 226
  year: 2013
  ident: 2023072609295753900_bib160
  article-title: Cyclic GMP-AMP containing mixed phosphodiester linkages is an endogenous high-affinity ligand for STING
  publication-title: Mol. Cell.
  doi: 10.1016/j.molcel.2013.05.022
– volume: 112
  start-page: E5699
  year: 2015
  ident: 2023072609295753900_bib50
  article-title: Activation of cyclic GMP-AMP synthase by self-DNA causes autoimmune diseases
  publication-title: Proc. Natl. Acad. Sci. USA.
  doi: 10.1073/pnas.1516465112
– volume: 34
  start-page: 5302
  year: 2015
  ident: 2023072609295753900_bib6
  article-title: Diverse roles of STING-dependent signaling on the development of cancer
  publication-title: Oncogene.
  doi: 10.1038/onc.2014.457
– volume: 133
  start-page: 1006
  year: 2008
  ident: 2023072609295753900_bib2
  article-title: Chemokine signaling via the CXCR2 receptor reinforces senescence
  publication-title: Cell.
  doi: 10.1016/j.cell.2008.03.038
– volume: 28
  start-page: 5014
  year: 2008
  ident: 2023072609295753900_bib72
  article-title: MPYS, a novel membrane tetraspanner, is associated with major histocompatibility complex class II and mediates transduction of apoptotic signals
  publication-title: Mol. Cell. Biol.
  doi: 10.1128/MCB.00640-08
– volume: 26
  start-page: 1031
  year: 1990
  ident: 2023072609295753900_bib105
  article-title: Cells secreting tumour necrosis factor show enhanced metastasis in nude mice
  publication-title: Eur. J. Cancer.
  doi: 10.1016/0277-5379(90)90044-T
– volume: 8
  start-page: 2176
  year: 2017
  ident: 2023072609295753900_bib120
  article-title: Type I interferon-mediated autoinflammation due to DNase II deficiency
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-017-01932-3
– volume: 193
  start-page: 4779
  year: 2014
  ident: 2023072609295753900_bib162
  article-title: Cutting edge: STING mediates protection against colorectal tumorigenesis by governing the magnitude of intestinal inflammation
  publication-title: J. Immunol.
  doi: 10.4049/jimmunol.1402051
– volume: 12
  start-page: e0184843
  year: 2017
  ident: 2023072609295753900_bib59
  article-title: Discovery of PF-06928215 as a high affinity inhibitor of cGAS enabled by a novel fluorescence polarization assay
  publication-title: PLoS One.
  doi: 10.1371/journal.pone.0184843
– volume: 352
  start-page: 359
  year: 2016
  ident: 2023072609295753900_bib117
  article-title: ESCRT III repairs nuclear envelope ruptures during cell migration to limit DNA damage and cell death
  publication-title: Science.
  doi: 10.1126/science.aad7611
– volume: 16
  start-page: 1492
  year: 2016
  ident: 2023072609295753900_bib104
  article-title: Restriction by SAMHD1 Limits cGAS/STING-Dependent Innate and Adaptive Immune Responses to HIV-1
  publication-title: Cell Reports.
  doi: 10.1016/j.celrep.2016.07.002
– volume: 14
  start-page: 237
  year: 2018
  ident: 2023072609295753900_bib144
  article-title: Biodegradable STING agonist nanoparticles for enhanced cancer immunotherapy
  publication-title: Nanomedicine (Lond.).
  doi: 10.1016/j.nano.2017.10.013
– volume: 24
  start-page: 1124
  year: 2017
  ident: 2023072609295753900_bib21
  article-title: Extrachromosomal telomere repeat DNA is linked to ALT development via cGAS-STING DNA sensing pathway
  publication-title: Nat. Struct. Mol. Biol.
  doi: 10.1038/nsmb.3498
– volume: 2
  start-page: 1084
  year: 2007
  ident: 2023072609295753900_bib42
  article-title: Cytokinesis-block micronucleus cytome assay
  publication-title: Nat. Protoc.
  doi: 10.1038/nprot.2007.77
– volume: 213
  start-page: 329
  year: 2016
  ident: 2023072609295753900_bib116
  article-title: RNase H2 catalytic core Aicardi-Goutières syndrome-related mutant invokes cGAS-STING innate immune-sensing pathway in mice
  publication-title: J. Exp. Med.
  doi: 10.1084/jem.20151464
– volume: 23
  start-page: 1481
  year: 2017
  ident: 2023072609295753900_bib78
  article-title: IRF3 and type I interferons fuel a fatal response to myocardial infarction
  publication-title: Nat. Med.
  doi: 10.1038/nm.4428
– volume: 281
  start-page: 29568
  year: 2006
  ident: 2023072609295753900_bib24
  article-title: Secretion of vascular endothelial growth factor by primary human fibroblasts at senescence
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M603307200
– volume: 51
  start-page: 135
  year: 2013
  ident: 2023072609295753900_bib151
  article-title: The cGAS-STING pathway for DNA sensing
  publication-title: Mol. Cell.
  doi: 10.1016/j.molcel.2013.07.004
– volume: 47
  start-page: 363
  year: 2017
  ident: 2023072609295753900_bib152
  article-title: Dendritic Cells but Not Macrophages Sense Tumor Mitochondrial DNA for Cross-priming through Signal Regulatory Protein α Signaling
  publication-title: Immunity.
  doi: 10.1016/j.immuni.2017.07.016
– volume: 134
  start-page: 657
  year: 2008
  ident: 2023072609295753900_bib81
  article-title: Senescence of activated stellate cells limits liver fibrosis
  publication-title: Cell.
  doi: 10.1016/j.cell.2008.06.049
– volume: 188
  start-page: 162.33
  year: 2012
  ident: 2023072609295753900_bib94
  article-title: The importance of type I interferons in radiation-mediated antitumor responses
  publication-title: J. Immunol.
  doi: 10.4049/jimmunol.188.Supp.162.33
– volume: 347
  start-page: aaa2630
  year: 2015
  ident: 2023072609295753900_bib96
  article-title: Phosphorylation of innate immune adaptor proteins MAVS, STING, and TRIF induces IRF3 activation
  publication-title: Science.
  doi: 10.1126/science.aaa2630
– volume: 111
  start-page: 395
  year: 1998
  ident: 2023072609295753900_bib109
  article-title: Cells from ERCC1-deficient mice show increased genome instability and a reduced frequency of S-phase-dependent illegitimate chromosome exchange but a normal frequency of homologous recombination
  publication-title: J. Cell Sci.
  doi: 10.1242/jcs.111.3.395
– volume: 13
  start-page: 773
  year: 2006
  ident: 2023072609295753900_bib71
  article-title: Signals from within: the DNA-damage-induced NF-kappaB response
  publication-title: Cell Death Differ.
  doi: 10.1038/sj.cdd.4401843
– volume: 195
  start-page: 1939
  year: 2015
  ident: 2023072609295753900_bib56
  article-title: Cutting Edge: cGAS Is Required for Lethal Autoimmune Disease in the Trex1-Deficient Mouse Model of Aicardi-Goutières Syndrome
  publication-title: J. Immunol.
  doi: 10.4049/jimmunol.1500969
– volume: 9
  start-page: 180
  year: 2014
  ident: 2023072609295753900_bib87
  article-title: Dnase2a deficiency uncovers lysosomal clearance of damaged nuclear DNA via autophagy
  publication-title: Cell Reports.
  doi: 10.1016/j.celrep.2014.08.074
– volume: 3
  start-page: 88
  year: 2012
  ident: 2023072609295753900_bib139
  article-title: Transient nuclear envelope rupturing during interphase in human cancer cells
  publication-title: Nucleus.
  doi: 10.4161/nucl.18954
– volume: 159
  start-page: 1549
  year: 2014
  ident: 2023072609295753900_bib143
  article-title: Apoptotic caspases suppress mtDNA-induced STING-mediated type I IFN production
  publication-title: Cell.
  doi: 10.1016/j.cell.2014.11.036
– volume: 329
  start-page: 630
  year: 1987
  ident: 2023072609295753900_bib90
  article-title: Macrophage-induced angiogenesis is mediated by tumour necrosis factor-α
  publication-title: Nature.
  doi: 10.1038/329630a0
– volume: 140
  start-page: 543
  year: 2017
  ident: 2023072609295753900_bib108
  article-title: Disease-associated mutations identify a novel region in human STING necessary for the control of type I interferon signaling
  publication-title: J. Allergy Clin. Immunol.
  doi: 10.1016/j.jaci.2016.10.031
– volume: 6
  start-page: 79
  year: 1994
  ident: 2023072609295753900_bib163
  article-title: Correlation between immune and vascular activities of xanthenone acetic acid antitumor agents
  publication-title: Oncol. Res.
– volume: 125
  start-page: 2532
  year: 2015
  ident: 2023072609295753900_bib60
  article-title: Nanoparticulate STING agonists are potent lymph node-targeted vaccine adjuvants
  publication-title: J. Clin. Invest.
  doi: 10.1172/JCI79915
– volume: 98
  start-page: 12072
  year: 2001
  ident: 2023072609295753900_bib82
  article-title: Senescent fibroblasts promote epithelial cell growth and tumorigenesis: a link between cancer and aging
  publication-title: Proc. Natl. Acad. Sci. USA.
  doi: 10.1073/pnas.211053698
– volume: 444
  start-page: 1038
  year: 2006
  ident: 2023072609295753900_bib113
  article-title: A new progeroid syndrome reveals that genotoxic stress suppresses the somatotroph axis
  publication-title: Nature.
  doi: 10.1038/nature05456
– volume: 19
  start-page: 1061
  year: 2017
  ident: 2023072609295753900_bib55
  article-title: Innate immune sensing of cytosolic chromatin fragments through cGAS promotes senescence
  publication-title: Nat. Cell Biol.
  doi: 10.1038/ncb3586
– volume: 349
  start-page: 1228
  year: 2015
  ident: 2023072609295753900_bib12
  article-title: Viruses transfer the antiviral second messenger cGAMP between cells
  publication-title: Science.
  doi: 10.1126/science.aab3632
– volume: 38
  start-page: 910
  year: 2006
  ident: 2023072609295753900_bib30
  article-title: Mutations in genes encoding ribonuclease H2 subunits cause Aicardi-Goutières syndrome and mimic congenital viral brain infection
  publication-title: Nat. Genet.
  doi: 10.1038/ng1842
– volume: 23
  start-page: 133
  year: 2006
  ident: 2023072609295753900_bib22
  article-title: The exonuclease TREX1 is in the SET complex and acts in concert with NM23-H1 to degrade DNA during granzyme A-mediated cell death
  publication-title: Mol. Cell.
  doi: 10.1016/j.molcel.2006.06.005
– volume: 82
  start-page: 555
  year: 1995
  ident: 2023072609295753900_bib64
  article-title: The Cockayne syndrome group A gene encodes a WD repeat protein that interacts with CSB protein and a subunit of RNA polymerase II TFIIH
  publication-title: Cell.
  doi: 10.1016/0092-8674(95)90028-4
– volume: 161
  start-page: 193
  year: 1986
  ident: 2023072609295753900_bib44
  article-title: Cytokinesis-block micronucleus method in human lymphocytes: effect of in vivo ageing and low dose X-irradiation
  publication-title: Mutat. Res.
  doi: 10.1016/0027-5107(86)90010-2
– volume: 110
  start-page: 2969
  year: 2013
  ident: 2023072609295753900_bib79
  article-title: DNA damage sensor MRE11 recognizes cytosolic double-stranded DNA and induces type I interferon by regulating STING trafficking
  publication-title: Proc. Natl. Acad. Sci. USA.
  doi: 10.1073/pnas.1222694110
– volume: 444
  start-page: 638
  year: 2006
  ident: 2023072609295753900_bib38
  article-title: Oncogene-induced senescence is a DNA damage response triggered by DNA hyper-replication
  publication-title: Nature.
  doi: 10.1038/nature05327
– volume: 9
  start-page: 81
  year: 2009
  ident: 2023072609295753900_bib83
  article-title: Senescence-messaging secretome: SMS-ing cellular stress
  publication-title: Nat. Rev. Cancer.
  doi: 10.1038/nrc2560
– volume: 9
  start-page: 361
  year: 2009
  ident: 2023072609295753900_bib9
  article-title: Tumour necrosis factor and cancer
  publication-title: Nat. Rev. Cancer.
  doi: 10.1038/nrc2628
– volume: 44
  start-page: 1177
  year: 2016
  ident: 2023072609295753900_bib67
  article-title: The DNA Structure-Specific Endonuclease MUS81 Mediates DNA Sensor STING-Dependent Host Rejection of Prostate Cancer Cells
  publication-title: Immunity.
  doi: 10.1016/j.immuni.2016.04.010
– volume: 520
  start-page: 553
  year: 2015
  ident: 2023072609295753900_bib142
  article-title: Mitochondrial DNA stress primes the antiviral innate immune response
  publication-title: Nature.
  doi: 10.1038/nature14156
– volume: 8
  start-page: 512
  year: 2008
  ident: 2023072609295753900_bib31
  article-title: Living on a break: cellular senescence as a DNA-damage response
  publication-title: Nat. Rev. Cancer.
  doi: 10.1038/nrc2440
– volume: 86
  start-page: 541
  year: 2017
  ident: 2023072609295753900_bib75
  article-title: Cyclic GMP-AMP as an Endogenous Second Messenger in Innate Immune Signaling by Cytosolic DNA
  publication-title: Annu. Rev. Biochem.
  doi: 10.1146/annurev-biochem-061516-044813
– volume: 339
  start-page: 786
  year: 2013
  ident: 2023072609295753900_bib130
  article-title: Cyclic GMP-AMP synthase is a cytosolic DNA sensor that activates the type I interferon pathway
  publication-title: Science.
  doi: 10.1126/science.1232458
– volume: 548
  start-page: 466
  year: 2017
  ident: 2023072609295753900_bib61
  article-title: Mitotic progression following DNA damage enables pattern recognition within micronuclei
  publication-title: Nature.
  doi: 10.1038/nature23470
– volume: 16
  start-page: 1025
  year: 2015
  ident: 2023072609295753900_bib65
  article-title: Sequence-specific activation of the DNA sensor cGAS by Y-form DNA structures as found in primary HIV-1 cDNA
  publication-title: Nat. Immunol.
  doi: 10.1038/ni.3267
– volume: 4
  start-page: 138
  year: 2003
  ident: 2023072609295753900_bib76
  article-title: Impaired thymic development in mouse embryos deficient in apoptotic DNA degradation
  publication-title: Nat. Immunol.
  doi: 10.1038/ni881
– volume: 177
  start-page: 1391
  year: 1993
  ident: 2023072609295753900_bib114
  article-title: Enhancement of experimental metastasis by tumor necrosis factor
  publication-title: J. Exp. Med.
  doi: 10.1084/jem.177.5.1391
– start-page: S0091-6749(17)31762-1
  year: 2017
  ident: 2023072609295753900_bib57
  article-title: Type I IFN-related NETosis in ataxia telangiectasia and Artemis deficiency
  publication-title: J. Allergy Clin. Immunol.
– volume: 106
  start-page: 8653
  year: 2009
  ident: 2023072609295753900_bib131
  article-title: ERIS, an endoplasmic reticulum IFN stimulator, activates innate immune signaling through dimerization
  publication-title: Proc. Natl. Acad. Sci. USA.
  doi: 10.1073/pnas.0900850106
– volume: 530
  start-page: 184
  year: 2016
  ident: 2023072609295753900_bib8
  article-title: Naturally occurring p16(Ink4a)-positive cells shorten healthy lifespan
  publication-title: Nature.
  doi: 10.1038/nature16932
– volume: 31
  start-page: 353
  year: 2017
  ident: 2023072609295753900_bib41
  article-title: A prosurvival DNA damage-induced cytoplasmic interferon response is mediated by end resection factors and is limited by Trex1
  publication-title: Genes Dev.
  doi: 10.1101/gad.289769.116
– volume: 10
  start-page: 1043
  year: 2014
  ident: 2023072609295753900_bib91
  article-title: Hydrolysis of 2‘3’-cGAMP by ENPP1 and design of nonhydrolyzable analogs
  publication-title: Nat. Chem. Biol.
  doi: 10.1038/nchembio.1661
– volume: 154
  start-page: 748
  year: 2013
  ident: 2023072609295753900_bib52
  article-title: Structure-function analysis of STING activation by c[G(2′,5′)pA(3′,5′)p] and targeting by antiviral DMXAA
  publication-title: Cell.
  doi: 10.1016/j.cell.2013.07.023
– volume: 5
  start-page: 741
  year: 2003
  ident: 2023072609295753900_bib115
  article-title: Oxygen sensitivity severely limits the replicative lifespan of murine fibroblasts
  publication-title: Nat. Cell Biol.
  doi: 10.1038/ncb1024
– volume: 18
  start-page: 315
  year: 2017
  ident: 2023072609295753900_bib32
  article-title: Control of structure-specific endonucleases to maintain genome stability
  publication-title: Nat. Rev. Mol. Cell Biol.
  doi: 10.1038/nrm.2016.177
– volume: 445
  start-page: 656
  year: 2007
  ident: 2023072609295753900_bib153
  article-title: Senescence and tumour clearance is triggered by p53 restoration in murine liver carcinomas
  publication-title: Nature.
  doi: 10.1038/nature05529
– volume: 147
  start-page: 29
  year: 1985
  ident: 2023072609295753900_bib43
  article-title: Measurement of micronuclei in lymphocytes
  publication-title: Mutat. Res.
  doi: 10.1016/0165-1161(85)90015-9
– volume: 24
  start-page: 50
  year: 2017
  ident: 2023072609295753900_bib77
  article-title: cGAS drives noncanonical-inflammasome activation in age-related macular degeneration
  publication-title: Nat. Med.
  doi: 10.1038/nm.4450
– volume: 478
  start-page: 515
  year: 2011
  ident: 2023072609295753900_bib14
  article-title: STING is a direct innate immune sensor of cyclic di-GMP
  publication-title: Nature.
  doi: 10.1038/nature10429
– volume: 7
  start-page: 40
  year: 2006
  ident: 2023072609295753900_bib69
  article-title: A Toll-like receptor-independent antiviral response induced by double-stranded B-form DNA
  publication-title: Nat. Immunol.
  doi: 10.1038/ni1282
– volume: 339
  start-page: 826
  year: 2013
  ident: 2023072609295753900_bib148
  article-title: Cyclic GMP-AMP is an endogenous second messenger in innate immune signaling by cytosolic DNA
  publication-title: Science.
  doi: 10.1126/science.1229963
– volume: 41
  start-page: 843
  year: 2014
  ident: 2023072609295753900_bib35
  article-title: STING-Dependent Cytosolic DNA Sensing Promotes Radiation-Induced Type I Interferon-Dependent Antitumor Immunity in Immunogenic Tumors
  publication-title: Immunity.
  doi: 10.1016/j.immuni.2014.10.019
– volume: 548
  start-page: 461
  year: 2017
  ident: 2023072609295753900_bib103
  article-title: cGAS surveillance of micronuclei links genome instability to innate immunity
  publication-title: Nature.
  doi: 10.1038/nature23449
– volume: 36
  start-page: 120
  year: 2012
  ident: 2023072609295753900_bib49
  article-title: Autoimmunity initiates in nonhematopoietic cells and progresses via lymphocytes in an interferon-dependent autoimmune disease
  publication-title: Immunity.
  doi: 10.1016/j.immuni.2011.11.018
– volume: 154
  start-page: 47
  year: 2013
  ident: 2023072609295753900_bib63
  article-title: Catastrophic nuclear envelope collapse in cancer cell micronuclei
  publication-title: Cell.
  doi: 10.1016/j.cell.2013.06.007
– volume: 86
  start-page: 6899
  year: 2012
  ident: 2023072609295753900_bib106
  article-title: Coordinate regulation of DNA damage and type I interferon responses imposes an antiviral state that attenuates mouse gammaherpesvirus type 68 replication in primary macrophages
  publication-title: J. Virol.
  doi: 10.1128/JVI.07119-11
– volume: 149
  start-page: 1008
  year: 2012
  ident: 2023072609295753900_bib118
  article-title: Enzymatic removal of ribonucleotides from DNA is essential for mammalian genome integrity and development
  publication-title: Cell.
  doi: 10.1016/j.cell.2012.04.011
– volume: 71
  start-page: 2488
  year: 2011
  ident: 2023072609295753900_bib15
  article-title: The efficacy of radiotherapy relies upon induction of type i interferon-dependent innate and adaptive immunity
  publication-title: Cancer Res.
  doi: 10.1158/0008-5472.CAN-10-2820
– volume: 67
  start-page: 3117
  year: 2007
  ident: 2023072609295753900_bib95
  article-title: Senescent human fibroblasts increase the early growth of xenograft tumors via matrix metalloproteinase secretion
  publication-title: Cancer Res.
  doi: 10.1158/0008-5472.CAN-06-3452
– volume: 26
  start-page: 3960
  year: 2017
  ident: 2023072609295753900_bib10
  article-title: Absence of RNase H2 triggers generation of immunogenic micronuclei removed by autophagy
  publication-title: Hum. Mol. Genet.
  doi: 10.1093/hmg/ddx283
– volume: 156
  start-page: 134
  year: 2014
  ident: 2023072609295753900_bib85
  article-title: Premature activation of the SLX4 complex by Vpr promotes G2/M arrest and escape from innate immune sensing
  publication-title: Cell.
  doi: 10.1016/j.cell.2013.12.011
– volume: 46
  start-page: 3717
  year: 1986
  ident: 2023072609295753900_bib124
  article-title: Assessment of cytogenetic damage by quantitation of micronuclei in human peripheral blood erythrocytes
  publication-title: Cancer Res.
– volume: 67
  start-page: 387
  year: 2017
  ident: 2023072609295753900_bib112
  article-title: HEXIM1 and NEAT1 Long Non-coding RNA Form a Multi-subunit Complex that Regulates DNA-Mediated Innate Immune Response
  publication-title: Mol. Cell.
  doi: 10.1016/j.molcel.2017.06.020
– volume: 187
  start-page: 5336
  year: 2011
  ident: 2023072609295753900_bib13
  article-title: The DNA damage response induces IFN
  publication-title: J. Immunol.
  doi: 10.4049/jimmunol.1100040
– volume: 371
  start-page: 507
  year: 2014
  ident: 2023072609295753900_bib97
  article-title: Activated STING in a vascular and pulmonary syndrome
  publication-title: N. Engl. J. Med.
  doi: 10.1056/NEJMoa1312625
– volume: 199
  start-page: 397
  year: 2017
  ident: 2023072609295753900_bib88
  article-title: Cutting Edge: Activation of STING in T Cells Induces Type I IFN Responses and Cell Death
  publication-title: J. Immunol.
  doi: 10.4049/jimmunol.1601999
– volume: 5
  start-page: 99
  year: 2010
  ident: 2023072609295753900_bib26
  article-title: The senescence-associated secretory phenotype: the dark side of tumor suppression
  publication-title: Annu. Rev. Pathol.
  doi: 10.1146/annurev-pathol-121808-102144
– volume: 550
  start-page: 402
  year: 2017
  ident: 2023072609295753900_bib40
  article-title: Cytoplasmic chromatin triggers inflammation in senescence and cancer
  publication-title: Nature.
  doi: 10.1038/nature24050
– volume: 171
  start-page: 1110
  year: 2017
  ident: 2023072609295753900_bib48
  article-title: The DNA Inflammasome in Human Myeloid Cells Is Initiated by a STING-Cell Death Program Upstream of NLRP3
  publication-title: Cell.
  doi: 10.1016/j.cell.2017.09.039
– volume: 11
  start-page: 973
  year: 2009
  ident: 2023072609295753900_bib121
  article-title: Persistent DNA damage signalling triggers senescence-associated inflammatory cytokine secretion
  publication-title: Nat. Cell Biol.
  doi: 10.1038/ncb1909
– volume: 133
  start-page: 1019
  year: 2008
  ident: 2023072609295753900_bib84
  article-title: Oncogene-induced senescence relayed by an interleukin-dependent inflammatory network
  publication-title: Cell.
  doi: 10.1016/j.cell.2008.03.039
– volume: 352
  start-page: 353
  year: 2016
  ident: 2023072609295753900_bib34
  article-title: Nuclear envelope rupture and repair during cancer cell migration
  publication-title: Science.
  doi: 10.1126/science.aad7297
– volume: 3
  start-page: 1355
  year: 2013
  ident: 2023072609295753900_bib39
  article-title: The innate immune DNA sensor cGAS produces a noncanonical cyclic dinucleotide that activates human STING
  publication-title: Cell Reports.
  doi: 10.1016/j.celrep.2013.05.009
– volume: 8
  start-page: e01611
  year: 2017
  ident: 2023072609295753900_bib100
  article-title: Topoisomerase II Inhibitors Induce DNA Damage-Dependent Interferon Responses Circumventing Ebola Virus Immune Evasion
  publication-title: MBio.
  doi: 10.1128/mBio.00368-17
– volume: 110
  start-page: 14272
  year: 2013
  ident: 2023072609295753900_bib46
  article-title: The deoxynucleotide triphosphohydrolase SAMHD1 is a major regulator of DNA precursor pools in mammalian cells
  publication-title: Proc. Natl. Acad. Sci. USA.
  doi: 10.1073/pnas.1312033110
– volume: 153
  start-page: 1094
  year: 2013
  ident: 2023072609295753900_bib51
  article-title: Cyclic [G(2′,5′)pA(3′,5′)p] is the metazoan second messenger produced by DNA-activated cyclic GMP-AMP synthase
  publication-title: Cell.
  doi: 10.1016/j.cell.2013.04.046
– volume: 35
  start-page: 831
  year: 2016
  ident: 2023072609295753900_bib102
  article-title: Ribonuclease H2 mutations induce a cGAS/STING-dependent innate immune response
  publication-title: EMBO J.
  doi: 10.15252/embj.201593339
– volume: 214
  start-page: 3611
  year: 2017
  ident: 2023072609295753900_bib132
  article-title: A noncanonical function of cGAMP in inflammasome priming and activation
  publication-title: J. Exp. Med.
  doi: 10.1084/jem.20171749
– volume: 498
  start-page: 380
  year: 2013
  ident: 2023072609295753900_bib1
  article-title: cGAS produces a 2′-5′-linked cyclic dinucleotide second messenger that activates STING
  publication-title: Nature.
  doi: 10.1038/nature12306
– volume: 114
  start-page: 1637
  year: 2017
  ident: 2023072609295753900_bib141
  article-title: cGAS is essential for the antitumor effect of immune checkpoint blockade
  publication-title: Proc. Natl. Acad. Sci. USA.
  doi: 10.1073/pnas.1621363114
– volume: 6
  start-page: 49
  year: 2005
  ident: 2023072609295753900_bib156
  article-title: Lethal anemia caused by interferon-beta produced in mouse embryos carrying undigested DNA
  publication-title: Nat. Immunol.
  doi: 10.1038/ni1146
– volume: 5
  start-page: 828
  year: 1999
  ident: 2023072609295753900_bib111
  article-title: Mice deficient in tumor necrosis factor-α are resistant to skin carcinogenesis
  publication-title: Nat. Med.
  doi: 10.1038/10552
– volume: 11
  start-page: 460
  year: 2015
  ident: 2023072609295753900_bib125
  article-title: Genome-derived cytosolic DNA mediates type I interferon-dependent rejection of B cell lymphoma cells
  publication-title: Cell Reports.
  doi: 10.1016/j.celrep.2015.03.041
– volume: 56
  start-page: 443
  year: 1996
  ident: 2023072609295753900_bib126
  article-title: Elevation of interferon beta-inducible proteins in ataxia telangiectasia cells
  publication-title: Cancer Res.
– volume: 436
  start-page: 1186
  year: 2005
  ident: 2023072609295753900_bib53
  article-title: The DNA damage pathway regulates innate immune system ligands of the NKG2D receptor
  publication-title: Nature.
  doi: 10.1038/nature03884
– volume: 29
  start-page: 538
  year: 2008
  ident: 2023072609295753900_bib161
  article-title: The adaptor protein MITA links virus-sensing receptors to IRF3 transcription factor activation
  publication-title: Immunity.
  doi: 10.1016/j.immuni.2008.09.003
– volume: 5
  start-page: 5166
  year: 2014
  ident: 2023072609295753900_bib5
  article-title: Inflammation-driven carcinogenesis is mediated through STING
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms6166
– start-page: CIRCULATIONAHA.117.031046
  year: 2018
  ident: 2023072609295753900_bib17
  article-title: Cytosolic DNA Sensing Promotes Macrophage Transformation and Governs Myocardial Ischemic Injury
  publication-title: Circulation.
  doi: 10.1161/CIRCULATIONAHA.117.031046
– volume: 41
  start-page: 830
  year: 2014
  ident: 2023072609295753900_bib146
  article-title: STING-dependent cytosolic DNA sensing mediates innate immune recognition of immunogenic tumors
  publication-title: Immunity.
  doi: 10.1016/j.immuni.2014.10.017
– volume: 159
  start-page: 1563
  year: 2014
  ident: 2023072609295753900_bib122
  article-title: Apoptotic caspases prevent the induction of type I interferons by mitochondrial DNA
  publication-title: Cell.
  doi: 10.1016/j.cell.2014.11.037
– volume: 8
  start-page: 750
  year: 2017
  ident: 2023072609295753900_bib140
  article-title: Small molecule inhibition of cGAS reduces interferon expression in primary macrophages from autoimmune mice
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-017-00833-9
– volume: 11
  start-page: 616
  year: 2009
  ident: 2023072609295753900_bib158
  article-title: Telomere recombination requires the MUS81 endonuclease
  publication-title: Nat. Cell Biol.
  doi: 10.1038/ncb1867
– volume: 285
  start-page: 727
  year: 1999
  ident: 2023072609295753900_bib11
  article-title: Activation of NK cells and T cells by NKG2D, a receptor for stress-inducible MICA
  publication-title: Science.
  doi: 10.1126/science.285.5428.727
– volume: 341
  start-page: 1390
  year: 2013
  ident: 2023072609295753900_bib93
  article-title: Pivotal roles of cGAS-cGAMP signaling in antiviral defense and immune adjuvant effects
  publication-title: Science.
  doi: 10.1126/science.1244040
– volume: 20
  start-page: 1301
  year: 2014
  ident: 2023072609295753900_bib127
  article-title: Cancer cell-autonomous contribution of type I interferon signaling to the efficacy of chemotherapy
  publication-title: Nat. Med.
  doi: 10.1038/nm.3708
– volume: 114
  start-page: E4612
  year: 2017
  ident: 2023072609295753900_bib154
  article-title: cGAS is essential for cellular senescence
  publication-title: Proc. Natl. Acad. Sci. USA.
  doi: 10.1073/pnas.1705499114
– volume: 42
  start-page: 332
  year: 2015
  ident: 2023072609295753900_bib62
  article-title: DNA damage primes the type I interferon system via the cytosolic DNA sensor STING to promote anti-microbial innate immunity
  publication-title: Immunity.
  doi: 10.1016/j.immuni.2015.01.012
– volume: 17
  start-page: 1142
  year: 2016
  ident: 2023072609295753900_bib20
  article-title: Regulation and function of the cGAS-STING pathway of cytosolic DNA sensing
  publication-title: Nat. Immunol.
  doi: 10.1038/ni.3558
– volume: 208
  start-page: 2005
  year: 2011
  ident: 2023072609295753900_bib47
  article-title: Host type I IFN signals are required for antitumor CD8+ T cell responses through CD8alpha+ dendritic cells
  publication-title: J. Exp. Med.
  doi: 10.1084/jem.20101159
– volume: 131
  start-page: 873
  year: 2007
  ident: 2023072609295753900_bib155
  article-title: Trex1 exonuclease degrades ssDNA to prevent chronic checkpoint activation and autoimmune disease
  publication-title: Cell.
  doi: 10.1016/j.cell.2007.10.017
– volume: 8
  start-page: 427
  year: 2017
  ident: 2023072609295753900_bib58
  article-title: Signalling strength determines proapoptotic functions of STING
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-017-00573-w
– volume: 193
  start-page: 4634
  year: 2014
  ident: 2023072609295753900_bib4
  article-title: Intrinsic self-DNA triggers inflammatory disease dependent on STING
  publication-title: J. Immunol.
  doi: 10.4049/jimmunol.1401337
– volume: 76
  start-page: 2137
  year: 2016
  ident: 2023072609295753900_bib135
  article-title: Agonist-Mediated Activation of STING Induces Apoptosis in Malignant B Cells
  publication-title: Cancer Res.
  doi: 10.1158/0008-5472.CAN-15-1885
– volume: 112
  start-page: 15408
  year: 2015
  ident: 2023072609295753900_bib33
  article-title: STING activation of tumor endothelial cells initiates spontaneous and therapeutic antitumor immunity
  publication-title: Proc. Natl. Acad. Sci. USA.
  doi: 10.1073/pnas.1512832112
– volume: 99
  start-page: 1279
  year: 2008
  ident: 2023072609295753900_bib159
  article-title: Opposing effects of interferon-alpha and interferon-gamma on the expression of major histocompatibility complex class I chain-related A in tumors
  publication-title: Cancer Sci.
  doi: 10.1111/j.1349-7006.2008.00791.x
– volume: 137
  start-page: 1088
  year: 2009
  ident: 2023072609295753900_bib68
  article-title: Genotoxic stress abrogates renewal of melanocyte stem cells by triggering their differentiation
  publication-title: Cell.
  doi: 10.1016/j.cell.2009.03.037
– volume: 11
  start-page: 785
  year: 2015
  ident: 2023072609295753900_bib157
  article-title: DNA-damage-induced type I interferon promotes senescence and inhibits stem cell function
  publication-title: Cell Reports.
  doi: 10.1016/j.celrep.2015.03.069
– volume: 350
  start-page: 568
  year: 2015
  ident: 2023072609295753900_bib89
  article-title: DNA tumor virus oncogenes antagonize the cGAS-STING DNA-sensing pathway
  publication-title: Science.
  doi: 10.1126/science.aab3291
– volume: 18
  start-page: R130
  year: 2009
  ident: 2023072609295753900_bib28
  article-title: Aicardi-Goutieres syndrome and related phenotypes: linking nucleic acid metabolism with autoimmunity
  publication-title: Hum. Mol. Genet.
  doi: 10.1093/hmg/ddp293
– volume: 6
  start-page: 2853
  year: 2008
  ident: 2023072609295753900_bib25
  article-title: Senescence-associated secretory phenotypes reveal cell-nonautonomous functions of oncogenic RAS and the p53 tumor suppressor
  publication-title: PLoS Biol.
  doi: 10.1371/journal.pbio.0060301
– volume: 74
  start-page: e17
  year: 2015
  ident: 2023072609295753900_bib80
  article-title: SAMHD1 prevents autoimmunity by maintaining genome stability
  publication-title: Ann. Rheum. Dis.
  doi: 10.1136/annrheumdis-2013-204845
– volume: 304
  start-page: 1822
  year: 2004
  ident: 2023072609295753900_bib107
  article-title: Involvement of mammalian Mus81 in genome integrity and tumor suppression
  publication-title: Science.
  doi: 10.1126/science.1094557
– volume: 9
  start-page: 476
  year: 2011
  ident: 2023072609295753900_bib129
  article-title: Activation of interferon-stimulated genes by gamma-ray irradiation independently of the ataxia telangiectasia mutated-p53 pathway
  publication-title: Mol. Cancer Res.
  doi: 10.1158/1541-7786.MCR-10-0358
– volume: 5
  start-page: ra20
  year: 2012
  ident: 2023072609295753900_bib134
  article-title: STING specifies IRF3 phosphorylation by TBK1 in the cytosolic DNA signaling pathway
  publication-title: Sci. Signal.
  doi: 10.1126/scisignal.2002521
– volume: 122
  start-page: 2601
  year: 2012
  ident: 2023072609295753900_bib137
  article-title: NF-κB inhibition delays DNA damage-induced senescence and aging in mice
  publication-title: J. Clin. Invest.
  doi: 10.1172/JCI45785
– volume: 109
  start-page: 19386
  year: 2012
  ident: 2023072609295753900_bib3
  article-title: STING manifests self DNA-dependent inflammatory disease
  publication-title: Proc. Natl. Acad. Sci. USA.
  doi: 10.1073/pnas.1215006109
– volume: 38
  start-page: 917
  year: 2006
  ident: 2023072609295753900_bib29
  article-title: Mutations in the gene encoding the 3′-5′ DNA exonuclease TREX1 cause Aicardi-Goutières syndrome at the AGS1 locus
  publication-title: Nat. Genet.
  doi: 10.1038/ng1845
– volume: 32
  start-page: 461
  year: 2014
  ident: 2023072609295753900_bib147
  article-title: Innate immune sensing and signaling of cytosolic nucleic acids
  publication-title: Annu. Rev. Immunol.
  doi: 10.1146/annurev-immunol-032713-120156
– volume: 424
  start-page: 516
  year: 2003
  ident: 2023072609295753900_bib133
  article-title: Integration of interferon-alpha/beta signalling to p53 responses in tumour suppression and antiviral defence
  publication-title: Nature.
  doi: 10.1038/nature01850
– volume: 134
  start-page: 587
  year: 2008
  ident: 2023072609295753900_bib128
  article-title: Trex1 prevents cell-intrinsic initiation of autoimmunity
  publication-title: Cell.
  doi: 10.1016/j.cell.2008.06.032
– volume: 68
  start-page: 858
  year: 2016
  ident: 2023072609295753900_bib136
  article-title: cGAS-cGAMP-STING: The three musketeers of cytosolic DNA sensing and signaling
  publication-title: IUBMB Life.
  doi: 10.1002/iub.1566
– volume: 17
  start-page: 1583
  year: 2006
  ident: 2023072609295753900_bib110
  article-title: DNA damage signaling and p53-dependent senescence after prolonged beta-interferon stimulation
  publication-title: Mol. Biol. Cell.
  doi: 10.1091/mbc.E05-09-0858
– volume: 11
  start-page: 1018
  year: 2015
  ident: 2023072609295753900_bib27
  article-title: Direct activation of STING in the tumor microenvironment leads to potent and systemic tumor regression and immunity
  publication-title: Cell Reports.
  doi: 10.1016/j.celrep.2015.04.031
– volume: 18
  start-page: 403
  year: 2013
  ident: 2023072609295753900_bib73
  article-title: DNA damage triggers a chronic autoinflammatory response, leading to fat depletion in NER progeria
  publication-title: Cell Metab.
  doi: 10.1016/j.cmet.2013.08.011
– volume: 15
  start-page: 171
  year: 2016
  ident: 2023072609295753900_bib74
  article-title: Suppression of Type I Interferon Signaling Overcomes Oncogene-Induced Senescence and Mediates Melanoma Development and Progression
  publication-title: Cell Reports.
  doi: 10.1016/j.celrep.2016.03.006
– volume: 190
  start-page: 5216
  year: 2013
  ident: 2023072609295753900_bib23
  article-title: Mouse, but not human STING, binds and signals in response to the vascular disrupting agent 5,6-dimethylxanthenone-4-acetic acid
  publication-title: J. Immunol.
  doi: 10.4049/jimmunol.1300097
– volume: 198
  start-page: 130.28
  year: 2017
  ident: 2023072609295753900_bib36
  article-title: Defective STING signaling in ovarian cancer cells favor oncolytic virus action
  publication-title: J. Immunol.
  doi: 10.4049/jimmunol.198.Supp.130.28
– volume: 19
  start-page: 150
  year: 2016
  ident: 2023072609295753900_bib101
  article-title: The cGAS-STING Defense Pathway and Its Counteraction by Viruses
  publication-title: Cell Host Microbe.
  doi: 10.1016/j.chom.2016.01.010
– volume: 6
  start-page: 19049
  year: 2016
  ident: 2023072609295753900_bib92
  article-title: Antitumor Activity of cGAMP via Stimulation of cGAS-cGAMP-STING-IRF3 Mediated Innate Immune Response
  publication-title: Sci. Rep.
  doi: 10.1038/srep19049
SSID ssj0014456
Score 2.6968768
SecondaryResourceType review_article
Snippet Detection of microbial DNA is an evolutionarily conserved mechanism that alerts the host immune system to mount a defense response to microbial infections....
The cGAS–cGAMP–STING pathway mediates immune and inflammatory responses to cytosolic DNA. This review summarizes recent findings on how genomic instability...
SourceID pubmedcentral
proquest
pubmed
crossref
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 1287
SubjectTerms Activation
Adenosine monophosphate
AMP
Cancer
Cyclic GMP
Damage detection
Deoxyribonucleic acid
DNA
DNA damage
Genomic instability
Guanosine
Immune response
Immune system
Inflammation
Innate immunity
Microorganisms
Nucleotide sequence
Reviews
Senescence
Stability
Title The cGAS–cGAMP–STING pathway connects DNA damage to inflammation, senescence, and cancer
URI https://www.ncbi.nlm.nih.gov/pubmed/29622565
https://www.proquest.com/docview/2035235653
https://www.proquest.com/docview/2022996279
https://pubmed.ncbi.nlm.nih.gov/PMC5940270
Volume 215
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLZgSIgXxJ3CQEaCpy0jF6e2Hytu00QnpHVShZAqx3G0IUjR1grBE_-Bf8gv4TvOtaVIg5ekSZxL830-Pif-js3YUwcbJ1woAqmcDoSVaWCKYRwUkUAcJ-0ws5TvPD4c7h-Lg2k67aRDPrtkke3Z7xvzSv4HVewDrpQl-w_IthfFDvwGvlgCYSwvjLF9MzpqFAsJNsbv2q2jCX2KojmHv5pvpC8vvXTj5eFoJzefSawDxxPPAVJUCYz0vs_J-Fmq742w0xIxzvpebJdP5j3ZlVkC1jvr33q5wGQ574QElaV7f3L6kazLwV7_y0OkvM5P9q0pAllSWVRtSW1ARUhdwqpvYeMqY7OmUtqzl2gdZa_thfOhN9r1UAmy647GDogUua1d-9X02a81a63Y0HezKzHD2bPm7MvsSoy4wmeHT1tNEIJLP91v-8fqTAmc_bx_71Uf5o_AZF1f23NYJjfY9RofPqpoc5NdcuUtdnVcw3ObfQCKnNjz68dPzxusPWN4zRjeMIaDMbxiDF_MeZ8xu7zjyy4HW3jFljvs-PWryYv9oJ5rI7AiVItAOFkUJhFFblSeJUXoZObiVFlEYEYUxhkFaCOphgoub6JtUcDUO6XjLJVRnCV32VY5L919xiOt8sRpmr-uEEIbbeB2Coc75CrUiR6wnebtzWw9ED3Nh_JptgmpAXvWlv5SDcDyl3LbDRCzuoqe4yDiiwQxSzJgT9rDMKDUK2ZKN19SmRisG8YSl7hX4dbeKMZ-xATpgMkVRNsCNDj76pHy9MQP0p5qEcYyfHDBx3_IrnVVbJttLc6W7hHc3UX22FP0N1cwpi0
linkProvider Geneva Foundation for Medical Education and Research
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+cGAS%E2%80%93cGAMP%E2%80%93STING+pathway+connects+DNA+damage+to+inflammation%2C+senescence%2C+and+cancer&rft.jtitle=The+Journal+of+experimental+medicine&rft.au=Li%2C+Tuo&rft.au=Chen%2C+Zhijian+J.&rft.date=2018-05-07&rft.issn=0022-1007&rft.eissn=1540-9538&rft.volume=215&rft.issue=5&rft.spage=1287&rft.epage=1299&rft_id=info:doi/10.1084%2Fjem.20180139&rft.externalDBID=n%2Fa&rft.externalDocID=10_1084_jem_20180139
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0022-1007&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0022-1007&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0022-1007&client=summon