Diagnostic Biomarker Exploration of Autistic Patients With Different Ages and Different Verbal Intelligence Quotients Based on Random Forest Model

As a neurodevelopmental disorder with complex pathogenesis, the existing diagnostic methods of autism still only rely on the scale method. In recent years, there have been some methods using machine learning to classify Autism Spectrum Disorders (ASD), and achieved good accuracy. However, the genera...

Full description

Saved in:
Bibliographic Details
Published inIEEE access Vol. 9; pp. 123861 - 123872
Main Authors Ke, Fengkai, Liu, Huanping, Zhou, Mingcheng, Yang, Rui, Cao, Hui-Min
Format Journal Article
LanguageEnglish
Published Piscataway IEEE 2021
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract As a neurodevelopmental disorder with complex pathogenesis, the existing diagnostic methods of autism still only rely on the scale method. In recent years, there have been some methods using machine learning to classify Autism Spectrum Disorders (ASD), and achieved good accuracy. However, the generalization of these models is poor, and the conclusions are inconsistent. The main reason is that most of them use single site dataset or private dataset for analysis, which will lead to one-sided conclusion. They did not analyze the phenotypic features of the dataset, such as handedness, gender, and age. In order to make the obtained brain diagnostic biomarkers of ASD more universal and generalized, instead of analyzing the dataset from a single site, the whole dataset is divided into subgroups according to age and Verbal Intelligence Quotient (VIQ), and then each subgroup is classified and analyzed by Random Forest (RF) model. The experimental results show that if all male subjects are used for classification, the accuracy of classification can only reach about 55%. By using the proposed grouping method and RF model, the classification accuracy for different subgroups will be improved by 3% ~ 17%. Through the analysis of the importance and difference of the features in each subgroup, we can find that the features obtained in the above experiments are closely related to the functions of speech, emotion, auditory and visual information processing. This may partly explain why ASD patients have speech, social disorder, repetitive behavior and narrow interests. The classification methods proposed and diagnostic biomarkers obtained in this paper may provide some reference for the clinical diagnosis and early treatment of ASD.
AbstractList As a neurodevelopmental disorder with complex pathogenesis, the existing diagnostic methods of autism still only rely on the scale method. In recent years, there have been some methods using machine learning to classify Autism Spectrum Disorders (ASD), and achieved good accuracy. However, the generalization of these models is poor, and the conclusions are inconsistent. The main reason is that most of them use single site dataset or private dataset for analysis, which will lead to one-sided conclusion. They did not analyze the phenotypic features of the dataset, such as handedness, gender, and age. In order to make the obtained brain diagnostic biomarkers of ASD more universal and generalized, instead of analyzing the dataset from a single site, the whole dataset is divided into subgroups according to age and Verbal Intelligence Quotient (VIQ), and then each subgroup is classified and analyzed by Random Forest (RF) model. The experimental results show that if all male subjects are used for classification, the accuracy of classification can only reach about 55%. By using the proposed grouping method and RF model, the classification accuracy for different subgroups will be improved by 3% ~ 17%. Through the analysis of the importance and difference of the features in each subgroup, we can find that the features obtained in the above experiments are closely related to the functions of speech, emotion, auditory and visual information processing. This may partly explain why ASD patients have speech, social disorder, repetitive behavior and narrow interests. The classification methods proposed and diagnostic biomarkers obtained in this paper may provide some reference for the clinical diagnosis and early treatment of ASD.
Author Yang, Rui
Ke, Fengkai
Zhou, Mingcheng
Liu, Huanping
Cao, Hui-Min
Author_xml – sequence: 1
  givenname: Fengkai
  orcidid: 0000-0002-4761-5120
  surname: Ke
  fullname: Ke, Fengkai
  email: kfkhbut@163.com
  organization: Hubei Key Laboratory of Modern Manufacturing Quality Engineering, School of Mechanical Engineering, Hubei University of Technology, Wuhan, China
– sequence: 2
  givenname: Huanping
  orcidid: 0000-0002-7574-2311
  surname: Liu
  fullname: Liu, Huanping
  organization: Hubei Key Laboratory of Modern Manufacturing Quality Engineering, School of Mechanical Engineering, Hubei University of Technology, Wuhan, China
– sequence: 3
  givenname: Mingcheng
  orcidid: 0000-0003-0254-8427
  surname: Zhou
  fullname: Zhou, Mingcheng
  organization: Hubei Key Laboratory of Modern Manufacturing Quality Engineering, School of Mechanical Engineering, Hubei University of Technology, Wuhan, China
– sequence: 4
  givenname: Rui
  orcidid: 0000-0002-0054-8004
  surname: Yang
  fullname: Yang, Rui
  organization: Hubei Key Laboratory of Modern Manufacturing Quality Engineering, School of Mechanical Engineering, Hubei University of Technology, Wuhan, China
– sequence: 5
  givenname: Hui-Min
  orcidid: 0000-0002-4514-4732
  surname: Cao
  fullname: Cao, Hui-Min
  organization: Hubei Key Laboratory of Medical Information Analysis and Tumor Diagnosis and Treatment, College of Biomedical Engineering, South-Central University for Nationalities, Wuhan, China
BookMark eNp9kc1OGzEUhUcVlUqBJ2Bjqeuk_ht7ZhlCKJGoSkt_lpbHvk6dDuNgOxK8Bk9cJ5NWqIt6Y9-j-x3d6_O2OhrCAFV1TvCUENy-n83ni7u7KcWUTBmWhJDmVXVMiWgnrGbi6MX7TXWW0hqX0xSplsfV86XXqyGk7A268OFex18Q0eJx04eosw8DCg7NttnvO26LBENO6IfPP9Gldw5iqdFsBQnpwb6QvkPsdI-WQ4a-9ysYDKDP23DgL3QCi4r7l0KFe3QVIqSMPgYL_Wn12uk-wdnhPqm-XS2-zq8nN58-LOezm4nhuMkTbqHBnEjJjOOOMAOkcQ2WHesYZrKVFIuuxo5q4YgThAjLKK6xBgbG1pqdVMvR1wa9Vpvoy_JPKmiv9kKIK6Vj2boHVfNaEGt3HpSbTupibDprOm4YF7wrXu9Gr00MD9uyilqHbRzK-IrWkgohGeWlqx27TAwpRXDK-Lz_5Ry17xXBapeoGhNVu0TVIdHCsn_YPxP_nzofKQ8Af4mWtTVnnP0GCY2vvw
CODEN IAECCG
CitedBy_id crossref_primary_10_1016_j_bspc_2024_107252
crossref_primary_10_1038_s41398_024_03024_5
Cites_doi 10.1371/journal.pone.0006353
10.1186/s12868-017-0373-0
10.1007/s12021-014-9238-1
10.1016/j.neuroimage.2012.01.021
10.1186/1741-7015-10-64
10.1016/j.neuroimage.2006.01.021
10.1016/j.eswa.2012.02.189
10.1001/archgenpsychiatry.2009.62
10.1613/jair.953
10.1109/EMBC.2015.7319338
10.1016/j.neuroimage.2010.10.026
10.1038/sj.mp.4001499
10.1109/ACCESS.2020.3007348
10.1002/hbm.22411
10.1109/ACCESS.2020.3038479
10.1007/BF00058655
10.1016/j.compbiomed.2011.04.004
10.3174/ajnr.A3126
10.1371/journal.pone.0037828
10.1007/BF02172145
10.1016/S1053-8119(09)70884-5
10.1016/j.neuroimage.2011.01.008
10.1016/j.neuroimage.2010.11.079
10.1016/j.physa.2012.04.025
10.15585/mmwr.ss6904a1
10.1093/cercor/bhn031
10.1023/A:1010933404324
10.1007/s00234-008-0463-x
10.1371/journal.pone.0119089
10.1038/nature21369
10.1016/j.tins.2007.12.005
10.1186/2040-2392-5-1
10.1016/S0896-6273(02)00569-X
10.1093/cercor/bhu242
10.1523/JNEUROSCI.0777-07.2007
10.1016/j.neuroimage.2006.08.032
10.1023/A:1005592401947
10.1109/ACCESS.2020.3016734
10.1016/j.ajhg.2014.02.001
10.1002/aur.1711
10.1109/TMI.2019.2928790
10.1136/bmj.c2673
10.1097/01.wnr.0000239965.21685.99
10.1097/00004583-200403000-00018
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021
DBID 97E
ESBDL
RIA
RIE
AAYXX
CITATION
7SC
7SP
7SR
8BQ
8FD
JG9
JQ2
L7M
L~C
L~D
DOA
DOI 10.1109/ACCESS.2021.3071118
DatabaseName IEEE Xplore (IEEE)
IEEE Xplore Open Access Journals
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Xplore
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
METADEX
Computer and Information Systems Abstracts Professional
DatabaseTitleList
Materials Research Database

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: RIE
  name: IEEE Xplore
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2169-3536
EndPage 123872
ExternalDocumentID oai_doaj_org_article_54561dd116d24cb7ab50cbdcb4c3464b
10_1109_ACCESS_2021_3071118
9395434
Genre orig-research
GrantInformation_xml – fundername: Hubei Key Laboratory of Medical Information Analysis and Tumor Diagnosis and Treatment
  grantid: PJS140012003
– fundername: Hubei Key Laboratory of Modern Manufacturing Quality Engineering
  grantid: KFJJ-2020008
– fundername: Scientific Research Foundation of Science and Technology Department of Hubei Province
  grantid: 2018CFB190
  funderid: 10.13039/501100018806
– fundername: Scientific and Technological Research of Education Department of Hubei Province
  grantid: Q20181408
– fundername: Doctor Launching Fund of Hubei University of Technology
  grantid: BSQD20160004
  funderid: 10.13039/501100002948
– fundername: Hubei Chenguang Talented Youth Development Foundation (HBCG)
  grantid: 2017109
– fundername: State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics
  grantid: T152102
GroupedDBID 0R~
4.4
5VS
6IK
97E
AAJGR
ABAZT
ABVLG
ACGFS
ADBBV
AGSQL
ALMA_UNASSIGNED_HOLDINGS
BCNDV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
EJD
ESBDL
GROUPED_DOAJ
IPLJI
JAVBF
KQ8
M43
M~E
O9-
OCL
OK1
RIA
RIE
RNS
AAYXX
CITATION
RIG
7SC
7SP
7SR
8BQ
8FD
JG9
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c408t-4de8041773cf4f13ce18f807b3b303797206b50f2a6f1f6116d32050ae3ecd5a3
IEDL.DBID DOA
ISSN 2169-3536
IngestDate Wed Aug 27 01:28:19 EDT 2025
Mon Jun 30 04:24:51 EDT 2025
Tue Jul 01 04:03:24 EDT 2025
Thu Apr 24 23:09:27 EDT 2025
Wed Aug 27 02:27:18 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Language English
License https://creativecommons.org/licenses/by-nc-nd/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c408t-4de8041773cf4f13ce18f807b3b303797206b50f2a6f1f6116d32050ae3ecd5a3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-7574-2311
0000-0002-0054-8004
0000-0002-4761-5120
0000-0003-0254-8427
0000-0002-4514-4732
OpenAccessLink https://doaj.org/article/54561dd116d24cb7ab50cbdcb4c3464b
PQID 2572667324
PQPubID 4845423
PageCount 12
ParticipantIDs ieee_primary_9395434
crossref_citationtrail_10_1109_ACCESS_2021_3071118
proquest_journals_2572667324
crossref_primary_10_1109_ACCESS_2021_3071118
doaj_primary_oai_doaj_org_article_54561dd116d24cb7ab50cbdcb4c3464b
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20210000
2021-00-00
20210101
2021-01-01
PublicationDateYYYYMMDD 2021-01-01
PublicationDate_xml – year: 2021
  text: 20210000
PublicationDecade 2020
PublicationPlace Piscataway
PublicationPlace_xml – name: Piscataway
PublicationTitle IEEE access
PublicationTitleAbbrev Access
PublicationYear 2021
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref35
ref13
ref34
ref12
ref15
ref36
ref14
ref31
ref30
ref33
ref11
ref32
ref10
ref2
ref1
ref39
ref17
ref38
ref16
ref19
ref18
wechsler (ref45) 2013
wechsler (ref46) 2018; 19
batista (ref48) 2006
ref24
ref23
ref26
ref47
ref25
ref20
ref42
ref41
ref22
ref44
ref21
ref43
ref28
ref27
ref29
ref8
ref7
(ref37) 2016
ref9
ref4
ref3
ref6
ref5
ref40
References_xml – ident: ref17
  doi: 10.1371/journal.pone.0006353
– ident: ref30
  doi: 10.1186/s12868-017-0373-0
– ident: ref35
  doi: 10.1007/s12021-014-9238-1
– year: 2013
  ident: ref45
  publication-title: Wechsler Adult Intelligence Scale III
– ident: ref38
  doi: 10.1016/j.neuroimage.2012.01.021
– ident: ref27
  doi: 10.1186/1741-7015-10-64
– ident: ref41
  doi: 10.1016/j.neuroimage.2006.01.021
– ident: ref12
  doi: 10.1016/j.eswa.2012.02.189
– ident: ref15
  doi: 10.1001/archgenpsychiatry.2009.62
– ident: ref47
  doi: 10.1613/jair.953
– ident: ref34
  doi: 10.1109/EMBC.2015.7319338
– ident: ref20
  doi: 10.1016/j.neuroimage.2010.10.026
– ident: ref2
  doi: 10.1038/sj.mp.4001499
– ident: ref5
  doi: 10.1109/ACCESS.2020.3007348
– ident: ref32
  doi: 10.1002/hbm.22411
– ident: ref25
  doi: 10.1109/ACCESS.2020.3038479
– ident: ref44
  doi: 10.1007/BF00058655
– ident: ref28
  doi: 10.1016/j.compbiomed.2011.04.004
– ident: ref13
  doi: 10.3174/ajnr.A3126
– ident: ref18
  doi: 10.1371/journal.pone.0037828
– ident: ref8
  doi: 10.1007/BF02172145
– ident: ref39
  doi: 10.1016/S1053-8119(09)70884-5
– ident: ref10
  doi: 10.1016/j.neuroimage.2011.01.008
– ident: ref16
  doi: 10.1016/j.neuroimage.2010.11.079
– ident: ref26
  doi: 10.1016/j.physa.2012.04.025
– ident: ref6
  doi: 10.15585/mmwr.ss6904a1
– ident: ref22
  doi: 10.1093/cercor/bhn031
– ident: ref43
  doi: 10.1023/A:1010933404324
– ident: ref11
  doi: 10.1007/s00234-008-0463-x
– ident: ref14
  doi: 10.1371/journal.pone.0119089
– ident: ref9
  doi: 10.1038/nature21369
– ident: ref1
  doi: 10.1016/j.tins.2007.12.005
– ident: ref4
  doi: 10.1186/2040-2392-5-1
– ident: ref40
  doi: 10.1016/S0896-6273(02)00569-X
– ident: ref33
  doi: 10.1093/cercor/bhu242
– ident: ref3
  doi: 10.1523/JNEUROSCI.0777-07.2007
– ident: ref21
  doi: 10.1016/j.neuroimage.2006.08.032
– ident: ref7
  doi: 10.1023/A:1005592401947
– ident: ref24
  doi: 10.1109/ACCESS.2020.3016734
– start-page: 315
  year: 2006
  ident: ref48
  article-title: Applying one-sided selection to unbalanced datasets
  publication-title: Proc Mexican Int Conf Artif Intell
– volume: 19
  start-page: 221
  year: 2018
  ident: ref46
  article-title: Wechsler intelligence scale for children
  publication-title: Can J School Psychol
– ident: ref36
  doi: 10.1016/j.ajhg.2014.02.001
– ident: ref31
  doi: 10.1002/aur.1711
– ident: ref19
  doi: 10.1109/TMI.2019.2928790
– ident: ref42
  doi: 10.1136/bmj.c2673
– ident: ref23
  doi: 10.1097/01.wnr.0000239965.21685.99
– year: 2016
  ident: ref37
  publication-title: Autism Brain Imaging Data Exchange
– ident: ref29
  doi: 10.1097/00004583-200403000-00018
SSID ssj0000816957
Score 2.2134938
Snippet As a neurodevelopmental disorder with complex pathogenesis, the existing diagnostic methods of autism still only rely on the scale method. In recent years,...
SourceID doaj
proquest
crossref
ieee
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 123861
SubjectTerms Accuracy
Autism
Autism spectrum disorders
Biological system modeling
Biomarkers
Brain modeling
Classification
Data models
Data processing
Datasets
diagnostic biomarker
Diagnostic systems
Feature extraction
Intelligence
Machine learning
Model accuracy
Pathogenesis
Quotients
Radio frequency
random forest
Speech
Subgroups
Surface morphology
SummonAdditionalLinks – databaseName: IEEE Xplore
  dbid: RIE
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwELbanuDAqyAWCvKBY7P1K34cd7dUBakIEIXeovgRqGg3qJu98DP4xYwfGy0PIW6RNePY-iYe25n5BqEXSlPZKuoqboOohKeyarX2lbFB1yywVpuY4Hz2Rp6ei9cX9cUOOhxzYUIIKfgsTONj-pfve7eOV2VHhpuYCbmLduHglnO1xvuUWEDC1KoQC1FijmaLBcwBjoCMTsGS4aPWvzifxNFfiqr8sRIn93JyF51tBpajSr5O14Oduu-_cTb-78jvoTtln4ln2TDuo52wfIBub7EP7qMfxznMDiTw_LK_joE6NzgH5SW8cN_hGRhmknibCVhX-NPl8AUfl7oqA559DivcLv1W00eACt79aovtE79b90V_Dn7TY-j9PWj11zgWB10NOBZlu3qIzk9eflicVqVEQ-UE0QOAGyKBkVLcdaKj3AWqO02U5RZ8ozKKEWlr0rFWdrSTlErPGalJG3hwvm75I7S37JfhMcJGSMsl8cYFJ2zHrREKFB10TXmt1ASxDXaNK_zlsYzGVZPOMcQ0GfAmAt4UwCfocFT6luk7_i0-j0Yxikbu7dQAYDblU27SntP7OBcmnFUtTNBZ76xwXEhhJ2g_GsDYScF-gg42JtaUdWLVwILJYuFVJp78XespuhUHmC99DtDecLMOz2AbNNjnyf5_AtShBZc
  priority: 102
  providerName: IEEE
Title Diagnostic Biomarker Exploration of Autistic Patients With Different Ages and Different Verbal Intelligence Quotients Based on Random Forest Model
URI https://ieeexplore.ieee.org/document/9395434
https://www.proquest.com/docview/2572667324
https://doaj.org/article/54561dd116d24cb7ab50cbdcb4c3464b
Volume 9
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LTxRBEO4YTnowKhpXkPSBoyP9mn4cdxcJmGjUiHLrTD9GSWDHsMMf4RdT_WAzhkQuXjvVj6mqruqeVH8fQvtKU9kp6hvuomhEoLLptA6NcVG3LLJOm_TA-dNneXwqPp61ZxOqr1QTVuCBi-IOcoYPgVIZmPBOda4l3gXvhOdCCpeiL-S8yWUqx2BYgmlVhRmixBzMl0v4IrgQMvoe_Bq2uP4rFWXE_kqxci8u52Rz9Aw9radEPC-re44exdUL9GSCHbiNbg5LkRxI4MX5cJnKbK5wKanL2sZDj-fgVlniS4FPXeOf5-NvfFhZUUY8_xXXuFuFSdMPUDTMfTLB6sRfr4fafwFZL2AY_Rv0Gi5xovZcjzhRql28RKdHH74vj5tKsNB4QfQIpokJfkgp7nvRU-4j1b0mynEHmU0ZxYgEdfeskz3tZbIBZ6QlXeTRh7bjr9DWaljF1wgbIR2XJBgfvXA9d0Yo6OhhaMpbpWaI3ena-oo-nkgwLmy-hRBji4FsMpCtBpqhd5tOfwr4xr_FF8mIG9GEnJ0bwJ9s9Sf7kD_N0HZygc0ghpv0-naGdu9cwtZdvrYQ7liiTWXizf-Yegc9Tp9TfvDsoq3x6jq-hSPP6Payd-_l14m3H7j9pQ
linkProvider Directory of Open Access Journals
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwELZKOQAHXgV1oQUfODbb-BE7Pu5uW22hWwFqoTcrfoRWtBvUzV74Gfxixo43Wh5C3CJrxrH1jT2OM_MNQm9kSUQlic2Y8TzjjoisKkuXKePLgnpalSokOM9OxfScv70oLjbQXp8L472PwWd-GB7jv3zX2GW4KttXTIVMyDvoLvj9gnTZWv2NSighoQqZqIVIrvZHkwnMAj4CKRmCLcOyLn9xP5GlP5VV-WMvjg7m6BGarYbWxZV8HS5bM7Tff2Nt_N-xP0YP00kTjzrTeII2_PwperDGP7iFfhx0gXYggcdXzU0I1bnFXVheRAw3NR6BaUaJ9x0F6wJ_vmov8UGqrNLi0Re_wNXcrTV9ArDg3cdrfJ_4w7JJ-mPwnA5D7x9Bq7nBoTzoosWhLNv1M3R-dHg2mWapSENmeV62AK8PFEZSMlvzmjDrSVmXuTTMgHeUStJcmCKvaSVqUgtChGM0L_LKM29dUbHnaHPezP02wooLw0TulPWWm5oZxSUoWuiasELKAaIr7LRNDOahkMa1jl8yudId4DoArhPgA7TXK33rCDz-LT4ORtGLBvbt2ABg6rSYdTx1OhfmQrk1soIJWuOs4ZZxwc0AbQUD6DtJ2A_QzsrEdNopFhq2TBpKr1L-4u9ar9G96dnsRJ8cn757ie6HwXZXQDtos71d-l04FLXmVVwLPwGWrQjg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Diagnostic+Biomarker+Exploration+of+Autistic+Patients+With+Different+Ages+and+Different+Verbal+Intelligence+Quotients+Based+on+Random+Forest+Model&rft.jtitle=IEEE+access&rft.au=Ke%2C+Fengkai&rft.au=Liu%2C+Huanping&rft.au=Zhou%2C+Mingcheng&rft.au=Yang%2C+Rui&rft.date=2021&rft.pub=IEEE&rft.eissn=2169-3536&rft.volume=9&rft.spage=123861&rft.epage=123872&rft_id=info:doi/10.1109%2FACCESS.2021.3071118&rft.externalDocID=9395434
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2169-3536&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2169-3536&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2169-3536&client=summon