Diagnostic Biomarker Exploration of Autistic Patients With Different Ages and Different Verbal Intelligence Quotients Based on Random Forest Model
As a neurodevelopmental disorder with complex pathogenesis, the existing diagnostic methods of autism still only rely on the scale method. In recent years, there have been some methods using machine learning to classify Autism Spectrum Disorders (ASD), and achieved good accuracy. However, the genera...
Saved in:
Published in | IEEE access Vol. 9; pp. 123861 - 123872 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Piscataway
IEEE
2021
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | As a neurodevelopmental disorder with complex pathogenesis, the existing diagnostic methods of autism still only rely on the scale method. In recent years, there have been some methods using machine learning to classify Autism Spectrum Disorders (ASD), and achieved good accuracy. However, the generalization of these models is poor, and the conclusions are inconsistent. The main reason is that most of them use single site dataset or private dataset for analysis, which will lead to one-sided conclusion. They did not analyze the phenotypic features of the dataset, such as handedness, gender, and age. In order to make the obtained brain diagnostic biomarkers of ASD more universal and generalized, instead of analyzing the dataset from a single site, the whole dataset is divided into subgroups according to age and Verbal Intelligence Quotient (VIQ), and then each subgroup is classified and analyzed by Random Forest (RF) model. The experimental results show that if all male subjects are used for classification, the accuracy of classification can only reach about 55%. By using the proposed grouping method and RF model, the classification accuracy for different subgroups will be improved by 3% ~ 17%. Through the analysis of the importance and difference of the features in each subgroup, we can find that the features obtained in the above experiments are closely related to the functions of speech, emotion, auditory and visual information processing. This may partly explain why ASD patients have speech, social disorder, repetitive behavior and narrow interests. The classification methods proposed and diagnostic biomarkers obtained in this paper may provide some reference for the clinical diagnosis and early treatment of ASD. |
---|---|
AbstractList | As a neurodevelopmental disorder with complex pathogenesis, the existing diagnostic methods of autism still only rely on the scale method. In recent years, there have been some methods using machine learning to classify Autism Spectrum Disorders (ASD), and achieved good accuracy. However, the generalization of these models is poor, and the conclusions are inconsistent. The main reason is that most of them use single site dataset or private dataset for analysis, which will lead to one-sided conclusion. They did not analyze the phenotypic features of the dataset, such as handedness, gender, and age. In order to make the obtained brain diagnostic biomarkers of ASD more universal and generalized, instead of analyzing the dataset from a single site, the whole dataset is divided into subgroups according to age and Verbal Intelligence Quotient (VIQ), and then each subgroup is classified and analyzed by Random Forest (RF) model. The experimental results show that if all male subjects are used for classification, the accuracy of classification can only reach about 55%. By using the proposed grouping method and RF model, the classification accuracy for different subgroups will be improved by 3% ~ 17%. Through the analysis of the importance and difference of the features in each subgroup, we can find that the features obtained in the above experiments are closely related to the functions of speech, emotion, auditory and visual information processing. This may partly explain why ASD patients have speech, social disorder, repetitive behavior and narrow interests. The classification methods proposed and diagnostic biomarkers obtained in this paper may provide some reference for the clinical diagnosis and early treatment of ASD. |
Author | Yang, Rui Ke, Fengkai Zhou, Mingcheng Liu, Huanping Cao, Hui-Min |
Author_xml | – sequence: 1 givenname: Fengkai orcidid: 0000-0002-4761-5120 surname: Ke fullname: Ke, Fengkai email: kfkhbut@163.com organization: Hubei Key Laboratory of Modern Manufacturing Quality Engineering, School of Mechanical Engineering, Hubei University of Technology, Wuhan, China – sequence: 2 givenname: Huanping orcidid: 0000-0002-7574-2311 surname: Liu fullname: Liu, Huanping organization: Hubei Key Laboratory of Modern Manufacturing Quality Engineering, School of Mechanical Engineering, Hubei University of Technology, Wuhan, China – sequence: 3 givenname: Mingcheng orcidid: 0000-0003-0254-8427 surname: Zhou fullname: Zhou, Mingcheng organization: Hubei Key Laboratory of Modern Manufacturing Quality Engineering, School of Mechanical Engineering, Hubei University of Technology, Wuhan, China – sequence: 4 givenname: Rui orcidid: 0000-0002-0054-8004 surname: Yang fullname: Yang, Rui organization: Hubei Key Laboratory of Modern Manufacturing Quality Engineering, School of Mechanical Engineering, Hubei University of Technology, Wuhan, China – sequence: 5 givenname: Hui-Min orcidid: 0000-0002-4514-4732 surname: Cao fullname: Cao, Hui-Min organization: Hubei Key Laboratory of Medical Information Analysis and Tumor Diagnosis and Treatment, College of Biomedical Engineering, South-Central University for Nationalities, Wuhan, China |
BookMark | eNp9kc1OGzEUhUcVlUqBJ2Bjqeuk_ht7ZhlCKJGoSkt_lpbHvk6dDuNgOxK8Bk9cJ5NWqIt6Y9-j-x3d6_O2OhrCAFV1TvCUENy-n83ni7u7KcWUTBmWhJDmVXVMiWgnrGbi6MX7TXWW0hqX0xSplsfV86XXqyGk7A268OFex18Q0eJx04eosw8DCg7NttnvO26LBENO6IfPP9Gldw5iqdFsBQnpwb6QvkPsdI-WQ4a-9ysYDKDP23DgL3QCi4r7l0KFe3QVIqSMPgYL_Wn12uk-wdnhPqm-XS2-zq8nN58-LOezm4nhuMkTbqHBnEjJjOOOMAOkcQ2WHesYZrKVFIuuxo5q4YgThAjLKK6xBgbG1pqdVMvR1wa9Vpvoy_JPKmiv9kKIK6Vj2boHVfNaEGt3HpSbTupibDprOm4YF7wrXu9Gr00MD9uyilqHbRzK-IrWkgohGeWlqx27TAwpRXDK-Lz_5Ry17xXBapeoGhNVu0TVIdHCsn_YPxP_nzofKQ8Af4mWtTVnnP0GCY2vvw |
CODEN | IAECCG |
CitedBy_id | crossref_primary_10_1016_j_bspc_2024_107252 crossref_primary_10_1038_s41398_024_03024_5 |
Cites_doi | 10.1371/journal.pone.0006353 10.1186/s12868-017-0373-0 10.1007/s12021-014-9238-1 10.1016/j.neuroimage.2012.01.021 10.1186/1741-7015-10-64 10.1016/j.neuroimage.2006.01.021 10.1016/j.eswa.2012.02.189 10.1001/archgenpsychiatry.2009.62 10.1613/jair.953 10.1109/EMBC.2015.7319338 10.1016/j.neuroimage.2010.10.026 10.1038/sj.mp.4001499 10.1109/ACCESS.2020.3007348 10.1002/hbm.22411 10.1109/ACCESS.2020.3038479 10.1007/BF00058655 10.1016/j.compbiomed.2011.04.004 10.3174/ajnr.A3126 10.1371/journal.pone.0037828 10.1007/BF02172145 10.1016/S1053-8119(09)70884-5 10.1016/j.neuroimage.2011.01.008 10.1016/j.neuroimage.2010.11.079 10.1016/j.physa.2012.04.025 10.15585/mmwr.ss6904a1 10.1093/cercor/bhn031 10.1023/A:1010933404324 10.1007/s00234-008-0463-x 10.1371/journal.pone.0119089 10.1038/nature21369 10.1016/j.tins.2007.12.005 10.1186/2040-2392-5-1 10.1016/S0896-6273(02)00569-X 10.1093/cercor/bhu242 10.1523/JNEUROSCI.0777-07.2007 10.1016/j.neuroimage.2006.08.032 10.1023/A:1005592401947 10.1109/ACCESS.2020.3016734 10.1016/j.ajhg.2014.02.001 10.1002/aur.1711 10.1109/TMI.2019.2928790 10.1136/bmj.c2673 10.1097/01.wnr.0000239965.21685.99 10.1097/00004583-200403000-00018 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021 |
DBID | 97E ESBDL RIA RIE AAYXX CITATION 7SC 7SP 7SR 8BQ 8FD JG9 JQ2 L7M L~C L~D DOA |
DOI | 10.1109/ACCESS.2021.3071118 |
DatabaseName | IEEE Xplore (IEEE) IEEE Xplore Open Access Journals IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Xplore CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts METADEX Technology Research Database Materials Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace METADEX Computer and Information Systems Abstracts Professional |
DatabaseTitleList | Materials Research Database |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: RIE name: IEEE Xplore url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 2169-3536 |
EndPage | 123872 |
ExternalDocumentID | oai_doaj_org_article_54561dd116d24cb7ab50cbdcb4c3464b 10_1109_ACCESS_2021_3071118 9395434 |
Genre | orig-research |
GrantInformation_xml | – fundername: Hubei Key Laboratory of Medical Information Analysis and Tumor Diagnosis and Treatment grantid: PJS140012003 – fundername: Hubei Key Laboratory of Modern Manufacturing Quality Engineering grantid: KFJJ-2020008 – fundername: Scientific Research Foundation of Science and Technology Department of Hubei Province grantid: 2018CFB190 funderid: 10.13039/501100018806 – fundername: Scientific and Technological Research of Education Department of Hubei Province grantid: Q20181408 – fundername: Doctor Launching Fund of Hubei University of Technology grantid: BSQD20160004 funderid: 10.13039/501100002948 – fundername: Hubei Chenguang Talented Youth Development Foundation (HBCG) grantid: 2017109 – fundername: State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics grantid: T152102 |
GroupedDBID | 0R~ 4.4 5VS 6IK 97E AAJGR ABAZT ABVLG ACGFS ADBBV AGSQL ALMA_UNASSIGNED_HOLDINGS BCNDV BEFXN BFFAM BGNUA BKEBE BPEOZ EBS EJD ESBDL GROUPED_DOAJ IPLJI JAVBF KQ8 M43 M~E O9- OCL OK1 RIA RIE RNS AAYXX CITATION RIG 7SC 7SP 7SR 8BQ 8FD JG9 JQ2 L7M L~C L~D |
ID | FETCH-LOGICAL-c408t-4de8041773cf4f13ce18f807b3b303797206b50f2a6f1f6116d32050ae3ecd5a3 |
IEDL.DBID | DOA |
ISSN | 2169-3536 |
IngestDate | Wed Aug 27 01:28:19 EDT 2025 Mon Jun 30 04:24:51 EDT 2025 Tue Jul 01 04:03:24 EDT 2025 Thu Apr 24 23:09:27 EDT 2025 Wed Aug 27 02:27:18 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Language | English |
License | https://creativecommons.org/licenses/by-nc-nd/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c408t-4de8041773cf4f13ce18f807b3b303797206b50f2a6f1f6116d32050ae3ecd5a3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-7574-2311 0000-0002-0054-8004 0000-0002-4761-5120 0000-0003-0254-8427 0000-0002-4514-4732 |
OpenAccessLink | https://doaj.org/article/54561dd116d24cb7ab50cbdcb4c3464b |
PQID | 2572667324 |
PQPubID | 4845423 |
PageCount | 12 |
ParticipantIDs | ieee_primary_9395434 crossref_citationtrail_10_1109_ACCESS_2021_3071118 proquest_journals_2572667324 crossref_primary_10_1109_ACCESS_2021_3071118 doaj_primary_oai_doaj_org_article_54561dd116d24cb7ab50cbdcb4c3464b |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20210000 2021-00-00 20210101 2021-01-01 |
PublicationDateYYYYMMDD | 2021-01-01 |
PublicationDate_xml | – year: 2021 text: 20210000 |
PublicationDecade | 2020 |
PublicationPlace | Piscataway |
PublicationPlace_xml | – name: Piscataway |
PublicationTitle | IEEE access |
PublicationTitleAbbrev | Access |
PublicationYear | 2021 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref35 ref13 ref34 ref12 ref15 ref36 ref14 ref31 ref30 ref33 ref11 ref32 ref10 ref2 ref1 ref39 ref17 ref38 ref16 ref19 ref18 wechsler (ref45) 2013 wechsler (ref46) 2018; 19 batista (ref48) 2006 ref24 ref23 ref26 ref47 ref25 ref20 ref42 ref41 ref22 ref44 ref21 ref43 ref28 ref27 ref29 ref8 ref7 (ref37) 2016 ref9 ref4 ref3 ref6 ref5 ref40 |
References_xml | – ident: ref17 doi: 10.1371/journal.pone.0006353 – ident: ref30 doi: 10.1186/s12868-017-0373-0 – ident: ref35 doi: 10.1007/s12021-014-9238-1 – year: 2013 ident: ref45 publication-title: Wechsler Adult Intelligence Scale III – ident: ref38 doi: 10.1016/j.neuroimage.2012.01.021 – ident: ref27 doi: 10.1186/1741-7015-10-64 – ident: ref41 doi: 10.1016/j.neuroimage.2006.01.021 – ident: ref12 doi: 10.1016/j.eswa.2012.02.189 – ident: ref15 doi: 10.1001/archgenpsychiatry.2009.62 – ident: ref47 doi: 10.1613/jair.953 – ident: ref34 doi: 10.1109/EMBC.2015.7319338 – ident: ref20 doi: 10.1016/j.neuroimage.2010.10.026 – ident: ref2 doi: 10.1038/sj.mp.4001499 – ident: ref5 doi: 10.1109/ACCESS.2020.3007348 – ident: ref32 doi: 10.1002/hbm.22411 – ident: ref25 doi: 10.1109/ACCESS.2020.3038479 – ident: ref44 doi: 10.1007/BF00058655 – ident: ref28 doi: 10.1016/j.compbiomed.2011.04.004 – ident: ref13 doi: 10.3174/ajnr.A3126 – ident: ref18 doi: 10.1371/journal.pone.0037828 – ident: ref8 doi: 10.1007/BF02172145 – ident: ref39 doi: 10.1016/S1053-8119(09)70884-5 – ident: ref10 doi: 10.1016/j.neuroimage.2011.01.008 – ident: ref16 doi: 10.1016/j.neuroimage.2010.11.079 – ident: ref26 doi: 10.1016/j.physa.2012.04.025 – ident: ref6 doi: 10.15585/mmwr.ss6904a1 – ident: ref22 doi: 10.1093/cercor/bhn031 – ident: ref43 doi: 10.1023/A:1010933404324 – ident: ref11 doi: 10.1007/s00234-008-0463-x – ident: ref14 doi: 10.1371/journal.pone.0119089 – ident: ref9 doi: 10.1038/nature21369 – ident: ref1 doi: 10.1016/j.tins.2007.12.005 – ident: ref4 doi: 10.1186/2040-2392-5-1 – ident: ref40 doi: 10.1016/S0896-6273(02)00569-X – ident: ref33 doi: 10.1093/cercor/bhu242 – ident: ref3 doi: 10.1523/JNEUROSCI.0777-07.2007 – ident: ref21 doi: 10.1016/j.neuroimage.2006.08.032 – ident: ref7 doi: 10.1023/A:1005592401947 – ident: ref24 doi: 10.1109/ACCESS.2020.3016734 – start-page: 315 year: 2006 ident: ref48 article-title: Applying one-sided selection to unbalanced datasets publication-title: Proc Mexican Int Conf Artif Intell – volume: 19 start-page: 221 year: 2018 ident: ref46 article-title: Wechsler intelligence scale for children publication-title: Can J School Psychol – ident: ref36 doi: 10.1016/j.ajhg.2014.02.001 – ident: ref31 doi: 10.1002/aur.1711 – ident: ref19 doi: 10.1109/TMI.2019.2928790 – ident: ref42 doi: 10.1136/bmj.c2673 – ident: ref23 doi: 10.1097/01.wnr.0000239965.21685.99 – year: 2016 ident: ref37 publication-title: Autism Brain Imaging Data Exchange – ident: ref29 doi: 10.1097/00004583-200403000-00018 |
SSID | ssj0000816957 |
Score | 2.2134938 |
Snippet | As a neurodevelopmental disorder with complex pathogenesis, the existing diagnostic methods of autism still only rely on the scale method. In recent years,... |
SourceID | doaj proquest crossref ieee |
SourceType | Open Website Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 123861 |
SubjectTerms | Accuracy Autism Autism spectrum disorders Biological system modeling Biomarkers Brain modeling Classification Data models Data processing Datasets diagnostic biomarker Diagnostic systems Feature extraction Intelligence Machine learning Model accuracy Pathogenesis Quotients Radio frequency random forest Speech Subgroups Surface morphology |
SummonAdditionalLinks | – databaseName: IEEE Xplore dbid: RIE link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwELbanuDAqyAWCvKBY7P1K34cd7dUBakIEIXeovgRqGg3qJu98DP4xYwfGy0PIW6RNePY-iYe25n5BqEXSlPZKuoqboOohKeyarX2lbFB1yywVpuY4Hz2Rp6ei9cX9cUOOhxzYUIIKfgsTONj-pfve7eOV2VHhpuYCbmLduHglnO1xvuUWEDC1KoQC1FijmaLBcwBjoCMTsGS4aPWvzifxNFfiqr8sRIn93JyF51tBpajSr5O14Oduu-_cTb-78jvoTtln4ln2TDuo52wfIBub7EP7qMfxznMDiTw_LK_joE6NzgH5SW8cN_hGRhmknibCVhX-NPl8AUfl7oqA559DivcLv1W00eACt79aovtE79b90V_Dn7TY-j9PWj11zgWB10NOBZlu3qIzk9eflicVqVEQ-UE0QOAGyKBkVLcdaKj3AWqO02U5RZ8ozKKEWlr0rFWdrSTlErPGalJG3hwvm75I7S37JfhMcJGSMsl8cYFJ2zHrREKFB10TXmt1ASxDXaNK_zlsYzGVZPOMcQ0GfAmAt4UwCfocFT6luk7_i0-j0Yxikbu7dQAYDblU27SntP7OBcmnFUtTNBZ76xwXEhhJ2g_GsDYScF-gg42JtaUdWLVwILJYuFVJp78XespuhUHmC99DtDecLMOz2AbNNjnyf5_AtShBZc priority: 102 providerName: IEEE |
Title | Diagnostic Biomarker Exploration of Autistic Patients With Different Ages and Different Verbal Intelligence Quotients Based on Random Forest Model |
URI | https://ieeexplore.ieee.org/document/9395434 https://www.proquest.com/docview/2572667324 https://doaj.org/article/54561dd116d24cb7ab50cbdcb4c3464b |
Volume | 9 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LTxRBEO4YTnowKhpXkPSBoyP9mn4cdxcJmGjUiHLrTD9GSWDHsMMf4RdT_WAzhkQuXjvVj6mqruqeVH8fQvtKU9kp6hvuomhEoLLptA6NcVG3LLJOm_TA-dNneXwqPp61ZxOqr1QTVuCBi-IOcoYPgVIZmPBOda4l3gXvhOdCCpeiL-S8yWUqx2BYgmlVhRmixBzMl0v4IrgQMvoe_Bq2uP4rFWXE_kqxci8u52Rz9Aw9radEPC-re44exdUL9GSCHbiNbg5LkRxI4MX5cJnKbK5wKanL2sZDj-fgVlniS4FPXeOf5-NvfFhZUUY8_xXXuFuFSdMPUDTMfTLB6sRfr4fafwFZL2AY_Rv0Gi5xovZcjzhRql28RKdHH74vj5tKsNB4QfQIpokJfkgp7nvRU-4j1b0mynEHmU0ZxYgEdfeskz3tZbIBZ6QlXeTRh7bjr9DWaljF1wgbIR2XJBgfvXA9d0Yo6OhhaMpbpWaI3ena-oo-nkgwLmy-hRBji4FsMpCtBpqhd5tOfwr4xr_FF8mIG9GEnJ0bwJ9s9Sf7kD_N0HZygc0ghpv0-naGdu9cwtZdvrYQ7liiTWXizf-Yegc9Tp9TfvDsoq3x6jq-hSPP6Payd-_l14m3H7j9pQ |
linkProvider | Directory of Open Access Journals |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwELZKOQAHXgV1oQUfODbb-BE7Pu5uW22hWwFqoTcrfoRWtBvUzV74Gfxixo43Wh5C3CJrxrH1jT2OM_MNQm9kSUQlic2Y8TzjjoisKkuXKePLgnpalSokOM9OxfScv70oLjbQXp8L472PwWd-GB7jv3zX2GW4KttXTIVMyDvoLvj9gnTZWv2NSighoQqZqIVIrvZHkwnMAj4CKRmCLcOyLn9xP5GlP5VV-WMvjg7m6BGarYbWxZV8HS5bM7Tff2Nt_N-xP0YP00kTjzrTeII2_PwperDGP7iFfhx0gXYggcdXzU0I1bnFXVheRAw3NR6BaUaJ9x0F6wJ_vmov8UGqrNLi0Re_wNXcrTV9ArDg3cdrfJ_4w7JJ-mPwnA5D7x9Bq7nBoTzoosWhLNv1M3R-dHg2mWapSENmeV62AK8PFEZSMlvzmjDrSVmXuTTMgHeUStJcmCKvaSVqUgtChGM0L_LKM29dUbHnaHPezP02wooLw0TulPWWm5oZxSUoWuiasELKAaIr7LRNDOahkMa1jl8yudId4DoArhPgA7TXK33rCDz-LT4ORtGLBvbt2ABg6rSYdTx1OhfmQrk1soIJWuOs4ZZxwc0AbQUD6DtJ2A_QzsrEdNopFhq2TBpKr1L-4u9ar9G96dnsRJ8cn757ie6HwXZXQDtos71d-l04FLXmVVwLPwGWrQjg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Diagnostic+Biomarker+Exploration+of+Autistic+Patients+With+Different+Ages+and+Different+Verbal+Intelligence+Quotients+Based+on+Random+Forest+Model&rft.jtitle=IEEE+access&rft.au=Ke%2C+Fengkai&rft.au=Liu%2C+Huanping&rft.au=Zhou%2C+Mingcheng&rft.au=Yang%2C+Rui&rft.date=2021&rft.pub=IEEE&rft.eissn=2169-3536&rft.volume=9&rft.spage=123861&rft.epage=123872&rft_id=info:doi/10.1109%2FACCESS.2021.3071118&rft.externalDocID=9395434 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2169-3536&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2169-3536&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2169-3536&client=summon |